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Abstract—A problem of index coding with side information was
first considered by Y. Birk and T. Kol (IEEE INFOCOM, 1998). In
the present work, a generalization of index coding scheme, where
transmitted symbols are subject to errors, is studied. Error-
correcting methods for such a scheme, and their parameters,are
investigated. In particular, the following question is discussed:
given the side information hypergraph of index coding scheme
and the maximal number of erroneous symbolsδ, what is the
shortest length of a linear index code, such that every receiver
is able to recover the required information? This question turns
out to be a generalization of the problem of finding a shortest-
length error-correcting code with a prescribed error-correcting
capability in the classical coding theory.

The Singleton bound and two other bounds, referred to as
the α-bound and the κ-bound, for the optimal length of a
linear error-correcting index code (ECIC) are established. For
large alphabets, a construction based on concatenation of an
optimal index code with an MDS classical code, is shown to
attain the Singleton bound. For smaller alphabets, however, this
construction may not be optimal. A random construction is also
analyzed. It yields another inexplicit bound on the length of an
optimal linear ECIC. Finally, the decoding of linear ECIC’s is
discussed. The syndrome decoding is shown to output the exact
message if the weight of the error vector is less or equal to the
error-correcting capability of the corresponding ECIC.

I. I NTRODUCTION

A. Background

The problem of Index Coding with Side Information (ICSI)
was introduced by Birk and Kol [1]. During the transmission,
each client might miss a certain part of the data, due to
intermittent reception, limited storage capacity or any other
reasons. Via a slow backward channel, the clients let the server
know which messages they already have in their possession,
and which messages they are interested to receive. The server
has to find a way to deliver to each client all the messages he
requested, yet spending a minimum number of transmissions.
As it was shown in [1], the server can significantly reduce the
number of transmissions by coding the messages.

Possible applications of index coding include communica-
tions scenarios, in which a satellite or a server broadcastsa set
of messages to a set clients, such as daily newspaper delivery
or video-on-demand. Index coding with side information can
also be used in opportunistic wireless networks [2].

The ICSI problem has been a subject of several recent
studies [3]–[8]. This problem can be viewed as a special case
of the Network Coding (NC) problem [9], [10]. In particular,
as it was shown in [7], every instance of the NC problem can
be reduced to an instance of the ICSI problem.

B. Our contribution

In this work, we generalize the ICSI problem towards a
setup with error correction. We extend some known results
on index coding to a case where any receiver can correct up
to a certain number of errors. The problem of designing such
error-correcting index codes (ECIC’s) naturally generalizes the
problem of constructing classical error-correcting codes. We
establish an upper bound (theκ-bound) and a lower bound
(theα-bound) on the shortest length of a linear ECIC, which
is able to correct any error pattern of size up toδ. We also
derive an analog of the Singleton bound, and show that this
bound is tight for codes over large alphabets. We also consider
random ECIC’s. By analyzing their parameters, we obtain an
upper bound on their length. Finally, we discuss the decoding
of linear ECIC’s. We show that the syndrome decoding results
in a correct result, provided that the number of errors does not
exceed the error-correcting capability of the code.

The problem of error correction for NC was studied in
several previous works. However, these results are not di-
rectly applicable for the ICSI problem. First, the existing
works only consider the multicast scenario, while the ICSI
problem, however, is a special case of the non-multicast NC
problem. Second, the ICSI problem can be modeled by the
NC scenario [8], yet, this requires that there are directed edges
from particular sources to each sink, which provide the side
information. The symbols transmitted on these special edges,
unlike for error-correcting NC, are not allowed to be corrupted.

II. PRELIMINARIES

Let Fq be the finite field ofq elements, whereq is a power
of prime, andF∗

q = Fq\{0}. Let [n] = {1, 2, . . . , n}. For the
vectorsu,v ∈ F

n
q , we used(u,v) to denote the the Hamming

distance betweenu andv. If u ∈ F
n
q andM ⊆ F

n
q is a set

of vectors (or a vector subspace), then this notation can be
extended to

d(u,M) = min
v∈M

d(u,v) .

Givenq, k, andd, letNq[k, d] denote the length of the shortest
linear code overFq which has dimensionk and minimum
distanced. The support of a vectoru ∈ F

n
q is defined by

supp(u)
△

= {i ∈ [n] : ui 6= 0}. The Hamming weight ofu is
defined bywt(u)

△

= |supp(u)|. SupposeE ⊆ [n]. We write
u⊳ E wheneversupp(u) ⊆ E.

We useei = (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i

) ∈ F
n
q to denote the

unit vector, which has a one at theith position, and zeros
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elsewhere. For a vectory = (y1, y2, . . . , yn) and a subset
B = {i1, i2, . . . , ib} of [n], wherei1 < i2 < · · · < ib, let yB

denote the vector(yi1 , yi2 , . . . , yib).
For ann × N matrix L, let Li denote itsith row. For a

setE ⊆ [n], let LE denote the|E| ×N matrix obtained from
L by deleting all the rows ofL which are not indexed by
the elements ofE. For a set of vectorsM , we use notation
span(M) to denote the linear space spanned by the vectors
in M . We also use notationcolspan(L) for the linear space
spanned by the columns of the matrixL.

Let G = (V , E) be a graph with a vertex setV and an edge
setE . A directed graphG is calledsymmetricif

(u, v) ∈ E ⇔ (v, u) ∈ E .

The independence numberof an undirected graphG is de-
noted byα(G). There is a natural correspondence between
undirected graphs and directed symmetric graphs. By using
this correspondence, the definition of independence numberis
naturally extended to directed symmetric graphs.

III. E RROR-CORRECTING INDEX CODING WITH SIDE

INFORMATION

Index Coding with Side Information problem considers
the following communications scenario. There is a unique
sender (or source)S, who has a vector of messagesx =
(x1, x2, . . . , xn) in his possession. There are alsom receivers
R1, R2, . . . , Rm, receiving information fromS via a broadcast
channel. For eachi ∈ [m], Ri has side information, i.e.Ri

owns a subset of messages{xj}j∈Xi
, whereXi ⊆ [n]. Each

Ri, i ∈ [m], is interested in receiving the messagexf(i) (we
say thatRi requiresxf(i)), where the mappingf : [m] → [n]
satisfiesf(i) /∈ Xi for all i ∈ [m]. Hereafter, we use the
notation X = (X1,X2, . . . ,Xm). An instance of the ICSI
problem is given by a quadruple(m,n,X , f). An instance
of the ICSI problem can also be conveniently described by
the following directed hypergraph [8].

Definition 3.1: Let (m,n,X , f) be an instance of the ICSI
problem. The correspondingside information (directed) hyper-
graphH = H(m,n,X , f) is defined by the vertex setV = [n]
and the edge setEH, where

EH = {(f(i),Xi) : i ∈ [n]} .

We often refer to(m,n,X , f) as an instance of the ICSI
problem described by the hypergraphH.

Each side information hypergraphH = (V , EH) can be
associated with the directed graphGH = (V , E) in the
following way. For each directed edge(f(i),Xi) ∈ EH there
will be |Xi| directed edges(f(i), v) ∈ E , for v ∈ Xi. When
m = n andf(i) = i for all i ∈ [m], the graphGH is, in fact,
the side information graph, defined in [3].

Due to noise, the symbols received byRi, i ∈ [m], may be
subject to errors. Assume thatS broadcasts a vectory ∈ F

N
q .

Let ǫi ∈ F
N
q be the error affecting the information received

by Ri, i ∈ [m]. ThenRi actually receives the vectoryi =
y + ǫi ∈ F

N
q , instead ofy.

Definition 3.2: Consider an instance of the ICSI problem
described byH = H(m,n,X , f). A δ-error-correcting index
code((δ,H)-ECIC) overFq for this instance is an encoding
function

E : F
n
q → F

N
q ,

such that for each receiverRi, i ∈ [m], there exists a decoding
function

Di : F
N
q × F

|Xi|
q → Fq ,

satisfying

∀x, ǫi ∈ F
n
q , wt(ǫi) 6 δ : Di(E(x) + ǫi,xXi

) = xf(i) .

If δ = 0, we refer to suchE as anon-error-correctingindex
code, or justH-IC. The parameterN is called thelength of
the index code. In the scheme corresponding to the codeE, S
broadcasts a vectorE(x) of lengthN overFq.

Definition 3.3: A linear index codeis an index code, for
which the encoding functionE is a linear transformation over
Fq. Such a code can be described as

∀x ∈ F
n
q : E(x) = xL ,

whereL is ann×N matrix overFq. The matrixL is called the
matrix corresponding to the index codeE, while E is referred
to as thelinear index code based onL.

Definition 3.4: An optimal linear (δ,H)-ECIC overFq is
a linear(δ,H)-ECIC overFq of the smallest possible length
Nq(H, δ).

Hereafter, we assume thatX = (Xi)i∈[m] is known toS.
We also assume that the codeE is known to each receiverRi,
i ∈ [m].

Definition 3.5: SupposeH = H(m,n,X , f) corresponds
to an instance of the ICSI problem. Then themin-rank of H
overFq is defined as

κq(H)
△

= min{rankFq
({vi + ef(i)}i∈[m]) :

vi ∈ F
n
q , vi ⊳ Xi} .

Observe thatκq(H) generalizes the min-rank overFq of the
side information graph, which was defined in [3]. More specif-
ically, whenm = n andf(i) = i for all i ∈ [m], GH becomes
the side information graph, andκq(H) = min-rankq(GH). The
min-rank was shown in [3], [4] to be the smallest number of
transmissions in a linear index code.

Lemma 3.1:( [3], [11]) Consider an instance of the ICSI
problem described byH = H(m,n,X , f) .

1) The matrixL corresponds to a linearH-IC over Fq if
and only if for eachi ∈ [m] there existsvi ∈ F

n
q such

thatvi ⊳ Xi andvi + ef(i) ∈ colspan(L).
2) The smallest possible length of a linearH-IC overFq is

κq(H).
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IV. BASIC PROPERTIES

We define the set of vectors

I(q,H)
△

=
{
z ∈ F

n
q : ∃i ∈ [m] s.t. zXi

= 0, zf(i) 6= 0
}
.

For all i ∈ [m], we also defineYi
△

= [n]\
(

{f(i)}∪Xi

)

. Then

the collection of supports of all vectors inI(q,H) is given by

J (H)
△

=
⋃

i∈[m]

{

{f(i)} ∪ Yi : Yi ⊆ Yi

}

. (1)

Lemma 4.1:The matrixL corresponds to a(δ,H)-ECIC
overFq if and only if

wt (zL) ≥ 2δ + 1 for all z ∈ I(q,H) . (2)

Equivalently,L corresponds to a(δ,H)-ECIC overFq if and
only if

wt

(
∑

i∈K

ziLi

)

≥ 2δ + 1, (3)

for all K ∈ J (H) and for all choices ofzi ∈ F
∗
q , i ∈ K.

Proof: For eachx ∈ F
n
q , we define

B(x, δ) = {y ∈ F
N
q : y = xL+ ǫ, ǫ ∈ F

N
q , wt(ǫ) ≤ δ} ,

the set of all vectors resulting from at mostδ errors in the
transmitted vector associated with the information vectorx.
Then the receiverRi can recoverxf(i) correctly if and only
if

B(x, δ) ∩B(x′, δ) = ∅,

for every pairx,x′ ∈ F
n
q satisfying:

xXi
= x′

Xi
andxf(i) 6= x′

f(i) .

(Observe thatRi is interested only in the bitxf(i), not in the
whole vectorx.)

Therefore,L corresponds to a(δ,H)-ECIC if and only if
the following condition is satisfied: for alli ∈ [m] and for all
x,x′ ∈ F

n
q such thatxXi

= x′
Xi

andxf(i) 6= x′
f(i), it holds

∀ǫ, ǫ′ ∈ F
N
q , wt(ǫ) 6 δ, wt(ǫ′) 6 δ :

xL+ ǫ 6= x′L+ ǫ′ . (4)

Denote z = x′ − x. Then, the condition in (4) can be
reformulated as follows: for alli ∈ [n] and for all z ∈ F

n
q

such thatzXi
= 0 andzf(i) 6= 0, it holds

∀ǫ, ǫ′ ∈ F
N
q , wt(ǫ) 6 δ, wt(ǫ′) 6 δ : zL 6= ǫ− ǫ′ . (5)

The equivalent condition is that for allz ∈ I(q,H),

wt(zL) > 2δ + 1 .

Inequality (3) follows from this condition in a straight-forward
manner.

Corollary 4.1: For all i ∈ [m], let

M i
△

= span({Lj : j ∈ Yi}) .

Then, the matrixL corresponds to a(δ,H)-ECIC overFq if
and only if

∀i ∈ [m] : d(Lf(i),M i) > 2δ + 1 . (6)

Example 4.1:Let q = 2, m = n = 3, and f(i) = i for
i ∈ [3]. SupposeX1 = {2, 3}, X2 = {1, 3}, andX3 = {1, 2}.
Let

L =





1 1 1 0
1 1 0 1
1 0 1 1



 .

Note thatL generates a[4, 3, 1]2 code, which has minimum
distance one. However, the index code based onL can still
correct one error. Indeed, letH = H(3, 3,X , f), we have

I(2,H) = {100, 010, 001}.

Since each row ofL has weight at least three, it follows
that wt(zL) ≥ 3 for all z ∈ I(2,H). By Lemma 4.1,L
corresponds to a(1,H)-ECIC overF2.

Example 4.2:Assume thatm = n and f(i) = i for all
i ∈ [m]. Furthermore, suppose thatXi = ∅ for all i ∈ [m]
(i.e. there is no side information available to the receivers).
Let H = H(m,n,X , f). Then,I(q,H) = F

n
q \{0}. Hence, by

Lemma 4.1, then × N matrix L corresponding to a(δ,H)-
ECIC overFq (for some integerδ > 0) is a generating matrix
of an [N,n,> 2δ + 1]q linear code. Thus, the problem of
designing an ECIC is reduced to the problem of constructing
a classical linear error-correcting code.

V. THE α-BOUND AND THE κ-BOUND

Let (m,n,X , f) be an instance of the ICSI problem, and
let H be the corresponding side information hypergraph. Next,
we introduce the following definitions for the hypergraphH.

Definition 5.1: A subsetH of [n] is called ageneralized
independent setin H if every nonempty subsetK of H
belongs toJ (H).

Definition 5.2: A generalized independent set of the largest
size inH is called amaximum generalized independent set.
The size of a maximum generalized independent set inH is
called thegeneralized independence number, and denoted by
α(H).

Whenm = n andf(i) = i for all i ∈ [n], the generalized
independence number ofH is equal to the maximum size of
an acyclic induced subgraph ofGH, which was introduced
in [3]. In particular, whenGH is symmetric,α(H) is the
independence number ofGH. We omit the proof.

Theorem 5.1 (α-bound): The length of an optimal linear
(δ,H)-ECIC overFq satisfies

Nq(H, δ) > Nq[α(H), 2δ + 1] .
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Proof: Consider ann×N matrix L, which corresponds
to a (δ,H)-ECIC. LetH = {i1, i2, . . . , iα(H)} be a maximum
generalized independent set inH. Then, every subsetK ⊆ H
satisfiesK ∈ J (H). Therefore,

wt

(
∑

i∈K

ziLi

)

≥ 2δ + 1

for all K ⊆ H , K 6= ∅, and for all choices ofzi ∈ F
∗
q , i ∈ K.

Hence, theα(H) rows of L, namelyLi1 ,Li2 , . . . ,Liα(H)
,

form a generator matrix of an[N,α(H), 2δ + 1]q code.
Therefore,

N ≥ Nq[α(H), 2δ + 1] .

The following proposition is based on the fact that concate-
nation of aδ-error-correcting code with an optimal (non-error-
correcting)H-IC yields a(δ,H)-ECIC.

Proposition 5.2 (κ-bound): The length of an optimal
(δ,H)-ECIC overFq satisfies

Nq(H, δ) ≤ Nq[κq(H), 2δ + 1] .

The proof of this proposition is omitted due to lack of space.

Corollary 5.1: The length of an optimal linear(δ,H)-ECIC
overFq satisfies

Nq[α(H), 2δ + 1] ≤ Nq(H, δ) ≤ Nq[κq(H), 2δ + 1] .

Example 5.1:Let q = 2, m = n = 5, δ = 2, andf(i) = i
for all i ∈ [m]. Assume

X1 = {2, 5} , X2 = {1, 3} , X3 = {2, 4} ,

X4 = {3, 5} , X5 = {1, 4} .

Let H = H(5, 5,X , f). The side information graphGH of
this instance is a pentagon. It is easy to verify thatα(H) =
α(G) = 2. It follows from Theorem 9 in [4] thatκ2(H) =
min-rank2(GH) = 3. Thus, from [12] we have

N2[2, 5] = 8 and N2[3, 5] = 10 .

Due to Corollary 5.1, we have

8 ≤ N2(H, 2) ≤ 10.

Using a computer search, we obtain thatN2(H, 2) = 9, and
the corresponding optimal scheme is based on

L =









1 1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 1 0
1 1 0 0 0 1 1 1 0
0 1 1 0 0 1 0 1 1
1 0 1 0 1 0 0 1 1









.

It is technical to verify that by Lemma 4.1,L corresponds to
(2,H)-ECIC. The length of this ECIC lies strictly between the
α-bound and theκ-bound.

Remark 5.1:Example 5.1 illustrates that over small al-
phabets, the concatenation of an optimal linear (non-error-
correcting) index code and an optimal linear error-correcting
code may fail to produce an optimal linear ECIC.

VI. T HE SINGLETON BOUND

Theorem 6.1 (Singleton bound):The length of an optimal
linear (δ,H)-ECIC overFq satisfies

Nq(H, δ) ≥ κq(H) + 2δ .

Proof: Let L be then×Nq(H, δ) matrix corresponding
to some optimal(δ,H)-ECIC. LetL′ be the matrix obtained
by deleting any2δ columns fromL.

By Lemma 4.1,L satisfies for allz ∈ I(q,H),

wt(zL) > 2δ + 1 .

We deduce that the rows ofL′ also satisfy that for allz ∈
I(q,H),

wt(zL′) > 1 .

By Lemma 4.1,L′ corresponds to a linearH-IC. Therefore,
by Lemma 3.1, part 2,L′ has at leastκq(H) columns. We
deduce that

Nq(H, δ)− 2δ ≥ κq(H) ,

which concludes the proof.

The corollary below shows that for sufficiently large al-
phabets, a concatenation of a classical MDS error-correcting
code with an optimal (non-error-correcting) index code yields
an optimal linear ECIC.

Corollary 6.1 (MDS error-correcting index code):For q ≥
κq(H) + 2δ − 1,

Nq(H, δ) = κq(H) + 2δ . (7)

Proof: Follows from Theorem 6.1 and Proposition 5.2.

Remark 6.1:There exist hypergraphH, such thatGH is the
(symmetric) odd cycle of lengthn, for which theα-bound is
at least as good as the Singleton bound.

VII. R ANDOM CODES

Theorem 7.1:Let H = H(m,n,X , f) describe an instance
of the ICSI problem. Then there exists a(δ,H)-ECIC overFq

of lengthN if

∑

i∈[m]

qn−|Xi|−1 <
qN

Vq(N, 2δ)
, (8)

where

Vq(N, 2δ) =

2δ∑

ℓ=0

(
N

ℓ

)

(q − 1)ℓ

is the volume of theq-ary sphere inFN
q .

Idea of proof:We construct a randomn × N matrix L over
Fq, row by row. Each row is selected independently of other
rows, uniformly overFN

q . The result is obtained by bounding
from above the probability of the event
⋃

i∈[m]

Ei , whereEi
△

=
{
d(Lf(i),M i) < 2δ + 1

}
,

and by making this probability less than1.
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Remark 7.1:The bound in Theorem 7.1 implies a bound
on κq(H), which is tight for someH. Indeed, fixδ = 0. Take
m = n = 2ℓ + 1 (ℓ ≥ 2), andf(i) = i for all i ∈ [n]. Let
X1 = [n]\{1, 2, n} andXn = [n]\{1, n− 1, n}. For 2 ≤ i ≤
n− 1, let Xi = [n]\{i− 1, i, i+1}. TakeH = H(n, n,X , f).
ThenGH is the complement of the (symmetric directed) odd
cycle of lengthn. We have|Xi| = 2ℓ − 2 for all i ∈ [n].
Then (8) becomes

N > 2 + logq(2ℓ+ 1) .

If q > 2ℓ+1 then we obtainN > 3. Observe that in this case
κq(H) = min-rankq(GH) = 3 (see [8, Claim A.1]), and thus
the bound is tight.

VIII. S YNDROME DECODING

Consider the(δ,H)-ECIC based on a matrixL. Suppose
that the receiverRi, i ∈ [m], receives the vector

yi = xL+ ǫi , (9)

wherexL is the codeword transmitted byS, and ǫi is the
error pattern affecting this codeword.

In the classical coding theory, the transmitted vectorc, the
received vectory, and the error patterne are related byy =
c + e. For index coding, however, this is no longer the case.
The following theorem shows that, in order to recover the
messagexf(i) from yi using (9), it is sufficient to find just
one vector from a set of possible error patterns. This set is
defined as follows:

Li(ǫi) = {ǫi + z : z ∈ span({Lj}j∈Yi
)} .

We henceforth refer to the setLi(ǫi) as theset of relevant
error patterns.

Lemma 8.1:Assume that the receiverRi receivesyi.

1) If Ri knows the messagexf(i) then it is able to determine
the setLi(ǫi).

2) If Ri knows some vector̂ǫ ∈ Li(ǫi) then it is able to
determinexf(i).

We now describe a syndrome decoding algorithm for linear
error-correcting index codes. We have

yi − xXi
LXi

− ǫi ∈ span
(
{Lf(i)} ∪ {Lj}j∈Yi

)
.

Let Ci = span({Lf(i)}∪ {Lj}j∈Yi
), and letH(i) be a parity

check matrix ofCi. We obtain that

H(i)ǫTi = H(i)(yi − xXi
LXi

)T .

Let βi be a column vector defined by

βi = H(i)(yi − xXi
LXi

)T .

Observe that eachRi is capable of determiningβi. This leads
us to the formulation of the decoding procedure forRi in
Figure 1.

Theorem 8.2:Let yi = xL + ǫi be the vector received
by Ri, and letwt(ǫi) 6 δ. Assume that the procedure in

• Input: yi, xXi
, L.

• Step 1: Compute the syndrome

βi = H(i)(yi − xXi
LXi

)T .

• Step 2: Find the lowest Hamming weight solution̂ǫ of
the system

H(i)ǫ̂
T = βi .

• Step 3: Given thatx̂Xi
= xXi

, solve the system for̂xf(i):

yi = x̂L+ ǫ̂.

• Output: x̂f(i).

Fig. 1: Syndrome decoding procedure.

Figure 1 is applied to(yi,xXi
,L). Then, its output satisfies

x̂f(i) = xf(i).
Remark 8.1:It is not impossible that̂ǫ 6= ǫi. However,

if wt(ǫi) ≤ δ, it can be shown that̂ǫ ∈ Li(ǫi). Hence, by
Lemma 8.1, we havêxf(i) = xf(i).
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