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Abstract—A problem of index coding with side information was B. Our contribution

first considered by Y. Birk and T. Kol (IEEE INFOCOM, 1998). In In this work. we aeneralize the ICSI problem towards a
the present work, a generalization of index coding scheme, vere . ! 9 . P
transmitted symbols are subject to errors, is studied. Errg- S€tup with error correction. We extend some known results

correcting methods for such a scheme, and their parametergre  0n index coding to a case where any receiver can correct up
investigated. In particular, the following question is disussed: to a certain number of errors. The problem of designing such
given the side information hypergraph of index coding schem  error-correcting index codes (ECIC's) naturally geneesithe

and the maximal number of erroneous symbolsd, what is the . . .
shortest length of a linear index code, such that every receér problem of constructing classical error-correcting codd

is able to recover the required information? This question urns ~ €Stablish an upper bound (thebound) and a lower bound
out to be a generalization of the problem of finding a shortest (the a-bound) on the shortest length of a linear ECIC, which
length error-correcting code with a prescribed error-correcting is able to correct any error pattern of size upstowe also
capability in the classical coding theory. derive an analog of the Singleton bound, and show that this
The Singleton bound and two other bounds, referred (0 as 1, \nq js tight for codes over large alphabets. We also censid

the a-bound and the x-bound, for the optimal length of a d ECIC's B vz hei btai
linear error-correcting index code (ECIC) are established For ~andom S. By analyzing their parameters, we obtain an

large alphabets, a construction based on concatenation ofna Upper bound on their length. Finally, we discuss the deapdin
optimal index code with an MDS classical code, is shown to of linear ECIC’s. We show that the syndrome decoding results
attain the Singleton bound. For smaller alphabets, howeverthis  in g correct result, provided that the number of errors daés n
construction may not be optimal. A random construction is ako exceed the error-correcting capability of the code.

analyzed. It yields another inexplicit bound on the length 6 an . . .
optimal linear ECIC. Finally, the decoding of linear ECIC’s is The problem of error correction for NC was studied in

discussed. The syndrome decoding is shown to output the exac Several previous works. However, these results are not di-
message if the weight of the error vector is less or equal to ¢h rectly applicable for the ICSI problem. First, the existing

error-correcting capability of the corresponding ECIC. works only consider the multicast scenario, while the ICSI
problem, however, is a special case of the non-multicast NC
|. INTRODUCTION problem. Second, the ICSI problem can be modeled by the
A. Background NC scenariol[B], yet, this requires that there are directigks

) ) ) ) from particular sources to each sink, which provide the side
The problem of Index Coding with Side Information (ICSIyntormation. The symbols transmitted on these special £dge

was introduced by Birk and Kol [1]. During the transmissionyjike for error-correcting NC, are not allowed to be cotag
each client might miss a certain part of the data, due to

intermittent reception, limited storage capacity or anieot Il. PRELIMINARIES
reasons. Via a slow backward channel, the clients let theeser  Let F, be the finite field ofy elements, where is a power
know which messages they already have in their possessiofiprime, andF; = F,\{0}. Let [n] = {1,2,...,n}. For the

and which messages they are interested to receive. Ther sepegtorsu, v € F?, we used(u, v) to denote the the Hamming
has to find a way to deliver to each client all the messages digtance betweewn andv. If u € Fy and M C Fy is a set
requested, yet spending a minimum number of transmission§.vectors (or a vector subspace), then this notation can be
As it was shown in[[l1], the server can significantly reduce thextended to
number of transmissions by coding the messages. d(u, M) = min d(u,v) .
Possible applications of index coding include communica- veM
tions scenarios, in which a satellite or a server broadeases Giveng, k, andd, let N, [k, d] denote the length of the shortest
of messages to a set clients, such as daily newspaper geliJétear code oveif, which has dimensiork and minimum
or video-on-demand. Index coding with side information cagistanced. The supportof a vectoru € Fy is defined by
also be used in opportunistic wireless netwofks [2]. supp(u) = {i € [n] : u; # 0}. The Hamming weight ofs is
The ICSI problem has been a subject of several recatdfined bywt(u) = |supp(u)|. SupposeE C [n]. We write
studies[[8]H[8]. This problem can be viewed as a special caged E wheneversupp(u) C E.
of the Network Coding (NC) problem [9].[10]. In particular, We usee; = (0,...,0,1,0,...,0) € Fy to denote the
as it was shown in([7], every instance of the NC problem can T
be reduced to an instance of the ICSI problem. unit vector, which has a one at théh position, and zeros
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elsewhere. For a vectay = (y1,¥2,...,yn) @and a subset by R;, i € [m]. Then R; actually receives the vectay, =
B = {i1,i2,...,ip} Of [n], wherei; <is < --- <ip, letyy y+e € Fév instead ofy.

denote the vectofy;,, yi, - - -, ¥, )- - Definition 3.2: Consider an instance of the ICSI problem
For ann x N matrix L, let L; denote itsith row. For a described by = H(m,n, X, f). A 5-error-correcting index

setE C [n], let Ly denote thg E| x N matrix obtained from code((6, H)-ECIC) overF, for this instance is an encoding
L by deleting all the rows ofL which are not indexed by ¢,nction

the elements off. For a set of vectordZ, we use notation

span(M) to denote the linear space spanned by the vectors ¢ . Fy— Fév )
in M. We also use notationolspan(L) for the linear space such that for each receivét;, i € [m], there exists a decoding
spanned by the columns of the matiix function
LetG = (V, ) be a graph with a vertex s&tand an edge D, - Fé\f x F\q&\ —TF,,
set&. A directed graply is calledsymmetricif L
satisfying
(u,v) €& g (v,u) €€ V.’I), €; € FZ, Wt(ei) § 0 : @1(@(.’13) + Ei,mxi) = xf(i) .
The independence numbef an undirected graply is de- If § =0, we refer to suck€ as anon-error-correctingindex

noted by «(G). There is a natural correspondence betweemwde, or just¥-IC. The paramete® is called thelength of
undirected graphs and directed symmetric graphs. By usithg index code. In the scheme corresponding to the éode
this correspondence, the definition of independence numbebroadcasts a vecta(x) of length N overF,,.

naturally extended to directed symmetric graphs.
Definition 3.3: A linear index codeis an index code, for

1. ERROR-CORRECTINGINDEX CODING WITH SIDE which the encoding functio# is a linear transformation over
INFORMATION F,. Such a code can be described as
Index Coding with Side Information problem considers Ve € Fy @ &(x) =L,

the following communications scenario. There is a UniqL{ﬁhereL

is annx N matrix overF,. The matrixL is called the
sender (or sourcep, who has a vector of messages =

matrix corresponding to the index codg while € is referred

(z1,22,...,Zp) N his_ posgession._There are_alﬁoreceivers to as thelinear index code based of.
Ry, Ry, ..., R, receiving information fromf' via a broadcast
channel. For eachh € [m], R; has side information, i.eR;  Definition 3.4: An optimal linear (¢, #)-ECIC overF, is

owns a subset of messaggs; }jcx,, whereX; C [n]. Each 3 linear(s, #)-ECIC over[F, of the smallest possible length
R;, i € [m], is interested in receiving the messagg;, (we N, (H,0).

say thatR; requiresz;)), where the mapping : [m] — [n]

satisfies f(i) ¢ A; for all i € [m]. Hereafter, we use the Hereafter, we assume that = (&X%);c[, is known to S,
notation ¥ = (A1, Xs,...,&). An instance of the ICSI We also assume that the codlés known to each receivek;,
problem is given by a quadruplen,n, X, f). An instance i € [m].

of the ICSI problem can also be conveniently described by pafinition 3.5: SupposeH = H(m,n, X, f) corresponds
the following directed hypergrapn[8]. to an instance of the ICSI problem. Then timén-rank of A

Definition 3.1: Let (m,n, X, f) be an instance of the ICSI overF, is defined as

problem. The correspond_imjﬂelinformation (directed) hyper- Kq(H) 2 min{rankg, ({v; + €7 Vicim)) :
graphH = H(m,n, X, f) is defined by the vertex s&t = [n] S
and the edge sefy;, where i g Vi if -
_ N PN . s Observe that:,(#) generalizes the min-rank ovéY, of the
En = {(10), ) =i € nl} side information graph, which was defined|in [3]. More specif
We often refer to(m,n, X, f) as an instance of the ICSlically, whenm = n and f(i) = i for all i € [m], G becomes

problem described by the hypergraph the side information graph, and, (%) = min-rank;(G3,). The
min-rank was shown in_|3]/[4] to be the smallest number of

Each side information hypergrapid = (V,£x) can be transmissions in a linear index code.
associated with the directed graghy, = (V,&) in the
following way. For each directed edd¢ (i), X;) € & there ~ Lemma 3.1:( [3], [11]) Consider an instance of the ICSI
will be |X;| directed edgesf(i),v) € &, for v € X;. When Problem described b§{ = #(m,n, X, f) .
m =mn and f(i) = i for all i € [m], the graphGy is, in fact, 1) The matrixL corresponds to a lineak-IC over F, if
the side information graphdefined in [[3]. and only if for eachi € [m] there existsv; € Fy such
Due to noise, the symbols received By, i € [m], may be thatv; < &; andv; + ey ;) € colspan(L). _
subject to errors. Assume thétbroadcasts a vectay € FY¥.  2) The smallest possible length of a linedfIC overF, is
Lete; € Fév be the error affecting the information received tq(H).



IV. BASIC PROPERTIES
We define the set of vectors

(¢, H) = {z€F} : Jie[m]stzx, =0, zp; #0}.

2

For alli € [m], we also defingy; = [n]\({f(i)} UXZ-). Then
the collection of supports of all vectors #i{q, H) is given by
g e U {rorovi s vicw} @
1€[m]
Lemma 4.1:The matrix L corresponds to &4, H)-ECIC
overF, if and only if

wt(zL)>25+1forall z € Z(q,H) . 2

Equivalently,L corresponds to &, #)-ECIC overF, if and

only if
wt <Z ZL> > 20 +1, (3)

ieK
for all K € J(H) and for all choices of; Fy, i€ K.
Proof: For eachx ¢ Fy, we define

y=xL+e ecFY, wt(e) <4},

B(z,0) ={y €F) : Al

Then, the matrixL corresponds to &), H)-ECIC over[F,, if
and only if

Example 4.1:Let ¢ = 2, m = n = 3, and f(i) = ¢ for
i € [3]. SupposeY; = {2,3}, X> = {1,3}, and A5 = {1, 2}.

Let
1 0
0 1].
1 1

Note thatL generates &, 3,1]> code, which has minimum
distance one. However, the index code basedLooan still
correct one error. Indeed, 18t = #(3,3, X, f), we have

7(2,7) = {100,010, 001}.

Since each row ofL has weight at least three, it follows
that wt(zL) > 3 for all z € Z(2,H). By Lemmal4l,L
corresponds to &1, )-ECIC overFs.

Example 4.2:Assume thatn = n and f(i) = i for all
i € [m]. Furthermore, suppose that = & for all i € [m]
(i.e. there is no side information available to the receiyer

the set of all vectors resulting from at masterrors in the LetH = 7#(m,n, X, f). Then,Z(q, ) = F7\{0}. Hence, by
transmitted vector associated with the information veator Lemmal4.l, thex x N matrix L corresponding to &5, H)-
Then the receiveR; can recoverz;; correctly if and only ECIC overF, (for some integen > 0) is a generating matrix

if
B(z,8) N B(z',§) = 2,
for every pairz, =’ € Fy satisfying:
Ty, = xhy, andz sy # 2y, -

(Observe that?; is interested only in the bit;), not in the
whole vectorz.)

Therefore,L corresponds to &j, #)-ECIC if and only if
the following condition is satisfied: for all€ [m] and for all
z,x’' € Fy such thatey, = x!,, andxy;) # x}(i), it holds

Ve, € € Fév, wt(e) < d, wt(€') <6 :

zL+e#x'L+€. (4)

of an [N,n,> 2§ + 1], linear code. Thus, the problem of

designing an ECIC is reduced to the problem of constructing

a classical linear error-correcting code.

V. THE «-BOUND AND THE k-BOUND

Let (m,n, X, f) be an instance of the ICSI problem, and

let H be the corresponding side information hypergraph. Next,

we introduce the following definitions for the hypergragh

Definition 5.1: A subsetH of [n] is called ageneralized
independent setn # if every nonempty subselk of H
belongs to7 (H).

Definition 5.2: A generalized independent set of the largest

size inH is called amaximum generalized independent. set

Denote z = a’ — x. Then, the condition in[{4) can beyne gize of a maximum generalized independent s iis

reformulated as follows: for all € [n] and for allz € Fy
such thatzx, = 0 andzy(;) # 0, it holds

Ve, € € FY, wt(e) <6, wt(e') <0 :

zL#e—¢€. (5
The equivalent condition is that for all € Z(q, H),
wt(zL) > 20+ 1.

Inequality [3) follows from this condition in a straightsfeard
manner. [ |

Corollary 4.1: For all i € [m], let
M; =span({L; : j€Y;}) .

called thegeneralized independence numpband denoted by
a(H).

Whenm = n and f(i) = ¢ for all i € [n], the generalized
independence number 6{ is equal to the maximum size of
an acyclic induced subgraph @f;, which was introduced
in [3]. In particular, whenGy is symmetric,a(#H) is the
independence number ¢f,. We omit the proof.

Theorem 5.14-bound): The length of an optimal linear
(6, H)-ECIC overF, satisfies

N,(H,6) > N Ja(H), 26 +1] .



Proof: Consider am x N matrix L, which corresponds

to a(d, H)-ECIC. LetH = {iy,i2,...,iq(3)} b€ @ maximum
generalized independent set#h Then, every subseét’ C H
satisfiesK € J(H). Therefore,

€K
forall K C H, K # @, and for all choices of; € F*,i € K.
Hence, thea(#) rows of L, namely L;,, Lj,, ..., L;_,,,
form a generator matrix of anN,«(H),26 + 1], code.
Therefore,

N > Nyla(H),26 +1] .

The following proposition is based on the fact that concate-

VI. THE SINGLETON BOUND

Theorem 6.1 (Singleton bound}he length of an optimal
linear (6, #)-ECIC overF, satisfies

Ny(H,8) > kig(H) + 26 .

Proof: Let L be then x N, (H,d) matrix corresponding
to some optimalé, H)-ECIC. Let L' be the matrix obtained
by deleting any2é columns fromL.

By Lemmal4.1,L satisfies for allz € Z(q, H),

wt(zL) > 25 + 1.

We deduce that the rows df’ also satisfy that for alk €
Z(q, M),
wt(zL') > 1.

nation of aj-error-correcting code with an optimal (non—errorBy LemmalZ.1,L’ corresponds to a linedk-IC. Therefore,

correcting)H-IC yields a(d, H)-ECIC.

Proposition 5.2 g-bound): The length of an optimal
(6, H)-ECIC overF, satisfies

Ny (H,8) < Ny[rq(H),26 + 1] .

by Lemmal 3L, part 2L' has at leask,(H) columns. We
deduce that
No(H,0) =26 > Kq(H)

which concludes the proof. ]

The proof of this proposition is omitted due to lack of space. The corollary below shows that for sufficiently large al-

Corollary 5.1: The length of an optimal linedd, #)-ECIC
overFF, satisfies

Nyla(H),20 + 1] < Ng(H,0) < Nylkq(H),26 4+ 1] .
Example 5.1:Letq =2, m=n=5,d =2, and f(i) = ¢
for all i € [m]. Assume
Xl:{2a5}a XQ:{173}7 X3:{2a4}a
Xy ={3,5}, X5=1{1,4}.

Let H = H(5,5,X, f). The side information grapky;; of
this instance is a pentagon. It is easy to verify théH) =
a(G) = 2. It follows from Theorem 9 in[[4] thaks(H)
min-rank (G ) = 3. Thus, from [12] we have

No[2,5]=8 and Ny[3,5]=10.
Due to Corollanyf5.11, we have
8 < N2(H,2) < 10.

Using a computer search, we obtain thét(#,2) = 9, and
the corresponding optimal scheme is based on

111110000
010110110
L=|1 10 0 0 1 1 1 0
011001011
101 010011

phabets, a concatenation of a classical MDS error-congcti
code with an optimal (non-error-correcting) index codddse
an optimal linear ECIC.

Corollary 6.1 (MDS error-correcting index codefor g >
kg(H) +26 — 1,

Ny(H,6) = rq(H) +25 . (7)

Proof: Follows from Theorerh 611 and Proposition]/5m.

Remark 6.1:There exist hypergrapH, such tha4 is the

(symmetric) odd cycle of length, for which thea-bound is
at least as good as the Singleton bound.

VII. RANDOM CODES

Theorem 7.1:Let H = H(m,n, X, f) describe an instance
of the ICSI problem. Then there exist§@7{)-ECIC overF,
of length NV if

N
n—|X;| -1 q 8
l;}q <V:1(N725), (8)

where
25

v =3 (7)1

£=0

is the volume of thej-ary sphere iriFfIV.

It is technical to verify that by Lemnia4.%, corresponds to Idea of proof:We construct a random x N matrix L over

(2,1)-ECIC. The length of this ECIC lies strictly between thé'q» oW by row. Each row is selected independently of other
a-bound and the:-bound. rows, uniformly overf}’. The result is obtained by bounding

from above the probability of the event
Remark 5.1:Example[5.1L illustrates that over small al-

phabets, the concatenation of an optimal linear (non-error |J Fi, whereE; = {d(L;q), M) <25 +1} ,
correcting) index code and an optimal linear error-coingct  i€[m]

code may fail to produce an optimal linear ECIC. and by making this probability less than



Remark 7.1:The bound in Theorerh 4.1 implies a bound

on k4 (H), which is tight for some. Indeed, fixd = 0. Take
m=mn=20+1({(>2),and f(i) =i for all i € [n]. Let
X1 = [n\{1,2,n} and X,, = [n]\{l,n — 1,n}. For2 <i <
n—1,letX; = [n)\{i—1,i,i+1}. TakeH = H(n,n, X, f).
ThenGy is the complement of the (symmetric directed) od
cycle of lengthn. We have|X;| = 2¢ — 2 for all i € [n].
Then [8) becomes

N>2+log (20 +1).

If ¢ > 2¢+ 1 then we obtainV > 3. Observe that in this case
kq(H) = min-rank,(Gy) = 3 (see [8, Claim A.1]), and thus
the bound is tight.

VIIl. SYNDROME DECODING

Consider the(d, #)-ECIC based on a matriL. Suppose
that the receiveR;, i € [m], receives the vector

9)

where z L is the codeword transmitted by, ande; is the
error pattern affecting this codeword.

In the classical coding theory, the transmitted veetothe
received vectowy, and the error pattera are related by =

yi:mL—i—ei,

c + e. For index coding, however, this is no longer the case.

e Input: y,, zx,, L.
Step 1 Compute the syndrome
61’ = H(l)(yz - mXiLXi)T :

Step 2 Find the lowest Hamming weight solutioh of
the system

d

HYe =3, .

Step 3 Given thatz x, = x,, solve the system fat ;)
y, =aL + e

o Output: ;).

Fig. 1. Syndrome decoding procedure.

Figure[1 is applied tdy,, zx,, L). Then, its output satisfies
Tra) =Tpee _ _

Remark 8.1:It is not impossible tha& # ¢;. However,
if wt(e;) < 4, it can be shown tha¢ € £;(e;). Hence, by
Lemmal8.1, we havé ;) = zy;).
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We now describe a syndrome decoding algorithm for linear

error-correcting index codes. We have
y; —xx,Lx, — € €span({Lyi} U{L;}jev,) -
Let @; = span({L s} U{L;};ey;), and letH™ be a parity
check matrix ofg;. We obtain that
HYe = HO(y, —xx,Ly,)" .
Let 8, be a column vector defined by
B, =H"(y,—zxLx,)" .

Observe that eacR; is capable of determining,. This leads
us to the formulation of the decoding procedure @y in
Figure[1.

Theorem 8.2:Let y,
by R;, and letwt(e;)

= zL + ¢; be the vector received
<

0. Assume that the procedure in
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