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Fundamental Limits of Infinite Constellations in
MIMO Fading Channels
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Abstract

The fundamental and natural connection between the infiniteconstellation (IC) dimension and the best diversity order it can
achieve is investigated in this paper. In the first part of this work we develop an upper bound on the diversity order of IC’s
for any dimension and any number of transmit and receive antennas. By choosing the right dimensions, we prove in the second
part of this work that IC’s in general and lattices in particular can achieve the optimal diversity-multiplexing tradeoff of finite
constellations. This work gives a framework for designing lattices for multiple-antenna channels using lattice decoding.

I. I NTRODUCTION

The use of multiple antennas in wireless communication has certain inherent advantages. On one hand, using multiple
antennas in fading channels allows to increase the transmitted signal reliability, i.e. diversity. For instance, diversity can be
attained by transmitting the same information on differentpaths between transmitting-receiving antenna pairs with i.i.d Rayleigh
fading distribution. The number of independent paths used is the diversity order of the transmitted scheme. On the otherhand,
the use of multiple antennas increases the number of degreesof freedom available by the channel. In [1],[2] the ergodic channel
capacity was obtained for multiple-input multiple-output(MIMO) systems withM transmit andN receive antennas, where
the paths have i.i.d Rayleigh fading distribution. It was shown that for large signal to noise ratios (SNR), the capacity behaves
asC(SNR) ≈ min(M,N) log(SNR). The multiplexing gain is the number of degrees of freedom utilized by the transmitted
scheme.

For the quasi-static Rayleigh flat-fading channel, Zheng and Tse [3] characterized the dependence between the diversity order
and the multiplexing gain, by deriving the optimal tradeoffbetween diversity and multiplexing, i.e. for each multiplexing gain
the maximal diversity order was found. They showed that the optimal diversity-multiplexing tradeoff (DMT) can be attained
by ensemble of i.i.d Gaussian codes, given that the block length is greater or equal toN +M − 1. For this case, the tradeoff
curve takes the form of the piecewise linear function that connects the points(N − l)(M − l), l = 0, 1, . . . ,min(M,N).

Space-time codes are coding schemes designed for MIMO systems e.g. see [4],[5] [6] and references therein. The design
of space-time codes in these works pursue various goals suchas maximizing the diversity order, maximizing the multiplexing
gain, or achieving the optimal DMT. El Gamal et al [7] were thefirst to show that lattice coding and decoding achieve the
optimal DMT. They presented lattice space-time (LAST) codes. These space time codes are subsets of an infinite lattice, where
the lattice dimensionality equals to the number of degrees of freedom available by the channel, i.e.min(M,N), multiplied by
the number of channel uses. By using a random ensemble of nested lattices, common randomness, minimum mean square error
(MMSE) estimation followed by lattice decoding and modulo lattice operation, they showed that LAST codes can achieve the
optimal DMT. It is worth mentioning that the MMSE estimationand the modulo operation take in a certain sense into account
the finite code book.

There has been an extensive research on explicit coding schemes, based on lattices, which are DMT optimal. Such an explicit
coding schemes that attain the optimal DMT for any number of transmit and receive antennas were presented in [6]. In addition
it was shown in [6] thatM channel uses are sufficient to obtain the optimal DMT. Another step towards finding explicit space-
time coding schemes that attain the optimal DMT with low computational complexity was made by Jalden and Elia [8]. They
considered explicit coding schemes based on the intersection between an underlying lattice and a shaping region. They showed
that for the cases where these coding schemes attain the optimal DMT using maximum-likelihood (ML) decoding, they also
attain it when using MMSE estimation in the receiver, followed by lattice decoding. The MMSE estimation relies on the power
constraint, i.e. the shaping region boundaries. In addition, it was shown in [8] that by applying lattice reduction methods, the
optimal DMT is attained when using suboptimal linear lattice decoders that require linear complexity as a function of the rate.
This result applies to wide range of explicit space-time codes such as golden-codes [9], perfect space-time codes [10] and in
general cyclic division algebra based space-time codes [6], and as this codes are approximately universal [11] it also applies
to every statistical characterization of the fading channel. Note that these schemes take into consideration the finiteness of the
codebook in the decoder. In our work we refer toregular lattice decoding as decoding over the infinite lattice without taking
into consideration the finiteness of the codebook.
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Theory (ISIT) 2011.
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The work in [7] also includes for the caseN ≥ M a lower bound on the diversity order of LAST codes shaped intoa
sphere when regular lattice decoder is employed in the receiver. For sufficiently large block length it is shown thatd(r) ≥
(N − M + 1)(M − r) where r is the multiplexing gain and the lattice dimension per channel use isM . Taherzadeh and
Khandani showed in [12] that this is also an upper bound on thediversity order of any LAST code shaped into a sphere
and decoded withregular lattice decoding. These results show that LAST codes together with regular lattice decoding are
suboptimal compared to the optimal DMT of power constrainedconstellations.

Infinite constellations (IC’s) are structures in the Euclidean space that have no power constraint. In [13], Poltyrev analyzed
the performance of IC’s over the additive white Gaussian noise (AWGN) channel. In this work we first extend the definitionsof
diversity order and multiplexing gain to the case where there is no power constraint. We also introduce a new term: the average
number of dimensions per channel use, which is essentially the IC dimension divided by the number of channel uses. Then
we extend the methods used in [13] in order to derive an upper bound on the diversity of any IC with certain average number
of dimensions per channel use, as a function of the multiplexing gain. It turns out that for a given number of dimensions
per channel use the diversity is a straight line as a functionof the multiplexing gain, that depends on the number of transmit
and receive antennas. This analysis holds forany M andN , and also applies for lattices with regular lattice decoding. We
also find the average number of dimensions per channel use forwhich the upper bounds coincide with the optimal DMT
of finite constellations. Finally, we show that each segmentin the optimal DMT is attained by a sequence of lattices with a
corresponding average number of dimensions per channel use, when using regular lattice decoder, i.e. for each point in the
DMT of [3] there exists a lattice sequence of certain dimension that achieves it with regular lattice decoding. Hence, this work
characterizes the best DMT IC’s may attain for any average number of dimensions per channel use, and also proves that lattices
can achieve the optimal DMT whenregular lattice decoder is employed in the receiver, by adapting their dimensionality. It is
important to note that when the IC is a lattice, we show that the multiplexing gain of infinite lattices and finite constellations
coincide.

This work gives a framework for designing lattices for multiple-antenna channels using regular lattice decoding. It also
shows the fundamental and natural connection between the ICdimension and its optimal diversity order. For instance, itis
shown that for the caseM = N = 2, the maximal diversity order of4 can be achieved (with regular lattice decoding) by a
lattice that has at most43 average number of dimensions per channel use. On the other hand the Alamouti scheme [14], that
also has maximal diversity order of4, utilizes only a single dimension per channel use in this setup. Hence, there is still a
room to improve by a13 of a dimension per channel use. In addition, while in [7], [8], the MMSE estimation improves the
channel in such a manner that enables the lattice decoder to attain the optimal DMT, this work shows that when considering
regular lattice decoding, reducing the lattice dimensionality takes the role of MMSE estimation in the sense of improving the
channel such that the optimal DMT is obtained. Finally, the analysis in this work gives another geometrical interpretation to
the optimal DMT.

The outline of the paper is as follows. In section II basic definitions for the fading channel and IC’s are given. Section
III presents for each channel realization a lower bound on the average decoding error probability of any IC, and an upper
bound on the DMT of any IC. An upper bound on the error probability of ensemble of IC’s for each channel realization, a
transmission scheme that attains the optimal DMT, and some averaging arguments on how the optimal DMT is attained by
IC’s, are all presented in section IV. Discussion on the results, that addresses the difference between lattice constellations and
full dimension lattice based finite constellations, followed by a geometrical interpretation to the optimal DMT, and a discussion
on the relation between the multiplexing gains of an IC and a finite constellation, is presented in section V. This discussion
presents an intuitive interpretation to our results and relies mainly on the basic definitions given in section II.

II. BASIC DEFINITIONS

We refer to the countable setS = {s1, s2, . . . } in Cn as infinite constellation (IC). Letcubel(a) ⊂ Cn be a (probably
rotated)l-complex dimensional cube (l ≤ n) with edge of lengtha centered around zero. An ICSl is l-complex dimensional
if there exists rotatedl-complex dimensional cubecubel(a) such thatSl ⊂ lima→∞ cubel(a) and l is minimal.M(Sl, a) =
|Sl

⋂
cubel(a)| is the number of points of the ICSl inside cubel(a). In [13], then-complex dimensional IC density for the

AWGN channel was defined as the upper limit (the limit supremum) of the ratioγG = lim supa→∞
M(S,a)
a2n and the volume

to noise ratio (VNR) was given asµG =
γ
− 1

n
G

2πeσ2 .
The Voronoi region of a pointx ∈ Sl, denoted asV (x), is the set of points inlima→∞ cubel(a) closer tox than to any

other point in the IC. The effective radius of the pointx ∈ Sl, denoted asreff(x), is the radius of thel-complex dimensional
ball that has the same volume as the Voronoi region, i.e.reff(x) satisfies

|V (x)| = πlr2·leff (x)

Γ(l + 1)
. (1)

A complex latticeΛ is an IC that constitutes a discrete set inCn, closed under addition. The Voronoi regions of all lattice
points are identical and satisfy

|V (x) | = γ−1
G ∀x ∈ Λ. (2)
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Hence, for large dimension the VNR of a lattice,µG, approaches the ratior
2
eff

σ2 wherereff is the lattice effective radius. Regular
lattice decoder finds the closest lattice point to an observation y ∈ Cn, i.e. regular lattice decoder finds the solution to the
optimization problem

argmin
x∈Λ

‖y − x‖. (3)

Note that these definitions can be also extended in a straightforward manner to an IC that constitutes a real lattice inR2n.
For instance when the firstn entries of each lattice point are transmitted on the real part of the IC, and the secondn entries
of each lattice point are transmitted on the imaginary part of the IC.

We consider a quasi static flat-fading channel withM transmit andN receive antennas. We assume for this MIMO channel
perfect channel knowledge at the receiver and no channel knowledge at the transmitter. The channel model is as follows:

y
t
= H · xt + ρ−

1
2nt t = 1, . . . , T (4)

wherext, t = 1, . . . , T is the transmitted signal,nt ∼ CN(0, 2
2πeIN ) is the additive noise whereCN denotes complex-

normal, IN is theN -dimensional unit matrix, andy
t
∈ CN . H is the fading matrix withN rows andM columns where

hi,j ∼ CN(0, 1), 1 ≤ i ≤ N , 1 ≤ j ≤ M , andρ−
1
2 is a scalar that multiplies each element ofnt, whereρ plays the role of

averageSNR in the receive antenna for power constrained constellations that satisfy1
T

∑T
t=1 E{‖xt‖2} ≤ 2

2πe .
We also define the extended vectorx = {x†

1, . . . , x
†
T }†. Supposex ∈ Sl ⊂ CMT , whereSl is an IC with densityγtr =

lim supa→∞
M(Sl,a)

a2·l

(
a2·l is the volume ofcubel(a)

)
. By definingHex as anNT ×MT block diagonal matrix, where each

block on the diagonal equalsH , nex = ρ−
1
2 · {n†

1, . . . , n
†
T }† ∈ CNT andy

ex
∈ CNT we can rewrite the channel model in (4)

as
y
ex

= Hex · x+ nex. (5)

In the sequel we useL to denotemin(M,N). We define as
√
λi, 1 ≤ i ≤ L the real valued, non-negative singular values

of H . We assume
√
λL ≥ · · · ≥

√
λ1 > 0. Our analysis is done for large values ofρ (large VNR at the transmitter). We state

that f(ρ)≥̇g(ρ) when limρ→∞ − ln(f(ρ))
ln(ρ) ≤ − ln(g(ρ))

ln(ρ) , and also definė≤, =̇ in a similar manner by substituting≤ with ≥, =
respectively.

We now turn to the IC definitions in the transmitter. We define the average number of dimensions per channel use as the
IC dimension divided by the number of channel uses. We denotethe average number of dimensions per channel use byK.
Let us consider aKT -complex dimensional sequence of IC’sSKT (ρ), whereK ≤ L, andT is the number of channel uses.
First we defineγtr = ρrT as the density ofSKT (ρ) in the transmitter. The IC multiplexing gain is defined as

MG(r) = lim
ρ→∞

1

T
logρ(γtr + 1) = lim

ρ→∞

1

T
logρ(ρ

rT + 1). (6)

Note thatMG(r) = max(0, r), i.e. for 0 ≤ r ≤ K the multiplexing gain isr. Roughly speaking,γtr = ρrT gives us the
number of points ofSKT (ρ) within theKT -complex dimensional regioncubeKT (1). In order to get the multiplexing gain, we
normalize the exponent of the number of points withincubeKT (1), rT , by the number of channel uses -T . Note that the IC
multiplexing gain,r, can be directly translated to finite constellation multiplexing gainr by considering the IC points within
a shaping region. For more details see V-C. The VNR in the transmitter is

µtr =
γ
− 1

KT

tr

2πeσ2
= ρ1−

r
K (7)

whereσ2 = ρ−1

2πe is each dimension noise variance. Now we can understand the role of the multiplexing gain for IC’s. The
AWGN variance decreases asρ−1, where the IC density increases asρrT . When r = 0 we get constant IC density as a
function ofρ, where the noise variance decreases, i.e. we get the best error exponent. In this case the number of points within
cubeKT (1) remains constant as a function ofρ. On the other hand, whenr = K, we get VNRµtr = 1, and from [13] we
know that it inflicts average error probability that is bounded away from zero. In this case, the increase in the number of IC
points withincubeKT (1) occurs at maximal rate.

Now we turn to the IC definitions in the receiver. First we define the setHex · cubeKT (a) as the multiplication of each
point in cubeKT (a) with the matrixHex. In a similar mannerS

′

KT = Hex · SKT . The setHex · cubeKT (a) is almost surely
KT -complex dimensional (whereK ≤ L) and in this caseM(SKT , a) = |SKT

⋂
cubeKT (a)| = |S′

KT

⋂
(Hex · cubeKT (a))|.

We define the receiver density as

γrc = lim sup
a→∞

M(SKT , a)

Vol(Hex·cubeKT (a))

i.e., the upper limit of the ratio of the number of IC points inHex·cubeKT (a), and the volume ofHex·cubeKT (a). Based
on the majorization property of a matrix singular values [15], we get that the volume of the setHex · cubeKT (a) is smaller
thana2KT · λT

L . . . λT
L−B+1 · λ

βT
L−B, assumingK = B + β whereB ∈ N and0 < β ≤ 1, i.e. the volume is smaller than the

multiplication of theB + 1 strongest singular values, raised to the power of the maximal amount of channel uses each can
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take place in. Hence we get
γrc ≥ ρrTλ−T

L . . . λ−T
L−B+1 · λ

−βT
L−B (8)

and the receiver VNR is
µrc ≤ ρ1−

r
K · λ

1
K

L . . . λ
1
K

L−B+1 · λ
β
K

L−B. (9)

Note that forN ≥ M andK = M we getγrc = ρrT ·∏M
i=1 λ

−T
i andµrc = ρ1−

r
M ·∏M

i=1 λ
1
M

i . The average decoding error
probability over the IC points ofSKT (ρ), for a certain channel realizationH , is defined as

Pe(H, ρ) = lim sup
a→∞

∑
x
′∈S

′
KT

⋂
(Hex·cubeKT (a)) Pe(x

′

, H, ρ)

M(SKT , a)
(10)

wherePe(x
′

, H, ρ) is the error probability associated withx
′

. The average decoding error probability ofSKT (ρ) over all
channel realizations isPe(ρ) = EH{Pe(H, ρ)}. Hence thediversity order equals

d = − lim
ρ→∞

logρ(Pe(ρ)) (11)

III. U PPERBOUND ON THE DIVERSITY ORDER

In this section we derive an upper bound on the diversity order of any IC with average number of dimensions per channel
useK and any value ofT , M and N . In Theorem 1 we derive for each channel realization a lower bound on the error
probability of any IC withK average number of dimensions per channel use. In Theorem 2 wederive an upper bound on the
DMT of any sequence of IC’s withK average number of dimensions per channel use. Finally in Corollary 2 we show that
by choosing the correct average number of dimensions per channel use, the upper bound coincides with the optimal DMT of
finite constellations.

As in [3] and [7], we also defineλi = ρ−αi , 1 ≤ i ≤ L. When the entries of the channel matrixH are all i.i.d with PDF
CN(0, 1), the PDF of its singular values is of the formρ−

∑L
i=1(|N−M|+2i−1)αi for largeρ [3], where following the definitions

above0 ≤ αL ≤ · · · ≤ α1. 1 By assigning in (8), (9) respectively, we can write

γrc ≥ ρT (r+
∑B−1

i=0 αL−i+βαL−B)

and
µrc ≤ ρ1−

1
K

(r+
∑B−1

i=0 αL−i+βαL−B).

Theorem 1. For any KT -complex dimensional ICSKT (ρ) with transmitter densityγtr = ρrT and channel realization
α = (α1, . . . , αL), we have the following lower bound on the average decoding error probability for 0 ≤ r ≤ K

Pe(H, ρ) >
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc)

whereA(KT ) = e · Γ(KT + 1)
1

KT andC(KT ) = e
KT− 3

2 Γ(KT+1)
KT−1
KT

2·Γ(KT ) .

Proof: We divide the proof into two parts. In the first part we prove the result for lattices, that constitute a symmetric
structure for which the Voronoi regions of different lattice points are identical. In the second part we prove the resultfor
general IC’s with receiver densityγrc. As the second part of the proof is somewhat more involved, wedefer it to appendix A.
Note that we could have used the tighter bounds of [17], but these bounds are not needed for DMT. Instead we derive coarser
and more simplified upper bounds, which are sufficient for ourpurposes.

We begin by proving the result for lattices. Lattices constitute a discrete subgroup of the Euclidean space, with the ordinary
vector addition operation. Consider aKT -complex dimensional lattice,S

′

KT (ρ), in the receiver with densityγrc. The lattice
points have identical Voronoi regions up to a translation. Hence, the volume of each Voronoi region equals

|V (x)| = 1

γrc
∀x ∈ S

′

KT (ρ).

According to the definition of the effective radius in (1), weget thatreff(x) = reff(γrc) = (Γ(KT+1)
γrcπKT )

1
2KT , ∀x ∈ S

′

KT (ρ).
Note that in lattices the maximum-likelihood (ML) decodingerror probability is identical for all lattice points, i.e.the average
and maximal error probabilities are identical. It has been proven in [13], [18] that the error probability of any latticepoint in
the receiver fulfils

P
S

′

KT
e > Pr(‖ñex‖ ≥ reff(γrc))

wherePS
′

KT
e is the ML decoding error probability of any lattice point, and ñex is the effective noise in theKT -complex

1A generalization of the Rayleigh fading channel is the Jacobi fading channel. The optimal DMT for this channel was derived in [16].
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dimensional hyperplane whereS
′

KT (ρ) resides. We find an explicit expression for the lower bound

Pr
(
‖ñex‖ ≥ reff(γrc)

)
> Pr

(
‖ñex‖ ≥ reff(

γrc

2
)
)
>

∫ r2eff+σ2

r2
eff

rKT−1e−
r

2σ2

σ2KT 2KTΓ(KT )
dr ≥ r2KT−2

eff e−
r2eff
2σ2

σ2KT−22KTΓ(KT )
√
e
. (12)

By assigningr2eff = (2·Γ(KT+1)
γrcπKT )

1
KT we get

P
S

′

KT
e > C(KT ) · e−

γ
− 1

KT
rc
2πeσ2 A(KT )+(KT−1) ln(

γ
− 1

KT
rc
2πeσ2 )

and by assigningµrc =
γ
− 1

KT
rc

2πeσ2 we get

P
S

′

KT
e >

C(KT )

4
· e−µrcA(KT )+(KT−1) ln(µrc). (13)

Note that in (12) we lower bounded the error probability withreff(
γrc

2 ) instead ofreff(γrc), and also in (13) we multiplied by14 ,

in order to be consistent with the general lower bound for IC’s shown in appendix A. For lattices we havePe(H, ρ) = P
S

′

KT
e .

Essentially what we have shown here is a scaled sphere packing bound.2

Next, we would like to use this lower bound to average over thechannel realizations and get an upper bound on the diversity
order.

Theorem 2. The diversity order of anyKT -complex dimensional sequence of IC’sSKT (ρ), with K average number of
dimensions per channel use, is upper bounded by

dKT (r) ≤ d∗K(r) = M ·N(1− r

K
)

for 0 < K ≤ M·N
N+M−1 , and

dKT (r) ≤ d∗K(r) = (M − l)(N − l)
K

K − l
(1− r

K
)

for (M−l+1)(N−l+1)
N+M−1−2(l−1) + l − 1 < K ≤ (M−l)(N−l)

N+M−1−2·l + l and l = 1, . . . , L− 1. In all of these cases0 ≤ r ≤ K.

Proof: For any IC with VNRµrc, assigningµ
′

rc > µrc in the lower bound from Theorem 1 also gives a lower bound on
the error probability

Pe(H, ρ) >
C(KT )

4
e−µ

′

rc·A(KT )+(KT−1) ln(µ
′

rc).

It results from the fact that inflating the IC into an IC with VNR µ
′

rc must decrease the error probability, where

C(KT )

4
e−µ

′

rc·A(KT )+(KT−1) ln(µ
′

rc)

is a lower bound on the error probability of any IC with VNRµ
′

rc. Hence, for the caseµrc ≤ 1 we can lower bound the error
probability by assigning 1 in the lower bound and getC(KT )

4 e−A(KT ), i.e. forµrc ≤ 1 the average decoding error probability
is bounded away from 0 for any value ofρ. We can give the eventµrc ≤ 1 the interpretation of an outage event.

We would like to set a lower bound for the error probability for each channel realizationα, which we denote byPLB
e (ρ, α).

We know thatµrc ≤ ρ1−
1
K

(r+
∑B−1

i=0 αL−i+βαL−B). For the case
∑B−1

i=0 αL−i + βαL−B < K − r, we take

PLB
e (ρ, α) =

C(KT )

4
e−L(ρ,α)·A(KT )+(KT−1) ln(L(ρ,α))

whereL(ρ, α) = ρ1−
1
K

(r+
∑B−1

i=0 αL−i+βαL−B) > 1. For the case
∑B−1

i=0 αL−i + βαL−B ≥ K − r we get thatµrc ≤ 1, and we
take

PLB
e (ρ, α) =

C(KT )

4
e−A(KT ).

In order to find an upper bound on the diversity order, we wouldlike to averagePLB
e (ρ, α) over the channel realizations.

In our analysis we consider large values ofρ, and so we calculate

Pe(ρ)>̇

∫

α≥0

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα (14)

whereα ≥ 0 signifies the fact thatα1 ≥ · · · ≥ αL ≥ 0. By definingA = {α|
∑B−1

i=0 αL−i + βαL−B < K − r;α ≥ 0} and

2Note that while Theorem 1 refers toKT -complex dimensional IC’s, the lower bound derived in this theorem applies for any2KT -real dimensional IC.
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A = {α|∑B−1
i=0 αL−i + βαL−B ≥ K − r;α ≥ 0} we can split (14) into 2 terms

Pe(ρ)>̇

∫

α∈A

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα +

∫

α∈A

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα. (15)

Hence
Pe(ρ)>̇

∫

α∈A

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα. (16)

In a similar manner to [3], [7], for very largeρ, we approximate the average value by finding the most dominant exponential
term in the integral. For this we would like to find the minimalvalue of

lim
ρ→∞

− logρ(P
LB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αi)

for the caseα ∈ A. For α ∈ A, we get thatPLB
e (ρ, α) is bounded away from 0 for any value ofρ. Hence, in order to find

the most dominant error event we would like to findminα
∑L

i=1(|N −M |+ 2i− 1)αi given thatα ∈ A. The minimal value
is achieved at the boundary, i.e. forα satisfying

∑B−1
i=0 αL−i + βαL−B = K − r, α ≥ 0. Hence, for anyK ≤ L we state that

dKT (r) ≤ min
α

L∑

i=1

(|N −M |+ 2i− 1)αi, 0 ≤ r ≤ K (17)

where
∑B−1

i=0 αL−i + βαL−B = K − r andα1 ≥ · · · ≥ αL ≥ 0. Basically this optimization problem is a linear programming
problem whose solution is as follows. For0 < K ≤ M·N

N+M−1 the solution isαi = 1− r
K

, i = 1, . . . , L. For (M−l+1)(N−l+1)
N+M−1−2(l−1) +

l− 1 < K ≤ (M−l)(N−l)
N+M−1−2·l + l and l = 1, . . . , L− 1 the solution isαL = · · · = αL−l+1 = 0 andαL−l = · · · = α1 = K−r

K−l
. The

desired upper is attained by substituting the optimal values of α in (17). The detailed solution for the optimization problemis
presented in appendix B.

From Theorem 2 we get an upper bound on the diversity order by assuming transmission of theKT complex dimensions
over theB + 1 strongest singular values. This assumption is equivalent to assumingbeamformingwhich may improve the
coding gain, but does not increase the diversity order. Thisassumption allows us to derive a lower bound on the average
decoding error probability. However, we still get maximal diversity order ofMN in this case.

Let us consider as an illustrative example the case ofM = N = 2. In this case, for0 < K ≤ 4
3 we getd∗K(r) = 4(1− r

K
).

For 4
3 < K ≤ 2 we getd∗k(r) = K

K−1 (1 − r
K
). In both cases0 ≤ r ≤ K. For this set up we have two singular values

and soα1 ≥ α2 ≥ 0. The optimization problem is of the formminα≥0 α1 + 3α2, where for0 < K ≤ 1 the constraint is
βα2 = K − r, and for1 < K ≤ 2 the constraint isα2 + βα1 = K − r. For the case0 < K < 4

3 the optimization problem
solution isα1 = α2 = 1− r

K
, i.e. in this case the most dominant error event occurs when both singular values are very small.

For the caseK = 4
3 the constraint is of the formα2 +

α1

3 = 4
3 − r, and the optimization problem solution is achieved for

bothα1 = α2 = 1− 3r
4 andα2 = 0, α1 = 4− 3r. For the case43 < K ≤ 2 the optimization problem solution is achieved for

α2 = 0, α1 = K−r
K−1 , i.e. one strong singular value and another very weak singular value.
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DMT of finite
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Fig. 1. The diversity order as a linear function of the multiplexing gainr for M = 4, N = 3 andK = 1, 2, 2.5 and3.

Corollary 1. For 0 < K ≤ M·N
N+M−1 we getd∗K(0) = MN . For (M−l+1)(N−l+1)

N+M−1−2(l−1) +l−1 < K ≤ (M−l)(N−l)
N+M−1−2·l+l, l = 1, . . . , L−1

we getd∗K(l) = (M − l)(N − l).

Proof: The proof is straight forward fromd∗K(r) properties.
From Corollary 1 we get that the range ofK can be divided into segments, where for each segment we have aset of straight

lines, that are all equal at a certain integer point. Note that at these points, we get the same values as the optimal DMT for
finite constellations.
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Corollary 2. In the rangel ≤ r ≤ l+1, the maximal possible diversity order is achieved at dimension Kl =
(M−l)(N−l)
N+M−1−2·l + l

and equals

d∗Kl
(r) = (M − l)(N − l)

Kl

Kl − l
(1 − r

Kl

)

= (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

wherel = 0, . . . , L− 1. This expression equals to the optimal DMT of finite constellations in this range.

Proof: The proof is straight forward fromd∗K(r) properties.
From Corollary 2 we can see thatd∗Kl

(l) = (M − l)(N − l) andd∗Kl
(l+ 1) = (M − l− 1)(N − l− 1). We also know that

d∗Kl
(r) is a straight line. Also, the optimal DMT for finite constellations consists of a straight line in the rangel ≤ r ≤ l+ 1,

that equals(N − l)(M − l) whenr = l and (M − l − 1)(N − l − 1) whenr = l + 1. Hence, in the rangel ≤ r ≤ l + 1 for
Kl =

(M−l)(N−l)
N+M−1−2·l + l, we get an upper bound that equals to the optimal DMT of finite constellations presented in [3]. Since

for eachl = 0, . . . , L− 1, we have suchKl, the solution of

max
0≤K≤L

d∗K(r) 0 ≤ r ≤ L

equals to the optimal DMT of finite constellations.
Figure 1 illustrates the properties ofd∗K(r) following Corrolaries 1, 2. We take the example ofM = 4, N = 3. For

0 ≤ K ≤ 2 we get upper bounds that have diversity order12 for r = 0. We can see that in the range0 ≤ r ≤ 1, the upper
bound ofK = 2 is maximal and equals to the optimal DMT of finite constellations. In the range2 < K ≤ 2.5 we can see that
the upper bounds have the same diversity order6 at r = 1. In the range1 ≤ r ≤ 2, the upper bound ofK = 2.5 is maximal
and equals to the optimal DMT of finite constellations in thisrange. For2.5 < K ≤ 3, the upper bounds equal to2 at r = 2.
In the range2 < r ≤ 3, the upper bound ofK = 3 is maximal and again equals to the optimal DMT of finite constellations
in this range.

0 0.5 1 1.5 2 2.5 3
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10

11

12

13

IC dimension − K

d(
K

)

Fig. 2. d
∗

K
(0) as a function of the IC dimensions per channel useK, for M = 4, N = 3.

Figure 2 presents the maximal diversity order that can be attained for different average number of dimensions per channel
use, for the caseM = 4 andN = 3, i.e. the upper bound on the diversity order forr = 0, d∗K(0), where0 ≤ K ≤ 3. In
the range0 ≤ K ≤ 2 we getd∗K(0) = 12. It coincides with the result presented in Figure 1, where weshowed that in this
range the straight lines have the same value forr = 0. Hence, for IC’s, one can use up to 2 average number of dimensions
per channel use without compromising the diversity order. Starting fromK ≥ 2, the tradeoff starts to kick-in and the maximal
diversity order starts to reduce as we increase the average number of dimensions per channel use. Also note that forK = 3
the diversity order is6 whenr = 0.

IV. ATTAINING THE BEST DIVERSITY ORDER

In this section we show that the optimal DMT of finite constellations is achievable by a sequence of IC’s in general and
lattices using regular lattice decoding in particular. In subsection IV-A we present a transmission scheme for anyM andN

that transmits an IC withKl =
(M−l)(N−l)
N+M−1−2·l + l andTl = N +M − 1− 2 · l, l = 0, . . . , L − 1, where as previously defined

L = min(M,N) andKl is chosen based on the results in section III. In subsection IV-B we present the effective channel
induced by this transmission scheme. Following that we extend the methods presented in [13] and derive in Theorem 3 for
each channel realization an upper bound on the average decoding error probability of ensemble of IC’s. By averaging the upper
bound over the channel realizations, we show in Theorem 4 that the proposed transmission scheme attains the optimal DMT.
In Theorem 5 we extend this result also to lattices when employing regular lattice decoder. Finally, we discuss power spreading
technique over the transmit antennas for the transmission scheme in subsection IV-E, and give some averaging argumentson
the existence of sequence of IC’s that attain the optimal DMTin subsection IV-F.
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A. The Transmission Scheme

The transmission matrixGl, l = 0, . . . , L−1, hasM rows that represent the transmission antennas, andTl = N+M−1−2·l
columns that represent the number of channel uses.

We begin by describing the transmission matrix structure ingeneral for anyM andN .

1) For N ≥ M and KM−1 = M(N−M+1)
N−M+1 = M : the matrix GM−1 has N − M + 1 columns (channel uses). In

the first column transmit symbolsx1, . . . , xM on theM antennas, and in theN − M + 1 column transmit symbols
xM(N−M)+1, . . . , xM(N−M+1) on theM antennas.

2) For M > N andKN−1 = N(M−N+1)
M−N+1 = N : the matrixGN−1 hasM − N + 1 columns. In the first column transmit

symbolsx1, . . . , xN on antennas1, . . . , N and in theM−N+1 column transmit symbolsxN(M−N)+1, . . . , xN(M−N+1)

on antennasM −N + 1, . . . ,M .
3) ForKl, l = 0, . . . , L− 2: the matrixGl hasM +N − 1 − 2 · l columns. We add toGl+1, the transmission scheme of

Kl+1, two columns in order to getGl. In the first added column transmitl+1 symbols on antennas1, . . . , l+1. In the
second added column transmit differentl + 1 symbols on antennasM − l, . . . ,M .

Example: M = 4, N = 3. In this case the transmission scheme forK = 3, 2.5 and2 (G2, G1 andG0 respectively) is as
follows: 



x1 0
x2 x4

x3 x5

0 x6︸ ︷︷ ︸
K2=

6
2

x7 0
x8 0
0 x9

0 x10

︸ ︷︷ ︸
K1=

10
4

x11 0
0 0
0 0
0 x12




︸ ︷︷ ︸
K0=

12
6

. (18)

B. The Effective Channel

Next we define the effective channel matrix induced by the transmission scheme. In accordance with the channel model from
(4), the multiplicationH ·Gl yields a matrix withN rows andTl columns, where each column equals toH · xt, t = 1 . . . Tl,
as in (4). We are interested in transmittingKlTl-complex dimensional IC withKlTl complex symbols. Hence, in the proposed
transmission scheme,Gl has exactlyKlTl non-zero complex entries that represent theKlTl-complex dimensional IC within
CMTl . For each column ofGl, denoted byg

i
, i = 1 . . . Tl, we define the effective channel thatg

i
sees asĤi. It consists of

the columns ofH that correspond to the non-zero entries ofg
i
, i.e. H · g

i
= Ĥi · ĝi, whereĝ

i
equals the non-zero entries of

g
i
. As an example assume without loss of generality that the first li entries ofg

i
are not zero. In this casêHi is anN × li

matrix equals to the firstli columns ofH . In accordance with (5),H(l)
eff is anNTl ×KlTl block diagonal matrix consisting of

Tl blocks. Each block corresponds to the multiplication ofH with different column ofGl, i.e. Ĥi is the i′th block of H(l)
eff .

Note that in the effective matrixNTl ≥ KlTl.
We would like to elaborate on the structure of the blocks ofH

(l)
eff . For this reason we denote the columns ofH as hi,

i = 1, . . . ,M .
1) The case whereN ≥ M . For this case the transmission scheme hasN +M − 1− 2 · l columns. The firstN −M + 1

columns ofGl, g1, . . . , gN−M+1
, containM · (N −M + 1) different complex symbols, i.e. there are no zero entries in

these columns. Hence, in this case the firstN −M + 1 blocks ofH(l)
eff are

Ĥi = H i = 1, · · · , N −M + 1. (19)

After the firstN −M + 1 columns we haveM − 1− l pairs of columns. For each pair we have

ĤN−M+2k = {h1, . . . , hM−k} (20)

and
ĤN−M+2k+1 = {hk+1, . . . , hM} (21)

wherek = 1, . . . ,M − 1− l.
2) The case whereM > N . Again the transmission scheme hasN +M − 1 − 2 · l columns. By the definition of the first

M −N + 1 columns ofGl, we get that

Ĥi = {hi, . . . , hN+i−1} i = 1, · · · ,M −N + 1. (22)

We have additionalN − 1− l pairs of columns inGl. For each of these pairs we get

ĤM−N+2k = {h1, . . . , hN−k} (23)



9

H
(0)
eff =




h1 h2 h3 0 0 0
0 0 0 h2 h3 h4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0
h1 h2 0 0
0 0 h3 h4

0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0
h1 0
0 h4




(25)

and
ĤM−N+2k+1 = {hM−N+k+1, . . . , hM} (24)

wherek = 1, . . . , N − 1− l.

Example: considerM = 4, N = 3 as presented in (18). In this casel = 0, 1, 2 and we haveK2 = 3, K1 = 2.5 andK0 = 2
respectively.

1) K2 = 3: H(2)
eff is generated from the multiplication of the3× 4 matrix H with the first two columns of the transmission

matrix. In this caseH(2)
eff is a 6× 6 block diagonal matrix, consisting of two blocks. Each blockis a 3 × 3 matrix. We

get thatĤ1 = {h1, h2, h3} andĤ2 = {h2, h3, h4}.
2) K1 = 10

4 = 2.5: H
(1)
eff is a 12 × 10 block diagonal matrix consisting of 4 blocks. The first two blocks are identical

to the blocks ofH(2)
eff . The additional two blocks (multiplication with columns 3-4) are3 × 2 matrices. We get that

Ĥ3 = {h1, h2} andĤ4 = {h3, h4}.
3) K0 = 2: H

(0)
eff consists of six blocks. In this case the last two blocks are3 × 1 vectors. We get that̂H5 = h1 and

Ĥ6 = h4.

We presentH(0)
eff of our example in equation (25). Note thathi ∈ C3 for 1 ≤ i ≤ 4, and0 is a 3× 1 vector.

From the sequential construction of the blocks ofH
(l)
eff (19)-(21), (22)-(24) it is easy to see that when two columns of H

occur in a certain block ofH(l)
eff , the columns ofH between them must also occur in the same block, i.e. ifh1, h5 occur in

a certain block, thenh2, h3, h4 also occur in the same block. Next we prove a property of the transmission schemeGl, that
relates to the number of occurrences of the columns ofH in the blocks ofH(l)

eff . For each set of columns inH , we give an
upper bound on the amount of its appearances in different blocks.

Lemma 1. Consider the transmission schemeGl, l = 0, . . . L− 1. In case0 ≤ i− j < L, the columnshj , . . . , hi may occur

together in at mostN − i+ j blocks ofH(l)
eff . In casei − j ≥ L they can not occur together in any block ofH

(l)
eff .

Proof: See appendix C.

C. Upper Bound on The Error Probability

Next we would like to derive an upper bound on the average decoding error probability of ensemble ofKlTl-complex
dimensional IC, for each channel realization. We define|H(l)†

eff H
(l)
eff | = ρ−

∑KlTl
i=1 ηi , whereρ−

ηi
2 is the i′th singular value of

H
(l)
eff , 1 ≤ i ≤ KlTl. We also defineη = (η1, . . . , ηKlTl

)T . Note thatNTl ≥ KlTl.

Theorem 3. There exists a sequence ofKlTl-complex dimensional IC’s, with channel realizationH(l)
eff and a receiver VNR

µrc = ρ
1− r

Kl
−

∑KlTl
i=1

ηi
KlTl , that has an average decoding error probability

Pe(H
(l)
eff , ρ) = Pe(η, ρ) ≤ D(KlTl)ρ

−Tl(Kl−r)+
∑KlTl

i=1 ηi = D(KlTl)ρ
−Tl(Kl−r) · |H(l)†

eff H
(l)
eff |−1

whereD(KlTl) is a constant independent ofρ, andηi ≥ 0 for every1 ≤ i ≤ KlTl.

Proof: We base our proof on the techniques developed by Poltyrev [13] for the AWGN channel. However, the channel
considered here is colored. In spite of that, we show that what affects the average decoding error probability is the singular
values product, which is encapsulated by the receiver VNR,µrc. This observation enables us to facilitate this colored channel
analysis. The full proof in appendix D.

By averaging arguments we know that there exists a sequence of IC’s that satisfies these requirements.

D. Achieving the Optimal DMT

In this subsection we calculate the DMT of the proposed transmission scheme. We upper bound the determinant of the
effective channel inverse,|H(l)†

eff H
(l)
eff |−1, based on the effective channel properties presented in subsection IV-B. In Theorem

3 we showed that the upper bound on the error probability depends on this determinant. Hence, the upper bound on the
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determinant gives us a new upper bound on the average decoding error probability. We average the new upper bound over all
channel realizations and get the DMT of the transmission scheme.

The channel matrixH consists ofN ·M i.i.d entries, where each entry has distributionhi,j ∼ CN(0, 1). Without loss of
generality we consider the case where the columns ofH are drawn sequentially from left to right, i.e.h1 is drawn first, then
h2 is drawn et cetera. Columnhj is anN -dimensional vector. Givenhmax(1,j−N+1), . . . , hj−1, we can write

hj = Θ(hmax(1,j−N+1), . . . , hj−1) · h̃j

whereΘ(·) is anN ×N unitary matrix.Θ(·) is chosen such that:

1) The first element of̃hj , h̃1,j , is in the direction ofhj−1.
2) The second element,̃h2,j , is in the direction orthogonal tohj−1, in the hyperplane spanned by{hj−1, hj−2}.
3) Elementh̃min(j,N)−1,j is in the direction orthogonal to the hyperplane spanned by{hmax(2,j−N+2), . . . , hj−1} inside

the hyperplane spanned by{hmax(1,j−N+1), . . . , hj−1}.
4) The rest of theN −min(j,N) + 1 elements are in directions orthogonal to the hyperplane{hmax(1,j−N+1), . . . , hj−1}.

Note thath̃i,j , 1 ≤ i ≤ N , 1 ≤ j ≤ M are i.i.d random variables with distributionCN(0, 1). Let us denote byhj⊥j−1,...,j−k

the component ofhj which resides in theN − k subspace which is perpendicular to the space spanned by{hj−1, . . . , hj−k}.
In this case we get

‖hj⊥j−1,...,j−k‖2 =

N∑

i=k+1

|h̃i,j |2 1 ≤ k ≤ min(j,N)− 1. (26)

If we assign|h̃i,j |2 = ρ−ξi,j , we get that the probability density function (PDF) ofξi,f is

f(ξi,j) = C · log ρ · ρ−ξi,j · e−ρ
−ξi,j

(27)

whereC is a normalization factor. In our analysis we assume a very large value forρ. Hence we can neglect events where
ξi,j < 0 since in this case the PDF (27) decreases exponentially as a function ofρ. For a very largeρ, ξi,j ≥ 0, 1 ≤ i ≤ N

and1 ≤ j ≤ M , the PDF takes the following form

f(ξi,j) ∝ ρ−ξi,j ξi,j ≥ 0. (28)

In this case by assigning in (26) the vectorξ
j
= (ξ1,j , . . . , ξN,j)

T , whose PDF is proportional toρ−
∑N

i=1 ξi,j , we get

‖hj⊥j−1,...,j−k‖2=̇ρ−mins∈{k+1,...,N} ξs,j = ρ
−a(k,ξ

j
)

(29)

where1 ≤ k ≤ min(j, L)− 1 anda(k, ξ
j
) = mins∈{k+1,...,N} ξs,j . In addition

‖hj‖2=̇ρ−mins∈{1,...,N} ξs,j = ρ
−a(0,ξ

j
)
. (30)

Note that
a(min(j, L)− 1, ξ

j
) ≥ · · · ≥ a(0, ξ

j
) ≥ 0. (31)

Next we wish to quantify the contribution of a certain columnin the channel matrix,hj , to the determinant|H(l)†
eff H

(l)
eff |.

H
(l)
eff is a block diagonal matrix. Hence the determinant of|H(l)†

eff H
(l)
eff | can be expressed as

|H(l)†
eff H

(l)
eff | =

Tl∏

i=1

|Ĥ†
i Ĥi|. (32)

AssumeĤi = (ĥ1, . . . , ĥm), i.e. Ĥi hasm columns. In this case we can state that the determinant

|Ĥ†
i Ĥi| = ‖ĥ1‖2‖ĥ2⊥1‖2 . . . ‖ĥm⊥m−1,...,1‖2.

Note thatĤi also has more rows than columns. The columns ofĤi are subset of the columns of the channel matrixH . Hence
we are interested in the blocks wherehj occurs. We know that the contribution ofhj to those determinants can be quantified
by taking into account the columns to its left in each block. We consider two cases:

• The caseN ≥ M . In this case we can see from (19)-(21) thathj may occur with{h1, . . . , hj−1} to its left in different
blocks.

• The caseM > N . In this case we can see from (22)-(24) thathj may occur only with{hmax(1,j−N+1), . . . , hj−1} to its
left in different blocks.
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Based on (29) and (30) we can quantify the contribution ofhj to |H(l)†
eff H

(l)
eff | by

‖hj‖2bj(0)
min(j,L)−1∏

k=1

‖hj⊥j−1,...,j−k‖2bj(k)=̇ρ
−

∑min(j,L)−1
k=0 bj(k)a(k,ξ

j
) (33)

wherebj(k) is the number of occurrences ofhj in the blocks ofH(l)
eff , with only {hj−1, . . . , hj−k} to its left. bj(0) is the

number of occurrences ofhj with no columns to its left. Note that from the definition of the transmission scheme we get that
for l = 0, bj(k) > 0 for 1 ≤ k ≤ min(j, L)− 1.

In the following theorem we calculate the DMT of the proposedtransmission scheme.

Theorem 4. There exists a sequence ofKlTl-complex dimensional IC’s with transmitter densityγtr = ρrTl and Tl channel
uses that has diversity order

dKlTl
(r) ≥ (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where0 ≤ r ≤ Kl and l = 0, . . . , L− 1. In the rangel ≤ r ≤ l+1 this lower bound coincides with the optimal DMT of finite
constellations.

Proof: The proof outline is as follows. The upper bound on the error probability from Theorem 3 depends on|H(l)†
eff H

(l)
eff |−1.

We upper bound this determinant value and average over different realizations ofH(l)
eff in order to find the diversity order of

the transmission matrixGl. We begin by lower bounding|H(l)†
eff H

(l)
eff |. Based on the sequential structure ofGl, we lower bound

the contribution of a certain column ofH , hj , 1 ≤ j ≤ M to the determinant. This gives us a new upper bound on the
error probability for each channel realization. We averagethe new upper bound on the error probability, by averaging over
h̃1, . . . , h̃M . From this averaging we get the required DMT. The full proof is in appendix E

The diversity order attained in Theorem 4 forKl, Tl coincides with the optimal DMT of finite constellations in the range
l ≤ r ≤ l+ 1. Hence, by considering0 ≤ l ≤ L− 1, we can attain the optimal DMT withL sequences of IC’s.

We present as an illustrative example the case ofM = N = 2. Let us consider the case wherel = 0. In this caseK0 = 4
3 ,

and T0 = 3, i.e. we transmit4-complex dimensional IC. The transmission scheme diversity order in this case is4 − 3r,
0 ≤ r ≤ 4

3 . In this case the effective channel matrix,H
(0)
eff , consists of three blocks:̂H1 = (h1, h2), Ĥ2 = h1 and Ĥ3 = h2.

According to our definitions
|Ĥ†

1Ĥ1| = ‖h1‖2 · ‖h2⊥1‖2 = ρ−min(ξ1,1,ξ2,1) · ρ−ξ2,2

and also‖h1‖2 = ρ−min(ξ1,1,ξ2,1), ‖h2‖2 = ρ−min(ξ1,2,ξ2,2). In accordance with (83) we divide the integral into two terms. In
the first term we solve the optimization problem

min
ξi,j∈A

(4− 3r)− (ξ2,2 + 2 ·min
(
ξ1,1, ξ2,1) + min (ξ1,2, ξ2,2)

)
+

2∑

i=1

2∑

j=1

ξi,j . (34)

One solution to this problem isξi,j = 0 for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2. In this case we get an exponential term that equals4− 3r.
For the second integral we solve the optimization problem

min
ξi,j∈A

2∑

i=1

2∑

j=1

ξi,j .

In this case the optimization problem solution is
∑2

i=1

∑2
j=1 ξi,j = 4− 3r. Hence, all together, we get a diversity order that

equals4− 3r, that coincides with the optimal DMT of finite constellations in the range0 ≤ r ≤ 1.
In the next theorem we prove the existence of a sequence of lattices that has the same lower bound as in Theorem 4.

Theorem 5. There exists a sequence of2KlTl-real dimensional lattices with transmitter densityγtr = ρrTl and Tl channel
uses, that attains a diversity order

dKlTl
(r) ≥ (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where0 ≤ r ≤ Kl and l = 0, . . . , L− 1.

Proof: See appendix G
Note that we considered a2KlTl-real dimensional lattice, where the lattice firstKlTl dimensions are spread over the real

part of the non-zero entries ofGl, and the otherKlTl dimensions of the lattice are spread on the imaginary part ofthe non-zero
entries ofGl. This does not necessarily yields aKlTl-complex dimensional lattice in the transission scheme. Considering the
2KlTl-real dimensional lattice enables us to use theMinkowski-Hlawaka-SiegelTheorem [13],[19], and prove Theorem 5.
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E. Power Spreading

For practical reasons, such as power peak to average ratio, one may prefer to have a transmission scheme that spreads the
transmitted power equally over time and space. The transmitting matrix Gl contains exactlyKlTl non-zero entries, where
the rest of the entries are zero. In order to spread the power more equally over time and space we use the following unitary
operations

ULGlUR.

UL is anM ×M unitary matrix that spreads each column ofGl, i.e. spreads over space.UR is a Tl × Tl unitary matrix that
spreads each raw ofGl, i.e. spreads over time. As the distribution ofH andH · UL are identical, multiplyingUL with Gl

gives exactly the same performance. Based on the notations from (4) we can state that

Gl · UR =
(
x1, . . . , xTl

)

where
(
x1, . . . , xTl

)
are the channel inputs. In the receiver we can state that the received signals are

(
y
1
, . . . , y

Tl

)
. By

multiplying with U
†
R we get (

y
1
, . . . , y

Tl

)
· U †

R = Gl +
(
n1, . . . , nTl

)
U

†
R.

The distribution of
(
n1, . . . , nTl

)
is identical to the distribution of

(
n1, . . . , nTl

)
U

†
R. Hence, multiplyingGl with UR gives

also exactly the same performance. For instance, in order toachieve full diversity and spread the power more uniformly,we
takeG0 and duplicate its structures times to create the transmission schemeG

(s)
0 . In this case the transmission matrixG(s)

0

consists ofsK0T0 complex non-zero entries, i.e we transmit ansK0T0 complex dimensional IC within thesMT0 complex
space.G(s)

0 is anM × sT0 dimensional matrix, that has exactly the same diversity order asG0 (it duplicates the structure of
G0 s times). Each row ofG(s)

0 has exactlysN non-zero entries. We defineU (s)
R assT0× sT0 unitary matrix. For large enough

s, the multiplicationG(s)
0 · U (s)

R spreads the power more uniformly over space and time, and still achieves full diversity.3

F. Averaging Arguments

In this subsection we show that there existL sequences of lattices that attain the optimal DMT, where each sequence of
theL sequences attains a different segment on the optimal DMT curve. In addition we show that there exists a single IC that
attains the optimal DMT by diluting its points and adapting its dimensionality.

As a consequence of Theorem 3 and Theorem 4 we can state the following

Corollary 3. Consider a sequence ofKT -complex dimensional IC’sSKT (ρ) with densityγtr = 1, that attains diversity order
d. This sequence of IC’s also attains diversity orderd(1− r

K
) when the sequence density is scaled toγtr = ρrT .

Proof: The proof is in appendix H.

Corollary 4. The optimal DMT is attained by exactlyL sequences of2KlTl-real dimensional lattices,l = 0, . . . , L− 1, where
each sequence attains different segment of the optimal DMT.

Proof: From Theorem 5 we know that there exists a2KlTl-real dimensional sequence of lattices with densityγtr = 1 that
attains diversity(M − l)(N − l)+ l(N +M − 2 · l− 1). Hence, based on Corollary 3 we can scale this2KlTl-real dimensional
sequence of lattices into a sequence of lattices with density γtr = ρrTl , and a diversity order(M − l)(N − l)− (r − l)(N +
M − 2 · l− 1), i.e. the sequence of lattices attains the optimal DMT line in the rangel ≤ r ≤ l+ 1. The optimal DMT is the
maximal value of theL lines, for each0 ≤ r ≤ L. Hence, there existL sequences of lattices that attain the optimal DMT.

Next, we show that there exists a single sequence of IC’s thatattains the optimal DMT. The optimal DMT consists ofL

segments of straight lines. Each segment is attained by reducing the IC’s dimensionality to the correct dimension, and diluting
their points to get the desired density. Note that in Theorem4 we showed that for each multiplexing gain,r, there exists a
sequence of IC’s that attains the optimal DMT. On the other hand, in Corollary 5 we show that a single sequence of IC’s
attains the optimal DMT for anyr, by adapting its dimensionality and diluting its points. Also note thatK0T0 > K1T1 >

· · · > KL−1TL−1.

Corollary 5. There exists a single sequence ofK0T0-complex dimensional IC’s, that attains theL segments of the optimal
DMT:

(M − l)(N − l)− (r − l)(N +M − 2 · l − 1) 0 ≤ r ≤ Kl

where l = 0, · · · , L − 1. The l′th segment is attained by reducing the IC’s complex dimensionality to KlTl, and by diluting
their points to get densityγtr = ρTlr.

Proof: See Appendix I.

3It can be shown that replacingUL andUR with any other two invertible matrices still yields transmission scheme that attains the optimal DMT. It extends
the set of subspaces inCMT that attain the optimal DMT. It also alludes that alongside the proposed transmission matrix IV-A, there are many other options
to attain the optimal DMT.
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V. D ISCUSSION

In this section we discuss the results presented in the paper. We begin by explaining why full dimension lattice based coding
schemes such as Golden-codes [9], perfect codes [10] and other cyclic-division algebra based space-time codes [6] which were
shown to attain the optimal DMT, are sub-optimal when regular lattice decoder (3) is employed in the receiver. In addition, we
explain why using the MMSE estimation in the receiver enables these schemes to attain the optimal DMT. Afterwards, based
on our results, we give another geometrical interpretationto the optimal DMT. Finally, since in practice a finite codebook
is transmitted, we show that given a lattice with multiplexing gainr as defined for IC’s in (6), a finite constellation with
multiplexing gainr as defined in [3] can also be carved from it.

A. Lattice Constellations Vs. Full Dimension Lattice BasedFinite Constellations

In order to demonstrate that full dimension lattice based coding schemes with regular lattice decoding are sub-optimallet us
consider Golden-codes transmitted over a channel withM = N = 2 whereT = 2. For largeρ the channel singular values PDF
is proportional toρ−α1−3α2 , whereα1 ≥ α2 ≥ 0. A Golden-code of a certain rate is carved from a4-complex dimensional
lattice. We show that when performing regular lattice decoding in the receiver the maximal diversity order that can be attained
for r = 0 is 2. This is in contrast to ML decoding or alternatively MMSE estimation followed by lattice decoding [7], [8] for
which the maximal diversity order equals 4.

We begin by showing why the maximal diversity order of a Golden-code is 2 when performing regular lattice decoding. In
the receiver, the squared effective radius of the effectivelattice induced by the channel realization equals (1)

r2eff=̇ρ−
α1+α2

2 =̇γ
− 1

4
rc . (35)

For latticesreff ≥ rpacking =
d
(lattice)
min

2 , whererpacking, d(lattice)min are the packing radius and the minimal distance of the lattice
respectively. Hence, we get (

d
(lattice)
min

2

)2

≤̇ρ−
α1+α2

2 . (36)

When the squared minimal distance is in the order of the additive noise variance,ρ−1, the error probability will not decrease
with ρ. This will happen for instance whenα2 = 0 andα1 = 2. This event occurs for largeρ with probability proportional to
ρ−2. Hence, in this case the diversity order is 2. Note that for the 4-complex dimensional lattice we get (9)

µrc=̇
r2eff
ρ−1

=̇ρ1−
α1+α2

2 . (37)

Therefore, the event where the squared effective radius is in the order of the noise variance is equivalent toµrc=̇1 which is
the outage event for lattices, presented in Theorem 2.

From equation (36) we get that the minimal distance for each channel realization of theentire lattice, induces diversity order
2. On the other hand, when the decoder only considers the words within thefinite codebook, the non-vanishing determinant
(NVD) property combined with the boundaries of the codebookleads to a lower bound on the minimal distance of the
Golden-code for each channel realization, that is larger than the expression in (36), and enables to attain diversity order 4 [6].

The fact that considering the entire lattice leads to smaller minimal distance is not surprising since the multiplication of the
transmitted lattice with the channel realization leads to scaling of this lattice in the direction of the channel singular values.
When considering the infinite lattice, the scaling may reduce the distance between points that were very far in the transmitted
lattice. These points are not necessarily part of the finite codebook and therefore does not effect the minimal distance of the
finite Golden-code but do effect the minimal distance of the lattice.

MMSE estimation followed by lattice decoding will also leadto diversity order 4. Translating the arguments presented in
[7], [8] to our setting leads to VNR

µ̃rc=̇ρ
(1−α1)++(1−α2)+

2 (38)

where(x)+ = x for x ≥ 0 and zero else. This expression is larger than the expressionin (37) and implies that the MMSE
estimation, that takes into account the transmitted power,also improves the minimal distance for each channel realization.
However, the improvement in VNR (and minimal distance) comes at the expense of a self additive noise that depends on the
transmitted codeword. Under the assumption that the transmitted codewords are not too far from the origin the variance of the
effective noise is small enough to allow attaining the optimal DMT. For instance Golden-code codewords are from a bounded
shaping region, which enables to attain diversity order 4. Note that for the entire lattice, the farther the lattice point is from the
origin, the larger the effective noise variance is. This eventually leads to poor error performance for lattice points far enough
from the origin.

Our work shows that transmitting a lattice with average number of dimensions per channel useK = 4
3 and performing

regular lattice decoding in the receiver leads to VNR

µrc=̇ρ1−
α1
4 −

3α2
4 (39)
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h2x2

h1x1

x2

x1

(a) Finite constellation: In this case even whenh2 is small it is possible to decode.

x2

x1

h2x2

h1x1

(b) Full dimensional infinite constellaion: In this case dueto the infiniteness of the constellation whenh2 is very small it
is impossible to decode.

x2

x1

h2x2

h1x1

(c) Infinite constellaion with reduced dimension: In this case even whenh2 is very small it is possible to decode.

Fig. 3. Illustrative example for the caseM = 2, N = 2 of the significance of reducing dimensions when consideringregular lattice decoding. For this
example we assume that the realization ofH is diagonal, where the diagonal elements areh1 andh2.

which is also larger than (37) and enables to attain diversity order 4 (in fact it attains the optimal DMT in the range0 ≤ r ≤ 1).
Hence, from our work we can see that reducing the lattice dimensionality increases thelattice minimal distance to such an
extent that enables to attain the optimal DMT when performing regular lattice decoding. In this sense reducing the lattice
dimensionality takes the role of MMSE estimation. It is alsointeresting to note that MMSE estimation followed by lattice
decoding yields good error performance for lattice points close enough to the origin (for instance lattice points within the
shaping region), and bad performance for lattice points very far from the origin. On the other hand, regular lattice decoding
yields the same performance for all lattice points inside oroutside the shaping region. An illustrative example that shows how
reduced dimension assists in increasing the minimal distance compared to full dimension lattice is presented in Figure3.

B. Geometrical Interpretation of the Optimal DMT, for IC’s

In this subsection we give a geometrical interpretation of the optimal DMT, based on allocation of lattice dimensions. This
is a qualitative discussion and the exact results appear in sections III, IV.

First from our results we can see that for a sequence of lattices with certain number of dimensions per channel use the DMT
is a straight line as a function of the multiplexing gain (seeCorollary 3). It results from the fact that for lattices changing the
multiplexing gain is equivalent to scaling each dimension by ρ−

r
2K . Assume that the sequence of lattices attains for multiplexing

gain r = 0 diversity orderd, i.e. the error probability decays asρ−d. In this case scaling each dimension byρ−
r

2K leads to
error probability that decays asρ−d(1− r

K ). This behavior results from the fact that the lattice decoder takes into consideration
all the lattice points. Hence, the scaling merely replacesρ with ρ1−

r
K in the error probability expression. The optimal DMT

is a piecewise linear function. We get that each line corresponds to a sequence of lattices with certain number of dimensions
per channel use.

Next we wish to give the reasoning for the average number of dimensions per channel use required to achieve each line
in the optimal DMT. For simplicity let us consider the caseM = N = 3. We begin by considering the straight line in the
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range0 ≤ r ≤ 1. In this range the optimal DMT equals9 − 5 · r. We wish to show why the average number of dimensions
per channel use that enables to attain this straight line equals 9

5 . For largeρ the channel singular values PDF is of the form
of ρ−α1−3α2−5α3 , whereα1 ≥ α2 ≥ α3 ≥ 0. When the transmission scheme spreads overT channel uses, the equivalent
channel matrix,Hex, presented in (5) has3T singular values. Each singular value ofH occursT times in the singular values
of Hex. Assume each complex dimension of the lattice is transmitted on a certain singular value ofHex. Let us denote byTi

the number of dimensions transmitted on the singular valuesthat equalρ−
αi
2 , 1 ≤ i ≤ 3. Note that

∑3
i=1 Ti may be smaller

than3T . According to this assumption a
(∑3

i=1 Ti

)
-complex dimensional lattice is transmitted overT channel uses, and the

average number of dimensions per channel use isK =
∑3

i=1 Ti

T
. The effective radius in the receiver equals

reff=̇ρ
− r·T

∑3
i=1

Ti
−

T1α1+T2α2+T3α3∑3
i=1

Ti . (40)

and the VNR equals

µrc=̇ρ
1− r·T

∑3
i=1

Ti
−

T1α1+T2α2+T3α3∑3
i=1

Ti . (41)

We are interested in the probability of the outage event, i.e. the probability thatµrc=̇1. Essentially, we show that whenK < 9
5

it is possible to attain maximal diversity order of9 for r = 0, but it is impossible to attain the line9− 5 · r for any0 < r ≤ 9
5 .

It results from the fact that multiplexing gainr > 0 requiresscalingeach dimension byρ−
r

2K = ρ
− r·T

2
∑3

i=1
Ti , which decreases

reff (and as a consequence also decreases the lattice minimal distance) to such an extent that it does not enable to attain the
optimal DMT. On the other hand whenK > 9

5 the channeldecreasesreff to such an extent that it does not enable to attain
the optimal DMT for0 ≤ r < 1. Hence,K = 9

5 balances the effect of the scaling and the channel and allowsto attain the
optimal DMT in the range0 ≤ r ≤ 1.

In order to attain the maximal diversity order9 whenr = 0, the outage eventµrc=̇1 implies that the following conditions
need to be fulfilled

T1∑3
i=1 Ti

≤ 1

9
,

T1 + T2∑3
i=1 Ti

≤ 4

9
(42)

i.e. each singular value can not occur in more dimensions than the relative effect it has on the PDF of the singular values.The
largest average number of dimensions per channel use that fulfils (42) is 9

5 . In this case forT = 5 a 9-complex dimensional
lattice is transmitted, and the conditions are fulfilled with equality whenT1 = 1, T2 = 3 and T3 = 5. WhenK < 9

5 the
conditions in (42) are still fulfilled and therefore diversity order9 is still attained forr = 0. However, based on (40) we get
for r > 0 that reff decreases faster than the case ofK = 9

5 . Hence, forK < 9
5 the diversity order is smaller than9 − 5 · r

when0 < r ≤ 9
5 .

So far we have shown that choosingK < 9
5 leads to sub-optimal DMT. Now, we wish to show that in the range 0 ≤ r ≤ 1

the DMT is smaller than9 − 5 · r also whenK > 9
5 . First, for K > 9

5 the conditions in (42) are not met. Hence, in this
case the diversity order is smaller than9 when r = 0. For r = 1 andK = 9

5 the diversity order equals4. Assume the best
assignment of lattice dimensions would enable to chooseT3 = T . In this caseµrc in (41) is effected equally ifr = 1, α3 = 0
or r = 0, α3 = 1, i.e. the scaling inflicted byr = 1 decreasesreff in (40) as if the singular valueρ−

α3
2 = ρ−

1
2 . In both cases

we get

µrc = ρ
T1+T2−T1α1−T2α2

T1+T2+T . (43)

The difference is that whenr = 1, α3 = 0 the PDF of the singular values equalsρ−α1−3α2 which leads to smaller diversity
order than the caser = 0, α3 = 1. For largeρ andr = 1, α3 = 0 is included in the most dominant error event whenK ≥ 9

5 .
Hence, diversity order of4 is attained forr = 1 andK > 9

5 when the following condition is met

T1

T1 + T2
≤ 1

4
(44)

which is exactly the condition for attaining maximal diversity order of4 whenr = 0 in a channel with2 transmit and2 receive
antennas. This condition is met as long asK ≤ 7

3 . Hence, for95 < K ≤ 7
3 the best diversity order is smaller than9 when

r = 0, and equals4 whenr = 1. Since for eachK the largest DMT is a straight line, the DMT for each0 < K ≤ 7
3 in the

range0 ≤ r ≤ 1 is smaller than9− 5 · r. We are left with the case73 < K ≤ 2. By applying similar arguments, only this time
consideringr = 2, it can be shown that in the range0 ≤ r < 2 the largest DMT for any73 < K ≤ 2 is smaller than7− 3 · r.
These arguments also show that in the range2 ≤ r ≤ 3 the optimal DMT equals2− r. Hence, we get for0 ≤ r < 1 that the
optimal DMT equals9− 5 · r, where for1 ≤ r < 2, 2 ≤ r ≤ 3 the optimal DMT equals7− 3 · r and2− r respectively.

C. The Relation Between the Multiplexing Gains of an IC and a Finite Constellation

In this paper we defined the multiplexing gain of IC’s sequence as the rate the IC’s density increases (6), i.e. whenγtr = ρrT

the multiplexing gain isr. We characterized the optimal DMT of IC’s based on this definition of the multiplexing gain. In
practice a finite constellation is transmitted, even when performing regular lattice decoding in the receiver. Hence, in this
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subsection we show that finite constellation with multiplexing gain r can be carved from a lattice with multiplexing gainr
(according to the definition given in (6)), while maintaining the same performance when performing regular lattice decoding
in the receiver.

Consider a latticeΛ with densityγtr = ρrT . In this case for each lattice point the Voronoi region volume equals

|V (x) | = |V | = γ−1
tr = ρ−rT ∀x ∈ Λ.

In [20] it has been shown that for any Jordan measurable bounded setS with volume |V (S) | there exists a translateu such
that

| (Λ + u) ∩ S| ≥ |V (S) |
|V | (45)

whereΛ+u is the translate of each lattice point by the constantu, and| (Λ + u)∩S| is the number of words of the translated
lattice within the regionS. Hence, for each lattice in a sequence with multiplexing gain r, there exists a translate such that the
number of codewords within a sphere with volume 1 is larger orequal toρrT , i.e. the rate isr log (ρ) where in this settingρ
takes the role ofSNR. Hence, it is possible to carve from the translated latticessequence a finite constellations sequence with
multiplexing gainr according to the definitions of finite constellations. When performing regular lattice decoding the translate
does not effect the performance. Hence, the results we presented in this work also apply when carving finite constellations
with the corresponding multiplexing gain from the latticessequence, and performing regular lattice decoding in the receiver.

VI. SUMMARY

This work investigates the DMT of IC’s. A new tradeoff between the IC average number of dimensions per channel use
and the best DMT it may attain is presented. Based on this tradeoff a transmission scheme that enables to attain the optimal
DMT of finite constellations, by lattices with regular lattice decoding, is presented.

APPENDIX A
PROOF OFTHEOREM 1

We prove the result for any IC with densityγrc. The proof outline is as follows. We prove the theorem by contradiction.
First, for a given IC with receiver densityγrc, we assume an average decoding error probability that equals to the lower bound
we wish to prove. Then, we derive a “regular” IC from the givenIC with the same densityγrc and the same average decoding
error probability. Regularizing the IC allows us to find a lower bound on the IC maximal error probability that depends on
its density. We expurgate half of the codewords with the largest error probability and get another regular IC with density γrc

2 .
Based on the average decoding error probability, we upper bound the expurgated IC maximal error probability, and based on
its density we lower bound the same maximal error probability, and get a contradiction.

Let us consider aKT -complex dimensional IC in the receiver,S
′

KT (ρ), with receiver densityγrc and average decoding
error probability

Pe(H, ρ) = (1− ǫ∗)
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc) (46)

whereA(KT ) = ( 1
(1−ǫ1)(1−ǫ2)

)
1

KT e ·Γ(KT +1)
1

KT , C(KT ) = ( 1
(1−ǫ1)(1−ǫ2)

)
KT−1
KT

e
KT− 3

2 Γ(KT+1)
KT−1
KT

2·Γ(KT ) and0 < ǫ1, ǫ2 < 1.

Next we construct a regularized IC,S
′′

KT (ρ), fromS
′

KT (ρ), whose Voronoi regions are bounded and have finite volumes , i.e.
there exists a finite radiusr such thatV (x) ⊂ Ball(x, r), ∀x ∈ S

′′

KT (ρ), whereBall(x, r) is aKT -complex dimensional ball
centered aroundx. We constructS

′′

KT (ρ) in the following manner. Let us defineC0(ρ,H) = {S′

KT (ρ)
⋂
(Hex · cubeKT (b))},

i.e. a finite constellation derived fromS
′

KT (ρ). We turn this finite constellation into an IC by tilingC0(ρ,H) in the following
manner

S
′′

KT (ρ) = C0(ρ,H) + (b + b
′

)H̃exZ
2KT (47)

where for simplicity we assumed thatcubeKT (b) ⊂ CKT , i.e. contained within the firstKT complex dimensions. Correspond-
ingly, under this assumption,̃Hex equals the firstKT complex columns ofHex. In this case, the tiling ofC0(ρ,H) is done
according to the complex integer combinations ofH̃ex columns. In general,cubeKT (b) may be a rotated cube withinCMT .
In this case the tiling is done according to someKT complex linearly independent vectors, consisting of linear combinations
of Hex columns. An alternative way to constructS

′′

KT (ρ) is by considering the transmitter ICSKT (ρ). In this case we can
construct another IC in the transmitter

SKT (ρ) = {SKT (ρ)
⋂

cubeKT (b)}+ (b + b
′

)Z2KT (48)

where without loss of generality we assumed again thatcubeKT (b) ∈ CKT . In this caseS
′′

KT (ρ) = {Hex · SKT (ρ)}.
Next we would like to setb andb

′

to be large enough such thatS
′′

KT (ρ) has average decoding error probability smaller or

equal toC(KT )
2 e−µrc·A(KT )+(KT−1) ln(µrc) and density larger or equal toγrc. Due to the symmetry that results from the tiling

(47), it is sufficient to upper bound the average decoding error probability of the pointsx ∈ C0(ρ,H) ⊂ S
′′

KT (ρ) denoted by
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P
S

′′

KT
e (C0) in order to upper bound the average decoding error probability of the entire ICS

′′

KT (ρ) . HencePS
′′

KT
e (C0) is also

the average decoding error probability for the ICS
′′

KT (ρ). We can upper bound the error probability in the following manner

P
S

′′

KT
e (C0) ≤ Pe(C0) + Pe(S

′′

KT \C0) (49)

wherePe(C0) is the average decoding error probability of the finite constellationC0(ρ,H) andPe(S
′′

KT \C0) is the average
decoding error probability to points in the set{S′′

KT \C0(ρ, h)}, i.e. the error probability inflicted by the replicated codewords
outside the setC0(ρ,H).

We begin by upper boundingPe(S
′′

KT \ C0) by choosingb
′

to be large enough. By the tiling at the transmitter (48) and
the fact that we have finite complex dimensionKT , for a certain channel realizationHex we get that there existsδ(Hex)
such that any pair of pointsx1 ∈ C0(ρ,H), x2 ∈ {S′′

KT \ C0(ρ, h)} fulfils ‖x1 − x2‖ ≥ 2b
′ · δ(Hex). The termδ(Hex) is

a factor that defines the minimal distance between these 2 sets for a given channel realization. Note that also for the case
M > N , there must exist suchδ(Hex), as we assumed thatS

′′

KT (ρ) is KT -complex dimensional IC, i.e. the projected IC
S

′′

KT (ρ) = HexSKT (ρ) is alsoKT -complex dimensional. Hence, we get that

Pe(S
′′

KT \ C0) ≤ Pr(‖ñex‖ ≥ b
′

δ(Hex))

whereñex is the effective noise in theKT -complex dimensional hyperplane whereS
′′

KT (ρ) resides. By using the upper bounds

from [13], we get that for(b
′
δ(Hex))

2

2KT
> σ2

Pr(‖ñex‖ ≥ b
′

δ(Hex)) ≤ e−
(b

′
δ(Hex))2

2σ2 (
(b

′

δ(Hex))
2e

2KTσ2
)KT .

Hence, forb
′

large enough we get that

Pe(S
′′

KT \ C0) ≤ (1− ǫ∗)
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc).

Now we would like to upper bound the error probability,Pe(C0), of the finite constellationC0(ρ,H). According to the
definition of the average decoding error probability in (10), the definition ofC0(ρ,H) and the assumption in (46), we get that

Pe(C0) ≤
(1− ǫ∗)(1 + ǫ(b))

4
C(KT )e−µrc·A(KT ) · µ(KT−1)

rc

wherelimb→∞ǫ(b) = 0. It results from the fact that in (10) we take the limit supremum, and so forb large enough the average
decoding error probability of the IC must be upper bounded bythe aforementioned term. Also, for anyb the average decoding
error probability of the finite constellationC0(ρ,H) is smaller or equal to the error probability, defined in (10),of decoding
over the entire IC. Based on the upper bound from (49) we get the following upper bound on the error probability ofS

′′

KT (ρ)

P
S

′′

KT
e (C0) ≤ (1−ǫ∗)(1+ǫ(b))

2 C(KT )e−µrc·A(KT ) · µ(KT−1)
rc . (50)

According to the definition ofγrc and due to the fact that we are taking limit supremum: for any0 < ǫ1 < 1 there existsb
large enough such that

|C0(ρ,H)|
vol
(
Hex · cubeKT (b)

) ≥ (1− ǫ1)γrc. (51)

where|C0(ρ,H)| is the number of points inC0(ρ,H). In fact there exists large enoughb that fulfils both (50) and (51).
In (47) we tiled byb+ b

′

. If we had tiledC0(ρ,H) only by b, then for large enoughb we would have got IC with density
larger or equal to(1 − ǫ1)γrc. However , as we tile byb + b

′

, we get forb large enough thatS
′′

KT (ρ) has density greater or
equal to 1−ǫ1

1+ b
′

b

γrc. Hence, for any0 < ǫ2 < 1 there existsb large enough such that

γ
′′

rc ≥ (1 − ǫ1)(1 − ǫ2)γrc. (52)

whereγ
′′

rc is the density ofS
′′

KT (ρ). Again, there also must exist large enoughb that fulfils (50) and (52) simultaneously.
Hence, for large enoughb we can derive fromS

′

KT (ρ) an IC S
′′

KT (ρ) with densityγ
′′

rc ≥ (1 − ǫ1)(1 − ǫ2)γrc and average
decoding error probability smaller or equal to(1−ǫ∗)(1+ǫ(b))

2 C(KT )e−µrc·A(KT )+(KT−1) ln(µrc).
By averaging arguments we know that expurgating the worst half of the codewords inS

′′

KT (ρ), yields an ICS
′′′

KT (ρ) with
density

γ
′′′

rc ≥ (1 − ǫ1)(1− ǫ2)
γrc

2
= γrc (53)

and maximal decoding error probability

sup
x∈S

′′′
KT

P
S

′′′

KT
e (x) ≤ (1 − ǫ∗)(1 + ǫ(b))C(KT )e−µrc·A(KT )µKT−1

rc (54)
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wherePS
′′′

KT
e (x) is the error probability ofx ∈ S

′′′

KT (ρ).
From the construction method ofS

′′

KT (ρ), defined in (47), it can be easily shown that tilingC0(ρ,H) yields bounded
and finite volume Voronoi regions, i.e. there exists a finite radiusr such thatV (x) ⊂ Ball(x, r), ∀x ∈ S

′′

KT (ρ). Due to the
symmetry that results fromS

′′

KT (ρ) construction (47), it also applies forS
′′′

KT (ρ). Hence, there must exist a pointx0 ∈ S
′′′

KT (ρ)
that satisfies|V (x0)| ≤ 1

γ
′′′
rc

≤ 1
γrc

. According to the definition of the effective radius in (1), we get thatreff(x0) ≤ reff(γrc).
Hence, we get

sup
x∈S

′′′
KT

P
S

′′′

KT
e (x) ≥ P

S
′′′

KT
e (x0) > Pr

(
‖ñex‖ ≥ reff(x0)

)
≥ Pr

(
‖ñex‖ ≥ reff(γrc)

)
(55)

where the lower boundPS
′′′

KT
e (x0) > Pr(‖ñex‖ ≥ reff(x0)) was proven in [13]. We calculate the following lower bound

Pr
(
‖ñex‖ ≥ reff(γrc)

)
>

∫ r2eff+σ2

r2
eff

rKT−1e−
r

2σ2

σ2KT 2KTΓ(KT )
dr ≥ r2KT−2

eff e−
r2eff
2σ2

σ2KT−22KTΓ(KT )
√
e

(56)

By assigningr2eff = (Γ(KT+1)
γrcπKT )

1
KT we get

sup
x∈S

′′′

KT
P

S
′′′

KT
e (x) > C(KT ) · e−

γ
− 1

KT
rc
2πeσ2 A(KT )+(KT−1) ln(

γ
− 1

KT
rc
2πeσ2 ). (57)

Hence, for certainǫ1 andǫ2 we get

sup
x∈S

′′′

KT
P

S
′′′

KT
e (x) > C(KT ) · e−µrcA(KT )+(KT−1) ln(µrc) (58)

whereµrc =
γ
− 1

KT
rc

2πeσ2 . Forb large enough we get(1−ǫ∗)(1+ǫ(b)) < 1, and so (58) contradicts (54). As a result we get contradic-

tion of the initial assumption in (46). This contradiction also holds for anyPe(H, ρ) < (1−ǫ∗)C(KT )
4 e−µrc·A(KT )+(KT−1) ln(µrc).

Hence, we get that

Pe(H, ρ) >
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc). (59)

Note that the lower bound holds for any0 < ǫ1, ǫ2, ǫ
∗ < 1 and also that the expressions in (46), (59) are continuous. As a

result we can also setǫ1 = ǫ2 = ǫ∗ = 0 and get the desired lower bound. Finally, note that we are interested in a lower bound
on the error probability of any IC for a given channel realization. Hence, we are free to choose different values forb and b

′

for each channel realization. andb
′

.

APPENDIX B
PROOF OF THE OPTIMIZATION PROBLEM INTHEOREM 2

We would like to solve the optimization problem in (17) for any value ofK = B+β ≤ L, whereB ∈ N and0 < β ≤ 1. First
we consider the case of0 < K ≤ 1, i.e. the case whereB = 0. In this case the constraint boils down toαL = 1− r

K
. By assigning

α1 = · · · = αL = 1− r
K

we get thatdKT (r) ≤ MN(1− r
K
). Next we analyze the case whereK > 1. Due to the constraint,

the minimal value must satisfyα1 = · · · = αL−B. From the constraint we also know thatαL = K−r−∑B−1
i=1 αL−i−βαL−B.

By assigning in (17) we get

min
α>0

(K − r)(N +M − 1) +
(
(M −B)(N −B)− β(N +M − 1)

)
αL−B −

B−1∑

i=1

2i · αL−i (60)

whereα > 0 signifiesα1 ≥ · · · ≥ αL ≥ 0. We would like to consider two cases. The case where
(
(M − B)(N − B) −

β(N +M − 1)
)
>
∑B−1

i=1 2i and the case where
(
(M − B)(N − B) − β(N +M − 1)

)
≤
∑B−1

i=1 2i. The first case, where(
(M −B)(N −B)− β(N +M − 1)

)
> B(B − 1), is achieved forK < MN

N+M−1 . In this case we use the following Lemma
in order to find the optimal solution

Lemma 2. Consider the optimization problem

min
c

B1c1 −
D∑

i=2

Bici

where:(1). c1 ≥ · · · ≥ cD ≥ 0; (2). B1 >
∑D

i=2 Bi andB2 > · · · > BD > 0; (3). βc1+
∑D

i=2 ci = δ > 0, where0 < β ≤ 1.
The minimal value is achieved forc1 = · · · = cD = δ

D−1+β
.

Proof: We prove by induction. First let us consider the case whereD = 2. In this case we would like to find

min
c

B1c1 −B2c2. (61)
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wherec1 ≥ c2 ≥ 0, βc1 + c2 = δ > 0, B1 > B2 > 0 and 0 < β ≤ 1. It is easy to see that for this case the minimum is
achieved forc1 = c2, as increasingc1 while decreasingc2 to satisfyβc1 + c2 = δ will only increase (61).

Now let assume that forD elements, the minimum is achieved forc1 = · · · = cD = δ
D−1+β

. Let us considerD+1 elements

with constraintβc1 +
∑D+1

i=2 ci = δ. If we takec1 = · · · = cD+1 = δ
D+β

we get

(B1 −
D+1∑

i=2

Bi)
δ

D + β
. (62)

We would like to show that this is the minimal possible value for this problem. Takec
′

D+1 = δ
D+β

− ǫ ≥ 0. In this case

βc
′

1 +
∑D

i=2 c
′

i =
(D−1+β)δ+(D+β)ǫ

D+β
in order to satisfyβc

′

1 +
∑D+1

i=2 c
′

i = δ. According to our assumptionB1c
′

1 −
∑D

i=2 Bic
′

i

is minimal for c
′

1 = · · · = c
′

D = δ
D+β

+ ǫ
D−1+β

. By assigning these values we get

(B1 −
D+1∑

i=2

Bi)
δ

D + β
+ (B1 −

D∑

i=2

Bi)
ǫ

D − 1 + β
+BD+1ǫ

which is greater than (62). This concludes the proof.
For the case

(
(M − B)(N − B) − β(N + M − 1)

)
> B(B − 1), the optimization problem coincides with Lemma 2

as it fulfils the conditionB1 >
∑D

i=2 Bi in the lemma. Hence, the optimization problem solution forK < MN
N+M−1 is

α1 = · · · = αL−1 = K−r−αL

K−1 = α. The minimum is achieved whenαL = α, i.e. the maximal valueαL can receive under
the constraintα1 ≥ · · · ≥ αL ≥ 0. We get thatα = 1 − r

K
, and the optimization problem solution of (17) for the case

K < MN
M+N−1 is dKT (r) ≤ MN(1− r

K
), .

For the case
(
(M −B)(N −B)− β(N +M − 1)

)
≤ B(B− 1), or equivalentlyK ≥ MN

N+M−1 , we would like to show that
the optimal solution must fulfilαL = 0. It results from the fact that for the optimal solution, the term

(
(M −B)(N −B)−

β(N +M − 1)
)
αL−B −∑B−1

i=1 2i · αL−i in (60) must be negative. This is due to the fact that takingα1 = · · · = αL−1 gives
negative value. Hence, for the optimal solution we would like to maximize

∑B−1
i=1 αL−i − βαL−B = K − r − αL. By taking

αL = 0 the sum is maximized. Hence, the optimal solution forK ≥ MN
M+N−1 must haveαL = 0.

Now consider the general case. Assume that forK ≥ (M−l+1)(N−l+1)
N+M−1−2(l−1) + l− 1 the optimal solution must haveαL = · · · =

αL−l+1 = 0. First consider the case where1 ≤ l ≤ B− 1. For this case the constraint is
∑B−1

i=l αL−i + βαL−B = K − r, i.e.
the constraint contains at least two singular values. We canrewrite (17) as follows

min
α>0

(K − r)(N +M − 1− 2 · l) +
(
(M −B)(N −B)− β(N +M − 1− 2 · l)

)
αL−B −

B−1∑

i=l+1

2(i− l) · αL−i. (63)

For the case
(
(M −B)(N −B)− β(N +M − 1− 2 · l)

)
> (B− 1− l)(B− l) we get thatK <

(M−l)(N−l)
N+M−1−2·l + l and we also

assumed thatK ≥ (M−l+1)(N−l+1)
N+M−1−2(l−1) + l− 1. For this case we can use Lemma 2 and get that the optimizationproblem solution

is αL−l−1 = · · · = αL−B =
K−r−αL−l

K−l−1 = α. The minimum is achieved forαL−l = α. We get thatαL = · · · = αL−l+1 = 0

and α1 = · · · = αL−l = K−r
K−l

. Hence, for the case(M−l+1)(N−l+1)
N+M−1−2(l−1) + l − 1 ≤ K <

(M−l)(N−l)
N+M−1−2·l + l the solution is

dKT (r) ≤ (N − l)(M − l)K−r
K−l

.

For the case
(
(M −B)(N −B)− β(N +M − 1− 2 · l)

)
≤ (B − 1− l)(B − l), or equivalentlyK ≥ (M−l)(N−l)

N+M−1−2·l + l, the

term
(
(M − B)(N − B) − β(N +M − 1 − 2 · l)

)
αL−B −

∑B−1
i=l+1 2(i − l) · αL−i in (63) must be negative for the optimal

solution. This is due to the fact that by takingα1 = · · · = αL−l−1 we get a negative value. Hence we would like to maximize
the sum

∑B−1
i=l+1 αL−i + βαL−B = K − r − αL−l. The sum is maximized by takingαL−l = 0. Hence the optimal solution

for the caseK ≥ (M−l)(N−l)
N+M−1−2·l + l must haveαL−l = · · · = αL = 0. Note that for the casel = B − 1 we have only two terms

in the constraintαL−B+1 + βαL−B = K − r. However, the solution remains the same.
For the caseK ≥ (M−l+1)(N−l+1)

N+M−1−2(l−1) + l − 1 and l = B the constraint is of the formαL−B = K−r
K−l

. Again we assume that
αL−B+1 = · · · = αL = 0. In this case the solution isα1 = · · · = αL−l =

K−r
K−l

and sodKT (r) ≤ (M − l)(N − l)K−r
K−l

. This
concludes the proof.

APPENDIX C
PROOF OFLEMMA 1

We begin by proving the caseN ≥ M . From the construction ofGl it can be seen that a set of columns{hj, . . . , hi} may
occur inN − i + j blocks at most. It results from the fact that we can only subtractM − i columns to the right ofhi (20),
and j − 1 columns to the left ofhj (21), and still get a block that contains{hj , . . . , hi} (or even more specifically a block
that contains{hj , hi}). In addition, columns{hj , . . . , hi} must occur in the firstN −M + 1 blocks, as these blocks equal to
H (19). Hence, we can upper bound the number of occurrences byN −M + 1 + j − 1 +M − i = N − i+ j.
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Next we prove the caseM > N . When0 ≤ i− j < N , the set of columns{hj , . . . , hi} may occur inN − i+ j blocks at
most. We divide the proof into four cases.

1) i ≤ N and j ≥ M − N + 1. In this case the set of columns{hj , . . . , hi} occurs in the firstM − N + 1 blocks
(22). As for the additionalN − 1 − l pairs of columns, the set of columns belongs both to the set{h1, . . . , hN} and
{hM−N+1, . . . , hM}. Hence, in the additional column pairs we can subtractN − i columns to the right ofhi (23) and
j−M +N−1 columns to the left ofhj (24). Added together we observe that the number of occurrences can not exceed
N − i+ j.

2) i ≤ N andj < M −N +1. In this case the set of columns can have onlyj occurrences in the firstM −N +1 blocks.
In this case the set{hj , . . . , hi} occurs within{h1, . . . , hN} but does not occur within{hM−N+1, . . . , hM}. Hence, the
transmission scheme only subtracts columns to the right ofhi (23). In this case we can haveN − i subtractions and
together we getN − i+ j occurrences at most.

3) i > N and j ≥ M −N + 1. We have hereM − i + 1 occurrences in the firstM −N + 1 blocks. In this case the set
{hj , . . . , hi} occurs within{hM−N+1, . . . , hM} but does not occur within{h1, . . . , hN}. Hence we can subtract up to
j −M +N − 1 columns to the left ofhj (24). Together there areN − i+ j occurrences at most.

4) Last case,i > N andj < M −N + 1. Here the set of columns can only occur in the firstM −N + 1 blocks. In this
case there are exactlyN − i+ j occurrences in the firstM −N + 1 blocks.

In casei− j ≥ N , the set of columns does not occur in any block as each column of Gl does not have more thanN non-zero
entries.

APPENDIX D
PROOF OFTHEOREM 3

Based on [13] we have the following upper bound on the maximum-likelihood (ML) decoding error probability of each
KlTl-complex dimensional IC pointx

′ ∈ SKlTl

Pe(x
′

) ≤ Pr(‖ñex‖ ≥ R) +
∑

l∈Ball(x′
,2R)

⋂
SKlTl

,l 6=x
′

Pr(‖l − x
′ − ñex‖ < ‖ñex‖) (64)

whereBall(x
′

, 2R) is aKlTl-complex dimensional ball of radius2R centered aroundx
′

, andñex is the effective noise in the
KlTl-complex dimensional hyperplane where the IC’s resides. Note that the second term in (64) represents the pairwise error
probability to points withinBall(x

′

, 2R), i.e. the decision region is at distanceR at most.
Next we upper bound the average decoding error probability of an ensemble of constellations drawn uniformly within

cubeKlTl
(b). Each code-book contains⌊γtrb2KlTl⌋ points, where each point is drawn uniformly withincubeKlTl

(b). In the
receiver, the random ensemble is uniformly distributed within {H(l)

eff · cubeKlTl
(b)}. Let us consider a certain point,x

′ ∈
{H(l)

eff ·cubeKlTl
(b)}, from the random ensemble in the receiver. We denote the ringaroundx

′

byRing(x
′

, i∆) = Ball(x
′

, i∆)\
Ball(x

′

, (i− 1)∆). The average number of points withinRing(x
′

, i∆) of the random ensemble is

Av(x
′

, i∆) = γrc|H(l)
eff · cubeKlTl

(b)
⋂

Ring(x
′

, i∆)| ≤ γrc|Ring(x
′

, i∆)| ≤ γrcπ
KlTl2KlTl

Γ(KlTl + 1)
(i∆)2KlTl−1∆ (65)

whereγrc = ρrTl+
∑KlTl

i=1 ηi . By using the upper bounds on the error probability (64), andthe average number of points within
the rings (65), we get for a certain channel realization the following upper bound on the average decoding error probability of
the finite constellations ensemble, at pointx

′

PFC
e (x

′

, ρ, η) ≤ Pr(‖ñex‖ ≥ R) + γrcQ(KlTl)

⌈ 2R
∆ ⌉∑

i=1

Pr(ñex,1 >
(i− 1)∆

2
) · (i∆)2KlTl−1∆ (66)

whereQ(KlTl) = πKlTl2KlTl

Γ(KlTl+1) , and ñex,1 is the first component of̃nex (the pairwise error probability has scalar decision
region). By taking∆ → 0 we get

PFC
e (x

′

, ρ, η) ≤ Pr(‖ñex‖ ≥ R) + γrcQ(KlTl)

∫ 2R

0

Pr(ñex,1 >
x

2
)x2KlTl−1dx. (67)

Note that this upper bound applies for any value ofR ≥ 0 andb, and does not depend onx
′

, i.e.PFC
e (x

′

, ρ, η) = PFC
e (ρ, η).

Now we divide the channel realization into two subsets:A = {η |
∑KlTl

i=1 ηi ≤ Tl(Kl−r), ηi ≥ 0}, whereη = (η1, . . . , ηKlTl
)

andA = {η | ∑KlTl

i=1 ηi > Tl(Kl − r), ηi ≥ 0}. For each set we upper bound the error probability. We begin with the case
η ∈ A. For this case we upper bound the terms in (67) and find an upperbound on the error probability as a function of the
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receiver VNR,µrc = ρ
1− r

Kl
−

∑KlTl
i=1

ηi
KlTl . We begin by upper bounding the integral of the second term in(67). Note that

Pr(ñex,1 ≥ x

2
) ≤ e−

x2

8σ2 .

Hence, the integral in the second term in (67) can be upper bounded by

σ2KlTlΓ(KlTl)2
3KlTl−2

∫ 2R

0

e−
x2

8σ2 x2KlTl−1

σ2KlTlΓ(KlTl)23KlTl−2
dx

where
∫ 2R

0
e
− x2

8σ2 x2KlTl−1

σ2KlTlΓ(KlTl)2
3KlTl−2 dx = Pr(‖ñex‖ ≤ 2R) ≤ 1. As a result we get the following upper bound

∫ 2R

0

Pr(ñex,1 >
x

2
)x2KlTl−1dx ≤ σ2KlTlΓ(KlTl)2

3KlTl−2. (68)

By assigning this upper bound in the second term of (67) we get

γrcQ(KlTl)

∫ 2R

0

Pr(ñex,1 >
x

2
)x2KlTl−1dx ≤ γrc

√
π
2KlTl2KlTlσ

2KlTlΓ(KlTl)2
3KlTl−2

Γ(KlTl + 1)
= ρ−Tl(Kl−r)+

∑KlTl
i=1 ηi · 4KlTl

2eKlTl
.

(69)
Next we upper boundPr(‖ñex‖ ≥ R), the first term in (67). We choose

R2 = R2
eff =

2KlTl

2πe
γ
− 1

KlTl
rc =

2KlTl

2πe
ρ
− r

Kl
−
∑KlTl

i=1
ηi

KlTl .

For η ∈ A we get that
R2

eff

2KlTl · σ2
= ρ

1− r
Kl

−
∑KlTl

i=1
ηi

KlTl ≥ 1.

By using the upper bounds from [13], we know that for the caseR
2
eff

2KlTl·σ2 ≥ 1, Pr(‖ñex‖ ≥ Reff) ≤ e−
R2

eff
2σ2 (

R2
effe

2KlTlσ2 )
KlTl .

Hence we get

Pr(‖ñex‖ ≥ Reff) ≤ e−KlTlρ
1− r

Kl
−

∑KlTl
i=1

ηi
KlTl · ρTl(Kl−r)−

∑KlTl
i=1 ηi · eKlTl . (70)

The fact thatη ∈ A has two significant consequences: the VNR is greater or equalto 1, and asρ increases the maximal VNR
in the set also increases. For very large VNR in the receiver,the upper bound of the first term, (70), is negligible compared
to the upper bound on the second term, (69). On the other hand,the set of rather small VNR values is fixed for increasingρ

(the VNR is grater or equal to 1). Hence there must exist a coefficient D
′

(KlTl) that gives us

PFC
e (ρ, η) ≤ D

′

(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi (71)

for anyρ andη ∈ A, wherePFC
e (ρ, η) is the average decoding error probability of the ensemble ofconstellations, for a certain

channel realizations.
Note that we could also takeR ≥ Reff , as the upper bound in (69) does not depend onR and the upper bound in (70) would

only decrease in this case. It results from the fact that we are interested in the exponential behavior of the error probability,
and we consider a fixed VNR (as a function ofρ) as an outage event. This allows us to take cruder bounds than[13] in (69),
that do not depend onR.

For the caseη ∈ A, we get

ρ−Tl(Kl−r)+
∑KlTl

i=1 ηi ≥ 1.

Hence, we can upper bound the error probability forη ∈ A by 1. We can also upper bound the error probability for this case
by the upper bound from equation (71), as long as we state thatD

′

(KlT ) ≥ 1. Hence, the upper bound from (71) applies for
ηi ≥ 0, 1 ≤ i ≤ KlTl.

So far we upper bounded the average decoding error probability of the ensemble of finite constellations. We extend now
these finite constellations into an ensemble of IC’s with density γtr, and show that the upper bound on the average decoding
error probability does not change. Let us consider a certainfinite constellation,C0(ρ, b) ⊂ cubeKlTl

(b), from the random
ensemble. We extend it into IC

IC(ρ,KlTl) = C0(ρ, b) + (b+ b
′

) · Z2KlTl (72)

where without loss of generality we assumed thatcubeKlTl
(b) ∈ CKlTl . In the receiver we have

IC(ρ,KlTl, H
(l)
eff ) = H

(l)
eff · C0(ρ, b) + (b + b

′

)H
(l)
eff · Z2KlTl . (73)
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By extending each finite constellation in the ensemble into an IC according to the method presented in (72), we get a new
ensemble of IC’s. We would like to setb and b

′

to be large enough such that the IC’s ensemble average decoding error
probability has the same upper bound as in (71), and a densitythat equalsγrc up to a coefficient. First we would like to set a
value forb

′

. Increasingb
′

decreases the error probability inflicted by the codewords outside the set{H(l)
eff ·C0(ρ, b)}. Without

loss of generality, we upper bound the error probability of the pointsx ∈ {H(l)
eff · C0(ρ, b)} ⊂ IC(ρ,KlTl, H

(l)
eff ), denoted by

P IC
e (H

(l)
eff · C0). Due to the tiling symmetry,P IC

e (H
(l)
eff · C0) is also the average decoding error probability of the entireIC.

We begin withη ∈ A. For this case, we upper bound the IC error probability in thefollowing manner

P IC
e (H

(l)
eff · C0) ≤ PFC

e (H
(l)
eff · C0) + Pe

(
H

(l)
eff · (IC \ C0)

)

wherePFC
e (H

(l)
eff ·C0) is the error probability of the finite constellation{H(l)

eff ·C0}, andPe

(
H

(l)
eff · (IC \C0)

)
is the average

decoding error probability to points in the set{H(l)
eff · (IC \ C0)}. For the caseη ∈ A, we know that0 ≤ ηi ≤ Tl(Kl − r).

Hence, the constriction caused by the channel in each dimension can not be smaller thanρ−
Tl
2 (Kl−r). As a result, for any

x1 ∈ {H(l)
eff · C0} andx2 ∈ {H(l)

eff · (IC \ C0)} we get‖x1 − x2‖ ≥ 2b
′ · ρ−

Tl
2 (Kl−r). By choosingb

′

=
√

KlTl

πe
ρ

Tl
2 (Kl−r)+ǫ,

we get forη ∈ A that ‖x1 − x2‖ ≥ 2
√

KlTl

πe
ρǫ. Hence we get

Pe

(
H

(l)
eff · (IC \ C0)

)
≤ Pr(‖ñex‖ ≥

√
KlTl

πe
ρǫ).

For ρ ≥ 1 we get according to the bounds in [13] that

Pr(‖ñex‖ ≥
√

KlTl

πe
ρǫ)) ≤ e−KlTlρ

1+ǫ

ρKlTl(1+ǫ)eKlTl .

As a result, there exists a coefficientD
′′

(KlTl) such that

Pe

(
H

(l)
eff · (IC \ C0)

)
≤ D

′′

(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi

for η ∈ A andρ ≥ 1. This bound applies for any IC in the ensemble. From (71) we can state thatPFC
e (ρ, η) = EC0

(
PFC
e (H

(l)
eff ·

C0)
)
≤ D

′

(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi . Hence

Pe(ρ, η) ≤ D(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi (74)

wherePe(ρ, η) = EC0

(
P IC
e (H

(l)
eff ·C0)

)
is the average decoding error probability of the ensemble ofIC’s defined in (73), and

D = 2max(D
′

, D
′′

) > 1.
Next, we set the value ofb to be large enough such that each IC density from the ensemblein (73), γ

′

rc, equalsγrc up to
a factor of 2. By choosingb = b

′ · ρǫ we get

γ
′

rc = γrc(
b

b+ b
′ )

2KlT = γrc
1

1 + ρ−ǫ
.

For each valueρ ≥ 1, we get 12γrc ≤ γ
′

rc ≤ γrc. As a result we have

µrc ≤ µ
′

rc =
(γ

′

rc)
− 1

KlT

2πeσ2
≤ 2µrc.

Note that in our proof we referred to a matrix of dimensionNTl×KlTl. However these results apply for any full rank matrix
with number of rows which is greater or equal to the number of columns.

APPENDIX E
PROOF OF THEOREM4

Specifically, we first lower bound the contribution ofhj to the determinant (33), by upper bounding
∑min(j,L)−1

k=0 bj(k)a(k, ξj).

Based on Lemma 1, and the fact that when two columns ofH occur together in a block ofH(l)
eff , all the columns ofH between

them must also occur in the same block, we get

min(j,L)−1∑

s=k

bj(s) ≤ N − k 0 ≤ k ≤ min(j, L)− 1. (75)
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where
∑min(j,L)−1

s=k bj(s) is the number of occurrences of{hj , . . . , hj−k} in the blocks ofH(l)
eff . Hence, we can state that

min(j,L)−1∑

s=0

bj(s) ≤ N

by assigningk = 0 in (75). Also note that forl = 0, the sum
∑min(j,L)−1

s=0 bj(s)a(s, ξj) is larger than for any other1 ≤ l ≤ L−1.
From the inequalities in (31), and the fact that forl = 0 we getbj(k) > 0 for any 1 ≤ k ≤ min(j, L)− 1, we can state that

min(j,L)−1∑

s=0

bj(s)a(s, ξj) ≤
min(j,L)−2∑

s=0

a(s, ξ
j
) + (N −min(j, L) + 1)a(min(j, L)− 1, ξ

j
) = c(j). (76)

Using (33) and (76) we can state that for a vectorξ
j
, whose PDF is proportional toρ−

∑N
i=1 ξi,j , we can lower bound the

contribution ofhj to |H(l)†
eff H

(l)
eff | by

‖hj‖2bj(0)
min(j,L)−1∏

k=1

‖hj⊥j−1,...,j−k‖2bj(k) ≥ ρ−c(j). (77)

By taking into account the contribution of each columnhj to the determinant we get that

|H(l)†
eff H

(l)
eff | =

M∏

j=1

‖hj‖2bj(0)
min(j,L)−1∏

k=1

‖hj⊥j−1,...,j−k‖2bj(k). (78)

By considering the set of vectorsξ
1
, . . . , ξ

M
, whose PDF is proportional toρ−

∑M
j=1

∑N
i=1 ξi,j , and by using the lower bound

from (77) we get
|H(l)†

eff H
(l)
eff | ≥ ρ−

∑M
j=1 c(j) (79)

The upper bound on the error probability presented in Theorem 3 is proportional to

ρ−Tl(Kl−r) · |H(l)†
eff H

(l)
eff |−1 = ρ−Tl(Kl−r)+

∑KlT

i=1 ηi (80)

for ηi ≥ 0 and 1 ≤ i ≤ KlTl, whereρ−
ηi
2 are the singular values ofH(l)

eff . Hence, in order to use the upper bound from
Theorem 3 in our analysis, we need to show that by takingξi,j ≥ 0, 1 ≤ i ≤ N , 1 ≤ j ≤ M we also get thatηi ≥ 0,
1 ≤ i ≤ KlTl. Note that the entries ofH(l)

eff are elements of the channel matrixH . Also, all the columns ofH must appear
in H

(l)
eff . Hence, from trace considerations we get

ρ−mini,j(ξi,j)

KlTl

≤ ρ−mins(ηs) ≤ N ·KlT
2
l ρ

−mini,j(ξi,j).

As a resultmini,j(ξi,j) ≥ 0 if and only if mins(ηs) ≥ 0, and soηs ≥ 0 for every 1 ≤ s ≤ KlTl. As the upper bound on
the error probability in (80) applies forηi ≥ 0, 1 ≤ i ≤ KlTl, this upper bound also applies wheneverξi,j ≥ 0, 1 ≤ i ≤ N

and1 ≤ j ≤ M . In equation (79) we found a lower bound on the determinant. We use this lower bound to upper bound the
determinant of the matrix inverse|H(l)†

eff H
(l)
eff |−1

|H(l)†
eff H

(l)
eff |−1 ≤ ρ

∑M
j=1 c(j). (81)

and as a consequence we can upper bound the error probability.
We can express the average decoding error probability over the ensemble of IC’s for largeρ as follows

Pe(ρ) =

∫

H

Pe(ρ,H)f(H)dH=̇

∫

ξi,j≥0

Pe(ρ, ξi,j)f(ξi,j)dξi,j (82)

wherePe(ρ,H) = Pe(ρ, ξi,j) is the ensemble average decoding error probability per channel realization, andξi,j ≥ 0 means

ξi,j ≥ 0 for 1 ≤ i ≤ N and 1 ≤ j ≤ M . We divide the integration range into two sets:A = {ξi,j | ∑N
i=1

∑M
j=1 ξi,j ≤

Tl(Kl − r); ξi,j ≥ 0} andA = {ξi,j |
∑N

i=1

∑M
j=1 ξi,j > Tl(Kl − r); ξi,j ≥ 0}. Hence, we can write the average decoding

error probability as follows

Pe(ρ)=̇

∫

ξi,j∈A

Pe(ρ, ξi,j)f(ξi,j)dξi,j +

∫

ξi,j∈A

Pe(ρ, ξi,j)f(ξi,j)dξi,j. (83)

We begin by upper bounding the first term of the error probability in (83). Based on Theorem 3, the average decoding error
probability per channel realization is upper bounded byPe(ρ,H) ≤ ρ−Tl(Kl−r)+

∑KlTl
i=1 ηi . Using the upper bound on the



24

determinant (81) and the fact that|H(l)†
eff H

(l)
eff |−1 = ρ

∑KlTl
i=1 ηi , we get that the first term of the error probability (83) is upper

bounded by ∫

ξi,j∈A

ρ−Tl(Kl−r)+
∑M

j=1(c(j)−
∑N

i=1 ξi,j)dξi,j . (84)

Now we prove a Lemma that shows that the exponent of the integrand in the upper bound from (84) is negative forξi,j ≥ 0.

Lemma 3. considerξi,j ≥ 0 for 1 ≤ i ≤ N and 1 ≤ j ≤ M . The sum

c(j)−
N∑

i=1

ξi,j ≤ 0

for every1 ≤ j ≤ M .

Proof: See appendix F.
In a similar manner to [3], [7], for a very largeρ and a finite integration range, we can approximate the integral by finding

the most dominant exponential term in (84). Based on Lemma 3 we know that the exponent of the integrand is always negative.
Hence, we can approximate the upper bound by finding

min
ξi,j∈A

Tl(Kl − r) +

M∑

j=1

(

N∑

i=1

ξi,j − c(j)).

As
∑N

i=1 ξi,j − c(j) ≥ 0 the minimum is achieved when
∑N

i=1 ξi,j − c(j) = 0 for 1 ≤ j ≤ M . This can be achieved for
instance by takingξi,j = 0 for 1 ≤ i ≤ N , 1 ≤ j ≤ M . In this case we get that the diversity order equalsTl(Kl − r) which
is the best diversity order possible for IC’s of complex dimensionKlTl.

Next we upper bound the second term of the error probability from (83). Forξi,j ∈ A we upper bound the average decoding
error probability per channel realization by 1. In this casewe get

∫

ξi,j∈A

ρ−
∑M

j=1

∑N
i=1 ξi,jdξi,j .

Again we approximate this integral by calculating the most dominant exponential term, i.e.minξi,j∈A

∑N
i=1

∑M
j=1 ξi,j . The

minimal value for this case is alsoTl(Kl − r). Hence, we get a diversity orderTl(Kl − r) for the second term. As a result
we can state that for both terms in (83) we get the same diversity order, and the transmission scheme diversity order is upper
bounded byTl(Kl − r). The proof is concluded.

APPENDIX F
PROOF OFLEMMA 3

We know that

c(j) =

min(j,L)−2∑

s=0

a(s, ξ
j
) + (N −min(j, L) + 1)a(min(j, L)− 1, ξ

j
)

where
a(k, ξ

j
) = min

s∈{k+1,...,N}
ξs,j 0 ≤ k ≤ min(j, L)− 1

and by definition
a(min(j, L)− 1, ξ

j
) ≥ · · · ≥ a(0, ξ

j
) ≥ 0.

In order to prove the Lemma we begin witha(min(j, L)− 1, ξ
j
). We know that

N∑

s=min(j,L)

ξs,j ≥ (N −min(j, L) + 1) ·min
s

ξs,j (85)

wheres ∈ {min(j, L), . . . , N}. We can also see that

ξk+1,j ≥ min
s∈{k+1,...,N}

ξs,j (86)

for 0 ≤ k ≤ min(j, L)− 2. Hence we get

c(j)−
N∑

i=1

ξi,j ≤ 0.

This concludes the proof.



25

APPENDIX G
PROOF OFTHEOREM 5

We prove that there exists a sequence of2KlTl-real dimensional lattices (as a function ofρ) that attains the same diversity
order as in Theorem 4. By using theMinkowski-Hlawaka-SiegelTheorem [13],[19], we upper bound the error probability of
the ensemble of lattices, for each channel realization. This upper bound equals to the upper bound derived in Theorem 3. Then
we average the upper bound over all channel realizations, and receive the desired diversity order.

We consider a2KlTl-real dimensional ensemble of lattices, transmitted usingthe transmission scheme defined in subsection
IV-A. We spread the firstKlTl dimensions of the lattice on the real part of the non-zero entries of Gl, and the otherKlTl

dimensions of the lattice on the imaginary part of the non-zero entries ofGl. Each lattice in the ensemble has transmitter
densityγtr = ρrTl , i.e. multiplexing gainr. We begin by analyzing the performance of the ensemble of lattices in the receiver,

for each channel realization. We assume a certain channel realization that induces a receiver VNRµrc = ρ
1− r

Kl
−
∑KlTl

i=1
ηi

KlTl ,
whereη ≥ 0. For each lattice in the ensemble we get that the channel realization induces a new lattice in the receiver,H

(l)
eff ·x,

with densityγrc in accordance with (5) and subsection IV-B. For lattices with regular lattice decoding, the error probability
is equal among all codewords. Hence, it is sufficient to analyze the lattice’s zero codeword error probability. We define the
indication function

IBall(0,2R)(x) =

{
1, ‖x‖ ≤ 2R
0, else

.

In a similar manner to (64) we can state that for each lattice induced in the receiver,Λrc, the lattice zero codeword error
probability is upper bounded by

∑

x∈Λrc,x6=0

IBall(0,2Reff )(x) · Pr(‖ñex‖>‖x− ñex‖) + Pr(‖ñex‖ ≥ Reff) (87)

where R2
eff

2KlTlσ2 = µrc, and ñex is the effective noise in theKlTl-complex hyperplane whereΛrc resides in. By defining
frc(x) = IBall(0,2Reff )(x) · Pr(‖ñex‖>‖x− ñex‖), we can rewrite the upper bound on the error probability from(87)

∑

x∈Λrc,x6=0

frc(x) + Pr(‖ñex‖ ≥ Reff). (88)

Note that
γrc

∫

R
2KlTl

frc(x)dx+ Pr(‖ñex‖ ≥ Reff) (89)

is equal to the expression in (67), whereγrc is the density of the lattice induced in the receiverΛrc, as defined above.
We need to show that there exists a single probability measure for all channel realizations, that gives an average decoding

error probability over the ensemble, which is upper boundedby (89). Hence, we consider the ensemble of lattices in the
transmitter which is fixed for each channel realization. Forthis reason we define

y
′

ex
=
(
H

(l)†
eff ·H(l)

eff

)−1
H

(l)†
eff · y

ex
. (90)

Note that the operation in (90) does not change the error probability of the lattice when we use regular lattice decoding.Each
lattice in the ensemble has densityγtr = ρrTl . Now we define the following indication function

Iellipse(H,2R)(x) =

{
1, ‖H · x‖≤ 2R
0, else

,

that is the function is one ifx is within the ellipse and zero otherwise. Let us denote the error probability of a lattice in the
ensemble for certain channel realizationη by P

(ν)
e (η, ρ), whereν is a random variable that represents a certain lattice in the

ensemble. Using regular lattice decoding, we get the following upper bound on the error probability for each lattice codeword

P (ν)
e (η, ρ) ≤

∑

x∈Λtr,x6=0

I
ellipse(H

(l)
eff ,2Reff )

(x) · Pr
(
‖A · n̂ex‖>‖A · (x− n̂ex)‖

)
+ Pr(‖A · n̂ex‖ ≥ Reff) (91)

whereA is aKlTlxKlTl matrix that satisfiesA†A = H
(l)†
eff H

(l)
eff , Λtr is the lattice from the ensemble that corresponds toν and

n̂ex ∼ CN
(
0, (H

(l)†
eff H

(l)
eff )

−1
)
. Note that (91) is equal to (88), and the corresponding termsin the expressions are also equal.

Let us definegrc(x) = I
ellipse(H

(l)
eff ,2Reff )

(x) · Pr
(
‖An̂ex‖>‖A(x− n̂ex)‖

)
. We get that

γtr

∫

R
2KlTl

grc(x)dx = γrc

∫

R
2KlTl

frc(x)dx. (92)

Next we show that by averaging the upper bound in (91) over theensemble of lattices in the transmitter, with the correct
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probability measure, we get

Eν{P (ν)
e (η, ρ)} ≤ γrc

∫

R
2KlTl

frc(x)dx+ Pr(‖ñex‖ ≥ Reff). (93)

We prove (93) by using theMinkowski-Hlawaka-Siegeltheorem [13]:

Theorem 6. (Minkowski-Hlawaka-Siegel Theorem) In the set of all the lattices of densityγ in R2KlTl , there exists a probability
measureν such that for any Riemann integrable functionf(x) which vanishes outside some bounded region we have

Eν{
∑

x∈Λ

g(x)} = γ

∫

R
2KlTl

g(x)dx (94)

whereEν{·} represents the expectation with respect to the measureν.

Note that considering a2KlTl-real dimensional lattices enables us to use this theorem. Hence, by choosingγ = γtr,
g(x) = grc(x), and considering (91), (92) we get the desired upper bound (93). As a result, we can upper bound the ensemble
average decoding error probability for each channel realization by the upper bound from Theorem 3 (74).

Now we are ready to lower bound the diversity order. According to Theorem 6 there exists a single probability measure
that satisfies (94), for any Riemann integrable function that vanishes outside some bounded region. Based on (79) and Lemma
3, we get for the set{ξi,j |

∑N
i=1

∑M
j=1 ξi,j ≤ Tl(Kl − r); ξi,j ≥ 0} a set of functions,grc(x), which are bounded. As a result

we can upper bound the ensemble average decoding error probability for this set by the expression from (74). For the set of
events{ξi,j |

∑N
i=1

∑M
j=1 ξi,j > Tl(Kl − r); ξi,j ≥ 0} we upper bound the ensemble average decoding error probability by 1.

This bounds are the exact same bounds we used in order to average over the channel realizations in Theorem 4. Hence, by
averaging over the channel realizations we get for the ensemble the same lower bound on the diversity order as in Theorem
4. This concludes the proof.

APPENDIX H
PROOF OFCOROLLARY 3

Let Pe(S(ρ), r) denote the average decoding error probability of the ICS(ρ) with densityγtr = ρrT . SinceSKT (ρ) has
densityγtr = 1 for everyρ, this IC’s sequence has multiplexing gainr = 0. Hence, in accordance with our definitions, we
denoteSKT (ρ) average decoding error probability byPe(SKT (ρ), 0). Assume

Pe(SKT (ρ), 0) = A
′

(ρ)ρ−d

where− limρ→∞ logρ Pe(SKT (ρ), 0) = d, i.e. SKT (ρ) has diversity orderd. By scaling the sequence of IC’s such that

SKT (ρ) = SKT (ρ) · ρ−
r

2K 0 ≤ r ≤ K,

i.e., scalingSKT (ρ) by a factor ofρ−
r

2K , we get thatSKT (ρ) has densityγtr = ρrT , multiplexing gainr and so its error
probability

Pe(SKT (ρ), r) = Pe(SKT (ρ
1− r

K ), 0) = A
′

(ρ1−
r
K )ρ−d(1− r

K
).

As a result we get− limρ→∞ logρ Pe(SKT (ρ), r) = d(1− r
K
), i.e. SKT (ρ) has diversity orderd(1 − r

K
).

APPENDIX I
PROOF OFCOROLLARY 5

The proof of this corollary relies heavily on Theorem 3. We begin by describing theL ensembles of IC’s and how they
are transmitted. Then we use averaging arguments in order toshow that there exists a singe sequence of IC’s that attains the
optimal DMT.

We begin by considering a sequence ofK0T0-complex dimensional IC’s with multiplexing gainr = 0, i.e. the transmitter
densityγtr = 1 for any ρ. In a similar manner to Theorem 3, we first consider an ensemble of finite constellations drawn
uniformly within cubeK0T0(b) ⊂ CK0T0 . Each code-book contains⌊γtrb2K0T0⌋ = ⌊b2K0T0⌋ points, where each point is drawn
uniformly within cubeK0T0(b). Let us denote a certain finite constellation in the ensembleby CFC(ρ,K0T0, b) ⊂ cubeK0T0(b).
We extend each finite constellation in the ensemble into an ICin a similar manner to (72)

IC(ρ,K0T0) = CFC(ρ,K0T0, b) + (b+ b
′

) · Z2K0T0 . (95)

By choosingb =
√

K0T0

πe
ρ

K0T0
2 +2ǫ andb

′

=
√

K0T0

πe
ρ

K0T0
2 +ǫ, we get a sequence of ensembles of IC’s with multiplexing gain

r = 0. For a certain channel realizationη ≥ 0 we get in accordance with Theorem 3

Pe(ρ, η,K0T0) ≤ D(K0T0)ρ
−T0K0+

∑K0T0
i=1 ηi (96)



27

wherePe(ρ, η,K0T0) is the average decoding error probability of theK0T0-complex dimensional ensemble of IC’s. From
Theorem 4 we know that by transmitting the ensemble of IC’s over the transmission matrixG0, and averaging over the channel
realizations, we get diversity orderdK0 = MN . Transmitting overG0 gives us aK0T0-complex dimensional ensemble of IC’s
within CMT0 .

Next we derive from theK0T0-complex dimensional ensemble of IC’s, anotherKlTl-complex dimensional ensemble of
IC’s, wherel = 1, . . . , L−1. For each IC,IC(ρ,K0T0), in the ensemble we take the first⌊b2KlTl⌋ points inCFC(ρ,K0T0, b).
We take the components of these points insidecubeKlTl

(b), and denote this new finite constellation asCFC(ρ,KlTl, b). Then
we replicate these points in a similar manner to (95). In thiscase we get a newKlTl-complex dimensional IC

IC(ρ,KlTl) = CFC(ρ,KlTl, b) + (b+ b
′

) · Z2KlTl . (97)

By doing it to each IC in the ensemble, we get a newKlTl-complex dimensional ensemble of IC’s. This new ensemble is
equivalent to ensemble of IC’s generated by drawing uniformly ⌊b2KlTl⌋ points insidecubeKlTl

(b), and then replicate these

points according to(b+b
′

)Z2KlTl . Each IC sequence in this ensemble has multiplexing gainr = 0. Sinceb >
√

KlTl

πe
ρ

KlTl
2 +2ǫ

andb
′

>

√
KlTl

πe
ρ

KlTl
2 +ǫ, we get in accordance with Theorem 3 that for a certain channel realizationη ≥ 0

Pe(ρ, η,KlTl) ≤ D(KlTl)ρ
−TlKl+

∑KlTl
i=1 ηi (98)

where Pe(ρ, η,KlTl) is the average decoding error probability of theKlTl-complex dimensional ensemble of IC’s. By
transmitting this ensemble of IC’s on the transmission matrix Gl, and averaging over the channel realizations, we get diversity
orderdKl

= (M − l)(N − l) + l(N +M − 2 · l − 1). Transmitting overGl gives us aKlTl-complex dimensional ensemble
of IC’s within CMTl .

From the sequential structure of the transmission scheme weget that omitting the2 · l rightmost columns ofG0 yieldsGl.
Hence we can derive from theK0T0-complex dimensional ensemble of IC’s, that attains diversity order dK0 , anotherKlTl-
complex dimensional ensemble of IC’s the attains diversityorderdKl

, wherel = 1, . . . , L−1. We attain it by diluting the points
of eachK0T0-complex dimensional IC in the ensemble in the aforementioned manner, and then reducing its dimensionality
by dropping the2 · l rightmost columns ofG0.

So far we have shown the connection between the ensembles. Now we would like to show that there exists a certain
sequence ofK0T0-complex dimensional IC’s, that gives us the desired diversity orders by diluting its points and adapting
its dimensionality. We denote the average decoding error probability of theKlTl-complex dimensional ensemble of IC’s by
Al(ρ)ρ

−dKl , where limρ→∞
log(Al(ρ))

log(ρ) = 0. We also defineIl,ρ as the event where aKlTl-complex dimensional IC in the
ensemble has average decoding error probability which is smaller or equal to(L+1)Al(ρ)ρ

−dKl , wherel = 0, . . . , L−1. From
averaging arguments we know thatPr(Il,ρ) ≥ L

L+1 . We wish to show that the probability of the event{I0,ρ∩I1,ρ · · ·∩IL−1,ρ}
is bounded away from zero. From averaging arguments we know that

Pr(I0,ρ ∩ I1,ρ · · · ∩ IL−1,ρ) ≥ 1−
L−1∑

i=0

Pr(Ii,ρ) ≥
1

L+ 1
.

Hence there must exist a sequence ofK0T0-complex dimensional IC’s that attains diversity orderdK0 and has multiplexing gain
r = 0, from which we can derive for eachl = 1, . . . , L− 1, a sequence ofKlTl-complex dimensional IC’s with multiplexing
gain r = 0 and diversity orderdKl

.
Next we show that theseL sequences attain the optimal DMT. Consider a sequence ofKlTl-complex dimensional IC’s, that

has multiplexing gainr = 0 and attains diversity orderdKl
. From Corollary 3 we know that scaling this sequence by a scalar

ρ
− r

2Kl yields a new sequence of IC’s with multiplexing gainr and diversity order

dKl
(r) = (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where0 ≤ r ≤ Kl and l = 0, . . . , L − 1. Each of theL straight linesdKl
(r), l = 0, . . . , L − 1, coincides with a different

segment out of theL segments of the optimal DMT. This concludes the proof.
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