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Abstract

The fundamental and natural connection between the infagitstellation (IC) dimension and the best diversity ordaran
achieve is investigated in this paper. In the first part of thiork we develop an upper bound on the diversity order of IC’s
for any dimension and any number of transmit and receivenaate By choosing the right dimensions, we prove in the skcon
part of this work that IC’s in general and lattices in par&rucan achieve the optimal diversity-multiplexing traffeaf finite
constellations. This work gives a framework for designiagites for multiple-antenna channels using lattice diegpd

I. INTRODUCTION

The use of multiple antennas in wireless communication leaio inherent advantages. On one hand, using multiple
antennas in fading channels allows to increase the tratesirgignal reliability, i.e. diversity. For instance, disity can be
attained by transmitting the same information on diffefgaths between transmitting-receiving antenna pairs withRayleigh
fading distribution. The number of independent paths usetiaé diversity order of the transmitted scheme. On the dthed,
the use of multiple antennas increases the number of degfée®dom available by the channel. In [L],[2] the ergodiacnel
capacity was obtained for multiple-input multiple-outgIMO) systems withM transmit andN receive antennas, where
the paths have i.i.d Rayleigh fading distribution. It waswh that for large signal to noise raticsSNR), the capacity behaves
as C(SNR) ~ min(M, N)log(SNR). The multiplexing gain is the number of degrees of freedoilizatl by the transmitted
scheme.

For the quasi-static Rayleigh flat-fading channel, Zherd)Bse [3] characterized the dependence between the dyverdier
and the multiplexing gain, by deriving the optimal tradeoétween diversity and multiplexing, i.e. for each multipheg gain
the maximal diversity order was found. They showed that thinal diversity-multiplexing tradeoff (DMT) can be atteid
by ensemble of i.i.d Gaussian codes, given that the blodtheis greater or equal t&/ + M — 1. For this case, the tradeoff
curve takes the form of the piecewise linear function thatnaets the pointéN — I)(M — 1), 1 =10,1,...,min(M, N).

Space-time codes are coding schemes designed for MIMOnsysteg. see [4],[5]L6] and references therein. The design
of space-time codes in these works pursue various goalsasiaiaximizing the diversity order, maximizing the multiphey
gain, or achieving the optimal DMT. El Gamal et &l [7] were firat to show that lattice coding and decoding achieve the
optimal DMT. They presented lattice space-time (LAST) cbdehese space time codes are subsets of an infinite lattharew
the lattice dimensionality equals to the number of degrééeeedom available by the channel, imain(M, N), multiplied by
the number of channel uses. By using a random ensemble @thlestices, common randomness, minimum mean square error
(MMSE) estimation followed by lattice decoding and modudttite operation, they showed that LAST codes can achieve th
optimal DMT. It is worth mentioning that the MMSE estimatiand the modulo operation take in a certain sense into account
the finite code book.

There has been an extensive research on explicit codingnmeshdrased on lattices, which are DMT optimal. Such an dkplic
coding schemes that attain the optimal DMT for any numberasfamit and receive antennas were presented in [6]. Iniaddit
it was shown in[[6] that\/ channel uses are sufficient to obtain the optimal DMT. Anogtep towards finding explicit space-
time coding schemes that attain the optimal DMT with low caomagtional complexity was made by Jalden and Elia [8]. They
considered explicit coding schemes based on the inteoseloétween an underlying lattice and a shaping region. Thewsd
that for the cases where these coding schemes attain thead@MT using maximum-likelihood (ML) decoding, they also
attain it when using MMSE estimation in the receiver, folehby lattice decoding. The MMSE estimation relies on thegrow
constraint, i.e. the shaping region boundaries. In additiowas shown in[[B] that by applying lattice reduction nuh, the
optimal DMT is attained when using suboptimal linear latatecoders that require linear complexity as a function efréte.
This result applies to wide range of explicit space-timeesduch as golden-codés [9], perfect space-time codées fitilina
general cyclic division algebra based space-time cadesaf@] as this codes are approximately univeiisal [11] it ajgali@s
to every statistical characterization of the fading ch&nNete that these schemes take into consideration therfgste of the
codebook in the decoder. In our work we referr¢gular lattice decoding as decoding over the infinite lattice withtaking
into consideration the finiteness of the codebook.
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Theory (I1SIT) 2011.
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The work in [7] also includes for the cas€ > M a lower bound on the diversity order of LAST codes shaped ato
sphere when regular lattice decoder is employed in the wvecdror sufficiently large block length it is shown th#t) >
(N — M + 1)(M — r) wherer is the multiplexing gain and the lattice dimension per cteinrse isM. Taherzadeh and
Khandani showed in([12] that this is also an upper bound ondikersity order of any LAST code shaped into a sphere
and decoded withregular lattice decoding. These results show that LAST codes tegetlith regular lattice decoding are
suboptimal compared to the optimal DMT of power constraiocedstellations.

Infinite constellations (IC’'s) are structures in the Euelid space that have no power constraint[_In [13], Poltyrelyaad
the performance of IC’s over the additive white Gaussias@@WGN) channel. In this work we first extend the definitiofis
diversity order and multiplexing gain to the case whereghemo power constraint. We also introduce a new term: theagee
number of dimensions per channel use, which is essentiaélyi€ dimension divided by the number of channel uses. Then
we extend the methods used in][13] in order to derive an uppend on the diversity of any IC with certain average number
of dimensions per channel use, as a function of the multiptegain. It turns out that for a given number of dimensions
per channel use the diversity is a straight line as a funatiothe multiplexing gain, that depends on the number of trd@hs
and receive antennas. This analysis holdsdiey M and N, and also applies for lattices with regular lattice decgdie
also find the average number of dimensions per channel usetiwh the upper bounds coincide with the optimal DMT
of finite constellations. Finally, we show that each segnienthe optimal DMT is attained by a sequence of lattices with a
corresponding average number of dimensions per channeWwisn using regular lattice decoder, i.e. for each pointhim t
DMT of [B] there exists a lattice sequence of certain dimemshat achieves it with regular lattice decoding. Hencis, work
characterizes the best DMT IC’s may attain for any averageb®r of dimensions per channel use, and also proves thatktt
can achieve the optimal DMT whergular lattice decoder is employed in the receiver, by adapting tiemensionality. It is
important to note that when the IC is a lattice, we show thatrtultiplexing gain of infinite lattices and finite constéilbes
coincide.

This work gives a framework for designing lattices for mpilt-antenna channels using regular lattice decoding.st al
shows the fundamental and natural connection between thginh€nsion and its optimal diversity order. For instancesit
shown that for the cas&/ = N = 2, the maximal diversity order of can be achieved (with regular lattice decoding) by a
lattice that has at moé average number of dimensions per channel use. On the othdrtha Alamouti scheme [14], that
also has maximal diversity order df utilizes only a single dimension per channel use in thisupetHence, there is still a
room to improve by a% of a dimension per channel use. In addition, whilelih [I], Ble MMSE estimation improves the
channel in such a manner that enables the lattice decodétain the optimal DMT, this work shows that when considering
regular lattice decoding, reducing the lattice dimendiongakes the role of MMSE estimation in the sense of impnavihe
channel such that the optimal DMT is obtained. Finally, thalgsis in this work gives another geometrical interpietato
the optimal DMT.

The outline of the paper is as follows. In sectloh Il basic mWigéins for the fading channel and IC's are given. Section
[Mpresents for each channel realization a lower bound @naterage decoding error probability of any IC, and an upper
bound on the DMT of any IC. An upper bound on the error prolitghif ensemble of IC’s for each channel realization, a
transmission scheme that attains the optimal DMT, and soreeaging arguments on how the optimal DMT is attained by
IC’s, are all presented in sectién]lV. Discussion on the ltssthat addresses the difference between lattice cdatsiels and
full dimension lattice based finite constellations, folkmhby a geometrical interpretation to the optimal DMT, andsgwksion
on the relation between the multiplexing gains of an IC anchieficonstellation, is presented in sectioh V. This disicuss
presents an intuitive interpretation to our results angsehainly on the basic definitions given in sectign 1.

Il. BASIC DEFINITIONS

We refer to the countable s&t = {s1,s2,...} in C™ as infinite constellation (IC). Letube;(a) C C™ be a (probably
rotated)/-complex dimensional cubé € n) with edge of lengthu centered around zero. An IS; is [-complex dimensional
if there exists rotated-complex dimensional cubeube;(a) such thatS; C lim,_, cube;(a) andl is minimal. M (S;,a) =
|S; ) cube;(a)| is the number of points of the IG; inside cube;(a). In [13], then-complex dimensional IC density for the
AWGN channel was defined as the upper limit (the limit suprethof the ratioyg = limsup,_, . % and the volume
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to noise ratio (VNR) was given gsg = —;,,i;-

The Voronoi region of a point € S;, denoted ad/(x), is the set of points idim,_, . cube;(a) closer tox than to any
other point in the IC. The effective radius of the point S;, denoted as.x(z), is the radius of thé-complex dimensional
ball that has the same volume as the Voronoi regionis(z) satisfies

mlrl(z)
V(r)| = =—=22, 1
V@l = T (1)

A complex latticeA is an IC that constitutes a discrete setdi, closed under addition. The Voronoi regions of all lattice

points are identical and satisfy
V(z)| =75" VzeA 2



Hence, for large dimension the VNR of a lattige;, approaches the rati’!ggg—f wherer.g is the lattice effective radius. Regular
lattice decoder finds the closest lattice point to an obsenva € C", i.e. regular lattice decoder finds the solution to the
optimization problem

. 1l 3
argglélgHg z|| 3)

Note that these definitions can be also extended in a stréogivard manner to an IC that constitutes a real latticéR#?.
For instance when the first entries of each lattice point are transmitted on the real glathe IC, and the second entries
of each lattice point are transmitted on the imaginary péthe IC.
We consider a quasi static flat-fading channel withtransmit andV receive antennas. We assume for this MIMO channel
perfect channel knowledge at the receiver and no channellkdge at the transmitter. The channel model is as follows:

Qt:H'£t+P7%ﬂt t=1,...,T 4)
wherez,, t = 1,...,T is the transmitted signak, ~ CN(0, %IN) is the additive noise wher€ N denotes complex-
normal, Iy is the N-dimensional unit matrix, an@t € CN. H is the fading matrix withNV rows andM columns where

hij ~CN(0,1),1<i<N,1<j<M, andp‘% is a scalar that multiplies each elementgf wherep plays the role of
averageSNR in the receive antenna for power constrained constellstibat satisfys. Zle E{||z,]I?} < 52

— 2me”

We also define the extended vector= {gJ{, . ,gTT}T. Supposer € S; ¢ CMT, whereS; is an IC with densityy,, =
lim sup,_, o Mfzf?;“) (a*! is the volume ofcube;(a)). By defining H., as anNT x MT block diagonal matrix, where each
block on the diagonal equald, n., = p~2 - {n},...,n}}t € CNT andy__ € CN" we can rewrite the channel model [d (4)
as

Yy . = Hex .£+QCX' (5)

—eX

In the sequel we usé to denotemin(M, N). We define as/)\;, 1 < i < L the real valued, non-negative singular values
of H. We assuma/\;, > --- > +/\; > 0. Our analysis is done for large valuesmoflarge VNR at the transmitter). We state
that f(p)>g(p) whenlim,_, —lnl(nf(;’;)) < —1“15;‘7((,)”))), and also define<, = in a similar manner by substituting with >, =
respectively.

We now turn to the IC definitions in the transmitter. We define aiverage number of dimensions per channel use as the
IC dimension divided by the number of channel uses. We dethat@verage number of dimensions per channel us& by
Let us consider & T-complex dimensional sequence of IG%(p), where K < L, andT is the number of channel uses.
First we definey,. = p"T as the density 0Bk (p) in the transmitter. The IC multiplexing gain is defined as

1
MG(r) = lim_ o log, (v + 1) = lim o log, ("7 + 1) 6)
Note thatMG(r) = maz(0,r), i.e. for0 < r < K the multiplexing gain is~. Roughly speakingy:. = p"7 gives us the
number of points o5x+(p) within the K'T-complex dimensional regiorube x(1). In order to get the multiplexing gain, we
normalize the exponent of the number of points withitbe (1), T, by the number of channel use§- Note that the IC
multiplexing gain,r, can be directly translated to finite constellation muétifphg gainr by considering the IC points within
a shaping region. For more details §eeV-C. The VNR in thestrditer is

- ®T
— vtr _ pl_
2meo?

=

Htr (7)

whereo? = g—;; is each dimension noise variance. Now we can understandotbeof the multiplexing gain for IC's. The
AWGN variance decreases as!, where the IC density increases @&. Whenr = 0 we get constant IC density as a
function of p, where the noise variance decreases, i.e. we get the besegponent. In this case the number of points within
cuberr(1) remains constant as a function @f On the other hand, when= K, we get VNRy,, = 1, and from [13] we
know that it inflicts average error probability that is boeddaway from zero. In this case, the increase in the numbeC of |
points within cube k(1) occurs at maximal rate.

Now we turn to the IC definitions in the receiver. First we defthe setH., - cubexr(a) as the multiplication of each
point in cubex(a) with the matrix H.,.. In a similar manneS}(T = H., - Skr. The setH,., - cubegr(a) is almost surely
KT-complex dimensional (wher& < L) and in this casé/ (S, a) = |Skr () cuberr(a)| = |Skp ((Hez - cubegr(a))|.
We define the receiver density as

Ve = lim sup M(Skr,a)
TS Vol(He,.cubegr(a))

i.e., the upper limit of the ratio of the number of IC points fify,.cubexr(a), and the volume off.,.cubexr(a). Based
on the majorization property of a matrix singular values][1&e get that the volume of the séf., - cubexr(a) is smaller
thana?5T - XL .. AT _ .- AT, assumingK = B + 3 where B € N and0 < 8 < 1, i.e. the volume is smaller than the
multiplication of the B + 1 strongest singular values, raised to the power of the ma>a@meunt of channel uses each can




take place in. Hence we get
e 2 PN A AR 8)
and the receiver VNR is ‘ ) ) 5
pre < PR AR LA gy A g ©)

1
Note that forN > M and K = M we gety,. = p'7 - Hf‘il )\i_T and . = p'= ~]_[£‘il AM. The average decoding error
probability over the IC points ok (p), for a certain channel realizatial, is defined as

E(H p) = lim sup Zgl Ster N(Hex-cubexr(a)) P, (CL‘ H, p)
| e M(Sk,a)

(10)

where Pe(g/,H, p) is the error probability associated with. The average decoding error probability 8k (p) over all
channel realizations i®.(p) = Ey{P.(H, p)}. Hence thediversity order equals

d = lim log,((p)) (12)
p—r00

Ill. UPPERBOUND ON THE DIVERSITY ORDER

In this section we derive an upper bound on the diversity mod@any IC with average number of dimensions per channel
use K and any value ofl’, M and N. In Theorem L we derive for each channel realization a lowmmid on the error
probability of any IC withK average number of dimensions per channel use. In Theldremderite an upper bound on the
DMT of any sequence of IC’s withK average number of dimensions per channel use. Finally iml2oy [2 we show that
by choosing the correct average number of dimensions pemehaise, the upper bound coincides with the optimal DMT of
finite constellations.

As in [3] and [7], we also defing; = p~i, 1 < i < L. When the entries of the channel mattik are all i.i.d with PDF
CN(0,1), the PDF of its singular values is of the fom X2 IN=MI+2i-Das for argep [3], where following the definitions
above0 < ap < -+ < oy [ By assigning in[(B),[(9) respectively, we can write

T(T"'E?:Bl ar—i+par_B)

Yec = P
and
fire < pPm R L aritBar_s)
Theorem 1. For any KT-complex dimensional IGxr(p) with transmitter densityy,, = p"? and channel realization
a=(ai,...,ar), we have the following lower bound on the average decodimy @robability for 0 < r < K

Po(H, p) > CET) e ACKT)+(KT=1) In(p1zc)
’ 1

_3 KT—-1
where A(KT) = ¢ - T(KT + 1)#r and C(KT) = “"LETLD KT

Proof: We divide the proof into two parts. In the first part we prove tlesult for lattices, that constitute a symmetric
structure for which the Voronoi regions of different laétipoints are identical. In the second part we prove the rdsult
general IC’s with receiver density... As the second part of the proof is somewhat more involveddefer it to appendik’A.
Note that we could have used the tighter bounds of [17], begetbounds are not needed for DMT. Instead we derive coarser
and more simplified upper bounds, which are sufficient for munposes.

We begin by proving the result for lattices. Lattices cangti a discrete subgroup of the Euclidean space, with thieamd
vector addition operation. Consider/I-complex dimensional IatticeS‘}(T(p), in the receiver with density,... The lattice
points have identical Voronoi regions up to a translatioenék, the volume of each Voronoi region equals

V(@) = — Vo€ Sro).

rTc

According to the definition of the effective radius il (1), et thatres(z) = reg(Vre) = (M)zm Ve € Spp(p).

Note that in lattices the maximume-likelihood (ML) decodiagor probability is identical for aII fattice points, i.the average
and maximal error probabilities are identical. It has besven in [13], [18] that the error probability of any lattig®int in
the receiver fulfils

PO > Pr(|liie|| = resr(vrc))
where PSX7 is the ML decoding error probability of any lattice point,dafi,, is the effective noise in thé{T-complex

1A generalization of the Rayleigh fading channel is the Jatatting channel. The optimal DMT for this channel was detive [16].



dimensional hyperplane Whe&'KT(p) resides. We find an explicit expression for the lower bound

7240’ 1, - aKT—2, L
Pr (e 2 rr() > Pr (el 2 re5) > [ Coergerminy 2 sarerrey e 02
By assigningr?; = (%)KT we get
Pkt > O(KT) - e s AKT) (KT - 1>lﬂ<¥:‘ieaz )
and by assigning,.. = 72“;6;2 we get
peS;W > C(KT) . e e AKT)+(KT—1) In(pre) (13)

4
Note that in [IR) we lower bounded the error probability with(25=) instead ofrcq (7)., and also in[(Z3) we multiplied by,

in order to be consistent with the general lower bound fos I€liown in appendixJA. For lattices we hakg(H, p) = prxr,
Essentially what we have shown here is a scaled sphere @abbiundg ]

Next, we would like to use this lower bound to average overctiemnnel realizations and get an upper bound on the diversity
order.

Theorem 2. The diversity order of any<T-complex dimensional sequence of IG%r(p), with K average number of
dimensions per channel use, is upper bounded by
dier(r) < dj(r) = M- N(1 — %)

for0 < K < MN_ and

N+M-1" K
« T
drr(r) < djy(r) = (M = 1)(N = 1) L g)
for M-LDWN_IHD 4 g o g < WMOWN=D 4 g and;=1,....L — 1. In all of these case8 < r < K.

N+M—-1-2(1-1) N+M—-1-2-1

Proof: For any IC with VNR ., assigningu;C > ur in the lower bound from Theorefd 1 also gives a lower bound on
the error probability

P.(H,p) > C(Z(T) o~ tre AGKT)+H(KT=1) In(piy,)

It results from the fact that inflating the IC into an IC with ‘W\ju;c must decrease the error probability, where

C(ET) ! AKT)+(KT-1)In(u,)
1

is a lower bound on the error probability of any IC with VNRC. Hence, for the casg,. < 1 we can lower bound the error
probability by assigning 1 in the lower bound and &%T)e‘A(KT), i.e. for u,.. < 1 the average decoding error probability
is bounded away from O for any value pf We can give the event,.. < 1 the interpretation of an outage event.

We would like to set a lower bound for the error probability é&@ch channel realizatiam, which we denote by?X5(p, ).

We know thaty,. < pl‘%(”EiB:%l ar—itfar-5) For the cas@f:ol ar—i + Par_p < K —r, we take

PLB( , Q) = @e*L(pyg)A(KTH(KTﬂ)ln(L(p,g))
whereL(p, a) = p!~# "+ X er—ithor—s) > 1. For the casé 7' ar i+ far_p > K —r we get thayu,, < 1, and we
take
PeLB(PaQ) = 70({4(71) e AKT),

In order to find an upper bound on the diversity order, we wdikiel to averageP>?(p, a) over the channel realizations.
In our analysis we consider large valuespgpfand so we calculate

P p)>/ peLB(p’Q) p” Ef:1(|N—M|+2i—1)a1:dg (14)
a>0

wherea > 0 signifies the fact thaty; > --- > ay > 0. By defining. A = {¢] Zf:ol ar—;+ far_p < K —r;a > 0} and

2Note that while Theorel1 refers tT-complex dimensional IC’s, the lower bound derived in tiisdrem applies for ang K T-real dimensional IC.



A= {q| Zf;_ol ar_; + Bar_p > K —r;a > 0} we can split[(I¥) into 2 terms

E(p)>/ PB(p,a)-p~ Zf:l(‘N’M‘”i*l)o”d@Jr/ PEB(p,a) - p~ T IN=MIF2i-Das gy (15)
acA acA

Hence
Plp)> [ PEP(pa) - pm BN Mgy (16)
acA

In a similar manner td [|3]]7], for very large we approximate the average value by finding the most domamponential
term in the integral. For this we would like to find the minimallue of

lim —log,(P/" (p,a) - p~ S (IN=M|+2i-1)ai)
p—00

for the casen € A. Fora € A, we get thatPLB(p, o) is bounded away from 0 for any value pf Hence, in order to find
the most dominant error event we would like to findn,, Zf:1(|N — M|+ 2i — 1)a; given thata € A. The minimal value
is achieved at the boundary, i.e. ersatisfyingZf;‘o1 ap_;+pPar_p=K—r, a> 0. Hence, for anyK < L we state that

L
dgr(r) §min2(|N—]Vf|+2i—1)ai, 0<r<K (17)
==t

whererL‘o1 arp_i+ Bap,_p=K—randa; > --- > arp > 0. Basically this optimization problem is a linear programmi

problem Who(se S())(Iutio)n is as follows. Fox K < % the solution iso; =1— %, i=1,..., L. For % +
M—I)(N—-1

I-1< K < = +landl=1,...,L—1the solutionisa, = -+ = az ;41 =0andag ;= -+ = ay = K=t The
desired upper is attained by substituting the optimal \&bfey in (I7). The detailed solution for the optimization problén
presented in appendix B. ]

From Theoreni ]2 we get an upper bound on the diversity ordersbyraing transmission of th&€T complex dimensions
over the B + 1 strongest singular values. This assumption is equivakergtssumingoeamformingwhich may improve the
coding gain, but does not increase the diversity order. Bssumption allows us to derive a lower bound on the average
decoding error probability. However, we still get maximateatsity order of M/ N in this case.

Let us consider as an illustrative example the cas#/of N = 2. In this case, fob < K < 3 we getdj (r) = 4(1 — %).
For 2 < K < 2 we getd;(r) = :£5(1 — £). In both case®) < r < K. For this set up we have two singular values
and soa; > ag > 0. The optimization problem is of the formin,>o @1 + 3, where for0 < K < 1 the constraint is
Bas = K —r, and forl < K < 2 the constraint isv; + Sa; = K — r. For the casd < K < % the optimization problem
solution isa; = a = 1 — £, i.e. in this case the most dominant error event occurs wioém éingular values are very small.
For the case = % the constraint is of the form, + < = % —r, and the optimization problem solution is achieved for
botha; =as =1 — % andas = 0, a; = 4 — 3r. For the cas% < K < 2 the optimization problem solution is achieved for

ag=0,a; = g:;, i.e. one strong singular value and another very weak simgulue.

100 - DMT of finite

constellations!
a /

diversity order - d
(2]

kgl

T 15 2
Multiplexing gain — r

Fig. 1. The diversity order as a linear function of the miétqing gainr for M =4, N =3 andK =1, 2, 2.5 and 3.

Corollary 1. For0 < K < % we getd (0) = M N. For %—H—l <K< %H,l: 1,...,L—1

we getdi (1) = (M —1)(N = 1).
Proof: The proof is straight forward frord}, (r) properties. ]
From Corollanf1 we get that the range &fcan be divided into segments, where for each segment we heatecd straight

lines, that are all equal at a certain integer point. Note #tahese points, we get the same values as the optimal DMT for
finite constellations.



Coroallary 2. In the rangel < r <[+ 1, the maximal possible diversity order is achieved at direen&’; = % +1

and equals
Kl T

m_ﬂ—gﬂ
—M-D(N=0)—(r—D(N+M—2-1-1)

di, (r) = (M = [)(N = 1)

wherel = 0,...,L — 1. This expression equals to the optimal DMT of finite coretielhs in this range.

Proof: The proof is straight forward frord}, (r) properties. ]
From Corollary(2 we can see thdj, (I) = (M —I)(N —1) anddj, (I+1) = (M —1—1)(N —1—1). We also know that
dy, (r) is a straight line. Also, the optimal DMT for finite consteitans consists of a straight line in the range » <1 +1,
that equalg N — )(M — 1) whenr =1 and(M — 1 —1)(N — 1 — 1) whenr = [ + 1. Hence, in the rangé<r <[+ 1 for
K, = % + [, we get an upper bound that equals to the optimal DMT of finitlestellations presented inl[3]. Since
for eachl = 0,..., L — 1, we have suclkj, the solution of

Oénlgng}(r) 0<r<L

equals to the optimal DMT of finite constellations.

Figure[1 illustrates the properties df (r) following Corrolaries L[ . We take the example df = 4, N = 3. For
0 < K < 2 we get upper bounds that have diversity ordi2rfor » = 0. We can see that in the range< r < 1, the upper
bound of K = 2 is maximal and equals to the optimal DMT of finite constetiat. In the range < K < 2.5 we can see that
the upper bounds have the same diversity ofdat » = 1. In the rangel < r < 2, the upper bound of( = 2.5 is maximal
and equals to the optimal DMT of finite constellations in trasge. For.5 < K < 3, the upper bounds equal at r = 2.
In the range2 < r < 3, the upper bound o = 3 is maximal and again equals to the optimal DMT of finite colfestiens
in this range.

0 05 1 15 2 25 3
IC dimension - K

Fig. 2. dj(0) as a function of the IC dimensions per channel &Sefor M =4, N = 3.

Figure[2 presents the maximal diversity order that can kenattl for different average number of dimensions per channe
use, for the casé/ = 4 and N = 3, i.e. the upper bound on the diversity order foe= 0, d};(0), where0 < K < 3. In
the ranged < K < 2 we getdj(0) = 12. It coincides with the result presented in Figlie 1, wheresivewed that in this
range the straight lines have the same valuerfer 0. Hence, for IC’s, one can use up to 2 average number of dimessi
per channel use without compromising the diversity ord&rt®g from K > 2, the tradeoff starts to kick-in and the maximal
diversity order starts to reduce as we increase the avenagdear of dimensions per channel use. Also note thatifor 3
the diversity order i$ whenr = 0.

IV. ATTAINING THE BESTDIVERSITY ORDER

In this section we show that the optimal DMT of finite constétins is achievable by a sequence of IC’s in general and
lattices using regular lattice decoding in particular. Ubsectio TV-A we present a transmission scheme for &hynd N
that transmits an IC with{; = % +landT;=N+M—-1-2-1,1=0,...,L —1, where as previously defined
L = min(M, N) and K is chosen based on the results in seckioh Ill. In subseCW#e] ve present the effective channel
induced by this transmission scheme. Following that werekttie methods presented [n [13] and derive in Thedrem 3 for
each channel realization an upper bound on the averageidgaauor probability of ensemble of IC’s. By averaging thper
bound over the channel realizations, we show in Thedrem #thigaproposed transmission scheme attains the optimal DMT.
In Theoreni b we extend this result also to lattices when eympdoregular lattice decoder. Finally, we discuss poweeaging
technique over the transmit antennas for the transmissibanse in subsectidn IMIE, and give some averaging argunoents

the existence of sequence of IC’s that attain the optimal DM$ubsection TV-F.



A. The Transmission Scheme

The transmission matrig;, [ = 0, ..., L—1, hasM rows that represent the transmission antennasJapd N +M —1—2-]
columns that represent the number of channel uses.
We begin by describing the transmission matrix structurgeneral for anyM and N.

1) For N > M and Kp;—1 = 1\4](\]1\7:7]\%4;1) = M: the matrixGy;—1 has N — M + 1 columns (channel uses). In
the first column transmit symbols,, ...,z on the M antennas, and in th& — M + 1 column transmit symbols
:cM(N,M)H,...,xM(N,MHg on the M antennas.

2) ForM > N and Kn_q = % = N: the matrixGx_; hasM — N + 1 columns. In the first column transmit
symbolszy, ..., zy on antennas, ..., N and in theM — N +1 column transmit symbolsy a;— n)41, - - s TN (M—N+1)
on antennas/ — N +1,..., M.

3) ForK;,1=0,...,L—2: the matrixG; hasM + N — 1 — 2 -] columns. We add t@r;., the transmission scheme of
K41, two columns in order to gef;. In the first added column transniit- 1 symbols on antennas ..., + 1. In the
second added column transmit differént 1 symbols on antenna&l — [, ..., M.

Example M = 4, N = 3. In this case the transmission scheme for= 3, 2.5 and2 (G2, G1 and G, respectively) is as

follows:

I 0 T 0 T11 0
T2 X4 xTs 0 0 0
r3 Ts 0 T9 0 0 (18)
0 Te 0 T10 0 xr12
N——
KQ:%
Klz%

B. The Effective Channel

Next we define the effective channel matrix induced by thegmgission scheme. In accordance with the channel model from
(@), the multiplicationH - G, yields a matrix withN rows and7; columns, where each column equalsHo z,, t =1...T},
as in [4). We are interested in transmittifg7;-complex dimensional IC with;T; complex symbols. Hence, in the proposed
transmission schemé;; has exactlyK;T; non-zero complex entries that represent Rid;-complex d|men5|onal IC within
CMT: For each column of7;, denoted byg 1 =1...T;, we define the effective channel tr‘gat sees asH It consists of
the columns ofH that correspond to the non-zero entr|equf| e.H g =H,- g whereg equals the non-zero entries of
g, As an example assume without loss of generality that themrentnes Ofg are not zero. In this casH; is an N x [;

matrix equals to the fird columns ofH. In accordance WIU‘[{S)H(H is an NT; x K;T; block d|agonal matrix consisting of

T; blocks. Each block corresponds to the multiplicationfbfwith different column ofGy, i.e. Hl is thei’th block of Héé[)
Note that in the effective matridvT; > K,;T;.

We would like to elaborate on the structure of the blocksHiQ. For this reason we denote the columnsiéfas h;,
i=1,..., M.
1) The case wher& > M. For this case the transmission scheme Nas M — 1 — 2 -1 columns. The firstvV. — M + 1
columns ofG;, [ PEREREY ISR VERT containM - (N — M + 1) different complex symbols, i.e. there are no zero entries in

these columns. Hence, in this case the fi¥st- M + 1 blocks och(Q are

-~

H,=H i=1,--- ,N—-M+1. (19)
After the first N — M + 1 columns we havé/ — 1 — [ pairs of columns. For each pair we have
Hy-nrgon = {hy, o gy} (20)
and ~
Hy_ntors1 = {hyyqs -5 b} (21)

wherek =1,...,.M —1—1.
2) The case wher@/ > N. Again the transmission scheme h&s+ M — 1 — 2 -] columns. By the definition of the first
M — N + 1 columns ofG;, we get that

ﬁi:{ﬁia---aﬁN+i—1} =1, M-N+1 (22)
We have additionalV — 1 — [ pairs of columns inz;. For each of these pairs we get

Hy Nk = {hy,- by y} (23)



hy hy By 0 0 0 0 0 0 0 0 O

0 0 0 hy hy hy 0 0 0 0 0 O

o | 0 0 0 0 0 0 h B O 0 0 0
He =10 0 0 0 0 0 0 0 h h, 0 0 (25)

0 0 0 0 0 0 0 0 0 0 h 0

0 0 0 0 0 0 0 0 0 0 0 h

and ~

HM—N+2k+1 = {ﬁMfNJFkJrla e aﬁM} (24)

wherek =1,...,.N—-1-—1.
Example considerM = 4, N = 3 as presented if_(18). In this cake- 0,1,2 and we havek, = 3, K1 = 2.5 and Ky = 2
respectively.

1) Ky =3: He(?f) is generated from the multiplication of tf3ex 4 matrix H with the first two columns of the transmission
matrix. In this caseHe(?f) is a6 x 6 block diagonal matrix, consisting of two blocks. Each bldsla 3 x 3 matrix. We
get thatH, = {h;, hy, hs} and Hy = {hy, hs, by }.

2) K, = % = 2.5: Hézflf) is a 12 x 10 block diagonal matrix consisting of 4 blocks. The first twadKs are identical
to the blocks ofHC(fL). The additional two blocks (multiplication with columns43-are3 x 2 matrices. We get that
Hs ={hy,h,} and Hy = {hs, hy}.

3) IA(O = 2 Héz?f) consists of six blocks. In this case the last two blocks Zase 1 vectors. We get thaﬁg, = h; and
H6 = ﬁ4.

We presentHe(?f) of our example in equatiom (P5). Note thiate C3 for 1 < i < 4, and0 is a3 x 1 vector.

From the sequential construction of the blocksfbeﬁf) (@9)-(21), [22)1(2h) it is easy to see that when two columhgio
occur in a certain block OHe(f:f), the columns offf between them must also occur in the same block, i.& jifh; occur in
a certain block, thei,, hs, h, also occur in the same block. Next we prove a property of thestnission schem@;, that
relates to the number of occurrences of the column#/ah the blocks och(Q. For each set of columns iff, we give an
upper bound on the amount of its appearances in differerckblo

Lemma 1. Consider the transmission scherGg, [ = 0,...L — 1. In case0 <i —j < L, the columngy,, ..., h, may occur
together in at mostV — i + ;5 blocks ofHC(Q. In casei — j > L they can not occur together in any bIockHﬁQ.

Proof: See appendik]C. [ |

C. Upper Bound on The Error Probability
Next we would like to derive an upper bound on the average dlegoerror probability of ensemble ok ;7;-complex
dimensional IC, for each channel realization. We defiHéQTHc% =p- T wherep~ % is thei'th singular value of
Héé[) 1 <i < K/T;. We also defing) = (11, ...,nx,1,)". Note thatNT; > K, T;.
Theorem 3. Thgrg exists a sequence AfT;-complex dimensional IC’s, with channel realizatiﬁfﬁf:f) and a receiver VNR
KTy,

. Siitay
Mo = pl_Fl_ < , that has an average decoding error probability

R R K;T,

P(H,p) = Pe(n, p) < D(K/Ty)p~ =D+ E = DR,y p~ =) | g QT |~
where D(K,T;) is a constant independent pf andr; > 0 for everyl <i < K;T;.

Proof: We base our proof on the techniques developed by Poltyreivffit3Ihe AWGN channel. However, the channel
considered here is colored. In spite of that, we show thatt \&ffacts the average decoding error probability is the \diug
values product, which is encapsulated by the receiver VIR, This observation enables us to facilitate this colorechaea
analysis. The full proof in appendix]D. ]

By averaging arguments we know that there exists a sequdrisahat satisfies these requirements.

D. Achieving the Optimal DMT

In this subsection we calculate the DMT of the proposed trassion scheme. We upper bound the determinant of the
effective channel invers¢H§QTH£Q|—1, based on the effective channel properties presented estion IV-B. In Theorem
we showed that the upper bound on the error probability niépen this determinant. Hence, the upper bound on the
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determinant gives us a new upper bound on the average dgcedior probability. We average the new upper bound over all
channel realizations and get the DMT of the transmissiorseh

The channel matridd consists ofN - M i.i.d entries, where each entry has distribution, ~ CN (0, 1). Without loss of
generality we consider the case where the column¥ afre drawn sequentially from left to right, i.&, is drawn first, then
hy is drawn et cetera. Columhy is an N-dimensional vector. Giveh,,,,.1 j—n-1)s - - -» 2j_1, We can write

ﬁj = G(ﬁmax(l,j—N—ﬁ-l)a B 7&_]‘_1) . Qj
whereO(-) isanN x N unitary matrix.9(-) is chosen such that:

1) The first element oﬂ hl i, is in the direction ofhj 1-
2) The second elemen‘tg j» is in the direction orthogonal ta; ,, in the hyperplane spanned By, ;,h;_ 2}

3) Elementhmm(%N),LJ is in the direction orthogonal to the hyperplane spanned By, (> ;_n-2),---:h;_1} inside
the hyperplane spanned §¥b,, a1, j—N1ys - -+ fj—1}-
4) The rest of theV — min(j, N) + 1 elements are in directions orthogonal to the hyperpl%i_qgax(ld_NH), by )

Note thatﬁiyj, 1<i< N,1<j< M are i.i.d random variables with distributiaiN (0, 1). Let us denote b)@jm-_17...,]-_,C

the component oh; which resides in theV — & subspace which is perpendicular to the space spanne{@pj, vl
In this case we get
N
”h]L] 1,..,0— k”2 Z |h‘l]|2 1 <k<mln(]7N)_1' (26)
i1=k+1

If we assign|ﬁi7j|2 = p~%.i, we get that the probability density function (PDF)&f; is

g =&
f(fzg):Clogpp §ij e P (27)

whereC' is a normalization factor. In our analysis we assume a vagelaalue forp. Hence we can neglect events where
&.; < 0 since in this case the PDE_(27) decreases exponentially asctidn of p. For a very largep, & ; > 0,1 <i < N
and1 < j < M, the PDF takes the following form

FEg) xp~8 &y >0, (28)
In this case by assigning if (26) the vecgcgr: (&1,5,---,&n,5)T, whose PDF is proportional to~ Y& we get
o MiNsegrt1 N} Eaj = p*“(k-éj) (29)
wherel < k < min(j, L) — 1 and a(k,éj) = minge(g41,..., 51 &5+ IN addition
g [P=p minectnemy G = 08, (30)

Note that

Next we wish to quantify the contribution of a certain columnthe channel matrixk;, to the determinantd.; D 7 l)|
H(f:f) is a block diagonal matrix. Hence the determlnantla}f”H(l)| can be expressed as

HOTHY) H \HTHj). (32)
Assumeﬁi = (El, .. ,Em), i.e. ﬁi hasm columns. In this case we can state that the determinant
\HIH;| = (=g 122117 - W 1, 21

Note thatﬁl- also has more rows than columns. The columnﬂphre subset of the columns of the channel makfixHence
we are interested in the blocks whétg occurs. We know that the contribution bf to those determinants can be quantified
by taking into account the columns to its left in each blocle ¥énsider two cases:
 The caseN > M. In this case we can see froin [18)421) thatmay occur with{h, ...
blocks.
« The caseM > N. In this case we can see from [2R)4(24) thatmay occur only with{h,,,..1 j_n11)- -+, ;1 } tOits
left in different blocks.

,hj_1} toits left in different
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Based on[(29) and_(80) we can quantify the contributior pto | H Ot ¢ l)| by

min(j,L)—1 o
j i) )= TR T by (Ralkg)
”ﬁj”2bj(0) H ”hjlj 1,...,5— k||2bj(k):p k=0 i ( =J (33)
k=1

whereb; (k) is the number of occurrences af in the blocks ofH , with only {h; ;,...,h; ;} to its left. ;(0) is the
number of occurrences @f; with no columns to its left. Note that from the definition oktlransmission scheme we get that
fori=0,0; (k)>0f0r1<k<m1n(j,L) 1.

In the foIIowmg theorem we calculate the DMT of the proposethsmission scheme.

Theorem 4. There exists a sequence BfT;-complex dimensional IC’s with transmitter density. = p"* and 7; channel
uses that has diversity order

Ay (1) > (M —)(N —1) — (r —)(N+ M —2-1—1)

where0 <r < K;andl =0,...,L—1. In the rangel <r <[+ 1 this lower bound coincides with the optimal DMT of finite
constellations.

Proof: The proof outline is as follows. The upper bound on the errobability from Theorerl3 depends oH(l)TH(l)| L
We upper bound this determinant value and average overeliffeealizations 01He in order to find the diversity order of
the transmission matrig;. We begin by lower boundlntﬁ(l”H(% Based on the sequential structure(gf we lower bound
the contribution of a certain column df, h;, 1 < j < M to the determinant. This gives us a new upper bound on the
error probability for each channel realization. We avertigee new upper bound on the error probability, by averagingr ov
hy,...,h,,. From this averaging we get the required DMT. The full praofri appendiXE [ ]

The diversity order attained in Theorddh 4 f&f, 7; coincides with the optimal DMT of finite constellations inethange
Il <r <Il+ 1. Hence, by considering <! < L — 1, we can attain the optimal DMT witlh, sequences of IC’s.

We present as an illustrative example the cas@foi= N = 2. Let us consider the case whdre- 0. In this caseK, = 3,
and 7T, = 3, i.e. we transmitd-complex dimensional IC. The transmission scheme diwewitler in this case ig — 3r,
0<r< %. In this case the effective channel matrHe(?f), consists of three blocksﬁl = (hy,hy), ﬁQ = hy; and ﬁg = hs.
According to our definitions

JHIHL| = 1By |12 By || = p min6n &) p=az

and also||h, ||? = p~ ™inr1821) | || by |2 = p~ minE2.822) In accordance wit (83) we divide the integral into two terrim
the first term we solve the optimization problem

2 2
£IIlieIl.A(Zl — 37") — (5272 + 2 - min (5171, 62_]1) + min (5172, 62_]2)) + Z Z &_’j. (34)
S =1 j=1
One solution to this problemig ; =0 for 1 <i <2,1 <4 <2.In this case we get an exponential term that equals3r.
For the second integral we solve the optimization problem

min Z Z i

&7 i=1 j=1

In this case the optimization problem solution§$f:1 Z?:l &,; = 4 — 3r. Hence, all together, we get a diversity order that
equals4 — 3r, that coincides with the optimal DMT of finite constellat®om the range) < » < 1.
In the next theorem we prove the existence of a sequencetioekathat has the same lower bound as in Theddem 4.

Theorem 5. There exists a sequence 2K;T;-real dimensional lattices with transmitter density, = p""* and 7; channel
uses, that attains a diversity order

dg,(r)>M-)(N=-0)—-(r-D(N+M-2-1-1)
where0 <r < K;and!=0,...,L —1.
Proof: See appendik1G [ |
Note that we considered &K T;-real dimensional lattice, where the lattice fifs{7; dimensions are spread over the real
part of the non-zero entries 6f;, and the othei;7; dimensions of the lattice are spread on the imaginary pathehon-zero

entries ofG;. This does not necessarily yieldsi§T;-complex dimensional lattice in the transission schemensiiering the
2K,T;-real dimensional lattice enables us to use Miekowski-Hlawaka-Siegélheorem [[13]/[1B], and prove Theordm 5.
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E. Power Spreading

For practical reasons, such as power peak to average ragomay prefer to have a transmission scheme that spreads the
transmitted power equally over time and space. The tratisguitnatrix G; contains exactlyk;7; non-zero entries, where
the rest of the entries are zero. In order to spread the powee exually over time and space we use the following unitary
operations
UrLGUg.

Ur is an M x M unitary matrix that spreads each column(®f i.e. spreads over spad€r is al; x T; unitary matrix that
spreads each raw df;, i.e. spreads over time. As the distribution Bf and H - U, are identical, multiplyingU;, with G;
gives exactly the same performance. Based on the notations (@) we can state that

Gi-Ur = (z1,....27,)

where (gl,...,ng) are the channel inputs. In the receiver we can state thatebeived signals areégl,...,yTl). By
multiplying with U}, we get
(gl,...,ng) . U]T% =G+ (@1,...,QTZ)U}T%.

The distribution of(n,,...,ny,) is identical to the distribution ofn,, ... ,QTZ)U}T%. Hence, multiplyingG; with Ur gives
also exactly the same performance. For instance, in ordach@ve full diversity and spread the power more uniformlg,
take Gy and duplicate its structure times to create the transmission scheﬁ‘ﬁé). In this case the transmission matr];és)
consists ofs KT, complex non-zero entries, i.e we transmit @idy7, complex dimensional IC within theM T, complex
space.GéS) is an M x sT, dimensional matrix, that has exactly the same diversityepadGy (it duplicates the structure of
Gy s times). Each row oGés) has exactlys N non-zero entries. We defirié](;f) assTy x sTp unitary matrix. For large enough
s, the muItipIicationGéS) . U}(;) spreads the power more uniformly over space and time, alhcdhiieves full diversityﬁ

F. Averaging Arguments

In this subsection we show that there existsequences of lattices that attain the optimal DMT, wheré estjuence of
the L sequences attains a different segment on the optimal DMiecim addition we show that there exists a single IC that
attains the optimal DMT by diluting its points and adaptitg dimensionality.

As a conseqguence of Theoréin 3 and Thedrém 4 we can state lihwirfigl

Corollary 3. Consider a sequence & T-complex dimensional IC’S k1 (p) with densityy,, = 1, that attains diversity order
d. This sequence of IC’s also attains diversity ord¢t — 1) when the sequence density is scaled/fo= o

Proof: The proof is in appendixH. [ |

Corollary 4. The optimal DMT is attained by exactly sequences &fK,;T;-real dimensional latticed,=0,..., L — 1, where
each sequence attains different segment of the optimal DMT.

Proof: From Theoreril5 we know that there existg &, T;-real dimensional sequence of lattices with densijty= 1 that
attains diversity M —1)(N —1)+1(N+M —2-1—1). Hence, based on Corollary 3 we can scale ##37;-real dimensional
sequence of lattices into a sequence of lattices with densit= p"7t, and a diversity orde(M — I)(N — 1) — (r — I)(N +
M —2-1-1), i.e. the sequence of lattices attains the optimal DMT lim¢hie rangd < r < [+ 1. The optimal DMT is the
maximal value of thel. lines, for eacld < r < L. Hence, there exist sequences of lattices that attain the optimal DM

Next, we show that there exists a single sequence of IC’sdtiains the optimal DMT. The optimal DMT consists bf
segments of straight lines. Each segment is attained bycirmglthe IC’s dimensionality to the correct dimension, aildtohg
their points to get the desired density. Note that in Thedfleme showed that for each multiplexing gain,there exists a
sequence of IC’s that attains the optimal DMT. On the othardhan Corollary(b we show that a single sequence of IC's
attains the optimal DMT for any, by adapting its dimensionality and diluting its pointssélnote thatK 7Ty, > K17 >
o> Kp 1T .

Corollary 5. There exists a single sequencek§Ty-complex dimensional IC’s, that attains tHe segments of the optimal
DMT:
M-D(N-)—-(r-D(N+M-2-1-1) 0<r<K,

wherel = 0,---,L — 1. Thel’th segment is attained by reducing the IC’'s complex dimenstgrta K;7;, and by diluting
their points to get density,, = p™'".

Proof: See AppendiX]|. [ |
31t can be shown that replacinig;, andUr with any other two invertible matrices still yields transision scheme that attains the optimal DMT. It extends

the set of subspaces @7 that attain the optimal DMT. It also alludes that alongsike proposed transmission matfix IN-A, there are many otip¢ioos
to attain the optimal DMT.
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V. DISCUSSION

In this section we discuss the results presented in the péfeebegin by explaining why full dimension lattice basediogd
schemes such as Golden-codes [9], perfect cadés [10] ard otblic-division algebra based space-time codes [6] wkiere
shown to attain the optimal DMT, are sub-optimal when reglatice decodef{3) is employed in the receiver. In additiwe
explain why using the MMSE estimation in the receiver enalheese schemes to attain the optimal DMT. Afterwards, based
on our results, we give another geometrical interpretatimithe optimal DMT. Finally, since in practice a finite codeko
is transmitted, we show that given a lattice with multiptexigainr as defined for IC’s in[{6), a finite constellation with
multiplexing gainr as defined in[[3] can also be carved from it.

A. Lattice Constellations Vs. Full Dimension Lattice Ba@éuite Constellations

In order to demonstrate that full dimension lattice baseatirapschemes with regular lattice decoding are sub-optietals
consider Golden-codes transmitted over a channel iite- N = 2 whereT' = 2. For largep the channel singular values PDF
is proportional top~*1~3%2 wherea; > a» > 0. A Golden-code of a certain rate is carved frord-aomplex dimensional
lattice. We show that when performing regular lattice décgdn the receiver the maximal diversity order that can haia¢d
for » = 0 is 2. This is in contrast to ML decoding or alternatively MMSE igsdtion followed by lattice decoding@[[7]. 8] for
which the maximal diversity order equals 4.

We begin by showing why the maximal diversity order of a Galdede is 2 when performing regular lattice decoding. In
the receiver, the squared effective radius of the effedtittice induced by the channel realization equials (1)

ajtas 1

rea=pT 2 e (35)
lattice .
For latticesreg > 7packing = 5““5 >, whererpacking, dfrll?ff‘ce) are the packing radius and the minimal distance of the &attic
respectively. Hence, we get
<d(lz?‘ttice) ) 2 ) oo
- s (36)

When the squared minimal distance is in the order of the mddiioise variancey—!, the error probability will not decrease
with p. This will happen for instance whem, = 0 anda; = 2. This event occurs for large with probability proportional to
p~2. Hence, in this case the diversity order is 2. Note that fer4kcomplex dimensional lattice we ggt (9)

2
T (37)
P
Therefore, the event where the squared effective radius iké order of the noise variance is equivalenjitp=1 which is
the outage event for lattices, presented in Thedrem 2.

From equation[(36) we get that the minimal distance for edemnel realization of thentire lattice, induces diversity order
2. On the other hand, when the decoder only considers thesweittin thefinite codebook, the non-vanishing determinant
(NVD) property combined with the boundaries of the codebtedds to a lower bound on the minimal distance of the
Golden-code for each channel realization, that is largan tihe expression if_(86), and enables to attain diversitgrot [6].

The fact that considering the entire lattice leads to smatlimimal distance is not surprising since the multiplioatiof the
transmitted lattice with the channel realization leadsdaliag of this lattice in the direction of the channel sirmgubalues.
When considering the infinite lattice, the scaling may redtie distance between points that were very far in the tratesin
lattice. These points are not necessarily part of the firoidebook and therefore does not effect the minimal distafickeo
finite Golden-code but do effect the minimal distance of thitide.

MMSE estimation followed by lattice decoding will also lesm diversity order 4. Translating the arguments presemnted i
[7], [8] to our setting leads to VNR

-—apt+a—apt
2

fire=p (38)

where (az:)Jr = z for x > 0 and zero else. This expression is larger than the expresi@d) and implies that the MMSE
estimation, that takes into account the transmitted poalsn improves the minimal distance for each channel rdaiza
However, the improvement in VNR (and minimal distance) csratthe expense of a self additive noise that depends on the
transmitted codeword. Under the assumption that the traeshtodewords are not too far from the origin the variantthe
effective noise is small enough to allow attaining the opfi@MT. For instance Golden-code codewords are from a badinde
shaping region, which enables to attain diversity order dteNhat for the entire lattice, the farther the lattice pdsrnfrom the
origin, the larger the effective noise variance is. Thisreually leads to poor error performance for lattice poiras dnough
from the origin.

Our work shows that transmitting a lattice with average nemiif dimensions per channel ugé = % and performing
regular lattice decoding in the receiver leads to VNR

1_©1_3az

foc=p 2T E (39)
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(a) Finite constellation: In this case even whienis small it is possible to decode.

T2 hoza
® °
°
o oo,
.
° ° o ° 1 hix1
o —O—©—0-0-D—IOO00-TI—O—AD-0T>
—
°
o P o ——
° . °
° . .
.

(b) Full dimensional infinite constellaion: In this case duoehe infiniteness of the constellation whip is very small it

is impossible to decode.
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(c) Infinite constellaion with reduced dimension: In thiseaven wherho is very small it is possible to decode.

Fig. 3. lllustrative example for the case = 2, N = 2 of the significance of reducing dimensions when consideragular lattice decoding. For this
example we assume that the realizationfbfis diagonal, where the diagonal elements afeand ho.

which is also larger tha (87) and enables to attain diweosifler 4 (in fact it attains the optimal DMT in the range< r < 1).
Hence, from our work we can see that reducing the lattice d&o@ality increases thiattice minimal distance to such an
extent that enables to attain the optimal DMT when perfogmiegular lattice decoding. In this sense reducing thechkatti
dimensionality takes the role of MMSE estimation. It is alateresting to note that MMSE estimation followed by ladtic
decoding yields good error performance for lattice poidtse enough to the origin (for instance lattice points witkiie
shaping region), and bad performance for lattice pointy ¥&r from the origin. On the other hand, regular lattice d#ag
yields the same performance for all lattice points insideutside the shaping region. An illustrative example thawshhow
reduced dimension assists in increasing the minimal distmompared to full dimension lattice is presented in Fi@ire

B. Geometrical Interpretation of the Optimal DMT, for IC’s

In this subsection we give a geometrical interpretationhef eptimal DMT, based on allocation of lattice dimensionsisT
is a qualitative discussion and the exact results appeagdtions 111,[TV.

First from our results we can see that for a sequence ofdattidth certain number of dimensions per channel use the DMT
is a straight line as a function of the multiplexing gain (&zollary[3). It results from the fact that for lattices charg the
multiplexing gain is equivalent to scaling each dimensigpbzx . Assume that the sequence of lattices attains for multipiex
gainr = 0 diversity orderd, i.e. the error probability decays as?. In this case scaling each dimension pyzx leads to
error probability that decays as‘d(l‘%). This behavior results from the fact that the lattice decddkes into consideration
all the lattice points. Hence, the scaling merely replacegth p'~ % in the error probability expression. The optimal DMT
is a piecewise linear function. We get that each line conrdp to a sequence of lattices with certain number of dino@ssi
per channel use.

Next we wish to give the reasoning for the average number mdsions per channel use required to achieve each line
in the optimal DMT. For simplicity let us consider the cake = N = 3. We begin by considering the straight line in the
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range0 < r < 1. In this range the optimal DMT equa$s— 5 - r. We wish to show why the average number of dimensions
per channel use that enables to attain this straight Iinale@u For largep the channel singular values PDF is of the form
of p~x1—3e2=5a3 wherea; > as > a3 > 0. When the transmission scheme spreads Gvahannel uses, the equivalent
channel matrix,H,,, presented in({5) ha¥T" singular values. Each singular value Bf occursT times in the singular values
of H... Assume each complex dimension of the lattice is transthitte a certain singular value dfex. Let us denote by

the number of dimensions transmitted on the singular valhle'sequalp*% 1 < < 3. Note thatzl . T; may be smaller

than37T. According to this assumption ézz 1 T) complex dimensional lattice is transmitted oerchannel uses, and the

average number of dimensions per channel usg is Z— The effective radius in the receiver equals
_ r;-T _T1ﬂ1+7;2ﬂ2+T3ﬂ3
rep=p ST ST (40)
and the VNR equals
1— gT-T ,T1(’<1+€20<2+T30<3
Mrcip o1 Ti i T . (41)

We are interested in the probability of the outage eventthe probability thaj...=1. Essentially, we show that wheli < 2
it is possible to attain maximal diversity order @for » = 0, but it is impossible to attain the linge— 5 T forany0 <r < 9

It results from the fact that multiplexing gain> 0 requiresscalingeach dimension by~ 2% = p 221 1T which decreases
reg (@nd as a consequence also decreases the lattice minirteadadiy to such an extent that it does not enable to attain the
optimal DMT. On the other hand wheli > % the channeldecreases. g to such an extent that it does not enable to attain
the optimal DMT for0 < r < 1. Hence,K = % balances the effect of the scaling and the channel and aliovastain the
optimal DMT in the range) < r < 1.

In order to attain the maximal diversity ord@mwhenr = 0, the outage event,.=1 implies that the following conditions
need to be fulfilled

I 1 T+ 15 < 4 (42)

Zz 1 T 9 Z?:l T’l 9

i.e. each singular value can not occur in more dimensions tta relative effect it has on the PDF of the singular vallé®
largest average number of dimensions per channel use it @2) is 9 . In this case fofl’ = 5 a 9-complex dimensional
lattice is transmitted, and the conditions are fulfilled hwequality wherﬂ“l =1,T7, =3 andT3 = 5. WhenK < % the
conditions in [[4R) are still fulfilled and therefore diveysbrder9 is still attained forr = 0. However, based ol (#0) we get
for r > 0 thatr.g decreases faster than the casekof= 2 9 . Hence, forkK < 9 the diversity order is smaller thah— 5 - r
when0 < r < £.

So far we have shown that choosuﬁg< leads to sub-optimal DMT. Now, we wish to show that in the @b r < 1
the DMT is smaller thar9 — 5 - r also whenk > g First, for K > g the conditions in[(42) are not met. Hence, in this
case the diversity order is smaller tharwhenr = 0. Forr =1 and K = 9 the diversity order equal$é. Assume the best
assignment of lattice dimensions would enable to chdase T'. In this caseurC in (41) is effected equally itf=1,a3=0
orr =0, as = 1, i.e. the scaling inflicted by = 1 decreases.q in (@0) as if the singular valug~ = = p~=2. In both cases
we get

T14+To Ty oy —Toag

fre = p AT (43)

The difference is that when = 1, a3 = 0 the PDF of the singular values equals® —322 which leads to smaller diversity
order than the case= 0, az = 1. For largep andr = 1, a3 = 0 is included in the most dominant error event whi§n> 9
Hence, diversity order ot is attained forr =1 and K > ¢ 2 when the following condition is met
T1 1

T+ 1T, = 4 (44)
which is exactly the condition for attaining maximal divid,ysnrder of4 whenr = 0 in a channel with2 transmit and receive
antennas. This condition is met as long /ds< < I. Hence, for— K < 7 the best diversity order is smaller tharwhen
r =0, and equalsl whenr = 1. Since for eachK the largest DMT is a stralght line, the DMT for eabh< K < I 3 in the
range0 < r < 1 is smaller thard — 5 -r. We are left with the casé < K < 2. By applying similar arguments, only this time
consideringr = 2, it can be shown that in the ran@e< r < 2 the largest DMT for anyZ < K <2is smaller tharv — 3 - r.
These arguments also show that in the radger < 3 the optimal DMT equal® — r. Hence we get fof < r < 1 that the
optimal DMT equals) — 5 - r, where forl <r < 2,2 <r < 3 the optimal DMT equal§ — 3 - r and2 — r respectively.

C. The Relation Between the Multiplexing Gains of an IC andraté- Constellation

In this paper we defined the multiplexing gain of IC’s sequeeas the rate the IC’s density increagés (6), i.e. wher= p"”
the multiplexing gain is-. We characterized the optimal DMT of IC’s based on this dgfiniof the multiplexing gain. In
practice a finite constellation is transmitted, even wherfopming regular lattice decoding in the receiver. Hence this
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subsection we show that finite constellation with multifiiexgain» can be carved from a lattice with multiplexing gain
(according to the definition given ifl(6)), while maintaigithe same performance when performing regular lattice diego
in the receiver.

Consider a lattice\ with density~;, = p"”. In this case for each lattice point the Voronoi region vodueguals

V(@)= V|=yt=p"T VeeA
In [2Q] it has been shown that for any Jordan measurable liedtS with volume |V (.S) | there exists a translate such

that
V(S)]
14

whereA + u is the translate of each lattice point by the constarand| (A + «)N.S| is the number of words of the translated
lattice within the regior5. Hence, for each lattice in a sequence with multiplexinghgaithere exists a translate such that the
number of codewords within a sphere with volume 1 is largeequal top™, i.e. the rate is-log (p) where in this setting
takes the role o6NR. Hence, it is possible to carve from the translated latt8esxguence a finite constellations sequence with
multiplexing gainr according to the definitions of finite constellations. Whemfprming regular lattice decoding the translate
does not effect the performance. Hence, the results we mtesbén this work also apply when carving finite constellatio
with the corresponding multiplexing gain from the lattiExjuence, and performing regular lattice decoding in theiver.

[(A+u)nS| >

(45)

VI. SUMMARY

This work investigates the DMT of IC’s. A new tradeoff betwethe IC average number of dimensions per channel use
and the best DMT it may attain is presented. Based on thigafhe transmission scheme that enables to attain the optima
DMT of finite constellations, by lattices with regular |lagi decoding, is presented.

APPENDIXA
PrROOF OFTHEOREM[I

We prove the result for any IC with density... The proof outline is as follows. We prove the theorem by ahittion.
First, for a given IC with receiver density.., we assume an average decoding error probability that eqoizhe lower bound
we wish to prove. Then, we derive a “regular” IC from the giv€nwith the same density,.. and the same average decoding
error probability. Regularizing the IC allows us to find a Ewbound on the IC maximal error probability that depends on
its density. We expurgate half of the codewords with thedatgrror probability and get another regular IC with denait.
Based on the average decoding error probability, we uppendbthe expurgated IC maximal error probability, and based o
its density we lower bound the same maximal error probgb#ihd get a contradiction.

Let us consider & T-complex dimensional IC in the receive?;(T(p), with receiver densityy,.. and average decoding
error probability

— KT
Pe(H, p) — (1 _ 6*)0(4 )ef,urcuA(KT)Jr(KTfl)ln(,urc) (46)

£ KT—-1
KT-1 KT-3p (KT 1) KT

where A(KT) = (q=miq=ey) 7€ (KT + )%, CKT) = (=er=ay) 7 PRy and0 < eg, ez < 1.

Next we construct a regularized IS, (p), from Sy (p), whose Voronoi regions are bounded and have finite volumes , i
there exists a finite radiussuch thatV (z) ¢ Ball(x,r), Yz € Sy (p), whereBall(zx,) is a K T-complex dimensional ball
centered around. We constructSy.-(p) in the following manner. Let us defin€y(p, H) = { Sy (p) (He - cuberr (b))},
i.e. a finite constellation derived from;{T(p). We turn this finite constellation into an IC by tilingy(p, H) in the following
manner

Skr(p) = Co(p, H) + (b + b ) He, Z2KT (47)

where for simplicity we assumed thatbe c-(b) C CET, i.e. contained within the firsk’T' complex dimensions. Correspond-
ingly, under this assumptiorf/., equals the firstx’7" complex columns off,,. In this case, the tiling ot (p, H) is done
according to the complex integer combinationsff, columns. In generakube g7 (b) may be a rotated cube withi@ 7,

In this case the tiling is done according to soid& complex linearly independent vectors, consisting of Ime@mbinations
of H., columns. An alternative way to construﬁfﬂp(p) is by considering the transmitter ISk (p). In this case we can
construct another IC in the transmitter

Skr(p) = {Skr(p) [ cubexr(b)} + (b+b )z T (48)

where without loss of generality we assumed again théatxr(b) € CET. In this caseS‘};T(p) ={H., - Skr(p)}.
Next we would like to seb andb to be large enough such thé-(p) has average decoding error probability smaller or

equal to@e*“rc'Z(KT”(KT*U In(=<) and density larger or equal tg... Due to the symmetry that results from the tiling

(41), it is sufficient to upper bound the average decodingrasrobability of the points: € Cy(p, H) C S};T(p) denoted by
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pixT (Cp) in order to upper bound the average decoding error probabilithe entire ICS};T(p) . HencePeSKT(CO) is also
the average decoding error probability for the $¢(T(p). We can upper bound the error probability in the followingrmer

"

PEET(Cy) < Pu(Co) + Po(Sreq \ Co) (49)

where P,(C)) is the average decoding error probability of the finite celtetion Cy(p, H) and Pe(S};T \ Cp) is the average
decoding error probability to points in the s{eff};T\Co(p, h)}, i.e. the error probability inflicted by the replicated codeds
outside the se€(p, H).

We begin by upper boundin@e(S};T \ Cp) by choosingb’ to be large enough. By the tiling at the transmit{er] (48) and
the fact that we have finite complex dimensiéfil’, for a certain channel realizatioH., we get that there exist§(H.,)
such that any pair of points; € Co(p, H), z2 € {Swr \ Co(p, h)} fulfils |z, — 24| > 2b" - §(H.,). The termd(H.,) is
a factor that defines the minimal distance between theses2feetn given channel realization. Note that also for the case
M > N, there must exist such(H,,), as we assumed that,,(p) is KT-complex dimensional IC, i.e. the projected IC
S};T(p) = H..Skr(p) is also KT-complex dimensional. Hence, we get that

Po(Skr \ Co) < Pr(||fie| > b'6(Her)
wheren,, is the effective noise in th&T-complex dimensional hyperplane Wheﬁ‘éT(p) resides. By using the upper bounds

from [13], we get that for- 22"

2
kT 0

) : stnen? (0'8(He))e, ger
Pr(ite]) 2 b0(Her)) < €728 (g rrg =)

Hence, forb’ large enough we get that

" C(KT 1
Pe(SKT \ CO) < (1 _ 6*) (4 )e—urC»A(KT)-ﬁ-(KT—l)ln(urc).

Now we would like to upper bound the error probabilify, (Cy), of the finite constellatiorCy(p, H). According to the
definition of the average decoding error probability[in] (1@ definition ofCy(p, H) and the assumption il {(46), we get that
1-— 6*)(1 + E(b))é(KT)e_MrC.Z(KT) )

4
wherelim,_,c(b) = 0. It results from the fact that in {10) we take the limit suptem and so fob large enough the average
decoding error probability of the IC must be upper boundedhieyaforementioned term. Also, for ahythe average decoding

error probability of the finite constellatiof(p, H) is smaller or equal to the error probability, defined[inl (1df) decoding
over the entire IC. Based on the upper bound frbm (49) we gefdtowing upper bound on the error probability Sf{T(p)

e

Pu(Co) < ¢

PeS;QT(Co) < (175*)(21+e(b))U(KT)ef,urc-Z(KT) KT (50)

re

According to the definition ofy.. and due to the fact that we are taking limit supremum: for @ry e; < 1 there existd
large enough such that

[Co(p, H)|
>(1- e 51
vol(Hem . cubeKT(b)) = €1)y (1)
where|Cy(p, H)| is the number of points i€y (p, H). In fact there exists large enoughthat fulfils both [50) and(31).
In (@7) we tiled byb +b'. If we had tiledCy(p, H) only by b, then for large enough we would have got IC with density
larger or equal tq1 — €1)v,... However , as we tile by + b, we get forb large enough thaS};T(p) has density greater or

equal to;*Z} Y. Hence, for anyd < e < 1 there existd large enough such that
+F

"

Yre > (1 - 61)(1 - 62)77“0' (52)
Wherey;'c is the density OfS;{T(p). Again, there also must exist large enougtthat fulfils (50) and[(52) simultaneously.
Hence, for large enough we can derive fromSy,.(p) an IC Sy, (p) with density~,, > (1 — 1)(1 — e2)y. and average
decoding error probability smaller or equal 2+ NG (R T)e e ART)+H(KT—1) In(pre),
By averaging arguments we know that expurgating the wor$tdfidhe codewords inS‘;;T(p), yields an |CS}/(/T(p) with
density

o> (1-a)(1—e) 2t =7 (53)

and maximal decoding error probability

111

sup,cgr PO () < (1= €)(1 4 e(b))C(KT)e e AKT) K= (54)

rC
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111

where PoxT (z) is the error probability of: € S} ,.(p).

From the construction method cﬂ‘}'{T(p), defined in [(4l7), it can be easily shown that tilidg (p, H) yields bounded
and finite volume Voronoi regions, i.e. there exists a finidiusr such thatV (z) ¢ Ball(z,r), V& € Sip(p). Due to the
symmetry that results frorﬁ;{T(p) construction[(4]7), it also applies f(ﬁ}gT(p). Hence, there must exist a poirg € S;T(p)
that satisfiegV (x)| < % According to the definition of the effective radius [0 (1)ewet thatreg (o) < reg (Vre)-
Hence, we get

1" 1"

S S _ _ _
sup, gy P (x) 2 P (20) > Pr(||fiex | > re(20)) = Pr(||fiexll > e (Frc)) (55)

"

where the lower bound®, < (20) > Pr(||nell > rest(x0)) was proven in[[18]. We calculate the following lower bound

2eto PET—=1,=502 T,2§(T 2672—55

Pr (|| 2oyl = 7o (e dr > e 56
I (e[| 2 rese (Frc)) > /T2ff o2KTOKTD(KT) Tz o2KT-29KTT(KT)\/e (56)

By assigningrZ; = ( W(Kf;{%))m we get

1
" v KT — Yre
SUp, g PENT(x) > O(KT) - e Sregm AR I ) (57)
Hence, for certaire; ande; we get

sup,cg PENT(x) > TKT) - e AETIHKT 1) i) (58)

1

whereji,.. = m. Forb large enough we g€t —e*)(1+¢(b)) < 1, and sol(5B) contradicts (64). As a result we get contradic-

tion of the initial assumption i (46). This contradictios@holds for anyP. (H, p) < %me*“m'z(KTH(KT*l)ln(urc).
Hence, we get that

— C(KT 1
PE(H, p) > (4 )e—urC»A(KT)-l—(KT—l)ln(u,-c). (59)

Note that the lower bound holds for afly< €, e2,¢* < 1 and also that the expressions [inl(46).1(59) are continuossa A
result we can also sef = e = ¢* = 0 and get the desired lower bound. Finally, note that we aerésted in a lower bound
on the error probability of any IC for a given channel rediima. Hence, we are free to choose different valuesbfand b’
for each channel realization. and

APPENDIXB
PROOF OF THE OPTIMIZATION PROBLEM INTHEOREM[Z|

We would like to solve the optimization problem [n{17) foryaralue of K = B+ < L, whereB € N and0 < 8 < 1. First

we consider the case 0f< K < 1, i.e. the case wherB = 0. In this case the constraint boils downig = 1—+. By assigning
ap=---=ap=1- % we get thatdKT( ) < MN(1- ). Next we analyze the case wheke> 1. Due to the constraint,
the minimal value must satisty; = = ay,_pg. From the constraint we also know that = K —r— Z . aL i—Bar_p.
By assigning in[(1l7) we get
B-1
min(K —r)(N + M —1) + (M=B)(N=B)=B(N+M-1))ar-p— »_ 2i-or; (60)
o 1=1

wherea > 0 signifiesa; > --- > a > 0. We would like to consider two cases. The case whegre — B)(N — B) —
B(N + M — 1)) > 327" 2 and the case wherM — B)(N — B) — B(N + M — 1)) < S-77"2;. The first case, where
(M = B)(N — B) = B(N + M — 1)) > B(B — 1), is achieved fork < 4. In this case we use the following Lemma
in order to find the optimal solution

Lemma 2. Consider the optimization problem
D

mln Bici — ZB C
=2
where:(1). ¢; > --- > ¢p > 0; (2). By > ZiQBi andBy > ---> Bp > 0; (3). Ber+ Y2, ¢i = 6 > 0, where0 < 3 < 1.
. . . . 6
The minimal value is achieved fef = --- = cp = yoms
Proof: We prove by induction. First let us consider the case wtiere 2. In this case we would like to find

min Blcl — BQCQ. (61)
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wherecy > ¢co > 0, Bey +¢c2 =6 >0, By > By > 0and0 < 8 < 1. It is easy to see that for this case the minimum is
achieved forc; = ¢o, as increasing; while decreasing: to satisfy3c; + co = § will only increase [(6IL).

Now let assume that fab elements, the minimum is achieved fqr: =cp = D%W. Let us consideD 4+ 1 elements
with constraintBe; + 21 ¢; = 6. If we takec; = -~ = ¢p g = D25 We get
D+1 5
By — B; ) 62
( 1 ; Z)D + B ( )
We would Iike to show that this is the minimal possible valee this problem. Tak@/DJr1 = DLH; — € > 0. In this case

By + 30, ¢ = w in order to satisfydc, + 3.70" ¢ = 6. According to our assumptioB;¢; — .2, Bic;

is minimal forc1 c=cp= D+/5 + m. By assigning these values we get
D+1
ZB D+ﬂ ZB 1+ﬂ+BD+16
which is greater thari (62). This concludes the proof. ]

For the case((M — B)(N — B) — B(N + M — 1)) > B(B — 1), the optimization problem coincides with Lemrih 2
as it fulfils the conditionB; > Zf;z B; in the lemma. Hence, the optimization problem solution for< % is
o= =aQr_1 = K;{j{“ = «. The minimum is achieved when; = «, i.e. the maximal valuex;, can receive under
the constrainty; > --- > o > 0. We get thata = 1 — £, and the optimization problem solution ¢f {17) for the case

K < M8 is dyer(r) < MN(1— %), |

M+N-—1 K
For the casg (M — B)(N — B) — B(N + M — 1)) < B(B — 1), or equivalentlyk > N%QV 7, we would like to show that
the optimal solution must fulfite, = 0. It results from the fact that for the optimal solution, tieenh ((M — B)(N — B) —
BN+ M — 1))aL,B - Zf:ll 2i-ar_; in (@0) must be negative. This is due to the fact that taking= - - - = a1 gives

negative value. Hence, for the optimal solution we woule li maximizer;_l1 ap_; — Bar_g =K —r — «ar. By taking
ar = 0 the sum is maximized. Hence, the optimal solution for> -2 must haven, = 0.

Now consider the general case. Assume thatKop % + 1 — 1 the optimal solution must hawey, = --- =

ar_i+1 = 0. First consider the case whete< [ < B — 1. For this case the constralntE — aL i+Bar,_p=K-—r,lie.
the constraint contains at least two singular values. Wereamite [17) as follows

B—1
gni%(K—r)(N—l-M—l—Z-l)—i- (M—=B)(N—-B)—B(N+M—-1-2-1))ar_p— Z 200 —1) - ap_;. (63)
a i=1+1

For the casg(M — B)(N —B) = B(N+M —1-2:1)) > (B—1-1)(B —1) we get thatk < % + and we also
assumed thak™ > w +1— 1. For this case we can use Lemfa 2 and get that the optimizataiiem solution

N+M—1— z}g
isap_j-1=---=qap_p= % = «. The minimum is achieved fat;,_; = a. We get thatay, = --- = ap_141 =0
ando; = -+ = o = . Hence, for the caséM LW+ | ;4 < K < W=O)(N-D 4 | the solution is

N+M-—-1-2(1—-1) N+M—-1-2-1

“ |

dicr(r) < (N = D(M = ) 5=
For the case((M — B)(N — B) — B(N + M —1—2-1)) < (B —1-1)(B —1), or equivalentlyx > M-DU=D 1y the
term ((M — B)(N — B) — B(N +M—-1-2-1)ar—p— Bt 2(i— 1) - ap_; in (B3) must be negative for the optimal

1=l+1
solution. This is due to the fact that by taking = --- = oy _; 1 we get a negative value. Hence we would like to maximize
the sumZB:li1 arp_;+ Bap_p = K —r —ap_;. The sum is maximized by taking;_; = 0. Hence the optimal solution
for the casekX” > % + 1 must haveny,_; = --- = o, = 0. Note that for the case= B — 1 we have only two terms

in the constraintvyy,_p11 + Sar—p = K — r. However, the solution remains the same.
For the casek > % +1—1andl = B the constraint is of the form_ = £=7. Again we assume that
ar—p41 =+ =ag = 0. In this case the solution is; = -+ =y = &= (r) < (M —1)(N —)E=. This

concludes the proof.

APPENDIXC
PROOF OFLEMMA [1I

We begin by proving the cas® > M. From the construction of7; it can be seen that a set of columfis;, ..., h,;} may
occur in N — i + j blocks at most. It results from the fact that we can only @dith/ — ¢ columns to the right of.; (20),
and;j — 1 columns to the left ofy; (2I), and still get a block that contaifg, ..., h;} (or even more specifically a block
that containgh;, h; }). In addltlon columngh;, ..., h;} must occur in the firstV — M + 1 blocks, as these blocks equal to
H (@9). Hence, we can upper bound the number of occurrenc€é byM +1+j—1+M —i=N —i+j.
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Next we prove the cas#/ > N. When( < i — j < N, the set of columngh;, ..., h;} may occur inN — i+ j blocks at
most. We divide the proof into four cases.

1) i < Nandj > M — N + 1. In this case the set of columrdg;,...,h;} occurs in the firstM — N + 1 blocks
(22). As for the additionalV — 1 — [ pairs of columns, the set of columns belongs both to the{ket. .., hy} and
{har—n41--- bt Hence, in the additional column pairs we can subtréict i columns to the right ofy; (23) and
Jj—M+N —1 columns to the left of; (24). Added together we observe that the number of occuesecan not exceed
N —i+j.

2) i < N andj < M — N + 1. In this case the set of columns can have ghlyccurrences in the firs¥/ — N + 1 blocks.
In this case the sefth;, ..., h;} occurs within{h,, ..., hy} but does not occur withigh,, n.+,- ..,k }. Hence, the
transmission scheme only subtracts columns to the righit, €3). In this case we can hav€ — i subtractions and
together we gefV — i + j occurrences at most.

3) i>Nandj > M — N+ 1. We have heré/ — i + 1 occurrences in the first/ — N + 1 blocks. In this case the set
{h;,- .., h;} occurs within{h; xq,...,hy} but does not occur withigh,, ..., hy}. Hence we can subtract up to
j— M+ N —1 columns to the left of.; (24). Together there ar®& — i 4 j occurrences at most.

4) Last casej > N andj < M — N + 1. Here the set of columns can only occur in the fis$t— N + 1 blocks. In this
case there are exactly — i + j occurrences in the firs¥/ — N + 1 blocks.

In casei — j > N, the set of columns does not occur in any block as each coldnih does not have more thak non-zero
entries.

APPENDIXD
PROOF OFTHEOREM[3|

Based onl[[13] we have the following upper bound on the maxidikelihood (ML) decoding error probability of each
K,;T;-complex dimensional IC poir@’ € Sk,

Pofa’) < Pr(|e| = R) + D Pr(ll =2’ = fiegl| < 1) (64)
l€Ball(e’ 2R) N Sk, 1, J#x'

whereBall(g’, 2R) is a K;T;-complex dimensional ball of radiusR centered around , andn,, is the effective noise in the
K;T;-complex dimensional hyperplane where the IC’s residege Xuat the second term if_(64) represents the pairwise error
probability to points withinBall(g’, 2R), i.e. the decision region is at distan&eat most.

Next we upper bound the average decoding error probabifitgroensemble of constellations drawn uniformly within
cubeg, T, (b). Each code-book containgy,,b*%:™ | points, where each point is drawn uniformly withibe,r, (b). In the
receiver, the random ensemble is uniformly distributedeit{Hég - cubeg,7,(b)}. Let us consider a certain point, €
{He(il:f)'cubeKlTl (b)}, from the random ensemble in the receiver. We denote tharimgndz by Ring(z',iA) = Ball(z',iA)\
Ball(z', (i — 1)A). The average number of points withiRing(z ,iA) of the random ensemble is

Vrcﬂ'Kl L 2Kln

Av(z', i) = el Hi - cuberr, (0) () Ring(a'i8)| < el Ring(a',i0)| < “Fer=y

GA)ET=IA (85)
wherey,. = prTﬁEleTl 7, By using the upper bounds on the error probabilityl (64), tiedaverage number of points within
the rings[(6b), we get for a certain channel realization tileWing upper bound on the average decoding error proipaloi
the finite constellations ensemble, at paint

bl
PeFC(g apaﬂ) S Pr("ﬁcx" 2 R) +7rCQ(KlT‘l) Z P’f‘(ﬁew,l >
i=1

e _21)A> H(EAPETTIA (66)

where Q(K,T;) = % and 7., 1 is the first component ofi., (the pairwise error probability has scalar decision

region). By takingA — 0 we get
BEC(.) - 2 - T\ 2K, Ti—1
PFC(z apaﬂ) < Pr([|2e,l > R) +’7rCQ(KlTl)/ Pr(fiez,1 > 5)55 T d. (67)
0

Note that this upper bound applies for any valueRof 0 andb, and does not depend an, i.e. PFC (', p, n) = PF(p,n).

Now we divide the channel realization into two subsgts= {7 | nglﬂ ni < Ty(Ki—r),n; > 0}, wheren = (n1,...,17x,1,)

and A = {y | ZfillTl n; > T (K; —r),n; > 0}. For each set we upper bound the error probability. We begiin the case
n € A. For this case we upper bound the terms[in (67) and find an upperd on the error probability as a function of the



21

- ZQTL 4
receiver VNR, .. = plf?ﬁ [T, We begin by upper bounding the integral of the second ten@@f). Note that

2

Pr(ﬁex,l Z g) S 678272-
Hence, the integral in the second term[inl(67) can be uppendemiby
€_$I2KLT171

2K (K, T;) 23K Ti—2 dz

2R
GQK[TZF(KIE)23KLT172 /
0

22
2R e 80T p2KTI1
where [; PRI (RT3

>dr = Pr(||fiex]| < 2R) < 1. As a result we get the following upper bound

2R
/ Pr(fies1 > g)x”lﬂ*ldx < oK) 23K T2, (68)
0
By assigning this upper bound in the second terniof (67) we get
2R 2K, T, 2K, T, 3K, Ty —2 KT
gt Q(Ksz)/ Pr(fiez1 > E)x”(lTlfldsz: < Do/ 2K T DR T2 :Ple(K”T)Jerlel e L-
" 0 T2 - L(KT +1) 26K1(29)

Next we upper boundr(||7iex|| > R), the first term in[(6l7). We choose

R = Ry = 20 i 2R i
e e
Forn € A we get that
- 2 .
R _ 1—;%—2521TZ 7T >1
oK/ T, - o2 =

. 2 ~ _ BRIy R2.e
By using the upper bounds frorn [13], we know that for the Cg\ﬁaﬁ? > 1, Pr(||ftex|| > Rer) < € 202 (QK;;EZU2)KZTL.
Hence we get

KT, ;
1AL 1y KT,
5}

oy j
K, i=1 KT .pTl(Kl_T)_Zi:I i 'EKLTL. (70)

-

PT(HﬁCXH > Rcﬁ') < e~ futiv
The fact that) € A has two significant consequences: the VNR is greater or équialand ag increases the maximal VNR
in the set also increases. For very large VNR in the recetlierupper bound of the first terni,_(70), is negligible comgare
to the upper bound on the second terim] (69). On the other hlaadet of rather small VNR values is fixed for increasing
(the VNR is grater or equal to 1). Hence there must exist aficieit D'(KlTl) that gives us

KT,

PFC(p,n) < D' (K, Ty)p~ 1=+ 2yt -

foranyp andn € A, where@(p, n) is the average decoding error probability of the ensembtmostellations, for a certain
channel realizations. B

Note that we could also tak@ > R.g, as the upper bound if (69) does not dependiaand the upper bound if (70) would
only decrease in this case. It results from the fact that weirgterested in the exponential behavior of the error pritibhgb
and we consider a fixed VNR (as a functiongfas an outage event. This allows us to take cruder boundgi34in (69),
that do not depend oR.

For the case) € A, we get

- p—TZ(Kz—TH-Zf(:llTL mo>

Hence, we can upper bound the error probabilitysfas A by 1. We can also upper bound the error probability for thiseca
by the upper bound from equatidn {71), as long as we stateDl’(di’lT) > 1. Hence, the upper bound from_{71) applies for
n 20,1 <i<KT.

So far we upper bounded the average decoding error protyabflithe ensemble of finite constellations. We extend now
these finite constellations into an ensemble of IC’s withsitgny,,., and show that the upper bound on the average decoding
error probability does not change. Let us consider a ceffiaite constellation,Cy(p,b) C cubeg,r,(b), from the random
ensemble. We extend it into IC

IC(p, KiTh) = Co(p,b) + (b+b') - Z2KTe (72)
where without loss of generality we assumed thaie 1, (b) € CXi7t. In the receiver we have

IC(p, KiTy, HY) = H - Colp,b) + (b + b)) HS) - 225971, (73)
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By extending each finite constellation in the ensemble imdG according to the method presented[inl (72), we get a new
ensemble of IC's. We would like to sétand b to be large enough such that the IC's ensemble average aecedior
probability has the same upper bound ad1id (71), and a dethsityequalsy,.. up to a coefficient. First we would like to set a
value forb'. Increasingy’ decreases the error probability inflicted by the codewordside the se(Héfcg -Co(p,b)}. Without

loss of generality, we upper bound the error probabilitytaf pointsz € {Héfcg -Co(p,b)} C IC(p, KlTl,He(f:f)), denoted by
Pefc(Hifcg - Cp). Due to the tiling symmetryPgC(Hig - Cp) is also the average decoding error probability of the er@re

We begin withn € A. For this case, we upper bound the IC error probability inftiewing manner

PIC(HY) - Co) < PFO(HS - Co) + P.(HS - (1C\ Co))

wherePeFC(Hc(Q - Cp) is the error probability of the finite constellatic{d:lég -Cp}, and P, (HC(Q -(IC\ Cp)) is the average

decoding error probability to points in the s{ch(Q -(IC'\ Cy)}. For the case) € A, we know that0 < n; < Tj(K; — ).

Hence, the constriction caused by the channel in each diorergan not be smaller than—%(Kl—T). As a result, for any
T

z1 € {HY) - Co} anday € {HY - (IC\ Co)} we get|lz, — zo|| > 2b - p~ 3 =7, By choosingh = /XKLL o3 (Ki=r)+e,
we get fory € A that ||z, — 2| > 21/ £ p. Hence we get

3 KT, .
Po(HY - (IC\ Co)) < Pr(|iiell > / ==15°).

e

For p > 1 we get according to the bounds [n [13] that

Pr(ell 2 |/ B2 1)) < e T pRiT O R
e

As a result, there exists a coefficiebt (K;7}) such that

P.(H{ - (1C\ Cy)) < D" (K Ty)p T2
forn € Aandp > 1. This bound applies for any IC in the ensemble. Frbm (71) westate tha’/'“ (p, n) = E¢, (PEFC(HC(Q-
Co)) < D' (K, Ty)p~ U=+ n:, Hence
Po(pn) < DK Ty)p~ 10+ 2 o (74)

whereP.(p,n) = Ec, (Pelc(He(f:f) -Cy)) is the average decoding error probability of the ensembl€isf defined in [7B), and
D =2max(D',D") > 1.

Next, we set the value df to be large enough such that each IC density from the enseémifi8), ~,.., equalsy,. up to
a factor of 2. By choosing = b - p¢ we get

b b ok 1
VTC_VTC(b_i_b/) —VTcl_’_p_e-

For each value > 1, we get%'ym < V;c < ~vre. As a result we have

ro — 1
(Yre) ™7
2meo?
Note that in our proof we referred to a matrix of dimensi¥fi; x K;7;. However these results apply for any full rank matrix

with number of rows which is greater or equal to the numberadfimns.

Pre < flpe = < 2.

APPENDIXE
PROOF OF THEOREM4]

Specifically, we first lower bound the contribution/efto the determinanf(33), by upper boundﬁd;i%(j’”’l bi(k)a(k, §j).
Based on Lemmial 1, and the fact that when two columnd afccur together in a block (ﬁ{e(f:f) all the columns offf between
them must also occur in the same block, we get

min(j,L)—1
> bi(s)<N-k  0<k<min(j,L) -1, (75)
s=k
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Wherezm‘“(J’L) "b;(s) is the number of occurrences Oh;,...,h; ,} in the blocks ofHéfcg. Hence, we can state that

min(j,L)—1

> bi(s)<N

s=0

by assigning: = 0 in (Z5). Also note that fot = 0, the sumzmln »-1 bj(s)a(s,éj) is larger than for any other< [ < L—1.
From the inequalities if(31), and the fact that for 0 we getb;(k) > 0 for any 1 < k < min(j, L) — 1, we can state that

min(j,L)—1 min(j,L)—2
; bj(s)a(s,gj) < ; a(s,éj) + (N —min(j, L) + 1)a(min(j, L) — 1,§j) = ¢(j). (76)

Using [33) and[(76) we can state that for a vecgg),rwhose PDF is proportional tp~ 165, we can lower bound the
contribution ofh; to \HOTHY| by

min(j,L)—1

I 12 T My, sl P25 > o7, (77)
k=1

By taking into account the contribution of each coluanto the determinant we get that

min(j,L)—1

! l
B HY| = th (RS | [P CC (78)
k=1

By considering the set of vectogs, . . whose PDF is proportional tp™ DREED B %3 and by using the lower bound

from (Z1) we get

I\{’

HYTHQ| > pm T O (79)
The upper bound on the error probability presented in The@eds proportional to
prz(Kz*T) . |HC(QTHC(Q|*1 _ p*Tz(Kz*T)Jerle i (80)

forn; > 0andl <i < KTy, Wherep*% are the singular values dec(Q Hence, in order to use the upper bound from
TheoremB in our analysis, we need to show that by taking> 0,1 < i < N, 1 < j < M we also get tha; > 0,
1 <4 < K;T;. Note that the entries oﬂég are elements of the channel matiik Also, all the columns off must appear
in He(f:f) Hence, from trace considerations we get
—mm“(&,)
14 ’ / — ming(ns) 2 —ming ;(&,;)
L <) < N - KT, 03 (8is),
KT, =p = Ly p
As a resultmin; ;(& ;) > 0 if and only if ming(ns) > 0, and sons > 0 for everyl < s < K;T;. As the upper bound on
the error probability in[(80) applies foy, > 0, 1 < i < KT, this upper bound also applies wheneggr > 0,1 <i < N
and1 < j < M. In equation[(7B) we found a lower bound on the determinamt.u4e this lower bound to upper bound the
determinant of the matrix invergé O g l)| !

HOTED| 1 < T ), (81)

and as a consequence we can upper bound the error probability
We can express the average decoding error probability tneebsemble of IC’s for large as follows

Pip) = [ Rlp IDFUDAR= [ Pulp & f6s)ds (82)
H 1,520

where P (p, H) = Pe(p,&;,5) is the ensemble average decoding error probability perreaealization, and; ; > 0 means

& >0for 1 <i<Nandl< ;<M. We divide the integration range into two setd:= {&;; | Yi; Y00 & <

Ti(K; —7r);&,; >0} and A = {&; | PR Zﬁwl &.; > Ti(K; —r);&.; > 0}. Hence, we can write the average decoding
error probability as follows -

E(p)ﬁ/ P.(p, §z,g)f(§z,g)d§z,g+/ _Pe(p, i) f(&iy)dEi - (83)
& jEA &ijEA

We begin by upper bounding the first term of the error prolitghih (83). Based onK'Lheorelﬁ 3, the average decoding error
probability per channel realization is upper bounded Ryp, H) < p~ T =)+ i Using the upper bound on the
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determinant[{81) and the fact thL’HéQTHe(grl = pzleTl 7 we get that the first term of the error probability(83) is app
bounded by

/ TSI ()~ €0) g, (84)
fi,,]_'EA -

Now we prove a Lemma that shows that the exponent of the iatebin the upper bound frorh (84) is negative oy > 0.

Lemma 3. consider; ; > 0for 1 <i <N andl < j <M. The sum

N
i) =Y & <0
=1

for everyl < j < M.

Proof: See appendik]F. [ |
In a similar manner ta_|3]/[[7], for a very large and a finite integration range, we can approximate the iatdygr finding
the most dominant exponential term [n(84). Based on Lefdma &mwow that the exponent of the integrand is always negative.
Hence, we can approximate the upper bound by finding

M N

gfr,l-ienAmKl —r)+ > O &, — ).

L j=1 i=1
As Zf.vzl &.; —c(j) > 0 the minimum is achieved Wheﬁjf\’:1 &, —c(j) =0for1 < j < M. This can be achieved for
instance by taking; ; =0 for 1 <i < N, 1 <j < M. In this case we get that the diversity order equBlds; — ) which
is the best diversity order possible for IC’s of complex divsien K;T;.

Next we upper bound the second term of the error probabilif(83). For; ; € A we upper bound the average decoding

error probability per channel realization by 1. In this caseget h

/ Zp_ EJNL1 Zi\le gwjdé'bl
§ij€

Again we approximate this integral by calculating the mosméhant exponential term, i-eninsi,jeﬂ Zfil ij\il &, The
minimal value for this case is alsfi(K; — r). Hence, we get a diversity ord@i(K; — r) for the second term. As a result
we can state that for both terms [n183) we get the same diyessiler, and the transmission scheme diversity order igupp
bounded byT;(K; — r). The proof is concluded.

APPENDIXF
PROOF OFLEMMA [3

We know that

min(j,L)—2
i)=Y als.&)+ I —min(j, L) + Da(min(j, L) — 1,€ )
s=0
where
= i , < k <min(j,L) —
Ak §) = R yybes  0Sh<minGL)—1

and by definition
a(min(j, L) — 1,§j) =2 a(oaéj) > 0.

In order to prove the Lemma we begin witmin(j, L) — 1,§j). We know that

N
Y. &= (N —min(j, L) +1) min&; (85)
s=min(j,L)
wheres € {min(j, L), ..., N}. We can also see that
> i s 86
St1g = se{kr-lr—lll,r.l..,N}g ! (86)

for 0 < k < min(j, L) — 2. Hence we get
N
c(j) =Y &, <0.
=1

This concludes the proof.
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APPENDIX G
PROOF OFTHEOREM[G

We prove that there exists a sequence Af7;-real dimensional lattices (as a function gfthat attains the same diversity
order as in Theoreim] 4. By using thdinkowski-Hlawaka-Siegelheorem [[13]/[18], we upper bound the error probability of
the ensemble of lattices, for each channel realizatiors Tipper bound equals to the upper bound derived in Theldrerhe T
we average the upper bound over all channel realizationkyeceive the desired diversity order.

We consider 2 K;T;-real dimensional ensemble of lattices, transmitted usiilegtransmission scheme defined in subsection
IV-A] We spread the firstK;T; dimensions of the lattice on the real part of the non-zeroienbf G;, and the other;T;
dimensions of the lattice on the imaginary part of the norozntries ofG;. Each lattice in the ensemble has transmitter
densityy,,, = p"t, i.e. multiplexing gain-. We begin by analyzing the performance of the ensemble tbrtebatin the receiver,

for each channel realization. We assume a certain chanak#aton that induces a receiver VNR.. = p TR -z KTTL
wheren > 0. For each lattice in the ensemble we get that the channéaéiah induces a new lattice in the recellem

with density~,. in accordance with[{5) and subsectlon IV-B. For latticeshwitgular lattice decoding, the error probab|I|ty
is equal among all codewords. Hence, it is sufficient to arealhe lattice’s zero codeword error probability. We define t
indication function

1, |z|| <2R
IBano,2r)(2) = { 0 !ls|(|z

In a similar manner to[(64) we can state that for each latticki¢ed in the receiven,., the lattice zero codeword error
probability is upper bounded by

Z IBG”(O 2Reff)( ) PT(”ncxH>”x - ncx” + Pr("”cx" > Reﬂ) (87)
EEArml#O
where 215%;2 ure, andn,, is the effective noise in thd(;7;-complex hyperplane whera,.. resides in. By defining
Jre(@) = IBaii(0,2Rer) (L) - Pr(||ncx|\>||:c — i ||), we can rewrite the upper bound on the error probability fi@)

> frel@) + Pr(|lfiel > Res). (88)
ZEAc,x#0
Note that
e / fre@)dz + Pr(|fie,]| > Rer) (89)
R2K; Ty

is equal to the expression ih_(67), wheye. is the density of the lattice induced in the receivgg, as defined above.

We need to show that there exists a single probability meafurall channel realizations, that gives an average degodi
error probability over the ensemble, which is upper bounbed89). Hence, we consider the ensemble of lattices in the
transmitter which is fixed for each channel realization. thig reason we define

/ l l l
v, = (HG" =) T HY -y (90)

X

Note that the operation ifi (PO) does not change the errorgtibity of the lattice when we use regular lattice decodiBgch
lattice in the ensemble has density. = p"”*. Now we define the following indication function

1, ||H-z||<2R
Letipse(r 2r) (T) _{ 0 !lse :

3

that is the function is one it is within the ellipse and zero otherwise. Let us denote thergrobability of a lattice in the
ensemble for certain channel realizatigroy pY) (n,p), wherev is a random variable that represents a certain lattice in the
ensemble. Using regular lattice decoding, we get the fallgwipper bound on the error probability for each latticeaaord

Pe(l/)(ﬂ’ P) < Z Iellzpse(Hfg 2Re“)( PT(”A nex||>HA (‘T - nex)”) + PT(HA ex” > Reff) (91)
2EAtr,2z#0

whereA is a K;T)xK,;T, matrix that satisfiesAT4 = H Z)THefq?, Ay, is the lattice from the ensemble that corresponds &md
~ CN (0, (H, C(QTHég) !). Note that [1311) is equal t¢_(88), and the corresponding témtke expressions are also equal.

Let us deflnegm(_) L tipse(HY) 2Ry (@) - Pr(|| Aty | > | A(z — fiey)||) - We get that

m/ %Um—%/ Fro(a)da. (92)
R2E, T, R2K;T)

Next we show that by averaging the upper boundid (91) overtisemble of lattices in the transmitter, with the correct
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probability measure, we get

EAPY (1, 0)} < e / fre(@)dz + Pr(|fiey]| > Rer). (93)

R2K, Ty

We prove [[9B) by using th#inkowski-Hlawaka-Siegeaheorem [13]:

Theorem 6. (Minkowski-Hlawaka-Siegel Theorem) In the set of all thttidas of densityy in R2%:7t, there exists a probability
measurer such that for any Riemann integrable functidfx) which vanishes outside some bounded region we have

B gla)} = W/Rmn g(z)dz (94)

zEA
where E,{-} represents the expectation with respect to the measure

Note that considering & K;T;-real dimensional lattices enables us to use this theoreemcé] by choosingy = ~,,
g(z) = gr(z), and considerind (91)[(92) we get the desired upper bduBd £& a result, we can upper bound the ensemble
average decoding error probability for each channel ratitin by the upper bound from Theoré&in[3](74).

Now we are ready to lower bound the diversity order. Accaydim Theorenl 6 there exists a single probability measure
that satisfies[(94), for any Riemann integrable function #amishes outside some bounded region. Basef dn (79) anthaem
[3, we get for the sef¢, ;| Zl 1 ZJ L& S Ti(Kp —1); &5 > 0} a set of functionsg,..(z), which are bounded. As a result
we can upper bound the ensemble average decoding errorhiitybfor this set by the expression frorh (74). For the set of
events{¢; ;| Zl 1 ZJ 1&g > Ti(K —1);&,; > 0F we upper bound the ensemble average decoding error pritjddyil1.

This bounds are the exact same bounds we used in order togavevar the channel realizations in Theoflgm 4. Hence, by
averaging over the channel realizations we get for the ebleethe same lower bound on the diversity order as in Theorem
[4. This concludes the proof.

APPENDIXH
PROOF OFCOROLLARY [3

Let P.(S(p),r) denote the average decoding error probability of theSig) with density~;, = p"7. Since Sxr(p) has
densityy,,. = 1 for everyp, this IC’s sequence has multiplexing gain= 0. Hence, in accordance with our definitions, we
denoteSkr(p) average decoding error probability B%(Skr(p),0). Assume

P.(Skr(p),0) = A (p)p~?

where —lim,_, - log, P.(Skr(p),0) =d, i.e. Skr(p) has diversity orded. By scaling the sequence of IC’s such that
Skr(p) = Skr(p) - p~ 2K 0<r<K,

i.e., scalingSxr(p) by a factor ofp~2%, we get thatSxr(p) has densityy,. = p"7, multiplexing gainr and so its error
probability B ‘ )
Pe(Skr(p),r) = Pe(Skr(p'~%),0) = A (p'~ % )p~ 9= %),

As a result we get-lim, o log, Pe(Skr(p),r) = d(1 — &), i.e. Skr(p) has diversity ordet(1 — ).

APPENDIX |
PROOF OFCOROLLARY [H

The proof of this corollary relies heavily on Theorémn 3. Wagibeby describing thel. ensembles of IC’s and how they
are transmitted. Then we use averaging arguments in ordgrde that there exists a singe sequence of IC’s that atthas t
optimal DMT.

We begin by considering a sequencel§Ty-complex dimensional IC’s with multiplexing gain= 0, i.e. the transmitter
densityy;,. = 1 for any p. In a similar manner to Theoreld 3, we first consider an enserbfinite constellations drawn
uniformly within cube g, 7, (b) € CXoTo. Each code-book contairisy, b*%0T0 | = |p2EK0To | points, where each point is drawn
uniformly within cubek, 1, (b). Let us denote a certain finite constellation in the ensetpl€rc(p, KoTo,b) C cubek,1, (D).
We extend each finite constellation in the ensemble into aimI&€ similar manner to (72)

IC(p, KoTo) = Cro(p, KoTo, b) + (b+b') - Z2K0To, (95)

By choosingb = /%0Tb , "5 +2¢ gngp’ — |, [KoTo ;=45 +¢ \ve get a sequence of ensembles of IC’s with multiplexing gai

e e

r = 0. For a certain channel realization> 0 we get in accordance with Theoréth 3

KoTo

Pop,n, KoTy) < D(KoTy)p~ ToKot it m 06)
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where P.(p,n, KoTp) is the average decoding error probability of thg7,-complex dimensional ensemble of IC’s. From
Theoreni# we know that by transmitting the ensemble of ICér tze transmission matri%,, and averaging over the channel
realizations, we get diversity ord€g, = M N. Transmitting ovelG, gives us akTp-complex dimensional ensemble of IC’s
within CM7o,

Next we derive from thekyTy-complex dimensional ensemble of IC’s, anoth€fT;-complex dimensional ensemble of
IC’s, wherel = 1,..., L—1. For each ICIC(p, K¢Tp), in the ensemble we take the fifg?%: 7t | points inCrc(p, KoTp, b).
We take the components of these points insidee g, 7, (b), and denote this new finite constellation@sc(p, K;711,b). Then
we replicate these points in a similar manner[id (95). In tlise we get a new;7;-complex dimensional IC

IC(p, KiT)) = Cro(p, KiT,b) + (b+ ) - 22507 (97)

By doing it to each IC in the ensemble, we get a nBywI;-complex dimensional ensemble of IC’s. This new ensemble is
equivalent to ensemble of IC’s generated by drawing unifprip?’:t | points insidecubef, 1, (b), and then replicate these

points according tgb+b')Z25:17i, Each IC sequence in this ensemble has multiplexing gairD. Sinceb > %pKéTl +2e

andb’ > %pKlle *¢, we get in accordance with Theorémn 3 that for a certain chamadizationn > 0

Pa(p,m, KiTy) < D(KT)p~ T2 (98)

where P.(p,n, K;T}) is the average decoding error probability of tt&7;-complex dimensional ensemble of IC's. By
transmitting this ensemble of IC’s on the transmission inatf, and averaging over the channel realizations, we get diyers
orderdg, = (M —I)(N —1) + (N + M — 2 -1 —1). Transmitting overG, gives us ak;T;-complex dimensional ensemble
of IC’s within CM™:,

From the sequential structure of the transmission schemgetvéhat omitting the2 - I rightmost columns ot yields G;.
Hence we can derive from thE,T,-complex dimensional ensemble of IC’s, that attains ditersrder dg,,, anotherk;T;-
complex dimensional ensemble of IC’s the attains divewsitlerdy,, wherel = 1,..., L—1. We attain it by diluting the points
of each K(Tp-complex dimensional IC in the ensemble in the aforemeptiomanner, and then reducing its dimensionality
by dropping the2 - [ rightmost columns of+.

So far we have shown the connection between the ensembles.wdowould like to show that there exists a certain
sequence ofyTy-complex dimensional IC’s, that gives us the desired ditser@rders by diluting its points and adapting
its dimensionality. We denote the average decoding errobability of the K;T;-complex dimensional ensemble of IC’s by

Al(p)p*dKz, wherelim, % = 0. We also definel; , as the event where &;T;-complex dimensional IC in the
ensemble has average decoding error probability which @&lsnor equal to L+ 1) 4;(p)p~ 4%, wherel = 0, ..., L—1. From
averaging arguments we know that(1; ,) > LLH We wish to show that the probability of the evedb ,NI1 ,---NIL—1,}

is bounded away from zero. From averaging arguments we khatv t

L-1

1
Pr(lo,NIy,---NIp1,)>1— ; Pr(lip) =z 7=
Hence there must exist a sequencé@il,-complex dimensional IC’s that attains diversity ordaf, and has multiplexing gain
r = 0, from which we can derive for eadh=1,..., L — 1, a sequence oK,;7;-complex dimensional IC’s with multiplexing

gainr = 0 and diversity ordefl;,.

Next we show that thesE sequences attain the optimal DMT. Consider a sequenégBfcomplex dimensional IC’s, that
has multiplexing gain- = 0 and attains diversity ordeiy,. From Corollany[B we know that scaling this sequence by aascal
piﬁ yields a new sequence of IC’s with multiplexing gairand diversity order

dg,(r) =(M =1)(N=1)—(r—=D)(N+M—-2-1-1)

where0 < r < K; andl = 0,...,L — 1. Each of theL straight linesdg,(r), { = 0,...,L — 1, coincides with a different
segment out of thd, segments of the optimal DMT. This concludes the proof.
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