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Abstract—Recent research developments show that the concept
of bidirectional relayingsignificantly improves the performance in
wireless networks. This applies to three-node networks, where a
half-duplex relay node establishes a bidirectional communication
between two other nodes using a decode-and-forward protocol. In
this work we consider the scenario when in the broadcast phase
the relay transmits additional confidential information to one
node, which should be kept as secret as possible from the other,
non-intended node. This is thebidirectional broadcast channel
with confidential messagesfor which we derive the capacity-
equivocation region and the secrecy capacity region. The latter
characterizes the communication scenario with perfect secrecy,
where the confidential message is completely hidden from the
non-legitimated node.

I. I NTRODUCTION

The use of relays is currently becoming more and more
attractive since they have the potential to significantly improve
the performance and coverage of wireless networks. Relay
communication suffers from the fact that orthogonal resources
are needed for transmission and reception. The inherent loss
in spectral efficiency can be reduced if bidirectional commu-
nication is considered [1, 2].

Cellular system operators offer for several users different
services simultaneously where some of them are subject to
secrecy constraints. Due to the nature of the wireless medium,
a transmitted signal is received by the intended user but can
also be overheard by non-intended users. Consequently, a
system design that enables secure communication becomes an
important issue especially for confidential information, where
non-legitimated receivers should be kept ignorant of it.

In his seminal work [3] Wyner characterized the secure
communication problem for a single source-destination link
with an eavesdropper, the so-calledwiretap channel. In [4]
Csiszár and Körner generalized this model and studied the
broadcast channel with confidential messages. Recently, the
secure communication problem gained a lot of attention; for
a current survey we refer, for example, to [5]. The multiple
access channel with confidential messages is analyzed in [6],
while [7] discusses the interference and broadcast channel. Se-
cure communication in relay broadcast channels is addressed
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Fig. 1. Decode-and-forward bidirectional relaying. In theinitial MAC phase,
nodes 1 and 2 transmit their messagesm1 andm2 with ratesR2 andR1 to
the relay node. Then, in the BBC phase, the relay forwards themessagesm1

andm2 and adds a confidential messagemc for node 1 with rateRc to the
communication which should be kept as secret as possible from node 2.

in [8] and in two-way wiretap channels in [9].
We considerbidirectional relayingin a three-node network,

where a relay node establishes a bidirectional communication
between two nodes using a two-phase decode-and-forward
protocol as shown in Figure 1. Here, our main concern is
on enabling an additional confidential communication within
such a network. This differs from the wiretap scenario where
the bidirectional communication itself should be secure from
eavesdroppers outside of the wireless network as, for example,
studied from a signal processing point of view in [10, 11].

In this work, we concentrate on the broadcast phase, where
the relay has successfully decoded the two messages the nodes
have sent in the previous multiple access (MAC) phase. The
task of the relay is then to transmit both messages and an
additional confidential message to one node, which should be
kept as secret as possible from the other, non-legitimated node.
For decoding, the receiving nodes can exploit the messages
they have sent in the previous phase as side information so
that this channel differs from the classical broadcast channel
with confidential messages and is therefore calledbidirectional
broadcast channel (BBC) with confidential messages.

For the BBC without confidential messages in [12, 13] it
is shown that capacity is achieved by a single data stream,
which combines both messages based on the network coding
idea. Here, we address the problem of realizing additional
confidential communication within a network that exploits
principles from network coding; hence, the optimal processing
is by no means self-evident.1

1Notation: Discrete random variables are denoted non-italic capital letters
and their realizations and ranges by lower case letters and script letters,
respectively;P(·) denotes the set of all probability distributions andA

(n)
ǫ (·)

the set of (weakly) typical sequences, cf. for example [14].
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II. B IDIRECTIONAL BROADCAST CHANNEL WITH

CONFIDENTIAL MESSAGES

Let X andYi, i = 1, 2, be finite input and output sets. Then
for input and output sequencesxn ∈ Xn and yni ∈ Yn

i , i =
1, 2, of lengthn, the discrete memorylessbroadcast channelis
given byW⊗n(yn1 , y

n
2 |x

n) :=
∏n

k=1 W (y1,k, y2,k|xk). Since
we do not allow any cooperation between the receiving nodes,
it is sufficient to consider the marginal transition probabilities
W⊗n

i :=
∏n

k=1 Wi(yi,k|xk), i = 1, 2, only.
In this work we consider the standard model with a block

code of arbitrary but fixed lengthn. Let Mi := {1, ...,M
(n)
i }

be the set of individual messages of nodei, i = 1, 2, which is
also known at the relay node. Further,Mc := {1, ...,M

(n)
c }

is the set of confidential messages of the relay node. We use
the abbreviationM := Mc ×M1 ×M2.

For the bidirectional broadcast (BBC) phase we assume that
the relay has successfully decoded the individual messages
m1 ∈ M1 from node 1 andm2 ∈ M2 from node 2 that it
received in the previous multiple access phase (MAC) phase.
Then the relay transmits both individual messages and an
additional confidential messagemc ∈ Mc to node 1, which
should be kept as secret as possible from node 2.

Definition 1: An (n,M
(n)
c ,M

(n)
1 ,M

(n)
2 )-codefor the BBC

with confidential messages consists of one (stochastic) encoder
at the relay node

f : Mc ×M1 ×M2 → Xn

and decoders at nodes 1 and 2

g1 : Yn
1 ×M1 → Mc ×M2 ∪ {0},

g2 : Yn
2 ×M2 → M1 ∪ {0},

where the element0 in the definition of the decoders plays the
role of an erasure symbol and is included for convenience.

Since randomization may increase secrecy [4, 5], we allow
the encoderf to be stochastic. This means it is specified by
conditional probabilitiesf(xn|m) with

∑

xn∈Xn f(xn|m) =
1 for eachm = (mc,m1,m2) ∈ M. Here,f(xn|m) is the
probability that the messagem ∈ M is encoded asxn ∈ Xn.

A code is measured by two performance criteria. First, all
transmitted messages have to be successfully decoded, i.e.,
we want the average probability of a decoding error to be
small. In more detail, when the relay has sent the message
m = (mc,m1,m2), and nodes 1 and 2 have receivedyn1 and
yn2 , the decoder at node 1 is in error ifg1(y

n
1 ,m1) 6= (mc,m2).

Accordingly, the decoder at node 2 is in error ifg2(y
n
2 ,m2) 6=

m1. Then, the average probability of error at nodei is given by
µ
(n)
i := 1

|M|

∑

m∈M λi(m), i = 1, 2, whereλ1(m) denotes
the probability that node 1 decodes(mc,m2) incorrectly if
m = (mc,m1,m2) has been sent, andλ2(m) the probability
that node 2 decodesm1 incorrectly.

The second criterion is security. Similarly as in [3, 4] we
characterize the secrecy level of the confidential message
mc ∈ Mc at node 2 by the concept of equivocation. The
equivocationH(Mc|Yn

2 ,M2) describes the uncertainty of node
2 about the confidential messageMc having its own message

M2 and the received sequenceYn
2 as side information avail-

able. Thus, the higher the equivocation, the more ignorant is
node 2 about the confidential message.

Definition 2: A rate-equivocation tuple(Rc, Re, R1, R2) ∈
R

4
+ is said to beachievablefor the BBC with confidential

messages if for anyδ > 0 there is ann(δ) ∈ N and a sequence
of (n,M (n)

c ,M
(n)
1 ,M

(n)
2 )-codes such that for alln ≥ n(δ) we

have logM(n)
c

n
≥ Rc−δ, logM

(n)
2

n
≥ R1−δ, logM

(n)
1

n
≥ R2−δ,

and
1
n
H(Mc|Y

n
2 ,M2) ≥ Re − δ (1)

while µ
(n)
1 , µ

(n)
2 → 0 as n → ∞. The set of all achievable

rate-equivocation tuples is thecapacity-equivocation region of
the BBC with confidential messagesand is denoted byCBBC.

If there is no additional confidential message for the relay
to transmit, we have the classical BBC for which the capacity-
achieving coding strategies are known [12, 13].

Theorem 1 ([12, 13]):The capacity region of the BBC is
the set of all rate pairs(R1, R2) ∈ R

2
+ satisfying

R1 ≤ I(X;Y1|Q), R2 ≤ I(X;Y2|Q)

for random variables(Q,X,Y1,Y2) ∈ Q×X ×Y1 ×Y2 and
joint probability distribution PQ(q)PX|Q(x|q)W (y1, y2|x).
The cardinality of the range ofQ can be bounded by|Q| ≤ 2.

Now, we focus our attention on the broadcast scenario with a
confidential message and present the main result of this work.

Theorem 2:The capacity-equivocation regionCBBC of the
BBC with confidential messages is a closed convex set of those
rate-equivocation tuples(Rc, Re, R1, R2) ∈ R

4
+ satisfying

0 ≤ Re ≤ Rc,

Re ≤ I(V;Y1|U)− I(V;Y2|U),

Rc +Ri ≤ I(V;Y1|U) + I(U;Yi), i = 1, 2,

Ri ≤ I(U;Yi), i = 1, 2,

for random variables(U,V,X,Y1,Y2) ∈ U × V ×
X × Y1 × Y2 and joint probability distribution
PU(u)PV|U(v|u)PX|V(x|v)W (y1, y2|x). Moreover, the
cardinalities of the ranges ofU andV can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

Remark 1:While for the BBC without confidential mes-
sages the auxiliary random variableQ only enables a time-
sharing operation and carries no information, cf. Theorem 1,
for the BBC with confidential messages we will see that the
auxiliary random variableU carries the bidirectional informa-
tion andV realizes an additional randomization.

From Theorem 2 follows immediately thesecrecy capacity
region CS

BBC of the BBC with confidential messageswhich
is the set of rate triples(Rc, R1, R2) ∈ R

3
+ such that

(Rc, Rc, R1, R2) ∈ CBBC.
Corollary 1: The secrecy capacity regionCS

BBC of the BBC
with confidential messages is the set of all rate triples
(Rc, R1, R2) ∈ R

3
+ satisfying

Rc ≤ I(V;Y1|U)− I(V;Y2|U),

Ri ≤ I(U;Yi), i = 1, 2,



for random variables(U,V,X,Y1,Y2) ∈ U × V ×
X × Y1 × Y2 and joint probability distribution
PU(u)PV|U(v|u)PX|V(x|v)W (y1, y2|x).

The capacity-equivocation region in Theorem 2 describes
the scenario where the confidential message is transmitted with
rate Rc at a certain secrecy levelRe. Thereby,Re can be
interpreted as the amount of information of the confidential
message that can be kept secret from the non-legitimated
node. Therefore, Theorem 2 includes the case where the
non-legitimated node has some partial knowledge about the
confidential information, namely ifRc > Re. The secrecy
capacity region in Corollary 1 characterizes the scenario with
perfect secrecy which is, of course, the practically more
relevant case. SinceRc = Re, the confidential message can
be kept completely hidden from the non-legitimated node.

III. SECRECY-ACHIEVING CODING STRATEGY

In this section, we present a coding strategy that achieves
the desired rates with the required secrecy level and therewith
prove the achievability part of the corresponding Theorem 2.

A. Codebook Design

A crucial part is the following Lemma 1 which ensures
the existence of a suitable codebook with a specific structure
consisting of two layers.

The first layer corresponds to a codebook suitable for the
BBC with common messages [15] which means that this
set of codewords enables the relay to transmit (bidirectional)
individual messagesm′

2 ∈ M′
2 andm′

1 ∈ M′
1 to nodes 1 and

2 as well as a common (multicast) messagem′
0 ∈ M′

0 to both
nodes.

Then, for each codeword there is a sub-codebook with a
product structure similarly as in [4] for the classical broadcast
channel with confidential messages. The legitimate receiver
for the confidential message, i.e., node 1, can decode each
codeword regardless to which column and row index it cor-
responds. But the main idea behind such a codebook design
is that the non-legitimated receiver, i.e., node 2, decodesthe
column index of the transmitted codeword with the maximum
rate its channel provides, and therefore is not able to decode
the remaining row index [5].

Lemma 1:For anyδ > 0 let U → X → Y1Y2 be a Markov
chain of random variables andI(X;Y1|U) > I(X;Y2|U).

i) There exists a set of codewordsun
m′ ∈ Un, m′ =

(m′
0,m

′
1,m

′
2) ∈ M′

0 ×M′
1 ×M′

2 =: M′, with

1
n

(

log |M′
0|+ log |M′

2|
)

≥ I(U;Y1)− δ, (2a)
1
n

(

log |M′
0|+ log |M′

1|
)

≥ I(U;Y2)− δ, (2b)

such that
1

|M′|

∑

m′∈M′

λm′

0,m
′

2|m
′

1
≤ ǫ(n), (3a)

1

|M′|

∑

m′∈M′

λm′

0,m
′

1|m
′

2
≤ ǫ(n), (3b)

and ǫ(n) → 0 as n → ∞. Thereby,λm′

0,m
′

2|m
′

1
denotes

the probability that node 1 decodes(m′
0,m

′
2) ∈ M′

0 × M′
2

incorrectly if m′
1 ∈ M′

1 is given. The error eventλm′

0,m
′

1|m
′

2

for node 2 is defined accordingly.
ii) For eachun

m′ ∈ Un there exists a set of (sub-)codewords
xn
jlm′ ∈ Xn, j ∈ J , l ∈ L, m′ ∈ M′, with

1
n
log |J | ≥ I(X;Y2|U)− δ, (4a)

1
n
log |L| ≥ I(X;Y1|U)− I(X;Y2|U)− δ, (4b)

such that

1

|J ||L||M′|

∑

j∈J

∑

l∈L

∑

m′∈M′

λj,l|m′ ≤ ǫ(n), (5a)

1

|J ||L||M′|

∑

j∈J

∑

l∈L

∑

m′∈M′

λj|l,m′ ≤ ǫ(n), (5b)

andǫ(n) → 0 asn → ∞. Here,λj,l|m′ is the probability that
node 1 decodesj ∈ J or l ∈ L incorrectly if m′ ∈ M′ is
known. Similarly,λj|l,m′ is the probability that node 2 decodes
j ∈ J incorrectly if m′ ∈ M′ and l ∈ L are given.

Sketch of Proof:Since the proof is based on the classical
broadcast channel with confidential messages [4] and the BBC
with common messages [15] we only sketch the main ideas.

For the first layer we generate|M′| codewordsun
m′ ∈ Un

according to the distributionPUn(un) =
∏n

k=1 PU(uk) and
use (weakly) typical setsA(n)

ǫ (U,Yi), i = 1, 2, for decoding
at the receivers. Then, using random coding arguments, for
the BBC with common messages we know from [15] that (3)
is satisfied if (2) is fulfilled proving the first part.

To prove the second assertion, for eachun
m′ ∈ Un

we generate|J ||L| codewordsxn
jlm′ ∈ Xn according to

PXn|Un(xn|un) =
∏n

k=1 PX|U(xk|uk) and use typical sets

A
(n)
ǫ (U,X,Yi), i = 1, 2, for decoding at the receivers. We

note that the structure of the sub-codewords is exactly the
same as for the classical broadcast channel with confidential
messages [4, 5], where the latter assumes the average error cri-
terion and uses random coding arguments as we do. Following
the proof it is easy to show that (5) is satisfied if (4) is fulfilled
proving the second part.

B. Achievable Rate-Equivocation Region

Next, we use the codebook from Lemma 1 to construct
suitable encoder and decoders for the BBC with confidential
messages.

Lemma 2:Let U → X → Y1Y2 and I(X;Y1|U) >

I(X;Y2|U). Using the codebook from Lemma 1 all rate-
equivocation tuples(Rc, Re, R1, R2) ∈ R

4
+ satisfying

0 ≤ Re = I(X;Y1|U)− I(X;Y2|U) ≤ Rc, (6a)

Rc +Ri ≤ I(X;Y1|U) + I(U;Yi), i = 1, 2, (6b)

Ri ≤ I(U;Yi), i = 1, 2, (6c)

are achievable for the BBC with confidential messages.
Proof: For given rate-equivocation tuple

(Rc, Re, R1, R2) ∈ R
4
+ satisfying (6a)-(6c) we have to



I(U;Y1)

I(U;Y2) I(X;Y2|U)

I(X;Y1|U)

LJM′
0M′

1M
′
2

Rc ≥ I(X;Y1|U)

Fig. 2. The two bars visualize the available resources of both links. Each one
is split up into two parts: one designated for the bidirectional communication
(gray) and one for the confidential message (white). SinceRc ≥ I(X;Y1|U),
some resources of the bidirectional communication have to be spent for the
confidential message as well (realized by a common message).

construct message sets, encoders, and decoders with

1
n
log |Mc| ≥ Rc − δ, (7a)

1
n
log |M2| ≥ R1 − δ, (7b)

1
n
log |M1| ≥ R2 − δ, (7c)

and further, cf. also (1),

1
n
H(Mc|Y

n
2 ,M2) ≥ I(X;Y1|U)− I(X;Y2|U)− δ. (8)

The following construction is mainly based on the one for
the classical broadcast channel with confidential messages
[4]. Thereby, we have to distinguish between two cases as
visualized in Figures 2 and 3.

If Rc ≥ I(X;Y1|U), cf. Figure 2, we construct the set of
confidential messages as

Mc := J × L ×M′
0

whereJ and L are chosen as in Lemma 1 andM′
0 is an

arbitrary set of common messages such that (7a) is satisfied.
The setsM1 = M′

1 andM2 = M′
2 are arbitrary such that

(7b)-(7c) hold. Finally, we define the deterministic encoder f
that maps the confidential message(j, l,m′

0) ∈ Mc and the
individual messagesmi ∈ Mi, i = 1, 2, into the codeword
xn
jlm′ ∈ Xn with m′ = (m′

0,m
′
1,m

′
2) andm′

i = mi, i = 1, 2.
Remark 2:SinceRc ≥ I(X;Y1|U), a part of the confi-

dential message must be transmitted as a common message.
It is not possible to simply ”add” the remaining part to the
individual message for node 1, since this would require that
this part of the confidential message is already available a
priori as side information at node 2.

If Rc < I(X;Y1|U), cf. Figure 3, we setMc := K × L
whereK is an arbitrary set such that (7a) holds. Further, we
define a mappingh : J → K that partitionsJ into subsets of
”nearly equal size” [4], which means

|h−1(k)| ≤ 2|h−1(k′)|, for all k, k′ ∈ K.

Moreover, sinceRc < I(X;Y1|U), there is no need for
a set of common messages so thatM′

0 = ∅. The sets
M1 = M′

1 andM2 = M′
2 are arbitrary such that (7b)-(7c)

hold. Finally, we define the stochastic encoderf that maps the
confidential message(k, l) ∈ Mc and the individual messages
mi ∈ Mi, i = 1, 2, into the codewordxn

jlm′ ∈ Xn with
m′ = (0,m′

1,m
′
2), wherej is uniformly drawn from the set

h−1(k) ⊂ J andm′
i = mi, i = 1, 2.

I(X;Y2|U)

I(X;Y1|U)

I(U;Y2)

I(U;Y1)

M′
1M

′
2 LJ

Rc < I(X;Y1|U)

K

Fig. 3. SinceRc < I(X; Y1|U), there are more resources for the confidential
message available than needed. This allows the relay to enable a stochastic
coding strategy which exploits all the available resourcesby introducing a
mapping fromJ to K.

Remark 3:This time, the setJ is not needed in total for the
confidential message. However, to force the non-legitimated
receiver, i.e., node 2, to decode at its maximum rate, we define
a stochastic encoder that spreads the confidential messages
over the whole setJ .

Up to now we defined message sets and the encoder. In both
cases the decoders are immediately determined by Lemma 1.

To complete the proof it remains to show that the secrecy
level at node 2 fulfills (8). Proceeding exactly as in [4] we
define the random variableXn with codewordsxn

jlm′ ∈ Xn

as realizations andM′ = (M′
0,M

′
1,M

′
2) as the third coordinate

of the realization ofXn. Then get for the equivocation

H(Mc|Y
n
2 ,M2) ≥ H(Xn|M′) +H(Yn

2 |X
n)

−H(Xn|Mc,M
′,Yn

2 )−H(Yn
2 |M

′).
(9)

Next, we bound all terms in (9) separately. We start with the
first term and observe for givenM′ = m′ thatXn has|J ||L|
possible values. SinceXn is independently and uniformly
distributed, we haveH(Xn|M′) = log |J |+ log |L|. With the
definition ofJ andL, cf. (4), we obtain

1
n
H(Xn|M′) → I(X;Y1|U). (10)

For the second term in (9) we have

1
n
H(Yn

2 |X
n) → H(Y2|X) (11)

as n → ∞ by the weak law of large numbers. If
Rc ≥ I(X;Y1|U), the third term in (9) vanishes. If
Rc < I(X;Y1|U), we defineϕ(k, l,m′, yn2 ) := xn

klm′ if
(un

m′ , xn
jlm′ , yn2 ) ∈ A

(n)
ǫ (U,X,Y2), h(j) = k, and arbitrary

otherwise. Then we haveP{Xn 6= ϕ(Mc,M
′,Yn

2 )} ≤ ǫ(n)

and therefore, by Fano’s lemma, cf. also [4, 5],

1
n
H(Xn|Mc,M

′,Yn
2 ) → 0 (12)

as n → ∞. For the last term in (9) we definêyn2 := yn2 if
(un

m′ , yn2 ) ∈ A
(n)
ǫ (U,Y2) and arbitrary otherwise so that

H(Yn
2 |M

′) ≤ H(Yn
2 |Ŷ

n
2 ) +H(Ŷn

2 |M
′).

For the first term we haveP{Yn
2 6= Ŷn

2 } ≤ ǫ(n) by Fano’s
lemma, cf. [4, 5], so that it is negligible. Moreover, following
[4, 5] it is easy to show that for the second term we have

1
n
H(Ŷn

2 |M
′) → H(Y2|U) (13)

which follows from the definition of the decoding sets
A

(n)
ǫ (U,Y2) and the fact that the codewords are uniformly

distributed.



Finally, by substituting (10)-(13) into (9) we obtain (8)
which establishes the desired secrecy level at node 2 and
therewith proves the lemma.

C. Randomization and Convexity

Here, we complete the proof of achievability of Theorem 2.
Since the argumentation is the same as for the classical
broadcast channel with confidential messages [4], we only
sketch the main ideas.

To obtain the whole region of Theorem 2, we proceed
exactly as in [4] and introduce an auxiliary channel that
enables an additional randomization.

Lemma 3:Let U → V → X → Y1Y2 and
I(V;Y1|U) > I(V;Y2|U). Then all rate-equivocation tuples
(Rc, Re, R1, R2) ∈ R

4
+ satisfying

0 ≤ Re ≤ I(V;Y1|U)− I(V;Y2|U) ≤ Rc, (14a)

Rc +Ri ≤ I(V;Y1|U) + I(U;Yi), i = 1, 2, (14b)

Ri ≤ I(U,Yi), i = 1, 2, (14c)

are achievable for the BBC with confidential messages. The
corresponding rate region is denoted byR.

Sketch of Proof: The prefixing realized by the random
variableV is exactly the same as in [4, Lemma 4].

Moreover, it is obvious that if the rate-equivocation tuple
(Rc, Re, R1, R2) is achievable, than each rate-equivocation
tuple (Rc, R

′
e, R1, R2) with 0 ≤ R′

e ≤ Re is also achievable.
Consequently, we can further replace the equality in (6a) by
an inequality in (14a).

Lemma 4:The rate regionR is convex.
Sketch of Proof: Exactly as in [4, Lemma 5] it is easy

to show that any linear combination of two rate tuples inR
is contained inR which proves the convexity.

It remains to show thatR describes the same rate region as
the one specified by Theorem 2.

Lemma 5:The rate regionR equals the capacity region
CBBC of the BBC with confidential messages.

Proof: It is obvious thatR ⊆ CBBC holds. To show the
reversed inclusion, i.e.,CBBC ⊆ R, let (Rc, Re, R1, R2) ∈
CBBC be any rate-equivocation tuple. For this, we construct as
in [4] the maximal achievable confidential and equivocation
rates that are possible for given individual ratesR1 andR2 as

R∗
c := I(V;Y1|U) +min

{

I(U;Y1)−R1, I(U;Y2)−R2

}

,

R∗
e := I(V;Y1|U) − I(V;Y2|U).

Then we haveRe ≤ R∗
e , R∗

e ≤ Rc ≤ R∗
c , and therewith

also (R∗
c , R

∗
e , R1, R2) ∈ R. Now, from the definition of

R follows that the rate-equivocation tuples(R∗
c , R

∗
e , R1, R2),

(R∗
c , 0, R1, R2), and (0, 0, R1, R2) belong toR as well. Fi-

nally, from the convexity ofR, cf. Lemma 4, follows that
(Rc, Re, R1, R2) ∈ R which proves the lemma.

To complete the proof of achievability it remains to bound
the cardinalities of the ranges ofU andV. Since the bounds
of the cardinalities depend only the structure of the random
variables, the result follows immediately from [4, Appendix]
where the same bounds are established for the classical broad-
cast channel with confidential messages.

D. Weak Converse

Already the coding strategy indicates that, basically, ideas
from the BBC [12, 15] and from the classical broadcast chan-
nel with confidential messages [4] are exploited. Based on this
observation it is straightforward to establish the weak converse
for the BBC with confidential messages by extending the
converse of the classical broadcast channel with confidential
messages [4] using standard arguments for the BBC [12, 15].

IV. D ISCUSSION

In this work, our focus was on privacy in bidirectional relay
networks, where additionally to the two bidirectional messages
the relay node transmits a confidential message to one of
the nodes, which should be kept as secret as possible from
the other, non-legitimated node. For this scenario we charac-
terized the corresponding capacity-equivocation and secrecy
capacity regions in detail. This scenario is completely different
from the bidirectional broadcast wiretap channel, where the
bidirectional communication itself should be kept secret from
eavesdroppers outside of the bidirectional relay network [10,
11]. This is an interesting and important topic for itself.
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