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LQG Control Approach to Gaussian Broadcast
Channels with Feedback

Ehsan Ardestanizadeh, Paolo Minero, and Massimo Franetisch

Abstract—A code for communication over the k-receiver ad- a given set of rates depends on the correlation between the
ditive white Gaussian noise broadcast channel with feedbécis  nojses at the receivers and is determined by the solution of
presented and analyzed using tools from the theory of linear 5 yiscrete algebraic Riccati equation (DARE) which arises i

guadratic Gaussian optimal control. It is shown that the per . . . . .
formance of this code depends on the noise correlation at the the analysis of the linear quadratic Gaussian (LQG) optimal

receivers and it is related to the solution of a discrete algmaic ~control problem. The LQG code is then used to investigate
Riccati equation. For the case of independent noises, the su some properties of the capacity region of the AWGN-BC with
rate achieved by the proposed code, satisfying average powe feedback.

constraint P, is characterized as1/2log(1 + P¢), where the ot e consider the case of independent noises at the

coefficient € [1, k] quantifies the power gain due to the presence . S . L . )
of feedback. When specialized to the case of two receiverd)ig receivers, which is the most interesting in practice. Byisg

includes a previous result by Elia and strictly improves upm the corresponding DARE, it is shown that the LQG code
the code of Ozarow and Leung. When the noises are correlated, achieves sum rate equal tb/2log(l + P¢(k, P)) under
the pre-log of the sum-capacity of the broadcast channel wit average power constraifit when messages are encoded at the
feedback can be strictly greater than one. It is establishethat  g5me rate. Here, the real coefficieitt, P) € [1, k] represents

for all noise covariance matrices of rankr the pre-log of the the power aain compared to the no-feedback sum capacit
sum capacity is at mostk — r 4+ 1 and, conversely, there exists a P 9 p pacity

noise covariance matrix of rank r for which the proposed code 1/2log(1 + P), and for fixedF it is increasing inP, that
achieves this upper bound. This generalizes a previous rel§lby  is, more power allows more gain. In particular, Bs— oo,

Gastpar and Wigger for the two-receiver broadcast channel. ¢ — k, and the sum rate tends t¢2 log(1+kP), which is the
same as the sum capacity of the single-input multiple-cutpu
I. INTRODUCTION (SIMO) channel. Note that in the SIMO channel the receivers

are co-located, whereas in the AWGN-BC the receivers are

Consider the communication problem over thaeceiver . .

g . . . sefparately located but feedback links to the transmitter ar
additive white Gaussian noise (AWGN) broadcast Channaevailable Hence. the power aain due to feedback can be
(BC) with feedback depicted in Figl 1. Here, a sender wishée i ' P 9

to communicaté: independent messageskitdistinct receivers m%erpreted as the amount oboperationamong the receivers

that observe the sequence of transmitted signals corrup?séab“Shed through feedback, which allows the transmiitie

by k, possibly correlated, AWGN sequences. It is known tha ign the signals mtend_e(_j for different receivers cohtyen
and use power more efficiently.

the presence of feedback from receivers to sender improveiIext we investigate how the sum capacity, the supremum of

communication performance over broadcast channels. fspeci hievabl | h h .
cally, Dueck [1] showed, by providing a specific exampletth(’gIC levable sum rates, sca €s as the powet the transmitter
' = ’ increases. If the sum capacity scales(ag2)log(1 + P) as

feedback can enlarge the capacity region of additive memor.

) ) — o0, then we refer toy as the pre-l(ﬂ] of the channel.
less broadcast channels where the noises at the receieers ar )

; Vge show that the pre-log of the AWGN-BC with feedback
correlated, while Ozarow and Leurlg [2] proved that feedba%e ends on the rank of the correlation matrix of the noises
can be beneficial by providing a means of cooperation betweetrP . o . . i
) . - —at the receivers. Specifically, if the ranksisthen the pre-log

receivers and sender even when the noises at the receieers_ar
: N an be at most — r 4 1. Conversely, for any € {1,...,k},
independent. However, a computable characterization ®f lere exists a noise covariance matrix of raror which the

capacity region of this channel remains a Iong-standingwopspper bound on the pre-log is tight and is achieved by the
problem.

In this paper, we construct a code, which we refer th@& LQG code. In parucular, .the pre'|09 'S e_qual ofor some
rank-one covariance matrix. This generalizes a previosisltre

code for communllcat.mg over the AWGN'BC with feedba.cli) Gastpar and Wigger[3] for the two-receiver AWGN-BC to
and we characterize its performance using tools from optm} e case ok receivers

control. We show that the minimum power needed by the _. ; . -
LQG code for reliable transmission of messages encoded Flnally, we wish to mention some additional related works.
Efa [4] followed a control-theoretic approach and presdrd
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Elia’s code [4]. Wu et al.[[5] applied the LQG theory to 2) an encoder that assigns a symbol(M,Y~!) to the
study Gaussian networks with feedback, where the noises at message vecto™M and the previous channel output

the receivers are independent, but did not provide explicit vectorsY~! for eachi € {1,...,n}, and
solutions. Along the same lines, it has been shownlin [613) k& decoders, where decodgrassigns an estimaté[j to
that the linear code proposed by Kramer [7] for theender each sequencg” := (Yj1,...,Yjn).
multiple access channel with feedback can be obtained py; 7, ... A7, be independent and the probability of error
solving an LQG control problem. be defined as

It is worth noting that the LQG code is derived from an
optimal control for a linear system and hence is optimal agnon Pe(”) =P(M; # J\Z/j for somey).
the subclass of linear codes. For the AWGN-BC with feedback, ) )
we show that the LQG code provides better performand®€n, we say thatR,, ..., Ry) is an achievable rate vector
compared to the OL code fdr = 2 and hence outperformsunder (asymptotic block) power constraiftif there exists a
the Kramer code(]7] fok > 3, which is an extension of the Seduence of2"f,..., 27 n) codes such that
OL code. However, it remains to be proven whether the LQG lim P™ — 0
code achieves the feedback sum capacity. oo €

The rest of the paper is organized as follows. Sedfibn dhg
presents the problem definition. Section Ill discusses tietp
to-point communication problem over the AWGN channel . 1 - 2y
with feedback from a control theoretic perspective. Theswi h,?ljolip n El BX)) < P )
point is then generalized in Sectign]lV, which presents the =
LQG code for communicating over tiieuser AWGN-BC with \We refer toR = 25:1 R; as the sum rate of an achievable
feedback. The following two sections are devoted to stuglyinate vector.
the performance of the LQG code: in Sectloh V we provide Definition 2: The closure of the set of achievable rate
the analysis for the case of independent noises at the mseivvectors(}gl’ ..., Ri,) under power constraint® is called the

while in Sectiorf VI we characterize the pre-log gain when theapacity region? (P, K.). The sum capacityC(P, K.) is
noises are correlated. Finally, Section]VIl concludes thgap. defined as

k

IIl. DEFINITIONS C(PK.) i=max{ S R;: (Ri, ... Ry) € €(P,K.)
Consider the communication problem where a sender i=1
wishes to communicatke independent messag@és,, ..., My . ]
to k distinct receivers by: transmissions over the AWGN-and the pre-logy(X) is defined as
BC channel with feedback depicted in Fig. 1. At each time C(P,K.)
i € {1,...,n}, the channel outputs are given b K.) =limsup ———~.
ief n} p 9 y V(K2) = lim sup Tlog(1 1 P)
Y, = 1X; + Z, ) De_f|n|t|on 3: An n-code for the AWGN-BC with feedback
consists of
whereX;; is the transmitted symbol by the sender and, = 1) k continuous messages; ~ Unif(0, 1)
(1,...,1)T is the column vector _of ones of length The 2) an encoder that assigns a symboj(®,Y~!) to the
vectorY; := (Yi;,...,Ys)? contains thek channel outputs message vecto® = (O, ...,0;)T and the previous
at time ¢, that is,Y}; is the channel output for the receivgr channel output vectoryi~! for eachi € {1,...,n}
at times. Similarly Z;; denotes the noise for the receiveat and o

time i. The noise vector 3) k decoders, where decodgrassigns an estima®; to

Zi:= (Zy,..., Z;”»)T ~N(0,K.) i.i.d. each sequencg” = (Yi1,....Yn).

. . . Let ©4,...,0; be independent and the mean square errors
is assumed to be independent of the transmitted messagtes,ﬁrh) b D’(n)k at timenpbe defined as g
independently and identically distributed (i.i.d.) fronGaus- ~! *~ 77k
sian distribution with zero mean and covariance mafkix (n) _ A2 .

- - DV =E©; —0;)°, j=1,...,k
Without loss of generality, we assume tt&t; ~ N(0, 1) has /
unit variance, so the diagonal elementdof are equal to one. Then, we say thatF, ..., E)) is an achievable mean square

We assume that the output symbols are causally asttor (MSE) exponent vector under (asymptotic block) power
noiselessly fed back to the sender so that the transmitteshstraintP if there exists a sequence ofcodes such that
symbol X; at time i can depend on the message vector

M := (Mi,...,M)", and the previous channel output E; = lim b log Dg."), j=1,...k
vectorsY' ! := (Yy,...,Y; ). nooo 2n '
Definition 1: A (2"f ... 27Fx n) code for the AWGN- and [2) holds.
BC with feedback consists of The definitions of achievable MSE exponent and rate vectors

1) k discrete message¥; ~ Unif{1,...,2"%}, are closely related, as established by the following lemma.
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Fig. 1. Thek-receiver AWGN broadcast channel with feedback.

Lemma 1:Let (Ey,..., Ex) be an achievable MSE expo-with feedback (cf. Definition 3 in the special caseiof 1)

nent vector under power constraift and (R1,..., Ry) be as follows.
such that 1) Encoder: Given a continuous message~ Unif (0, 1),
Rj<Ej; j=1,...,k the encoder recursively forms

Then, the rate vectdiR;, ..., Ry) is achievable under power S1=0

constraintP. Si=aSi_1+Y;_1, 1=23,....n (6)
Proof: See AppendiXCA. _

and transmitsX;(0,Y 1) = m;(S;) for eachi €

I11. LQG APPROACH POINT-TO-POINT CHANNELS {1,...,n}.

2) Decoder: the decoder séis = —a~%S;,; as an estimate

Before presenting the LQG code for the AWGN-BC, we AT .
P nd Q W of the messag®, whereS; is recursively formed as

first revisit the communication problem over the point-tt
AWGN channel with feedback in Fid.] 2, and demonstrate 8, =0
how the theory of LQG control can be used to design codes
for communication over such channel. It is well knovin [4]

that the capacity-achieving code by Schalkwijk and Kailath Lemma 2:f the control {r,} stabilizes the system with

(SK) [8], [9] can be derived as the solution of an Optimaépen-loop modez > 1, then then-code described by{6)

control problem. However, here we provide a derivation qf [7) achieves MSE exponeit — loga under power
this result that naturally generalizes to the case of maltipconstraint

receivers.

S’i:agi71+}/i,1, i:2,3,...,n. (7)

i : 1
Let S; € R be the initial state of an unstable linear system P = limsup — Z E(2(S:)). (8)
with open-loop dynamics n—oo M AT
S, =aS_1, 1=2,3,... Proof: Combining [6) and[{7) we have
for some coefficients > 1, that is stabilized by a controller Siv1 =a'® + Siq
having full state information and where the control sigreal i —ai(O - é}) 9)
corrupted by AWGN (see Fid.l 3). The closed-loop dynamic ’
of this system is given by where the last equality follows from the fact that, =
Si—aSi1 +Yiy, i=23.. . @) —0 ‘Sir1. From [9), the MSE _of the estima@n_ is D("_).:.
E(©—06,)? =a"?"E(S2,,). Since the control is stabilizing
where we knowlim sup,, .. E(S2) < oo and hence

E = lim —ilogD(") = loga.
and n—oo 2N
Noting that X; = m;(S;), we conclude that MSE expo-
nent loga is achievable under asymptotic power equal to
The mappingg;}5, are referred to as theontrol, and the limsup,,_,., = >0, E(72(5))). [ ]
linear dynamical system ifi](3), which is characterized gy th Lemmal[2 shows that for a fixed > 1 any stabilizing
unstable mode, is simply referred to as theystemWe say control yields a code achieving MSE expondiit= loga.
that a control is stabilizing ifim sup,_, ., E(5?) < oco. In general, though, different codes require a differentgsy
Given a control [(b) for the systeni](3), we construct #otic power constraint’{8). Thus, we are interested in figdin
sequence ofi-codes for the point-to-point AWGN channEl (4)the stabilizing control whose associate asymptotic power i

X1:7T7,(SZ), i=1,2,... (5)
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Fig. 2. The AWGN channel with feedback.
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Fig. 3. Stabilization over the AWGN channel.

minimal. It is known from the theory of LQG control [10] with X; = ©. Comparing[(Il) and_(12), we can see that the

that the linear stationary control LQG code is asymptotically equivalent to the SK code if
X;=—cS;, i=1,2,... (10) EE(?;Z)) 5 % asi — oo (13)
; a
where ¢ = (a® — 1)/a attains the minimum asymptotic ) ’ o
power [8), which is given by such that, in steady statg;/a)Y; tends to the minimum mean
squared error estimate df; givenY;.
P*=a*—1. By plugging [10) into[(6), we have the closed-loop dynamics

Hence, from Lemma@l2, the linear code corresponding to thf%r S as

optimal LQG control, which we refer to as the LQG code,
achieves the MSE exponent As i — oo the second moment of the state converges to
a?/(a* — 1) and sinceX; = —cS;,

Si=a'Sis1 4+ Zi_q.

loga = 1 log(1+ P™)
2 E(X?) —a®—1

under power constrainP*. By Lemmall, when specialized E(Y?) — a2

to k = 1, we conclude that the LQG code achieves any rate !

R <loga = 1/2log(1+ P*) under power constrain®*, and Therefore, ag — oo,

hence is capacity. achieving: _ . E(X,Y)) E(X2) 2—-1 ¢

A natural question to ask is what is the connection between E(Y?) = E(Y?) — 2 4
the LQG code and the SK code, where the sender recursively K '
transmits the estimation error at the receiver? To answsr tWhere the last equality follows from the fact that the optima

question, note that combinin@l(6) and}10) we can write @@ntrol is given byc = (a* — 1) /a. Hence, the LQG code and

recursion for the channel inpu¥; as the SK code are asymptotically equivalent.
C
Xip1=a (Xi T E) (11) IV. LQG CoDE: AWGN BROADCAST CHANNEL WITH
. . . . FEEDBACK
with X; = —c©. The recursion converges, irrespectively of

the initial value, since: — ¢ = 1/a < 1. On the other hand, In this section we extend the control theoretic approach to
the channel input update in the SK can be represented by the case of &-receiver AWGN-BC with feedback. We do so

following recursion [[11], by considering the control problem depicted in [Eg. 4, inethi
a k-dimensional unstable dynamical system is stabilized by a

Xii1=a (Xi _ E(aY) l) (12) scalar controller having full state observation and whée t

E(Y?) scalar controller is perturbed liy possibly correlated, AWGN
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Fig. 4. Control over the AWGN broadcast channel

noises, each affecting a different component of the stattove At every discrete time, the control input can depend only on

We show that any controller stabilizing the system in meathe state of the system at timigso

square sense yields a code for #heeceiver AWGN-BC with ,

feedback. In particular, the LQG code is obtained from the Xi=m(Sy), 1=12,... (18)

minimum variance stabilizing control which can be computefdr some functionr; : C* — C. We refer to the sequender; }

using the LQG control theory. as the control. Sincg;| > 1, the eigenvalues of are outside
the unit circle and the open-loop systeml(15) is unstable. We

A. Code Design Based on a Control Approach say that the controfr;} stabilizes the closed-loop system if

Assume for simplicity that channel input and outputsih (1) lim sup E([[Sy||?) < o0
are complex numbers and that the additive noise vector is n—roo
drawn i.i.d. from a circular symmetric complex Gaussiawhere||S,|?> denotes th&-norm of the vectosS,,.
distribution with covarianceK,. It is easy to see that if Given the systeni (15) and the control](18), we present the

(Ry,..., Rx) is achievable under power constraiper each following sequence ofi-codes for thek-receiver AWGN-BC
real dimension of the complex channel, the®y, ..., R;) is  with feedback[(Ib).
achievable under the same power constraint over the otigina) Encoder: At each timé e {1,...,n} the encoder recur-
real channel. In fact, one transmission over the complex sjvely formsS; as in [I5) and transmit¥; = 7;(S;).
channel can be reproduced by two consecutive transmissiop) Decoders: At each timee {1,...,n} decoderj forms
(of real and imaginary part, respectively) over the reahcieh an estimateéji - _aj—z'gj(iﬂ) for the desired mes-

Let sage©;, whereS; is recursively formed as

A =diagay,...,a) € CF*k (14) S5 =0

wherea; € C, j =1 ..., k, are distinct points outside the unit Sii = ajé‘j(i_l) + Y-y, i=2,3,...,n. (19)

circle, i.e.,|a;| > 1, and A’ denote theconjugate transpose
of the matrix A. Consider the linear dynamical system wit
open-loop matrixA shown in Fig[4,

hThe following lemma characterizes the set of MSE exponent
vectors that can be achieved by the sequence-obdes so

generated.
S =0 Lemma 3:Let {;} be a stabilizing control fol{15). Then,
S, =AS, 1 +Yiq, i=23,... (15) the MSE exponent vectdiog |ai], ..., log|ak|) is achievable
under power constraint
whereS; = (Sy;,...,Sk)T € CF represents the state of the n
system at time, © = (04,...,0;)7 is a vector of complex P = limsup 1 Z E(TF-Z(SZ')).
random variables such thét,,...,©; are drawn i.i.d. from n—oo M !

a uniform distribution over0, 1) x (0,1) ¢ C, andY; € C*

denotes the vector of complex channel outputs, i.e., Proof: See AppendikB.

Yi=BX;+Z;, Zi~CN(0,K,) (16) B. LQG Code based on Optimal LQG Control
where X; € C here represents the scalar complex control According to Lemmd 3, for a fixed open-loop matrik
signal,Z; € C* denote the noise vector at timgand any stabilizing control yields a sequence ofcodes for the

, AWGN-BC with feedback that achieves the same MSE ex-
B=[1,... i (17) ponent vecto(log |a1], ..., log|ak|) under a power constraint



determined by the asymptotic control variance. The folfayvi elements ofB are nonzero we knoyA, B) is detectable, that

theorem characterizes the performance of the LQG cods,there exists & € C'** such thatd — BC is stable. Then,

which corresponds to the minimum variance control that cday [12, Lemma 2.4] there exists @anique positive definite

be computed using the LQG control theory. solution to [22) for whichA — BC'is stable. [ ]
Theorem 1:Let A and B be given as in[(14) and_(L7), The following lemma characterizes the asymptotic perfor-

and K, be the covariance matrix of the noise vector in thmance of the minimum variance control.

AWGN-BC (18). Then, the rate vectdtog|a1],...,log|ax|) Lemma 5:Let the linear control in[(24) be stabilizing, that

is achievable under power constraint is, all eigenvalues ofi — BC lies inside the unit circle. Then,
P(AK.) = CK.C' = tr(GK.) (20) the asymptotic average control powEr](25) is given by
CK,C’ (27)
where
, i where K, is the unique solution to the following DALE
C=(B'GB+1)"'B'GA (21)

. . iy - : . K, =(A-BC)K (A~ BC) + K..
and G is the unique positive definite solutions to the discrete
algebraic Riccati equation (DARE) Remark 1:From Lemma¥ and Lemnia 5 it is clear that the

, , , i performance of the described feedback code depends on the
G=AGA-AGBB'GB+1)" B'GA (22)  correlation among the noises at the receivers.

such thatd— BC'is stable, that is, every eigenvaluef B _Proof: Plugging [24) into the closed-loop system dynam-

lies inside the unit circle, ané, is the unique solution to the !CS (26) we have

discrete algebraic Lyapunov equation (DALE) S; = (A= BC)Si_1 + Zi_1.
K,=(A-BC)K,(A—-BC) +K.. (23) Let K, ; denote the covariance matrix of the stéte then we

The proof of the theorem makes use of the following twhave the following discrete algebraic Lyapunov recursion

lemmas. K.it1=(A— BCO)K,;(A—-BC) + K..
Lemma 4:Given the unstable open-loop matrix{14), the , i
stationary and linear control By assumption(A — BC) is stable andK,, > 0, hence

the above recursion converges to the unique positive-tfini

X =-C8; (24)  solution to the following discrete algebraic Lyapunov etipra
where C and G are given in [(2) and[(22), respectively,(DALE)
stabilizes the closed-loop systerh J(15) and minimizes the K, =(A—- BC)Ks(A— BC) + K,.
asymptotic average control power :
ymp 9 P Note thatX; = —CS; and henceE(X?) = CK,;C’, which
S 2a completes the proof. [ |
hf?:ip n Z; E(m(S:)). (25) Proof of TheorerfillAccording to Lemmal4 and Lemna 5,
o _ - for A = diag(ai,...,ar) with |a;| > 1, there exists a
The minimum stationary power is given by stabilizing control with asymptotic power equal f0(20).rfu
tr(GK.) thermore, according to Lemrha 3, we can construct a sequence
_ ) i ) of ncodes corresponding to this control, which achieves the
where K, is the covariance matrix of the noise vector[inl(16) g exponent vectoflog |ai],.. ., log |ax|) with the same
Proof: Plugging [16) into[(I5), we have asymptotic power as the control. Finally, by Lemfda 1, we
S, = AS; | +BX; 1 +Z;_1. (26) conclude that rate vectdiog |aq], -, log lax|) is achievable
under asymptotic power constraif{20). [ |
Consider the problem of finding the stabilizing control that Example 1:Consider the special case of a two-receiver
minimizes the asymptotic average control power AWGN-BC, and let
. 1 — 9 ap O 1 p
z 2(S. A= , K, = ;
s 2 E ) (5 a) =0 1)

This problem is similar to the standard LQG problém] [10] ifO" laa] > 1, |az| > 1, and -1 < p < 1. By solv-
the special case where the cost function does not depenaton'§9 22) and plugging the solution intg_(20) we obtain that
state. For this problem, we can derive the Riccati equa@h ( (log a1, log az|) is an achievable rate pair under power

and the stationary linear contrdl (21), similar to the sSolut constraint
to the LQG problem, to establish a sufficient condition for ! (|ala2 —11%(|ar]? + |a2]? - 2)
optimality in terms of the asymptotic power. la1 — az|?
Unlike the standard LQG problem, though, here we require = p(lar|* = 1)(laz|? — 1)(Re(araz) — 2))-

the control to stabilize the system (see Lenima 3). Next, we

show that there exists a unique solution[fal (22) such that the the special case where the noises at the receivers are
controlC' in (Z7)) is stabilizing, that isA— BC'is stable. Since independent = 0), the code inl[4] has the same performance
the eigenvalues ofl are all outside of the unit circle and theas the LQG code.



V. INDEPENDENTNOISES POWER GAIN under power constraintr(G) = P. The following change of

In this section, we analyze the performance of the LQERrable 2
code in the special case of independent noises, i.e., asgumi ¢ = F/\l
that K, = I«x, which is the case for most practical scenarios.
We characterize the sum rai&(k, P) achievable by the LQG COmpletes the proof. u
code under power constraifit for the symmetric case where
diagonal elements aofl in (14) are A. Comparison with the AWGN Multiple Access Channel

@(j—l)’ j=1,.. k. (28) The LQG approach can be also applied to the AWGN-MAC
_ with feedback. It is knowr( [6] that the LQG code for AWGN-
anda > 1 is real. _ ~ MAC has the same performance as the Kramer code [7],

Theorem 2:Given A as in [28), the LQG code achievesyhich achieves the linear sum capacityl[13], the supremum
symmetric sum rateR(k, P), i.e., R; = R(k,P)/k, j = sum rate achievable by linear codes. Bjiac (k, P) denotes
1,...,k, under power constrain® where the symmetric sum rate achievable by the LQG code fokthe
sender AWGN multiple access channel (MAC) with feedback
where each sender has power constr&inThen, we have |6,
Theorem 4]:

a; = ae

Rk, P) = %log(l + Pg)

and ¢(k, P) is the unique solution in the intervél, k] to

1
’ Rmac (k, P) = S log(1 + kP
(1 —|—P¢)k—1 _ (1 + %¢(/€ _ (b)) ) MAC( ) 5 Og( + ¢)

Remark 2: The quantity¢(k, P) is the power gain com- - .
pared to the no feedback sum capadif2 log(1 + P). This (1+kPo)"" = (14 Po(k —¢))" .
power gain can be interpreted as the amount of cooperat'@gm aring with Theorer 2. it is not hard to see that
among the receivers established through feedback, which paring 2,
allows the transmitter to align signals intended for differ Rpc(k, P) = Rmac (k, P/k).
receivers coherently and use power more efficiently.

Proof: For A defined as[(28), we know by Theordth 1This shows that under the sarmem powerconstraintP, the
that the sum rateR — kloga is achievable under powersum rate achievable by the LQG code over MAC and BC are

constraintP = tr(G) whereG is the unique solution to the equal. This connection between the MAC and the BC is also

DARE (22). The following lemma characterizes the solutioﬁonsidered in[[5].
to the DARE [22) for the symmetric choicé.
Lemma 6:[13, Lemma 12] Suppose that the open-loop. Ozarow-Leung (OL) code fdr = 2
matrix A is of the form [28). Then the unique positive- \ye compare the LQG code with the OL code foe= 2 and

definite solutionG to (22) is circulant with real eigenvalues;: _ ; The OL code can be represented as follows [11]:
AL > g > ... > )\, > 0 satisfying ?

where¢(k, P) is the unique solution to

1 Xi =51+ 52
Ai = < Aim1
a where
fori=2,...,k. The largest eigenvaluk, satisfies E[S1:Y14]
2 [ A g e
1—/i\-k/\1 =a (29) Sy i 0 —a So ; 0 E[Es[ii:zﬁi] Y, ;
(1+x(e = 5H)) = a0, (30) (32)
i 7 In the sequel, we present the LQG code in a similar form
From (29) and[(30) we have as [32) for comparison. Let the system [nl(15) be re-written
_ IR as )
(1 + k)\l)k = (1 + Al(k - G—1)> . (31) Si = ASi_l + diag(B)Yi_l.
23
The solution to[[2R) is unique and we conclude thal (31) hagere
a unique solution foiG;; given A; and vice-versa. Consider a 0 . _b
A1(k, P) corresponding to the case where A= {0 _a] , B= [ b ] (33)
Gy = 57 j=1,... k. whereb # 0 is any constant and > 1. The choice ofb
k does not affect the performance of the optimal control as one

Note that the solutiorG to (22) is circulant and has equalcan cancel out the effect &f by properly scaling the control

elements on the diagonal. From29) we know the LQG codgynal. Thus, without loss of generality, i {15) we picked

corresponding to\; (k, P) achieves sum rate b = 1. According to the channe[ (1.6) the closed-loop system
1 is i )

kloga = D) log(l + kA (kv P)) S, =AS;, 1 +BX; 1+ diag(B)Zi_l.



By substitutingB with B, the optimal control can be charac- VI. CORRELATEDNOISES PRE-LOG GAIN
terized by Lemmél4 as follows. The solution to the DARE (22) |, this section, we show that structured correlation among

IS the noises at the receivers can increase the capacity signif
(@*—1)[14+a> 1-a2 icantly. We consider the high power regime and study the
G = EPEToN [1 —a? 1+ a2} pre-log~v(K.) as a function of covariance matri ., which

represents the number of orthogonal point-to-point chisnne

which yields the optimal control with the same sum capacity.
Theorem 3:For all K, of rankr

(a' — 1)
C=le e === [1 1]. YK <k—r+1.
To obtain the power we need to substitdte = I with Conversely, for any = 1,...,k, there existsk, such that

rank(K.) =r and
- - 2
Q = diag(B) diag(B)' = [lz) bOQ} : YK, =k—r+1.
Proof: First, we prove the upper bound by induction. By

and the asymptotic variance of the channel inuis given ;5 mptionk, containsr linearly independent rows, let us

by assume, without loss of generality, the lastows. Assume
1 that receiver& —r+1, - - - , k share their received signals and
P =tr(GQ) = b*tr(G) = ﬁ(ag —1)(a®>+1)>.  (34) form a single receiver equipped wittreceive antennas and let
Yi i1 :=Yirs1,...,Ys)" denote the vector of received

Notice that [(34) does not depend on the paramitéthus, signals by this multiple antenna receiver. The correspundi
we can chooseh arbitrarily without affecting the overall AWGN vector BC with feedback is specified by
performance of the code. In particular, by choosing
Y;=X+2;, j=1,-- k-
b= a4_—31 Yiri1 =100 X +Zgriq
2a
Where (217”' aZk—T7Z/€—T+1) ~ N(OaKz)! Zk—T+1 ~

we have that¥; = Sy, +.55; as in the OL code. However, then (o, K,), and by assumptioi’, is full rank and invertible.

state in OL is updated as in_{32) while in the LQG code,  Now suppose that the sender of this channel wishes to send
messagel/; to receiverj, j =1,--- ,k—r+ 1, under power
[gl] = [8 0 } <[§1] - {béa bo ] Eﬁl} > . (35) constraintP. Since we made the optimistic assumption that
2lit1 ¢ 21 /o [Ya], a subset of receiver can cooperate, the sum capacity of this

annel is an outer bound on the sum capacity of the original

To compare with the OL code, we need to find the asympto{i GN-BC. Note that for every — 1 p the rate
- . e st — /r',

covariance matrix of the state. By substitutig with @, the

asymptotic covariance matrik’; is given by the DALE[(Z2B), R, < llog(l +P)
J
2

is upper bounded by the capacity of the point-to-point AWGN
channel. The rat&_, 1 for the (k—r+1)-th receiver withr
multiple antenna is upper bounded by the capacity of a single

Ko b2 [(a2+1)2+ — a*+1 }

JRE— a
2a2 a*+1 (@® +1)* + 5

and input multiple output (SIMO)[[14] channel:
lim E[SQZ}/}L] — lim E[SMYM] 1 -1 2
oo E[YZ]  imoo E[YZ] Ri—ri1 < 5 log(1+ PIK™2 10 [)
_ B — ea(Ko)io where by assumptio& is invertible. Thus, the sum capacity
tr(GQ) +1 of this channel is upper bounded ¥ — r)/21log(1 + P) +
_. a*(a® - 1) . 1/2log(1 + P|K~21,,1|?), and therefore the pre-log(K.)
ab+a*t+a?-1 can be at most — r + 1.
Notice that Next, we showy(K,) =k ?s achievable by the LQG code
for some K, of rank one, i.e.,r = 1. Forr = 2,...,k
ad(a? —1) b similar argument holds. Suppose that the open-loop matrix
"W tatt+az—1 Sa is as in [28). By Theorenmi]1, the symmetric rate vector

o . . . . . (loga,...,loga) is achievable under the power constraint
Therefore, unlike in the point-to-point setting discussed tr(GK.), whereG is the circulant matrix in Lemmi@ 6. Note

Section[ll], here the OL code and the LQG code are N@{a¢ any circulant matrix can be written &5\ F”, whereF is
asymptotically equivalent. Although both codes achievie e point discrete Fourier transform matrix with
pair (loga,loga), by Lemmal#, the OL code requires more

asymptotic power than the LQG code and hence it is subop- Fj = Leﬂﬂ\/f_l(jfl)(lfl)/k’
timal. vk



for j,k € {1,---,k}, and A = diag([A\1,...,]) is the instance, for the special caselof= 2, Gastpar and Wigger [3]
matrix with eigenvalues on its diagonal. Suppose that thigenoshowed that the OL code, which is suboptimal, achieves pre-
covariance matrix is also a circulant matrix with diagondbg two for anti-correlated noises.

entries equal td. In particular, let

K, =FAF', A =diag[o,...0,k]). (36) VIl. CONCLUSION
Then, we have Using tools from control theory we have presented a code
_ o for the k-user AWGN-BC with feedback, called the LQG code,
tr(GK,) = tr(FAAF') = kA which we have then used to investigate some properties of

the capacity region of this channel. When the noises at the

here by L 6, ; . o
where by Lemm] receivers are independent the pre-log of the sum capacity is

ko, = kA _ a?t —1 at most one, so feedback can yield at most a power gain over
a2(k—=1) — g2(k=1)" the case without feedback. We have quantified the power gain
Therefore, for the symmetric choice of in (28), the LQG achieved by the LQG code and shown that in the case where
code achieves sum rate k = 2, the LQG code recovers a previous result of Elia which
strictly improves upon the OL code. In the case where the
R =kloga (37) noises at the receivers are correlated, instead, the grefibe

sum capacity can be strictly greater than one. We estakblishe
that for all noise covariance matrixes of rankhe pre-log is
a (38) at mostk — r + 1 and, conversely, there exists a covariance
a2(k=1) matrix for which this upper bound is achieved by the LQG
and we have code. In particular, a pre-log equal kds achievable for some
circulant noise covariance matrix of rank one. This genzezal

under power constraint

~ 2k -1
P=tr(GK,) =

v(K.) = lim M previous results obtained by Gastpar and Wigger for the case
p=cc Tlog(1+ P) k2.
> lim R The LQG approach exploited here could be in principle
P=co 2log(1+ P) useful for other multi-user communication channels witkdfe
klo a back, when the subclass of linear codes can lead to optimal
lim ——8% (39) - ,
T T Tlog a2 or close to optimal solutions.
=k.

APPENDIXA

where [39) follows by plugging sum rat® and powerP PROOF OFL EMMA [T

from (37) and [[3B). Moreover, we know(K.) < k since

rank(K.) = 1. Hence,y(K.) = k for the covariance matrix ~ The proof is closely related to the proof of an analogous
K. in (36). statement for the communication problem over the multiple

To complete the proof, we show that for every ¢ access channel with feedback [6] . By assumption, therésexis
{2,...,k — 1} a pre-log equal tok — r + 1 is achievable & sequence of-codes for®; ~ Unif(0, 1), such that
for someK, such thatrank K, = r. Consider
E; = lim ——logD() j=1,....k (40)
K, = Mk—r+1,k—r+1 Ok—r+l,r—1 n—oo 21

Or—1,k—r+1 Ir—1r-1 and [2) holds. Given the sequencerstodes andR; < Ej,
where 0, ; denotes the zero matrix of dimension< j, I,; j =1...,k, we construct a sequence @'/, ... 2"f n)
is the identity matrix of dimensiom, and Mj,_, 1 ;—r+1 IS codes such thadim, Pe(") =0.
the (k — r + 1) x (k — r + 1) circulant matrix having first  First, we map the discrete message € M; = [1 : 2]
row equal to the last column of the discrete Fourier tramsforto a message poi;(m;) € ©;, where®, is a set of
matrix of dimension(k — r + 1) x (k — r + 1). Clearly, 2"fi message points in the unit interval such that the distance
rank(K,) = rank(My_,41 x—r41) +rank(l,_1 ,—1) = 7. On  between any two message points is greater than or equal to
the other hand, suppose that the transmitter communicalgs @ "%, To sendm; € M;, we use the givem-code and
to usersl, 2, -, k—r—+1, while the transmission rate for thethe corresponding message poﬂ;(mj) The decoder first
remaining users is set to zero. We can use a similar argumfstins the estimate of the message poﬂ;‘(ty according to
as above and show that the LQG code for the correspondihg givenn-code, and then chooses; such thatd,(ri;) is
(k — r + 1)-receiver AWGN-BC with feedback and noisethe closest message pointdg(y™). As the distance between
covariance matrix\y .1 x—r41 achieves a pre-log equal toany two message points is greater than or equart?, the

k—r+41. B average probability of error is bounded as follows,
Remark 3:To achievey = k, we used the LQG code.

However, the same pre-log can be achieved even with codeg (") < max max P {|@ — 6, > .9~ nR; ’@ -0
which are less power efficient since we are considering only 0€O;
the pre-log of the sum rate in the high power regime. For (41)



To showlim,, .., P\™ = 0, consider

A 1
Pjn =P {|@j —05l>5- 2_"R”}

S 4 . 2271Rj . 27277.(Ej7€n)

(43)

(44)
— 4 . 2—2n(Ej—Rj—en)

wheree, — 0 asn — oo. The inequalities[{43) and_(¥4)
follow from the Chebyshev inequality and {40), respectivel
From [45) and the assumptid®; < E;, we have

pjn—0asn—0 j=1,... k.

of
Next, by the similar argument as in_[15, Lemma 11.3] wqog

show that conditiori(46) is sufficient to prove that theresesa |,

whereA = diag(aq, . .

(46) where K,

10

.,ay) is the same as ifi.(14). Consider-

ing the recursion foS,, we can rewrite the system dynamics
(42) given in [I%) as

Sit1 = A'O + Si+1

= A(® -6, (49)

(45) where®; = (Oy,,...,0y)T and the last equality follows
from the decoder rule by whidh ;; = —aiSj(iH). From [49),
the MSE for the messag®; at timen is given by

Dt —

J

E(©; — 0,n)* = la;| " (Kn+1)y5-

Cov(S,,) is the covariance matrix
The achievability of MSE exponentt;

(50)

Sh.

(Jaj|) follows from (50) and the assumption of stability
SUP, 00 (Kn)j; < oo. The asymptotic power follows

set of message points in the unit interval such that therista ¢, 1 the fact thaty: — mi(S;)

between any two message points is greater than or equal to

2—n8; and

(1]
(2]

lim max P
n—oo 0]' E@j

R 1
{|9j—9j|>§'2 o

0, = 9]} =0 (47)
forj=1,...,k.
Define the event

Tip = {9 €(0,1) :

A 1 n
P{|®j - 6,1 > 5276, :9} > \/m}
Then we have; ,, > /p;» P(T}») and hence
P(Tjn) < /Pjn-

To choose®; such that®; N T}, = () and also the distance (6]
between any two message points is greater than or equal
to 2778 it is sufficient that|®;]2 "% < 1 —  /p;,, or [7]
considering[(46), 8]

(31
(4]

(5]

0] < (1—e)- 2"

9
wheree,, — 0 asn — co. Moreover, by the definition df} ,, o]

and the fact tha®; N T,, = ) we have (10]

0; = 9} < Pjn (48) [11]

and considerind(46), the condition {47) holds.
Combining [41) and[{@7), we havBm,_,.. P\ = 0.
Moreover, since the givem-code satisfies the power cond13l
straint P, the constructed2”?:,... 2"%x n) code also sat-
isfies the same power constraint. Hence, we conclude tlua
the rate vectofRy, ..., Ry) is achievable under power con-[ls]
straint P.

max P
Oeej

A 1 —nR;
{|@—®| > 5-2

[12]

APPENDIXB
PROOF OFLEMMA [3
LetS; = (S1i, ..., Sk)T whereS;; is given in [I9). Then,
we have

>

1

0
AS;i 1 +Yi

i=2,3,...
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