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LQG Control Approach to Gaussian Broadcast
Channels with Feedback

Ehsan Ardestanizadeh, Paolo Minero, and Massimo Franceschetti

Abstract—A code for communication over thek-receiver ad-
ditive white Gaussian noise broadcast channel with feedback is
presented and analyzed using tools from the theory of linear
quadratic Gaussian optimal control. It is shown that the per-
formance of this code depends on the noise correlation at the
receivers and it is related to the solution of a discrete algebraic
Riccati equation. For the case of independent noises, the sum
rate achieved by the proposed code, satisfying average power
constraint P , is characterized as1/2 log(1 + Pφ), where the
coefficientφ ∈ [1, k] quantifies the power gain due to the presence
of feedback. When specialized to the case of two receivers, this
includes a previous result by Elia and strictly improves upon
the code of Ozarow and Leung. When the noises are correlated,
the pre-log of the sum-capacity of the broadcast channel with
feedback can be strictly greater than one. It is establishedthat
for all noise covariance matrices of rank r the pre-log of the
sum capacity is at mostk − r+ 1 and, conversely, there exists a
noise covariance matrix of rank r for which the proposed code
achieves this upper bound. This generalizes a previous result by
Gastpar and Wigger for the two-receiver broadcast channel.

I. I NTRODUCTION

Consider the communication problem over thek-receiver
additive white Gaussian noise (AWGN) broadcast channel
(BC) with feedback depicted in Fig. 1. Here, a sender wishes
to communicatek independent messages tok distinct receivers
that observe the sequence of transmitted signals corrupted
by k, possibly correlated, AWGN sequences. It is known that
the presence of feedback from receivers to sender improves
communication performance over broadcast channels. Specifi-
cally, Dueck [1] showed, by providing a specific example, that
feedback can enlarge the capacity region of additive memory-
less broadcast channels where the noises at the receivers are
correlated, while Ozarow and Leung [2] proved that feedback
can be beneficial by providing a means of cooperation between
receivers and sender even when the noises at the receivers are
independent. However, a computable characterization of the
capacity region of this channel remains a long-standing open
problem.

In this paper, we construct a code, which we refer to asLQG
code, for communicating over the AWGN-BC with feedback
and we characterize its performance using tools from optimal
control. We show that the minimum power needed by the
LQG code for reliable transmission of messages encoded at
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a given set of rates depends on the correlation between the
noises at the receivers and is determined by the solution of
a discrete algebraic Riccati equation (DARE) which arises in
the analysis of the linear quadratic Gaussian (LQG) optimal
control problem. The LQG code is then used to investigate
some properties of the capacity region of the AWGN-BC with
feedback.

First, we consider the case of independent noises at the
receivers, which is the most interesting in practice. By solving
the corresponding DARE, it is shown that the LQG code
achieves sum rate equal to1/2 log(1 + Pφ(k, P )) under
average power constraintP when messages are encoded at the
same rate. Here, the real coefficientφ(k, P ) ∈ [1, k] represents
the power gain compared to the no-feedback sum capacity
1/2 log(1 + P ), and for fixedk it is increasing inP , that
is, more power allows more gain. In particular, asP → ∞,
φ → k, and the sum rate tends to1/2 log(1+kP ), which is the
same as the sum capacity of the single-input multiple-output
(SIMO) channel. Note that in the SIMO channel the receivers
are co-located, whereas in the AWGN-BC the receivers are
separately located but feedback links to the transmitter are
available. Hence, the power gain due to feedback can be
interpreted as the amount ofcooperationamong the receivers
established through feedback, which allows the transmitter to
align the signals intended for different receivers coherently
and use power more efficiently.

Next, we investigate how the sum capacity, the supremum of
achievable sum rates, scales as the powerP at the transmitter
increases. If the sum capacity scales as(γ/2) log(1 + P ) as
P → ∞, then we refer toγ as the pre-log1 of the channel.
We show that the pre-log of the AWGN-BC with feedback
depends on the rank of the correlation matrix of the noises
at the receivers. Specifically, if the rank isr, then the pre-log
can be at mostk− r+1. Conversely, for anyr ∈ {1, . . . , k},
there exists a noise covariance matrix of rankr for which the
upper bound on the pre-log is tight and is achieved by the
LQG code. In particular, the pre-log is equal tok for some
rank-one covariance matrix. This generalizes a previous result
by Gastpar and Wigger [3] for the two-receiver AWGN-BC to
the case ofk receivers.

Finally, we wish to mention some additional related works.
Elia [4] followed a control-theoretic approach and presented a
linear code for the two-receiver AWGN-BC with independent
noises, which outperforms the Ozarow–Leung (OL) code [2].
Our code, when specialized to the case of two receivers
and independent noises, provides the same performance as

1The pre-log is also known as the number of degrees of freedom as it is
equal to the number of orthogonal point-to-point channels with the same sum
capacity.
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Elia’s code [4]. Wu et al. [5] applied the LQG theory to
study Gaussian networks with feedback, where the noises at
the receivers are independent, but did not provide explicit
solutions. Along the same lines, it has been shown in [6]
that the linear code proposed by Kramer [7] for thek-sender
multiple access channel with feedback can be obtained by
solving an LQG control problem.

It is worth noting that the LQG code is derived from an
optimal control for a linear system and hence is optimal among
the subclass of linear codes. For the AWGN-BC with feedback,
we show that the LQG code provides better performance
compared to the OL code fork = 2 and hence outperforms
the Kramer code [7] fork ≥ 3, which is an extension of the
OL code. However, it remains to be proven whether the LQG
code achieves the feedback sum capacity.

The rest of the paper is organized as follows. Section II
presents the problem definition. Section III discusses the point-
to-point communication problem over the AWGN channel
with feedback from a control theoretic perspective. This view-
point is then generalized in Section IV, which presents the
LQG code for communicating over thek-user AWGN-BC with
feedback. The following two sections are devoted to studying
the performance of the LQG code: in Section V we provide
the analysis for the case of independent noises at the receivers,
while in Section VI we characterize the pre-log gain when the
noises are correlated. Finally, Section VII concludes the paper.

II. D EFINITIONS

Consider the communication problem where a sender
wishes to communicatek independent messagesM1, . . . ,Mk

to k distinct receivers byn transmissions over the AWGN-
BC channel with feedback depicted in Fig. 1. At each time
i ∈ {1, . . . , n}, the channel outputs are given by

Yi = 1Xi + Zi (1)

whereXi is the transmitted symbol by the sender and1k×1 =
(1, . . . , 1)T is the column vector of ones of lengthk. The
vectorYi := (Y1i, . . . , Yki)

T contains thek channel outputs
at time i, that is,Yji is the channel output for the receiverj
at timei. Similarly Zji denotes the noise for the receiverj at
time i. The noise vector

Zi := (Z1i, . . . , Zki)
T ∼ N(0,Kz) i.i.d.

is assumed to be independent of the transmitted messages, and
independently and identically distributed (i.i.d.) from aGaus-
sian distribution with zero mean and covariance matrixKz.
Without loss of generality, we assume thatZji ∼ N(0, 1) has
unit variance, so the diagonal elements ofKz are equal to one.

We assume that the output symbols are causally and
noiselessly fed back to the sender so that the transmitted
symbol Xi at time i can depend on the message vector
M := (M1, . . . ,Mk)

T , and the previous channel output
vectorsYi−1 := (Y1, . . . ,Yi−1).

Definition 1: A (2nR1 , . . . , 2nRk , n) code for the AWGN-
BC with feedback consists of

1) k discrete messagesMj ∼ Unif{1, . . . , 2nRj},

2) an encoder that assigns a symbolXi(M,Yi−1) to the
message vectorM and the previous channel output
vectorsYi−1 for eachi ∈ {1, . . . , n}, and

3) k decoders, where decoderj assigns an estimatêMj to
each sequenceY n

j := (Yj1, . . . , Yjn).

Let M1, . . . ,Mk be independent and the probability of error
be defined as

P (n)
e = P(Mj 6= M̂j for somej).

Then, we say that(R1, . . . , Rk) is an achievable rate vector
under (asymptotic block) power constraintP if there exists a
sequence of(2nR1 , . . . , 2nRk , n) codes such that

lim
n→∞

P (n)
e = 0

and

lim sup
n→∞

1

n

n
∑

i=1

E(X2
i ) ≤ P. (2)

We refer toR =
∑k

j=1 Rj as the sum rate of an achievable
rate vector.

Definition 2: The closure of the set of achievable rate
vectors(R1, . . . , Rk) under power constraintsP is called the
capacity regionC (P,Kz). The sum capacityC(P,Kz) is
defined as

C(P,Kz) := max







k
∑

j=1

Rj : (R1, ..., Rk) ∈ C (P,Kz)







and the pre-logγ(Kz) is defined as

γ(Kz) = lim sup
P→∞

C(P,Kz)
1
2 log(1 + P )

.

Definition 3: An n-code for the AWGN-BC with feedback
consists of

1) k continuous messagesΘj ∼ Unif(0, 1)

2) an encoder that assigns a symbolXi(Θ,Yi−1) to the
message vectorΘ = (Θ1, . . . ,Θk)

T and the previous
channel output vectorsYi−1 for each i ∈ {1, . . . , n},
and

3) k decoders, where decoderj assigns an estimatêΘj to
each sequenceY n

j = (Yj1, . . . , Yjn).

Let Θ1, . . . ,Θk be independent and the mean square errors
D

(n)
1 , . . . , D

(n)
k at timen be defined as

D
(n)
j = E(Θj − Θ̂j)

2, j = 1, . . . , k.

Then, we say that(E1, . . . , Ek) is an achievable mean square
error (MSE) exponent vector under (asymptotic block) power
constraintP if there exists a sequence ofn-codes such that

Ej = lim
n→∞

− 1

2n
logD

(n)
j , j = 1, . . . , k

and (2) holds.
The definitions of achievable MSE exponent and rate vectors

are closely related, as established by the following lemma.
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Fig. 1. Thek-receiver AWGN broadcast channel with feedback.

Lemma 1:Let (E1, . . . , Ek) be an achievable MSE expo-
nent vector under power constraintP , and (R1, . . . , Rk) be
such that

Rj < Ej , j = 1, . . . , k.

Then, the rate vector(R1, . . . , Rk) is achievable under power
constraintP .

Proof: See Appendix A.

III. LQG A PPROACH: POINT-TO-POINT CHANNELS

Before presenting the LQG code for the AWGN-BC, we
first revisit the communication problem over the point-to-point
AWGN channel with feedback in Fig. 2, and demonstrate
how the theory of LQG control can be used to design codes
for communication over such channel. It is well known [4]
that the capacity-achieving code by Schalkwijk and Kailath
(SK) [8], [9] can be derived as the solution of an optimal
control problem. However, here we provide a derivation of
this result that naturally generalizes to the case of multiple
receivers.

Let S1 ∈ R be the initial state of an unstable linear system
with open-loop dynamics

Si = aSi−1, i = 2, 3, . . .

for some coefficienta > 1, that is stabilized by a controller
having full state information and where the control signal is
corrupted by AWGN (see Fig. 3). The closed-loop dynamic
of this system is given by

Si = aSi−1 + Yi−1, i = 2, 3, . . . (3)

where

Yi = Xi + Zi, Zi ∼ N(0, 1), (4)

and

Xi = πi(Si), i = 1, 2, . . . (5)

The mappings{πi}∞i=1 are referred to as thecontrol, and the
linear dynamical system in (3), which is characterized by the
unstable modea, is simply referred to as thesystem. We say
that a control is stabilizing iflim supi→∞ E(S2

i ) < ∞.
Given a control (5) for the system (3), we construct a

sequence ofn-codes for the point-to-point AWGN channel (4)

with feedback (cf. Definition 3 in the special case ofk = 1)
as follows.

1) Encoder: Given a continuous messageΘ ∼ Unif(0, 1),
the encoder recursively forms

S1 = Θ

Si = aSi−1 + Yi−1, i = 2, 3, . . . , n (6)

and transmitsXi(Θ, Y i−1) = πi(Si) for each i ∈
{1, . . . , n}.

2) Decoder: the decoder setsΘ̂i = −a−iŜi+1 as an estimate
of the messageΘ, whereŜi is recursively formed as

Ŝ1 = 0

Ŝi = aŜi−1 + Yi−1, i = 2, 3, . . . , n. (7)

Lemma 2: If the control {πi} stabilizes the system with
open-loop modea > 1, then then-code described by (6)
and (7) achieves MSE exponentE = log a under power
constraint

P = lim sup
n→∞

1

n

n
∑

i=1

E(π2
i (Si)). (8)

Proof: Combining (6) and (7) we have

Si+1 = aiΘ+ Ŝi+1

= ai(Θ− Θ̂i) (9)

where the last equality follows from the fact that̂Θi =
−a−iŜi+1. From (9), the MSE of the estimatêΘn is D(n) =
E(Θ− Θ̂n)

2 = a−2n
E(S2

n+1). Since the control is stabilizing
we know lim supn→∞ E(S2

n) < ∞ and hence

E = lim
n→∞

− 1

2n
logD(n) = log a.

Noting that Xi = πi(Si), we conclude that MSE expo-
nent log a is achievable under asymptotic power equal to
lim supn→∞

1
n

∑n
i=1 E(π

2
i (Si)).

Lemma 2 shows that for a fixeda > 1 any stabilizing
control yields a code achieving MSE exponentE = log a.
In general, though, different codes require a different asymp-
totic power constraint (8). Thus, we are interested in finding
the stabilizing control whose associate asymptotic power is
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minimal. It is known from the theory of LQG control [10]
that the linear stationary control

Xi = −cSi, i = 1, 2, . . . (10)

where c = (a2 − 1)/a attains the minimum asymptotic
power (8), which is given by

P ∗ = a2 − 1.

Hence, from Lemma 2, the linear code corresponding to this
optimal LQG control, which we refer to as the LQG code,
achieves the MSE exponent

log a =
1

2
log(1 + P ∗)

under power constraintP ∗. By Lemma 1, when specialized
to k = 1, we conclude that the LQG code achieves any rate
R < log a = 1/2 log(1+P ∗) under power constraintP ∗, and
hence is capacity achieving.

A natural question to ask is what is the connection between
the LQG code and the SK code, where the sender recursively
transmits the estimation error at the receiver? To answer this
question, note that combining (6) and (10) we can write a
recursion for the channel inputXi as

Xi+1 = a
(

Xi −
c

a
Yi

)

(11)

with X1 = −cΘ. The recursion converges, irrespectively of
the initial value, sincea − c = 1/a < 1. On the other hand,
the channel input update in the SK can be represented by the
following recursion [11],

Xi+1 = a

(

Xi −
E(XiYi)

E(Y 2
i )

Yi

)

(12)

with X1 = Θ. Comparing (11) and (12), we can see that the
LQG code is asymptotically equivalent to the SK code if

E(XiYi)

E(Y 2
i )

→ c

a
as i → ∞ (13)

such that, in steady state,(c/a)Yi tends to the minimum mean
squared error estimate ofXi givenYi.

By plugging (10) into (6), we have the closed-loop dynamics
for Si as

Si = a−1Si−1 + Zi−1.

As i → ∞ the second moment of the state converges to
a2/(a2 − 1) and sinceXi = −cSi,

E(X2
i ) → a2 − 1

E(Y 2
i ) → a2.

Therefore, asi → ∞,

E(XiYi)

E(Y 2
i )

=
E(X2

i )

E(Y 2
i )

→ a2 − 1

a2
=

c

a

where the last equality follows from the fact that the optimal
control is given byc = (a2− 1)/a. Hence, the LQG code and
the SK code are asymptotically equivalent.

IV. LQG CODE: AWGN BROADCAST CHANNEL WITH

FEEDBACK

In this section we extend the control theoretic approach to
the case of ak-receiver AWGN-BC with feedback. We do so
by considering the control problem depicted in Fig. 4, in which
a k-dimensional unstable dynamical system is stabilized by a
scalar controller having full state observation and where the
scalar controller is perturbed byk, possibly correlated, AWGN
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Fig. 4. Control over the AWGN broadcast channel

noises, each affecting a different component of the state vector.
We show that any controller stabilizing the system in mean-
square sense yields a code for thek-receiver AWGN-BC with
feedback. In particular, the LQG code is obtained from the
minimum variance stabilizing control which can be computed
using the LQG control theory.

A. Code Design Based on a Control Approach

Assume for simplicity that channel input and outputs in (1)
are complex numbers and that the additive noise vector is
drawn i.i.d. from a circular symmetric complex Gaussian
distribution with covarianceKz. It is easy to see that if
(R1, . . . , Rk) is achievable under power constraintP per each
real dimension of the complex channel, then(R1, . . . , Rk) is
achievable under the same power constraint over the original
real channel. In fact, one transmission over the complex
channel can be reproduced by two consecutive transmission
(of real and imaginary part, respectively) over the real channel.

Let

A = diag(a1, . . . , ak) ∈ C
k×k (14)

whereaj ∈ C, j = 1 . . . , k, are distinct points outside the unit
circle, i.e., |aj | > 1, andA′ denote theconjugate transpose
of the matrixA. Consider the linear dynamical system with
open-loop matrixA shown in Fig. 4,

S1 = Θ

Si = ASi−1 +Yi−1, i = 2, 3, . . . (15)

whereSi = (S1i, . . . , Ski)
T ∈ Ck represents the state of the

system at timei, Θ = (Θ1, . . . ,Θk)
T is a vector of complex

random variables such thatΘ1, . . . ,Θk are drawn i.i.d. from
a uniform distribution over(0, 1)× (0, 1) ⊂ C, andYi ∈ C

k

denotes the vector of complex channel outputs, i.e.,

Yi = BXi + Zi, Zi ∼ CN (0,Kz) (16)

where Xi ∈ C here represents the scalar complex control
signal,Zi ∈ Ck denote the noise vector at timei, and

B = [1, . . . , 1]′1×k. (17)

At every discrete timei, the control input can depend only on
the state of the system at timei, so

Xi = πi(Si), i = 1, 2, . . . (18)

for some functionπi : C
k → C. We refer to the sequence{πi}

as the control. Since|aj | > 1, the eigenvalues ofA are outside
the unit circle and the open-loop system (15) is unstable. We
say that the control{πi} stabilizes the closed-loop system if

lim sup
n→∞

E(‖Sn‖2) < ∞

where‖Sn‖2 denotes the2-norm of the vectorSn.
Given the system (15) and the control (18), we present the

following sequence ofn-codes for thek-receiver AWGN-BC
with feedback (16).

1) Encoder: At each timei ∈ {1, . . . , n} the encoder recur-
sively formsSi as in (15) and transmitsXi = πi(Si).

2) Decoders: At each timei ∈ {1, . . . , n} decoderj forms
an estimateΘ̂ji = −a−i

j Ŝj(i+1) for the desired mes-
sageΘj , whereŜji is recursively formed as

Ŝj1 = 0

Ŝji = ajŜj(i−1) + Yj(i−1), i = 2, 3, . . . , n. (19)

The following lemma characterizes the set of MSE exponent
vectors that can be achieved by the sequence ofn-codes so
generated.

Lemma 3:Let {πi} be a stabilizing control for (15). Then,
the MSE exponent vector(log |a1|, . . . , log |ak|) is achievable
under power constraint

P = lim sup
n→∞

1

n

n
∑

i=1

E(π2
i (Si)).

Proof: See Appendix B.

B. LQG Code based on Optimal LQG Control

According to Lemma 3, for a fixed open-loop matrixA,
any stabilizing control yields a sequence ofn-codes for the
AWGN-BC with feedback that achieves the same MSE ex-
ponent vector(log |a1|, . . . , log |ak|) under a power constraint
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determined by the asymptotic control variance. The following
theorem characterizes the performance of the LQG code,
which corresponds to the minimum variance control that can
be computed using the LQG control theory.

Theorem 1:Let A and B be given as in (14) and (17),
and Kz be the covariance matrix of the noise vector in the
AWGN-BC (16). Then, the rate vector(log |a1|, . . . , log |ak|)
is achievable under power constraint

P (A,Kz) = CKsC
′ = tr(GKz) (20)

where

C = (B′GB + 1)−1B′GA (21)

andG is the unique positive definite solutions to the discrete
algebraic Riccati equation (DARE)

G = A′GA−A′GB(B′GB + 1)−1B′GA (22)

such thatA−BC is stable, that is, every eigenvalue ofA−BC
lies inside the unit circle, andKs is the unique solution to the
discrete algebraic Lyapunov equation (DALE)

Ks = (A−BC)Ks(A−BC)′ +Kz. (23)

The proof of the theorem makes use of the following two
lemmas.

Lemma 4:Given the unstable open-loop matrix (14), the
stationary and linear control

Xi = −CSi (24)

where C and G are given in (21) and (22), respectively,
stabilizes the closed-loop system (15) and minimizes the
asymptotic average control power

lim sup
n→∞

1

n

n
∑

i=1

E(π2
i (Si)). (25)

The minimum stationary power is given by

tr(GKz)

whereKz is the covariance matrix of the noise vector in (16).
Proof: Plugging (16) into (15), we have

Si = ASi−1 +BXi−1 + Zi−1. (26)

Consider the problem of finding the stabilizing control that
minimizes the asymptotic average control power

lim sup
n→∞

1

n

n
∑

i=1

E(π2
i (Si)).

This problem is similar to the standard LQG problem [10] in
the special case where the cost function does not depend on the
state. For this problem, we can derive the Riccati equation (22)
and the stationary linear control (21), similar to the solution
to the LQG problem, to establish a sufficient condition for
optimality in terms of the asymptotic power.

Unlike the standard LQG problem, though, here we require
the control to stabilize the system (see Lemma 3). Next, we
show that there exists a unique solution to (22) such that the
controlC in (21) is stabilizing, that is,A−BC is stable. Since
the eigenvalues ofA are all outside of the unit circle and the

elements ofB are nonzero we know(A,B) is detectable, that
is, there exists aC ∈ C1×k such thatA−BC is stable. Then,
by [12, Lemma 2.4] there exists aunique positive definite
solution to (22) for whichA−BC is stable.

The following lemma characterizes the asymptotic perfor-
mance of the minimum variance control.

Lemma 5:Let the linear control in (24) be stabilizing, that
is, all eigenvalues ofA−BC lies inside the unit circle. Then,
the asymptotic average control power (25) is given by

CKsC
′ (27)

whereKs is the unique solution to the following DALE

Ks = (A−BC)Ks(A−BC)′ +Kz.

Remark 1:From Lemma 4 and Lemma 5 it is clear that the
performance of the described feedback code depends on the
correlation among the noises at the receivers.

Proof: Plugging (24) into the closed-loop system dynam-
ics (26) we have

Si = (A−BC)Si−1 + Zi−1.

Let Ks,i denote the covariance matrix of the stateSi, then we
have the following discrete algebraic Lyapunov recursion

Ks,i+1 = (A−BC)Ks,i(A−BC)′ +Kz.

By assumption(A − BC) is stable andKs,0 ≻ 0, hence
the above recursion converges to the unique positive-definite
solution to the following discrete algebraic Lyapunov equation
(DALE)

Ks = (A−BC)Ks(A−BC)′ +Kz.

Note thatXi = −CSi and henceE(X2
i ) = CKs,iC

′, which
completes the proof.

Proof of Theorem 1:According to Lemma 4 and Lemma 5,
for A = diag(a1, . . . , ak) with |aj | > 1, there exists a
stabilizing control with asymptotic power equal to (20). Fur-
thermore, according to Lemma 3, we can construct a sequence
of ncodes corresponding to this control, which achieves the
MSE exponent vector(log |a1|, . . . , log |ak|) with the same
asymptotic power as the control. Finally, by Lemma 1, we
conclude that rate vector(log |a1|, . . . , log |ak|) is achievable
under asymptotic power constraint (20).

Example 1:Consider the special case of a two-receiver
AWGN-BC, and let

A =

(

a1 0
0 a2

)

, Kz =

(

1 ρ
ρ 1

)

,

for |a1| > 1, |a2| > 1, and −1 < ρ < 1. By solv-
ing (22) and plugging the solution into (20) we obtain that
(log |a1|, log |a2|) is an achievable rate pair under power
constraint

1

|a1 − a2|2
(

|a1a2 − 1|2(|a1|2 + |a2|2 − 2)

− ρ(|a1|2 − 1)(|a2|2 − 1)(Re(a1a′2)− 2)
)

.

In the special case where the noises at the receivers are
independent (ρ = 0), the code in [4] has the same performance
as the LQG code.
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V. I NDEPENDENTNOISES: POWER GAIN

In this section, we analyze the performance of the LQG
code in the special case of independent noises, i.e., assuming
thatKz = Ik×k, which is the case for most practical scenarios.
We characterize the sum rateR(k, P ) achievable by the LQG
code under power constraintP for the symmetric case where
diagonal elements ofA in (14) are

aj = ae
2π

√

−1

k
(j−1), j = 1, . . . , k. (28)

anda > 1 is real.
Theorem 2:Given A as in (28), the LQG code achieves

symmetric sum rateR(k, P ), i.e., Rj = R(k, P )/k, j =
1, . . . , k, under power constraintP where

R(k, P ) =
1

2
log(1 + Pφ)

andφ(k, P ) is the unique solution in the interval[1, k] to

(1 + Pφ)k−1 =

(

1 +
P

k
φ(k − φ)

)k

.

Remark 2:The quantityφ(k, P ) is the power gain com-
pared to the no feedback sum capacity1/2 log(1 + P ). This
power gain can be interpreted as the amount of cooperation
among the receivers established through feedback, which
allows the transmitter to align signals intended for different
receivers coherently and use power more efficiently.

Proof: For A defined as (28), we know by Theorem 1
that the sum rateR = k log a is achievable under power
constraintP = tr(G) whereG is the unique solution to the
DARE (22). The following lemma characterizes the solution
to the DARE (22) for the symmetric choiceA.

Lemma 6: [13, Lemma 12] Suppose that the open-loop
matrix A is of the form (28). Then the unique positive-
definite solutionG to (22) is circulant with real eigenvalues
λ1 > λ2 > . . . > λk > 0 satisfying

λi =
1

a2
λi−1

for i = 2, . . . , k. The largest eigenvalueλ1 satisfies

1 + kλ1 = a2k (29)
(

1 + λ1

(

k − λ1

Gjj

)

)

= a2(k−1). (30)

From (29) and (30) we have

(1 + kλ1)
k−1 =

(

1 + λ1(k − λ1

Gjj
)

)k

. (31)

The solution to (22) is unique and we conclude that (31) has
a unique solution forGjj given λ1 and vice-versa. Consider
λ1(k, P ) corresponding to the case where

Gjj =
P

k
, j = 1, . . . , k.

Note that the solutionG to (22) is circulant and has equal
elements on the diagonal. From (29) we know the LQG code
corresponding toλ1(k, P ) achieves sum rate

k log a =
1

2
log(1 + kλ1(k, P )).

under power constrainttr(G) = P . The following change of
variable

φ =
k

P
λ1

completes the proof.

A. Comparison with the AWGN Multiple Access Channel

The LQG approach can be also applied to the AWGN-MAC
with feedback. It is known [6] that the LQG code for AWGN-
MAC has the same performance as the Kramer code [7],
which achieves the linear sum capacity [13], the supremum
sum rate achievable by linear codes. LetRMAC(k, P ) denotes
the symmetric sum rate achievable by the LQG code for thek-
sender AWGN multiple access channel (MAC) with feedback
where each sender has power constraintP . Then, we have [6,
Theorem 4]:

RMAC(k, P ) =
1

2
log(1 + kPφ)

whereφ(k, P ) is the unique solution to

(1 + kPφ)k−1 = (1 + Pφ(k − φ))k .

Comparing with Theorem 2, it is not hard to see that

RBC(k, P ) = RMAC(k, P/k).

This shows that under the samesum powerconstraintP , the
sum rate achievable by the LQG code over MAC and BC are
equal. This connection between the MAC and the BC is also
considered in [5].

B. Ozarow-Leung (OL) code fork = 2

We compare the LQG code with the OL code fork = 2 and
Kz = I. The OL code can be represented as follows [11]:

Xi = S1i + S2i

where
[

S1

S2

]

i+1

=

[

a 0
0 −a

]

(

[

S1

S2

]

i

−
[

E[S1iY1i]
E[Y 2

1i
]

0

0 E[S2iY2i]
E[Y 2

2i
]

]

[

Y1

Y2

]

i

)

(32)

In the sequel, we present the LQG code in a similar form
as (32) for comparison. Let the system in (15) be re-written
as

Si = ASi−1 + diag(B̃)Yi−1.

where

A =

[

a 0
0 −a

]

, B̃ =

[

−b
b

]

(33)

where b 6= 0 is any constant anda > 1. The choice ofb
does not affect the performance of the optimal control as one
can cancel out the effect ofb by properly scaling the control
signal. Thus, without loss of generality, in (15) we picked
b = 1. According to the channel (16) the closed-loop system
is

Si = ASi−1 + B̃Xi−1 + diag(B̃)Zi−1.
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By substitutingB with B̃, the optimal control can be charac-
terized by Lemma 4 as follows. The solution to the DARE (22)
is

G = − (a4 − 1)

4a4b2

[

1 + a2 1− a2

1− a2 1 + a2

]

which yields the optimal control

C = [c1 c2] = − (a4 − 1)

2a3b

[

1 1
]

.

To obtain the power we need to substituteKz = I with

Q = diag(B̃) diag(B̃)′ =

[

b2 0
0 b2

]

.

and the asymptotic variance of the channel inputX is given
by

P = tr(GQ) = b2 tr(G) =
1

2a2
(a2 − 1)(a2 + 1)2. (34)

Notice that (34) does not depend on the parameterb. Thus,
we can chooseb arbitrarily without affecting the overall
performance of the code. In particular, by choosing

b =
a4 − 1

2a3

we have thatXi = S1i+S2i as in the OL code. However, the
state in OL is updated as in (32) while in the LQG code,
[

S1

S2

]

i+1

=

[

a 0
0 −a

]([

S1

S2

]

i

−
[

b/a 0
0 b/a

] [

Y1

Y2

]

i

)

. (35)

To compare with the OL code, we need to find the asymptotic
covariance matrix of the state. By substitutingKz with Q, the
asymptotic covariance matrixKs is given by the DALE (23),

Ks =
b2

2a2

[

(a2 + 1)2 + 2
a2−1 a4 + 1

a4 + 1 (a2 + 1)2 + 2
a2−1

]

and

lim
i→∞

E[S2iY2i]

E[Y 2
2i]

= lim
i→∞

E[S1iY1i]

E[Y 2
1i]

=
−c1(Ks)11 − c2(Ks)12

tr(GQ) + 1

= b · a3(a2 − 1)

a6 + a4 + a2 − 1
·

Notice that

b · a3(a2 − 1)

a6 + a4 + a2 − 1
<

b

a
.

Therefore, unlike in the point-to-point setting discussedin
Section III, here the OL code and the LQG code are not
asymptotically equivalent. Although both codes achieve rate
pair (log a, log a), by Lemma 4, the OL code requires more
asymptotic power than the LQG code and hence it is subop-
timal.

VI. CORRELATED NOISES: PRE-LOG GAIN

In this section, we show that structured correlation among
the noises at the receivers can increase the capacity signif-
icantly. We consider the high power regime and study the
pre-logγ(Kz) as a function of covariance matrixKz, which
represents the number of orthogonal point-to-point channels
with the same sum capacity.

Theorem 3:For all Kz of rank r

γ(Kz) ≤ k − r + 1.

Conversely, for anyr = 1, . . . , k, there existsKz such that
rank(Kz) = r and

γ(Kz) = k − r + 1.

Proof: First, we prove the upper bound by induction. By
assumptionKz containsr linearly independent rows, let us
assume, without loss of generality, the lastr rows. Assume
that receiversk−r+1, · · · , k share their received signals and
form a single receiver equipped withr receive antennas and let
Yk−r+1 := (Yk−r+1, . . . , Yk)

T denote the vector of received
signals by this multiple antenna receiver. The corresponding
AWGN vector BC with feedback is specified by

Yj = X + Zj, j = 1, · · · , k − r,

Yk−r+1 = 1r×1X + Zk−r+1

where (Z1, · · · , Zk−r,Zk−r+1) ∼ N(0,Kz), Zk−r+1 ∼
N(0, K̃z), and by assumptioñKz is full rank and invertible.

Now suppose that the sender of this channel wishes to send
messageMj to receiverj, j = 1, · · · , k− r+1, under power
constraintP . Since we made the optimistic assumption that
a subset of receiver can cooperate, the sum capacity of this
channel is an outer bound on the sum capacity of the original
AWGN-BC. Note that for everyj = 1, · · · , k − r, the rate

Rj <
1

2
log(1 + P )

is upper bounded by the capacity of the point-to-point AWGN
channel. The rateRk−r+1 for the(k−r+1)-th receiver withr
multiple antenna is upper bounded by the capacity of a single
input multiple output (SIMO) [14] channel:

Rk−r+1 ≤ 1

2
log(1 + P |K̃− 1

2 1r×1|2)

where by assumptioñK is invertible. Thus, the sum capacity
of this channel is upper bounded by(k − r)/2 log(1 + P ) +
1/2 log(1 + P |K̃− 1

21r×1|2), and therefore the pre-logγ(Kz)
can be at mostk − r + 1.

Next, we showγ(Kz) = k is achievable by the LQG code
for someKz of rank one, i.e.,r = 1. For r = 2, . . . , k
similar argument holds. Suppose that the open-loop matrixA
is as in (28). By Theorem 1, the symmetric rate vector
(log a, . . . , log a) is achievable under the power constraint
tr(GKz), whereG is the circulant matrix in Lemma 6. Note
that any circulant matrix can be written asFΛF ′, whereF is
the k point discrete Fourier transform matrix with

Fjl =
1√
k
e−2π

√
−1(j−1)(l−1)/k,
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for j, k ∈ {1, · · · , k}, and Λ = diag([λ1, . . . , λk]) is the
matrix with eigenvalues on its diagonal. Suppose that the noise
covariance matrix is also a circulant matrix with diagonal
entries equal to1. In particular, let

K̃z = F Λ̃F ′, Λ̃ = diag([0, . . . 0, k]). (36)

Then, we have

tr(GK̃z) = tr(FΛΛ̃F ′) = kλk

where by Lemma 6,

kλk =
kλ1

a2(k−1)
=

a2k − 1

a2(k−1)
.

Therefore, for the symmetric choice ofA in (28), the LQG
code achieves sum rate

R = k log a (37)

under power constraint

P = tr(GK̃z) =
a2k − 1

a2(k−1)
(38)

and we have

γ(K̃z) = lim
P→∞

C(P, K̃z)
1
2 log(1 + P )

≥ lim
P→∞

R
1
2 log(1 + P )

= lim
a→∞

k log a
1
2 log a

2
(39)

= k.

where (39) follows by plugging sum rateR and powerP
from (37) and (38). Moreover, we knowγ(K̃z) ≤ k since
rank(Kz) = 1. Hence,γ(K̃z) = k for the covariance matrix
K̃z in (36).

To complete the proof, we show that for everyr ∈
{2, . . . , k − 1} a pre-log equal tok − r + 1 is achievable
for someKz such thatrankKz = r. Consider

Kz =

[

Mk−r+1,k−r+1 0k−r+1,r−1

0r−1,k−r+1 Ir−1,r−1

]

where 0i,j denotes the zero matrix of dimensioni × j, Ii,i
is the identity matrix of dimensioni, andMk−r+1,k−r+1 is
the (k − r + 1) × (k − r + 1) circulant matrix having first
row equal to the last column of the discrete Fourier transform
matrix of dimension(k − r + 1) × (k − r + 1). Clearly,
rank(Kz) = rank(Mk−r+1,k−r+1)+rank(Ir−1,r−1) = r. On
the other hand, suppose that the transmitter communicates only
to users1, 2, · · · , k−r+1, while the transmission rate for the
remaining users is set to zero. We can use a similar argument
as above and show that the LQG code for the corresponding
(k − r + 1)-receiver AWGN-BC with feedback and noise
covariance matrixMk−r+1,k−r+1 achieves a pre-log equal to
k − r + 1.

Remark 3:To achieveγ = k, we used the LQG code.
However, the same pre-log can be achieved even with codes
which are less power efficient since we are considering only
the pre-log of the sum rate in the high power regime. For

instance, for the special case ofk = 2, Gastpar and Wigger [3]
showed that the OL code, which is suboptimal, achieves pre-
log two for anti-correlated noises.

VII. C ONCLUSION

Using tools from control theory we have presented a code
for thek-user AWGN-BC with feedback, called the LQG code,
which we have then used to investigate some properties of
the capacity region of this channel. When the noises at the
receivers are independent the pre-log of the sum capacity is
at most one, so feedback can yield at most a power gain over
the case without feedback. We have quantified the power gain
achieved by the LQG code and shown that in the case where
k = 2, the LQG code recovers a previous result of Elia which
strictly improves upon the OL code. In the case where the
noises at the receivers are correlated, instead, the pre-log of the
sum capacity can be strictly greater than one. We established
that for all noise covariance matrixes of rankr the pre-log is
at mostk − r + 1 and, conversely, there exists a covariance
matrix for which this upper bound is achieved by the LQG
code. In particular, a pre-log equal tok is achievable for some
circulant noise covariance matrix of rank one. This generalizes
previous results obtained by Gastpar and Wigger for the case
k = 2.

The LQG approach exploited here could be in principle
useful for other multi-user communication channels with feed-
back, when the subclass of linear codes can lead to optimal
or close to optimal solutions.

APPENDIX A
PROOF OFLEMMA 1

The proof is closely related to the proof of an analogous
statement for the communication problem over the multiple
access channel with feedback [6] . By assumption, there exists
a sequence ofn-codes forΘj ∼ Unif(0, 1), such that

Ej = lim
n→∞

− 1

2n
logD

(n)
j , j = 1, . . . , k (40)

and (2) holds. Given the sequence ofn-codes andRj < Ej ,
j = 1 . . . , k, we construct a sequence of(2nR1 , . . . , 2nRk , n)

codes such thatlimn→∞ P
(n)
e = 0.

First, we map the discrete messagemj ∈ Mj = [1 : 2nRj ]
to a message pointθj(mj) ∈ Θj , where Θj is a set of
2nRj message points in the unit interval such that the distance
between any two message points is greater than or equal to
2−nRj . To sendmj ∈ Mj , we use the givenn-code and
the corresponding message pointθj(mj). The decoder first
forms the estimate of the message pointθ̂j(y

n) according to
the givenn-code, and then chooseŝmj such thatθj(m̂j) is
the closest message point tôθj(yn). As the distance between
any two message points is greater than or equal to2−nRj , the
average probability of error is bounded as follows,

P (n)
e ≤ max

j
max
θ∈Θj

P

{

|Θj − Θ̂j | >
1

2
· 2−nRj

∣

∣Θj = θ

}

.

(41)
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To showlimn→∞ P
(n)
e = 0, consider

pj,n :=P

{

|Θj − Θ̂j| >
1

2
· 2−nRj

}

(42)

≤ 4 · 22nRj ·D(n)
j (43)

≤ 4 · 22nRj · 2−2n(Ej−ǫn) (44)

= 4 · 2−2n(Ej−Rj−ǫn) (45)

where ǫn → 0 as n → ∞. The inequalities (43) and (44)
follow from the Chebyshev inequality and (40), respectively.
From (45) and the assumptionRj < Ej , we have

pj,n → 0 asn → 0 j = 1, . . . , k. (46)

Next, by the similar argument as in [15, Lemma II.3] we
show that condition (46) is sufficient to prove that there exists a
set of message points in the unit interval such that the distance
between any two message points is greater than or equal to
2−nRj and

lim
n→∞

max
θj∈Θj

P

{

|Θj − Θ̂j | >
1

2
· 2−nRj

∣

∣

∣
Θj = θj

}

= 0 (47)

for j = 1, . . . , k.
Define the event

Tj,n =
{

θ ∈(0, 1) :

P

{

|Θj − Θ̂j| >
1

2
· 2−nRj

∣

∣Θj = θ
}

>
√
pj,n

}

.

Then we havepj,n >
√
pj,n P(Tj,n) and hence

P(Tj,n) <
√
pj,n.

To chooseΘj such thatΘj ∩ Tj,n = ∅ and also the distance
between any two message points is greater than or equal
to 2−nRj , it is sufficient that|Θj |2−nRj ≤ 1 − √

pj,n or
considering (46),

|Θj | ≤ (1− ǫn) · 2nRj

whereǫn → 0 asn → ∞. Moreover, by the definition ofTj,n

and the fact thatΘj ∩ Tn = ∅ we have

max
θ∈Θj

P

{

|Θ− Θ̂| > 1

2
· 2−nRj

∣

∣

∣
Θj = θ

}

≤ √
pj,n (48)

and considering (46), the condition (47) holds.
Combining (41) and (47), we havelimn→∞ P

(n)
e = 0.

Moreover, since the givenn-code satisfies the power con-
straintP , the constructed(2nR1 , . . . , 2nRk , n) code also sat-
isfies the same power constraint. Hence, we conclude that
the rate vector(R1, . . . , Rk) is achievable under power con-
straintP .

APPENDIX B
PROOF OFLEMMA 3

Let Ŝi = (Ŝ1i, . . . , Ŝki)
T whereŜji is given in (19). Then,

we have

Ŝ1 = 0

Ŝi = AŜi−1 +Yi−1 i = 2, 3, . . .

whereA = diag(a1, . . . , ak) is the same as in (14). Consider-
ing the recursion for̂Si, we can rewrite the system dynamics
given in (15) as

Si+1 = Ai
Θ+ Ŝi+1

= Ai(Θ− Θ̂i) (49)

where Θ̂i = (Θ̂1i, . . . , Θ̂ki)
T and the last equality follows

from the decoder rule by whicĥΘji = −aiŜj(i+1). From (49),
the MSE for the messageΘj at timen is given by

D
(n)
j = E(Θj − Θ̂jn)

2 = |aj |−2n(Kn+1)jj . (50)

where Kn := Cov(Sn) is the covariance matrix
of Sn. The achievability of MSE exponentEj =
log(|aj |) follows from (50) and the assumption of stability
lim supn→∞(Kn)jj < ∞. The asymptotic power follows
from the fact thatXi = πi(Si).
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