
ar
X

iv
:1

00
9.

37
28

v2
 [

cs
.IT

]
6

Ju
l 2

01
3

Network-Error Correcting Codes using Small Fields
K. Prasad and B. Sundar Rajan,

Dept. of ECE, IISc, Bangalore 560012, India
Email: {prasadk5,bsrajan}@ece.iisc.ernet.in

Abstract—Existing construction algorithms of block network-
error correcting codes require a rather large field size, which
grows with the size of the network and the number of sinks,
and thereby can be prohibitive in large networks. In this work,
we give an algorithm which, starting from a given network-
error correcting code, can obtain another network code using
a small field, with the same error correcting capability as the
original code. An algorithm for designing network codes using
small field sizes proposed recently by Ebrahimi and Fragoulican
be seen as a special case of our algorithm. The major step in our
algorithm is to find a least degree irreducible polynomial which
is coprime to another large degree polynomial. We utilize the
algebraic properties of finite fields to implement this step so that
it becomes much faster than the brute-force method. As a result
the algorithm given by Ebrahimi and Fragouli is also quickened.

I. I NTRODUCTION

Network coding was introduced in [1] as a means to improve
the rate of transmission in networks. Linear network coding
was introduced in [2]. Deterministic algorithms exist [3]–[5]
to constructscalar network codes(in which the input symbols
and the network coding coefficients are scalars from a finite
field) which achieve the maxflow-mincut capacity in the case
of acyclic networks with a single source which wishes to
multicast a set of finite field symbols to a set ofN sinks,
as long as the field sizeq > N . Finding the minimum field
size over which a network code exists for a given network is
known to be NP hard [6]. An algorithm was proposed in [7]
which attempts to find network codes using small field sizes,
given a network coding solution for the network over some
larger field sizeq > N. The algorithms of [7] also apply to
linear deterministic networks [8], and forvector network codes
(where the source seeks to multicast a set of vectors, rather
than just finite field symbols). In this work, we are explicitly
concerned about the scalar network coding problem, although
the same techniques can be easily extended to accommodate
for vector network coding and linear deterministic networks,
if permissible, as in the case of [7].

Network-error correction, which involved a trade-off be-
tween the rate of transmission and the number of correctable
network-edge errors, was introduced in [9] as an extension
of classical error correction to a network setting. Along with
subsequent works [10] and [11], this generalized the classical
notions of the Hamming weight, Hamming distance, minimum
distance and various classical error control coding bounds
to their network counterparts. Algorithms for constructing
network-error correcting codes which meet a generalization

Part of the content of this work was presented at ISIT 2011 held at St.
Petersburg, Russia during July 31 - Aug. 5, 2011.

of the classical Singleton bound for networks can be found in
[10]–[13]. Using the algorithm of [12], a network code which
can correct any errors occurring in at mostα edges can be
constructed, as long as the field sizeq is such that

q > N

(

|E|
2α

)

,

whereE is the set of edges in the network. The algorithms of
[10], [11] have similar requirements to construct such network-
error correcting codes. This can be prohibitive when|E| is
large, as the sink nodes and the coding nodes of the network
have to perform operations over this large field, possibly
increasing the overall delay in communication. In [13], the
bound on the field size was further tightened. However, this
bound in [13] too potentially grows with the size of the
network.

In this work, we propose an algorithm for block network-
error correction using small fields. We shall restrict our algo-
rithms and analysis to fields with binary characteristic. The
techniques presented can be extended to finite fields of other
characteristics without much difficultly. The contributions of
this work are as follows.

• We propose an algorithm to construct network-error
correcting codes using small fields, by first designing a
network-error correcting code over a large field size using
known techniques (for example, [12]) and then using
algebraic techniques to obtain a network-error correcting
code over a smaller field size. The network coding version
of this algorithm reduces to the algorithm proposed by
Ebrahimi and Fragouli in [7], which we shall refer to as
the EF algorithm henceforth.

• The major step in our algorithm is to compute a polyno-
mial of least degree coprime with a polynomial,f(X),
of possibly large degree. While it is shown in [7] that
this can be done in polynomial time, the complexity
can still be large. Optimizing based on our requirement,
we propose an alternate faster algorithm for computing
the polynomial coprime withf(X). This reduces the
complexity of the EF algorithm also, which simply adopts
a brute force method to do the same.

• Illustrative examples are shown which indicate that pa-
rameters such as the initial network-error correcting code
and the choice of representation of the initial large finite
field influence the ability of our algorithm to obtain a
network-error correcting code over a small field size.

The rest of this paper is organized as follows. In Section II,
we give the basic notations and definitions related to network
coding, required for our purpose. Also, we review the EF

http://arxiv.org/abs/1009.3728v2

2

algorithm briefly in Section II. Section III presents our al-
gorithm for constructing network-error correcting codes using
small field sizes, along with calculations of the complexityof
the algorithm. In Section III, we also propose a fast way to
compute the major step of our algorithm, which is to obtain a
least degree polynomial coprime with another polynomial of
larger degree. We also show that this fast technique reduces
the running time of the EF algorithm. Examples illustrating
our algorithm for network coding and error correction are
presented in Section IV. Finally, we conclude the paper in
Section V with comments and directions for further research.

II. PRELIMINARIES AND BACKGROUND

The model for acyclic networks considered in this paper is
as in [14]. An acyclic network can be represented as an acyclic
directed multi-graphG = (V , E), whereV is the set of all
nodes andE is the set of all edges in the network. We assume
that every edge inG can carry at most one symbol from a
finite fieldFq. Network links with capacities greater than unity
are modeled as parallel edges. The network is assumed to be
instantaneous, i.e., all nodes process the samegeneration(the
set of symbols generated at the source at a particular time
instant) of input symbols to the network in a given coding
order (ancestral order [14]). For an edgee, let tail(e) and
head(e) denote the start node and the end node ofe. An
ancestral ordering can be assumed onE as the network is
acyclic. Let s ∈ V be the source node andT be the set of
N(= |T |) receivers. Leth

T
be the unicast capacity for a sink

nodeT ∈ T , i.e., the maximum number of edge-disjoint paths
from s to T . Thenh = minT∈T h

T
is the max-flow min-cut

capacity of the multicast connection.
A h′-dimensional network code (h′ ≤ h) is one which

can be used to transmith′ symbols simultaneously froms
to all sinksT ∈ T , and can be described [3] by the following
matrices, each having elements from the finite fieldFq.

• A matrix A (of sizeh′ × |E|), which describes the way
the source maps symbols onto the network. The entries
of A are defined as

Ai,j =

{

αi,ej if s = tail(ej),
0 otherwise,

whereαi,ej ∈ Fq is the network coding coefficient at the
source coupling inputi with edgeej .

• A matrix K (of size |E| × |E|), which describes how the
symbols are processed between the edges of the network.
The entries ofK are defined as

Ki,j =

{

βi,j if head(ei) = tail(ej),
0 otherwise,

whereβi,j ∈ Fq is the local encoding kernel coefficient
betweenei andej.

• DT (of size |E| × h′ for every sink T ∈ T), which
describes how the symbols received by the sinkT are
processed. The entries of the matrixDT are defined as

DT i,j =

{

ǫej ,i if head(ej) = T,

0 otherwise,

where ǫej ,i ∈ Fq describes the coupling between the
symbols onej and theith input.

Let F = (I−K)−1, whereI is the identity matrix of size|E|.
Note thatF is well defined as(I−K) is an invertible matrix,
asK is strictly upper-triangular. We then have the following
definition.

Definition 1: [3] The network transfer matrix, MT for a h′-
dimensional network code, corresponding to a sink nodeT ∈
T is a full rankh′ × h′ matrix defined asMT := AFDT =
AFT , whereFT := FDT .

The matrix MT governs the input-output relationship at
sink T. The problem of designing ah′-dimensional network
code then implies making a choice for the matricesA,F,

and DT , such that the matrices{MT : T ∈ T } have rank
h′ each. We thus consider each element ofA,F , and DT

to be a variableXi for some positive integeri, which takes
values from the finite fieldFq. Let {Xi} be the set of all
variables, whose values define the network code. The variables
Xis are known as thelocal encoding coefficients[14]. For an
edgee in a network with ah′-dimensional network code in
place, theglobal encoding vector[14] is a h′ dimensional
vector which defines the particular linear combination of the
h′ input symbols which flow throughe. It is known [3]–[5]
that deterministic methods of constructing ah-dimensional
network code exist, as long asq > N.

Let Λ be the length of the longest path from the source
to any sink. Because of the structure of the matricesA,F

and DT , it is seen [7] that the matrixMT has degree at
mostΛ in any particular variableXi and also a total degree
(sum of the degrees across all variables in any monomial) of
Λ. Let f

T

(

X1, X2, ..X|{Xi}|

)

be the determinant ofMT and
f(X1, X2, ..X|{Xi}|) =

∏

T∈T f
T
. Then the degree in any

variable (and the total degree) of the polynomialsf
T

and f

are at mosth′Λ andNh′Λ respectively.
A brief version of the EF algorithm is given in Algorithm

1. Note that the key step in Algorithm 1 is step (4), where

Algorithm 1: Scalar network coding algorithm using small
fields - [7]

(1) Assign valuesαis to the scalar coding coefficients
Xis from an appropriate field
F2k

(

2k = 2⌈log(N)⌉+1 > N
)

such that the network
transfer matricesMT s to all the sinks are invertible.
(2) Express everyXi = αi as a binary polynomialpi(X)
of degree at mostk − 1 using the usual polynomial
representation of the finite fieldF2k , for a particular
choice of the primitive polynomial of degreek.
(3) Substituting these polynomials representing theXis
in the matricesMT , calculate the determinants ofMT as
the polynomialsf

T
(X) ∈ F2[X], and also find

f(X) =
∏

T∈T f
T
(X). Then,f(X) is non-zero and has

degree at mostN(k − 1)hΛ in the variableX.

(4) Find an irreducible polynomial of least degree,g(X),
which is coprime withf(X).
(5) Let Xi = pi(X)(mod g(X)). Thus, eachXi can be
viewed as an element inF2[X]

(g(X)) . Also, for each sinkT,
the matricesMT remain invertible as
f
T
(X)(mod g(X)) 6= 0, asf(X)(mod g(X)) 6= 0.

3

an irreducible polynomialg(X) of least degree is to be found.
It is shown in [7] that such a coprimeg(X) exists and and
can be computed withO

(

n2log(n)
)

operations, wheren =
deg(f(X)) = NhΛ⌈log(N)⌉.

III. N ETWORK-ERRORCORRECTING CODES USING SMALL

FIELDS

This section presents the major contribution of this work.
After briefly reviewing the network-error correcting code con-
struction algorithm in [12], we proceed to give an algorithm
which can obtain network-error correcting codes using small
finite fields.

A. Network-Error Correcting Codes - Approach of [12]

An edge is said to be in error if its input symbol and
output symbol (both from some appropriate fieldFq) are not
the same. We model the edge error as an additive error from
Fq. A network-error is a |E| length vector overFq, whose
components indicate the additive errors on the corresponding
edges. A network code which enables every sink to correct
any errors in any set of edges of cardinality at mostα is said
to be anα network-error correcting code. There have been
different approaches to network-error correction [9]–[13]. We
concern ourselves with the notations and approach of [12], as
the algorithm in [12] lends itself to be extended according to
the techniques of [7].

It is known [9] that the number of messagesM in an α

network-error correcting code is upper bounded according to
the network Singleton boundasM ≤ qh−2α. Assuming that
the message set is a vector space overFq of dimensionk, we
havek ≤ h− 2α.

A brief version of the algorithm given in [12] for construct-
ing an α network-error correcting code for a given single
source, acyclic network that meets the network Singleton
bound is shown in Algorithm 2. The construction of [12] is
based on the network code construction algorithm of [4]. The
algorithm constructs a network code such that all network-
errors in up to2α edges will be corrected as long as the sinks
know where the errors have occurred. Such a network code
is then shown [12] to be equivalent to anα network-error
correcting code. Other equivalent (in terms of complexity)
network-error correction algorithms can be found in [10] [11].

One way to understand Algorithm 2 which is relevant to our
work is as follows. For each subsetF ∈ F of E , Algorithm
2 considers a subnetwork of the original network consisting
of k edge-disjoint paths from the imaginary sources′ to
each sinkT ∈ T and alsomF

T edge-disjoint paths froms′

passing through the edges ofF to each sinkT which are also
edge-disjoint with thek paths froms′. On this subnetwork,
Algorithm 2 chooses network coding coefficients such that
the k information symbols can still be multicast to each sink
T irrespective of whatever information may flow on themF

T

paths. If the same choice of coefficients can be chosen to
satisfy this multicast-like constraint for eachF ∈ F , then
there is a validα network-error correcting code which can be
used to multicast thek information symbols from the source
to all sinks in the network. This understanding of Algorithm2

is key to understanding our algorithm for obtaining network-
error correcting codes for small field sizes. For further details
on Algorithm 2, the reader is referred to [12].

Algorithm 2: Algorithm of [12] for constructing a

network-error correcting code that meets the network Sin-
gleton bound.

(1) Let F be the set of all subsets ofE of size2α. Add
an imaginary sources′ and drawk = h− 2α edges from
s′ to s.

(2) foreach F ∈ F do
(i) Starting from the original network, add an
imaginary nodev at the midpoint of each edgee ∈ F

and add an edge of unit capacity froms′ to eachv.
(ii) foreach sink T ∈ T do

Draw as many edge disjoint paths froms′ to T

passing through the imaginary edges added at
Step(i) as possible. LetmF

T
(≤ 2α) be the

number of such paths.
Draw k edge disjoint paths passing throughs that
are also edge disjoint from themF

T
paths drawn

in the previous step.
end
(iii) Based on the techniques shown in the network
coding algorithm of [4] on the subnetwork
comprising of the identified edge disjoint paths,
obtain a network code with the following property.
Let BF

T be the(k + 2α)×
(

k +mF
T

)

matrix, the
columns of which are theh length global encoding
vectors (representing the linear combination of thek

input symbols and2α error symbols) of the incoming
edges at sinkT corresponding to thek +mF

T
edge

disjoint paths. ThenBF
T must be full rank. As proved

in [12], this ensures that the network code thus
obtained isα network-error correcting and meets the
network Singleton bound.

end

It is shown in [12] that Algorithm 2 results in a network
code which is anα network-error correcting code meeting the
network Singleton bound, as long as the field size

q > |T ||F| = N

(

|E|
2α

)

. (1)

The above bound on field size was further tightened in [13],
where it was shown that a construction of anα network-error
correcting code is possible if the field sizeq is such that

q >
∑

T∈T

|RT (α)|, (2)

whereRT (α) is a set defined in [13] for the sinkT in the
following way.

Definition 2: For a sinkT, the setRT (α) is the set of all
subsets of size2α of the edge setE satisfying the following
properties for eachρ ∈ RT (α) .

• A collection of k edge-disjoint paths starting from thek
imaginary incoming edges at the source nodes to sink
nodeT can be found.

4

• A collection of2α edge-disjoint paths starting from each
of the 2α edges to the sinkT in ρ can be found, such
that all these paths are also edge-disjoint from thek paths
from s.

An algorithm is shown in [13] to constructα network-
error correcting codes if the field size is greater thanq >
∑

T∈T |RT (α)|. In many networks (see [13], for example),
this bound in (2) could be smaller than the bound in (1).
However, in this work, we use the Algorithm 2 which is from
[12] rather than the algorithm from [13]. We shall however
give the value of the bound in (2) for an example network
and show that our algorithm to obtain network-error correcting
codes over small fields can obtain field sizes smaller than that
of the bound in (2) also.

B. Network-Error Correction using Small Fields - Algorithm

Algorithm 3 constructs a network-error correcting code
using small field sizes (conditioned on the existence of an
irreducible polynomial of small degree satisfying the necessary
requirements indicated in Step (5) of Algorithm 3). Note
that for the caseα = 0, Algorithm 3 reduces to the EF
algorithm, i.e., Algorithm 1. As in Algorithm 1, the major

Algorithm 3: Network-error correcting codes under small
field sizes
(1) With q = 2⌈log(N |F|)⌉+1 = 2k, run Algorithm 2 to
find anα network-error correcting code meeting the
network Singleton bound. Let the encoding coefficients
for Xi beαi.

(2) Express everyXi = αi as a binary polynomialpi(X)
of degree at mostk − 1 using the usual polynomial
representation of the finite fieldF2k .

(3) foreach F ∈ F do
foreach sink T ∈ T do

Find a non-zero minor of the matrixBF
T , obtained

from a
(

k +mF
T

)

×
(

k +mF
T

)

submatrix. At
least one such minor exists asBF

T has rank =
k +mF

T
. Let the minor befF

T
(X), which can be

of degree at mosthΛlog(N |F|), according to
Section II and the choice of our field size.

end
end
(4) Calculate the polynomial

f(X) =
∏

F∈F

∏

T∈T

fF
T
(X),

which has degree at mostN |F|hΛlog(N |F|).
(5) Find an irreducible polynomial of least degree,g(X),
which is coprime withf(X).
(6) Let Xi = pi(X)(mod g(X)). Thus, eachXi can be
viewed as an element inF[X]

(g(X)) . Because of the fact that
fF
T
(X)(mod g(X)) 6= 0 (asf(X)(mod g(X)) 6= 0), the

newBF
T matrices obtained after the modulo operation are

also full rank, which implies that the error correcting
capability of the code is preserved.

step of Algorithm 3 is Step (5) which involves calculating

a polynomialg(X) coprime with a given polynomialf(X).
According to the complexity calculations in [7], a brute force
computation of Step (5) would requireO(n2log(n)) com-
putations,n = deg(f(X)) = N |F|hΛ⌈log(N |F|)⌉. Before
we propose our method to execute Step (5) efficiently in
Subsection III-D, we give a justification for Algorithm 3.

C. Justification for Algorithm 3

No justification is required for the steps in Algorithm 3
except Step (5). The justification for Step (5) is as follows.
Step (5) finds ag(X) which is coprime with the product
polynomial f(X). In fact, in order to ensure that the error
correction property of the original network code is preserved,
it is sufficient if a polynomialg(X) is coprime with each
polynomialfF

T
(X), rather than their productf(X) (as shown

in Step (5)). However, the following lemma shows that both
are equivalent.

Lemma 1:Let U = {fi : fi ∈ F[X], i = 1, 2, ..., n} be a
collection of univariate polynomials with coefficients from
some fieldF. A polynomialg ∈ F[X] is relatively prime with
all the polynomials inU if and only if it is relatively prime
with their product.
Proof: Appendix A.

D. Fast algorithm for computing least degree coprime poly-
nomial

Algorithm 4 is a fast method to compute the least degree
irreducible polynomialg(X) among irreducible polynomials
up to some degreem that is coprime withf(X). As a result,

Algorithm 4: Fast algorithm for computingg(X)

(1) Let P =
{

X2i +X : i = 1, 2, ...,m
}

.

(2) foreach i = 1, 2, ...,m do
Calculater(X) = f(X)(mod pi(X)).
if r(X) is non-zerothen

Break.
end

end
(3) Pick pj(X) as the first polynomial (i.e. least degree)
for which r(X) is non-zero. Note that everypi(X) ∈ P
is the product of all irreducible polynomials whose
degree dividesi. Also, all irreducible polynomials of
degreei < j divide f(X) as allpi(X)|f(X) for all
i < j. Therefore, at least one of the irreducible
polynomials of degreej is coprime withf(X).
(4) Find one such polynomialg(X) of degreej which is
coprime withf(X)(mod pj(X)) and therefore
equivalently withf(X) (Subsection III-E gives a
justification of this step).

the key step (Step (5)) of Algorithm 3 can be performed much
faster than having to computeg(X) by brute-force. Similarly,
this fast algorithm also enables to quicken the key step (Step
(4)) of Algorithm 1 so that its overall complexity is reduced.

Note that for using Algorithm 4 to implement Step (4) of
Algorithm 1, we fixm = ⌈log(N)⌉ as any polynomialg(X)

5

coprime with f(X) is useful only if the degree ofg(X) is
less than⌈log(N)⌉ + 1, as only such ag(X) can result in
a network code using a smaller field than the one we started
with. For the same reason, in using Algorithm 4 in conjunction
with Algorithm 3, we choosem = ⌈log(N |F|)⌉.

E. Justification for Algorithm 4

The following lemma ensures that all polynomials which
are found to be coprime withf(X) by directly computing the
gcd (or the remainder for irreducible polynomials) in the brute
force method (as done in Algorithm 1), can also be found by
running Algorithm 4, using the set of polynomialsP up to the
appropriate degree.

Lemma 2: For some fieldF, let f, g ∈ F[X] be two
polynomials. Letp ∈ F[X] be such thatg|p. Then g is
relatively prime withf if and only if g is relatively prime
with f(mod p).
Proof: Appendix B.

F. Complexity of Algorithm 4

The following proposition gives the complexity of Algo-
rithm 4 for obtaining the coprime polynomial.

Proposition 1:The complexity of Algorithm 4 is at most
O(22m) +O(mM), wherem = |P|, andM = deg(f(X)).
Proof: Appendix C.

Remark 1:Note that the worst-case complexity of Algorithm
4 with m = ⌈log(N)⌉ andM = hN⌈log(N)⌉Λ (correspond-
ing to values required for running Step(4) of Algorithm 1)
is O(N2) + O(hNΛ(log(N))2). This is clearly lesser than
the worst-case complexity of finding the coprime polynomial
g(X) by brute-force, indicated in Section II. Even if we test
for coprimeness only for polynomials up to degree⌈log(N)⌉,
a brute-force execution of Step (4) of Algorithm 1 would
have a worst-case complexity ofO

(

N2hΛlog(n)
)

(where
n = NhΛlog(N)), which is still greater than that of ours.

G. Complexity of Algorithm 3

We now calculate the complexity of Algorithm 3 (with
Algorithm 4 used to implement its key step). The complexities
of all the steps of Algorithm 3 is given by Table I, along with
the references and reasoning for the mentioned complexities.

The only complexity calculations of Table I which are not
straightforward are the complexities involved in calculating the
polynomialg(X) coprime tof(X) and in calculating the non-
zero minor of the matrixBF

T . The complexity of calculating
g(X) can be calculated using Proposition 1 using the values
m = ⌈N |F|⌉ andM = Nh|F|Λ⌈log (N |F|)⌉.

Now for calculating the non-zero minor of the matrixBF
T .

There are

(

h

k +mF
T

)

such minors, and calculating each

takesO
(

(

k +mF
T

)3
)

multiplications overFq. As
(

k +mF
T

)

can take values up toh, clearly the function to be maximized

is of the form f(m) =

(

h

m

)

m3, for m = 0, 1, ..., h.

Proposition 2 gives the value ofm for which such a function
is maximized, based on which the value in Table I has been
calculated.

Proposition 2:For some positive integern, let m be an in-

teger such that0 ≤ m ≤ n. The functionf(m) =

(

n

m

)

m3

is maximized atm =

{ (

⌈n
2 ⌉+ 1

)

if n ≥ 2
1 if n = 1.

Proof: Appendix D.

IV. I LLUSTRATIVE EXAMPLE - NETWORK-ERROR

CORRECTION

The performance of Algorithm 1 (together with Algorithm
4) for a network coding problem on a combination network
is shown in Appendix E. We now present a network-error
correction example that uses Algorithm 3 (with Algorithm 4).

Example 1:Consider the network, with18 edges, shown
in Fig. 1. This network is from [11], in which a1 network-
error correcting code meeting the network Singleton bound is
given by brute-force construction for this network overF4,

which is the smallest possible field over which such a code
exists. According to the algorithm in [12], a1 network-error
correcting code can be constructed deterministically ifq >

2

(

18
2

)

= 306. In Fig. 1, let the variableX1 denote the

encoding coefficient between edgesv1 → v4 and v4 → v6.

Similarly, let the variableX2 (X3) denote the local encoding
coefficients betweenv2 → v5 (v6 → v7) andv5 → v8 (v7 →
v9).

Fig. 1. Example network for network-error correction

Let q = 29. Let A =
{

β, β130, β130
}

and B =
{

β132, β391, β391
}

, whereβ is a primitive element ofF29 .

Let b1(X) = X9 + X4 + 1 be the primitive polynomial of
degree9 under consideration.

Consider two such1 network-error correcting codes ob-
tained using Algorithm 2 for the network of Fig. 1 as follows.
Let A andB be two choices for the set{X1, X2, X3} with
all the other local encoding coefficients being unity. It canbe
verified that these two network codes can be used to transmit
one error-freeF29 symbol from the source to both sinks, as
long as only single edge errors occur in the network. Table
II gives the results of running Algorithm 3 for this network

6

TABLE I
COMPLEXITY CALCULATIONS FOR ALGORITHM 3

Step(s) Complexity Reasoning
Algorithm 2 A := O (|F|Nh (|E||F|N + |E|+ h+ 2α)) . [12]

Identifying non-zero minor of matrixBF
T B := O

((

h

m

)

m3

)

, with m =
(

⌈h
2 ⌉+ 1

)

Theorem 2

Computing the non-zero minor (overF2[X]) of BF
T C := O

(

h4Λlog(N |F|)
)

+O
(

(hΛlog (N |F|))3
)

[7]

from a (k +mF
T
) square submatrix

Calculatingf(X) =
∏

F∈F

∏

T∈T fF
T
(X). D := O (alog(a)) , wherea = Nh|F|Λlog (N |F|) [15]

Computing the coprime polynomialg(X) E := O
(

N2|F|2
)

+O(Nh|F|Λlog (N |F|)
2
). Proposition 1

Total complexity A+N |F|(B + C +D) + E

TABLE II
USING ALGORITHM 3 FOR THE NETWORK INFIG. 1

Algorithm parameter Network code defined byA Network code defined byB
Degree off(X),

the product of the306 determinant polynomials 260 978
p(X): First pi(X) for which f(X)(mod pi(X)) is non-zero X8 +X X4 +X

f(X)(mod p(X)) X7 +X6 +X3 +X2 X3 +X

g(X): Least degree polynomial coprime tof(X) X3 +X + 1 X2 +X + 1
{X1, X2, X3} after the algorithm

{

β1

8 , β
3

8 , β
3

8

}

{β4, β4, β4}

starting from these two codes, withβ4 and β8 being the
primitive elements ofF4 andF8 respectively.

Except for{X1, X2, X3} , all the other coding coefficients
remain1 over the respective fields. It is seen from Table II
that the initial choice of the setsA andB for {X1, X2, X3}
affects the complexity of the problem (i.e., degree off(X))
and also the field size of the final network code. WithB, the
resultant network-error correcting code is overF4, exactly the
one reported in [11] by brute force construction. Also, for
sink T1 andT2, the value ofRT (α) can be computed to be
RT1

(1) = RT2
(1) = 65. Thus the bound from [13] shown

in (2) for this network can be computed to beq > 130. The
field size of the network-error correcting code found using our
algorithm can therefore still be lesser than that of the bound
in [13].

V. CONCLUDING REMARKS

As in the original paper [7], questions remain open about the
designing of a code using the minimal field size. The hardness
of calculating the minimal field size is reflected by the fact
that the initial choice of the network code and the primitive
polynomial of the field over which the initial code is defined
(using which the local encoding coefficients are represented as
polynomials) control the resultant field size after the algorithm.
These issues are illustrated by the examples in Section IV
and Appendix E. However, it would be interesting to see if
guarantees on the reduction of the field size can be given.

REFERENCES

[1] R. Ahlswede, N. Cai, R. Li and R. Yeung, “Network Information
Flow”, IEEE Transactions on Information Theory, vol.46, no.4, July
2000, pp. 1204-1216.

[2] N. Cai, R. Li and R. Yeung, “Linear Network Coding”, IEEE Trans-
actions on Information Theory, vol. 49, no. 2, Feb. 2003, pp.371-381.

[3] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding”, IEEE/ACM Transactions on Networking, vol. 11, no.5, Oct.
2003, pp. 782-795.

[4] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain and
L.M.G.M. Tolhuizen, “Polynomial time algorithms for multicast net-
work code construction”, IEEE Transactions on InformationTheory,
vol. 51, no. 6, June 2005, pp.1973-1982.

[5] N. Harvey, “Deterministic network coding by matrix completion”, MS
Thesis, 2005.

[6] A. Lehman and E. Lehman, “Complexity classification of network
information flow problems”, ACM SODA, 2004, New Orleans, USA,
pp. 142-150.

[7] J. B. Ebrahimi and C. Fragouli, “Algebraic algorithms for vector
network coding”, IEEE Transactions on Information Theory,vol. 57,
no. 02, Feb 2011, pp. 996-1007.

[8] S. Avestimehr, S N. Diggavi and D.N.C. Tse, “Wireless network infor-
mation flow” Proceedings of Allerton Conference on Communication,
Control, and Computing, Illinois, September 26-28, 2007, pp. 15-22.

[9] R.W. Yeung and N. Cai, “Network error correction, part 1 and part
2”, Communications and Information and Systems, vol. 6, 2006, pp.
19-36.

[10] Z. Zhang, “Linear network-error Correction Codes in Packet Net-
works”, IEEE Transactions on Information Theory, vol. 54, no. 1, Jan.
2008, pp. 209-218.

[11] S. Yang and R.W. Yeung, “Refined Coding Bounds and Code Con-
structions for Coherent Network Error Correction”, IEEE Transactions
on Information Theory, Vol. 57, No. 3, March 2011, 1409-1424.

[12] R. Matsumoto, “Construction Algorithm for Network Error-Correcting
Codes Attaining the Singleton Bound”, IEICE Transactions Fundamen-
tals, Vol. E90-A, No. 9, September 2007, pp. 1729-1735.

[13] X. Guang, F. Fu, and Z. Zhang, “Construction of Network Er-
ror Correction Codes in Packet Networks ”, Available on ArXiv,
http://arxiv.org/abs/1011.1377, Nov. 2010.

[14] N. Cai, R. Li, R. Yeung and Z. Zhang, “Network Coding Theory”,
Foundations and Trends in Communications and Information Theory,
vol. 2, no.4-5, 2006.

[15] A. Borodin and I. Munro, “The computational complexityof algebraic
and numeric problems”, American Elsevier Pub. Co., 1975.

APPENDIX A
PROOF OFLEMMA 1

Proof: If part: If g is relatively prime with the product of
all the polynomials inU , then there exist polynomialsa, b ∈

http://arxiv.org/abs/1011.1377

7

F[X] such that

a

(

n
∏

i=1

fi

)

+ bg = 1. (3)

For eachj ∈ 1, 2, ..., n, we can rewrite (3) as


a

n
∏

i=1,i6=j

fi



 fj + bg = 1,

which implies thatg is coprime with eachfj ∈ U .
Only if part: Supposeg is relatively prime with all the

polynomials inU . Then, for eachj ∈ 1, 2, ..., n, we can find
polynomialsaj andbj such that,ajfj+bjg = 1. In particular,

a1f1 + b1g = 1, (4)

a2f2 + b2g = 1. (5)

Using (5) in (4),

1 = a1f1(a2f2 + b2g) + b1g

= (a1a2)f1f2 + (a1f1b2 + b1)g.

Thus, g is relatively prime withf1f2. Continuing with the
same argument, it is clear thatg is relatively prime with
∏n

i=1 fi.

APPENDIX B
PROOF OFLEMMA 2

Proof: Let f = qp + r for the appropriate quotient and
remainder polynomialsq, r ∈ F[X] with deg(r) < deg(p).
Also, asg|p, let p = hg, for the appropriateh ∈ F[X].

If part: As r = f(mod p) andg are relatively prime with
each other, we can obtain polynomialsa′, b′ ∈ F[X] such that
a′r + b′g = 1. Then, we must have

1 = a′(f − qp) + b′g

= a′(f − qhg) + b′g

= a′f + (b′ − a′qh)g.

Thusf andg must be coprime with each other.
Only If part: Now assume thatf and g are coprime with

each other. This means we can obtain polynomialsa, b ∈ F[X]
such thataf + bg = 1. Then,

1 = a(qp+ r) + bg

= a(qhg + r) + bg

= ar + (aqh+ b)g,

which means thatg andr are coprime with each other, hence
proving the lemma.

APPENDIX C
PROOF OFPROPOSITION1

Towards proving Proposition 1, we first prove the following
lemma.

Lemma 3:Let f, p ∈ F2[X], be such thatdeg(f) = M and
p = Xn +X, for some non-negative integersM andn. The
polynomialf(mod p) can be calculated using at mostO(M)
bit additions.

Proof: Let f =
∑M

i=0 fiX
i. We arrange the coefficients

of f as follows.

f0 f1 f2 fn−1

fn fn+1 f2n−2

f2n−1 fn+1 f3n−3

.

.

fan−a+1 ... fM 0 ... 0 ,

wherea is the largest positive integer such thatan−a+1 ≤ M.

Now, note that calculating the polynomialf(mod p), is
equivalent to adding up the rows of the arrangement, while
retaining the coefficientf0 as it is. There are

⌈

M
n−1

⌉

rows in
the arrangement, and adding any two rows requires at most
n − 1 additions. Thus, the total number of bit additions is
O(M).

We are now ready to prove Proposition 1.

A. Proof of Proposition 1

Proof: The worst-case for Algorithm 4 would bej =
m. By Lemma 3, computingf(X)(mod pi(X)) for some
pi(X) ∈ P takes at mostM operations. As there arem
such pi(X)s, evaluating the remaindersr(X)s costsMm

operations at most. Let

f(X)(mod pj(X)) = f̃(X)

be the non-zero polynomial of degree at most2m = 2j .
Now, we have to determine the complexity in obtaining

the polynomial of degreem which is coprime withf(X) (or
equivalently withf̃(X)).

There are approximately2
j

j
irreducible polynomials of

order j. It is known (see [15], for example) that for any
two polynomialsp(X) and q(X) (with degreew of p(X)
larger than degree ofq(X)), the complexity of dividingp(X)
by q(X) (or equivalently, calculatingp(X)(mod q(X))) is
wlog(w). Thus, the complexity of dividingf̃(X) by every
possible irreducible polynomial of degreej = m is at most
2m

m
O (2mlog(2m)) = O(22m).

Thus, the total complexity for finding the least degree poly-
nomialg(X) coprime withf(X) (which is assured of having a
coprime factor of degreem+1) is at mostO(22m)+O(Mm).

APPENDIX D
PROOF OFPROPOSITION2

Proof: The statement of the theorem is easy to verify for
n = 1. Therefore, letn ≥ 2. Let g(k) = f(k)− f(k+1), for
somek, such that0 ≤ k ≤ n− 1. Then,

g(k) =

(

n

k

)

k3 −

(

n

k + 1

)

(k + 1)3

=

(

n

k

)(

k3 −
(n− k)

(k + 1)
(k + 1)3

)

=

(

n

k

)

(

2k3 + k2(2 − n) + k(1− 2n)− n
)

=

(

n

k

)

g̃(k),

8

TABLE III
6C3 NETWORK - ALGORITHM 1 (TOGETHER WITHALGORITHM 4)

Algorithm parameter Global encoding vectorsA Global encoding vectorsB
Prim. poly. b1(X) Prim. poly. b2(X) Prim. poly. b1(X) Prim. poly. b2(X)

Degree off(X), the product of the
20 determinant polynomials 20 40 30 55
p(X): First pi(X) for which None of the form

f(X)(mod pi(X)) is non-zero X4 +X X8 +X X8 +X X2
i

+X, for i ≤ 4
f(X)(mod p(X)) X2 +X X7 +X6 +X3 +X X7 +X6 +X5 +X2 Not applicable
g(X): Least degree

polynomial coprime tof(X) X2 +X + 1 X3 +X + 1 X3 +X + 1 Not applicable

Resultant network code





1
0
0









0
1
0









0
0
1









1
1
1









1
β4

β2

4









1
β2

4

β4









1
0
0









0
1
0









0
0
1









1
1
1









1
β8

β4

8









1
β4

8

β2

8









1
0
0









0
1
0









0
0
1









1
1
1









1
β8

β3

8









1
β3

8

β6

8





Not applicable

where g̃(k) =
(

2k3 + k2(2− n) + k(1− 2n)− n
)

. Proving
the statement of the theorem is then equivalent to showing that
both of the following two statements are true, which we shall
do separately for even and odd values ofn.

• g̃(k) < 0 for all integers0 ≤ k ≤ ⌈n
2 ⌉.

• g̃(k) > 0 for all integers⌈n
2 ⌉+ 1 ≤ k ≤ n− 1.

Case-A(n is even): Let k = n
2 + i, for some integeri such

that−n
2 ≤ i ≤ n

2 − 1. Then,

g̃(k) = 2k3 + k2(2− 2k + 2i) + k(1− 4k + 4i)− 2k + 2i

g̃(k) = k2(−2 + 2i) + k(4i− 1) + 2i. (6)

For −n
2 ≤ i ≤ 0, it is clear from (6) thatg̃(k) < 0. If

1 ≤ i ≤
(

n
2 − 1

)

, it is clear thatg̃(k) > 0. Thus, for even
values ofn, the theorem is proved.
Case-B(n is odd): Let k = ⌈n

2 ⌉ + i =
(

n+1
2

)

+ i, for some
integeri such that−

(

n+1
2

)

≤ i ≤
(

n−3
2

)

. Then,

g̃(k) = 2k3 + k2(2− 2k + 2i+ 1)

+ k(1− 4k + 4i+ 2)− 2k + 2i+ 1

g̃(k) = k2(−1 + 2i) + k(1 + 4i) + 2i+ 1. (7)

Now, for i = 0, k =
(

n+1
2

)

≥ 2 (as n ≥ 2 and is odd).
Hence,g̃(k) = −k2 + k + 1 < 0 for i = 0. If −

(

n+1
2

)

≤
i < 0, then by (7), it is clear that̃g(k) < 0. Thus for all
−
(

n+1
2

)

≤ i ≤ 0, g̃(k) < 0.
For 1 ≤ i ≤

(

n−3
2

)

, again by (7), it is clear that̃g(k) > 0,
and thus the theorem holds for odd values ofn. This completes
the proof.

APPENDIX E
EXAMPLE - NETWORK CODING

Example 2:Consider the

(

6
3

)

network shown in Fig. 2.

This network has20 sinks, each of which has3 incoming
edges from some3-combination of the6 intermediate nodes,

Fig. 2. 6C3 network with20 sinks

thus the mincuth being3. Using the methods in [3]–[5], a3-
dimensional network code can be constructed for this network
as long as the field sizeq > 20. Let q = 25. Consider the
following sets of vectors inF3

32, with β being a primitive
element ofF32.

A =



































1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





1
1
1



 ,





1
β

β18



 ,





1
β18

β5



































,

B =



































1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





1
1
β6



 ,





1
β

β18



 ,





1
β18

β5



































.

9

Let b1(X) = X5+X2+1 andb2(X) = X5 +X3 +X2 +
X+1, both of them being primitive polynomials of degree5.
Note thatA andB are valid choices (using eitherb1(X) or
b2(X) as the primitive) for the global encoding vectors of the
6 outgoing edges from the source, representing deterministic
network coding solutions for a3-dimensional network code for
this network. We assume that the intermediate nodes simply
forward the incoming symbols to their outgoing edges, i.e.,
their local encoding coefficients are all1.

Table III illustrates the results obtained with the execution
of Algorithm 1, with Algorithm 4 being used to compute
the coprime polynomial for this network with the original
deterministic solutions beingA or B, with b1(X) andb2(X)
as the primitive polynomial ofF32. The solutions (global
encoding vectors of the6 edges from the source) obtained

for the

(

6
3

)

network, after the modulo operations of the

individual coding coefficients using the polynomialg(X), are
also shown in Table III. It can be checked that both of these
sets of vectors are valid network coding solutions for a3-

dimensional network code for the

(

6
3

)

network.

It is seen that for the setA being the choice of the network
code in the first step of Algorithm 1 and withb1(X) being the
primitive polynomial, the final coprime polynomial has degree
2 and thus resulting in a codeF4, which is in fact the smallest
possible field for which a solution exists for this network. For
B with the primitive polynomialb2(X), no solutions are found
using characteristic two finite fields of cardinality less than32.

	I Introduction
	II Preliminaries and Background
	III Network-error Correcting codes using small fields
	III-A Network-Error Correcting Codes - Approach of Mat
	III-B Network-Error Correction using Small Fields - Algorithm
	III-C Justification for Algorithm 3
	III-D Fast algorithm for computing least degree coprime polynomial
	III-E Justification for Algorithm 4
	III-F Complexity of Algorithm 4
	III-G Complexity of Algorithm 3

	IV Illustrative example - Network-Error Correction
	V Concluding remarks
	References
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Proposition 1
	C-A Proof of Proposition 1

	Appendix D: Proof of Proposition 2
	Appendix E: Example - Network coding

