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Abstract—Existing construction algorithms of block network- of the classical Singleton bound for networks can be found in
error correcting codes require a rather large field size, wheh  [10]-[13]. Using the algorithm of [12], a network code which

grows with the size of the network and the number of sinks, ¢an correct any errors occurring in at mestedges can be
and thereby can be prohibitive in large networks. In this work, tructed | the field sizé h that
we give an algorithm which, starting from a given network- constructed, as long as he lield Sizes suc a

error correcting code, can obtain another network code usig
a small field, with the same error correcting capability as tre g>N ( €] )

original code. An algorithm for designing network codes usig 2a )7

small field sizes proposed recently by Ebrahimi and Fragoulcan ) ) )

be seen as a special case of our algorithm. The major step inou Where¢ is the set of edges in the network. The algorithms of

algorithm is to find a least degree irreducible polynomial whch  [10], [11] have similar requirements to construct such roekw

is coprime to another large degree polynomial. We utilize te  error correcting codes. This can be prohibitive wheéh is

algebraic properties of finite fields to implement this step e that large, as the sink nodes and the coding nodes of the network

it becomes much faster than the brute-force method. As a resu . . . .

the algorithm given by Ebrahimi and Fragouli is also quickered. Nave to perform operations over this large field, possibly
increasing the overall delay in communication. Inl[13], the
bound on the field size was further tightened. However, this
bound in [13] too potentially grows with the size of the

I. INTRODUCTION network.
Network coding was introduced inl[1] as a means to improve In this work, we propose an algorithm for block network-

the rate of transmission in networks. Linear network codirgfror correction using small fields. We shall restrict owoal

was introduced in[]2]. Deterministic algorithms exist [[H}- rithms and analysis to fields with binary characteristice Th

to construcscalar network codegin which the input symbols techniques presented can be extended to finite fields of other

and the network coding coefficients are scalars from a finiedaracteristics without much difficultly. The contribut® of

field) which achieve the maxflow-mincut capacity in the cadbis work are as follows.

of acyC|iC networks with a Single source which wishes to « We propose an a|gorithm to construct network-error
multicast a set of finite field symbols to a set df sinks, correcting codes using small fields, by first designing a
as long as the field sizg¢ > N. Finding the minimum field network-error correcting code over a large field size using
size over which a network code exists for a given network is  known techniques (for example, [12]) and then using
known to be NP hard_[6]. An algorithm was proposediin [7]  a|gebraic techniques to obtain a network-error correcting
which attempts to find network codes using small field sizes, code over a smaller field size. The network coding version
given a network coding solution for the network over some  of this algorithm reduces to the algorithm proposed by

larger field sizeg > N. The algorithms of[[7] also apply to Ebrahimi and Fragouli in[7], which we shall refer to as
linear deterministic networks[[8], and feector network codes the EF algorithm henceforth.

(where the source seeks to multicast a set of vectors, rathel The major step in our algorithm is to compute a polyno-
than just finite field symbols). In this work, we are expligitl mial of least degree coprime with a polynomigl.X),

concerned about the scalar network coding problem, althoug  of possibly large degree. While it is shown inl [7] that
the same techniques can be easily extended to accommodate this can be done in polynomial time, the complexity
for vector network coding and linear deterministic netwgrk can still be large. Optimizing based on our requirement,
if permissible, as in the case of [7]. we propose an alternate faster algorithm for computing

Network-error correction, which involved a trade-off be-  the polynomial coprime withf(X). This reduces the
tween the rate of transmission and the number of correctable complexity of the EF algorithm also, which simply adopts
network-edge errors, was introduced [n [9] as an extension gz prute force method to do the same.

of classical error correction to a network setting. Alonghwi , |ljustrative examples are shown which indicate that pa-
subsequent works [10] and [11], this generalized the @absi  rameters such as the initial network-error correcting code
notions of the Hamming weight, Hamming distance, minimum  and the choice of representation of the initial large finite
distance and various classical error control coding bounds field influence the ability of our algorithm to obtain a

to their network counterparts. Algorithms for construgtin  network-error correcting code over a small field size.

network-error correcting codes which meet a generalimatio The rest of this paper is organized as follows. In Sedfbn Il,

Part of the content of this work was presented at ISIT 2014 la¢lSt. we _gNe the pasw notations and definitions relateq to ne¢wor
Petersburg, Russia during July 31 - Aug. 5, 2011. coding, required for our purpose. Also, we review the EF


http://arxiv.org/abs/1009.3728v2

algorithm briefly in Sectiori]l. Sectioi Il presents our alLet FF = (I— K)~!, wherel is the identity matrix of sizé£|.
gorithm for constructing network-error correcting codesg Note thatF is well defined ag/ — K) is an invertible matrix,
small field sizes, along with calculations of the complexify as K is strictly upper-triangular. We then have the following
the algorithm. In Sectiofi’Ill, we also propose a fast way tefinition.
compute the major step of our algorithm, which is to obtain a Definition 1:[3] The network transfer matrjx\/;- for a h/-
least degree polynomial coprime with another polynomial efimensional network code, corresponding to a sink nbde
larger degree. We also show that this fast technique redugess a full rank &’ x A’ matrix defined asViy := AF Dy =
the running time of the EF algorithm. Examples illustratingi 7., where Fy := FDr.
our algorithm for network coding and error correction are The matrix My governs the input-output relationship at
presented in Section 1V. Finally, we conclude the paper ink 7. The problem of designing &’-dimensional network
Section ¥ with comments and directions for further researchpde then implies making a choice for the matricésF,
and Dr, such that the matrice§ My : T € T} have rank
Il. PRELIMINARIES AND BACKGROUND h' each. We thus consider each elementAfF, and Dy
The model for acyclic networks considered in this paper {§ be a variableX; for some positive integer, which takes
as in [14]. An acyclic network can be represented as an acydlalues from the finite field?,. Let {X;} be the set of all
directed multi-graphg = (V, ), whereV is the set of all variables, whose values define the network code. The vasabl
nodes and is the set of all edges in the network. We assumg;s are known as thical encoding coefficien{d4]. For an
that every edge irg can carry at most one symbol from aedgee in a network with ah/-dimensional network code in
finite field ;. Network links with capacities greater than unitylace, theglobal encoding vectof14] is a 2’ dimensional
are modeled as parallel edges. The network is assumed to/getor which defines the particular linear combination af th
instantaneous, i.e., all nodes process the sgeneration(the »’ input symbols which flow through. It is known [3]-[5]
set of symbols generated at the source at a particular tifh@t deterministic methods of constructinghadimensional
instant) of input symbols to the network in a given codin@etwork code exist, as long as> N.
order (ancestral ordef [14]). For an edgelet tail(e) and Let A be the length of the longest path from the source
head(e) denote the start node and the end nodecofAn 4 any sink. Because of the structure of the matrices”
ancestral ordering can be assumed &ras the network is gpq Dr, it is seen [[7] that the matri\/; has degree at
acyclic. Lets € V be the source node arifl be the set of most A in any particular variableY; and also a total degree
N(= |T]) receivers. Let,. be the unicast capacity for a sinkigym of the degrees across all variables in any monomial) of
nodeT € T, i.e., the maximum number of edge-disjoint pathg | et f_ (X1, X2, .. X|(x,y) be the determinant af/r and
from s to T. Thenh = minyc7 h, is the max-flow min-cut F(X1,Xs,.X(x,}|) = Llpes fr- Then the degree in any

capacity of the multicast connection. . _ variable (and the total degree) of the polynomiglsand f
A n’-dimensional network codeh{ < h) is one which 46 at most/A and Ni/A respectively.

can be used to transmit’ symbols simultaneously from
to all sinksT € T, and can be described|[3] by the followingm
matrices, each having elements from the finite figjd '
o A matrix A (of sizeh’ x |£]), which describes the way
the source maps symbols onto the network. The entr

A brief version of the EF algorithm is given in Algorithm
Note that the key step in Algorithid 1 is step (4), where

Algorithm 1: Scalar network coding algorithm using small

e -
of A are defined as flelds - [1]
4= e if s = tail(e;), (1) Assign valuesy;s to the scalar coding coefficients
OV 0 otherwise X;s from an appropriate field

. . . Foi (2 = 2[les(N)1+1 > N') such that the network
whereas, € I, is the network coding coefficient at the e, matrices\/rs to all the sinks are invertible.

source coupling input with edgee;. T . o
o A matrix K (of size|€| x |£[), which describes how the (2) Express everg; = a asa binary polynom@bl(X)
of degree at most — 1 using the usual polynomial

symbols are processed between the edges of the network;, . T .
: ' fepresentation of the finite field,., for a particular
The entries ofK are defined as

choice of the primitive polynomial of degrde

K; ;= { Bij i head(e;) :.’5‘“[(63’)7 (3) Substituting these polynomials representing #s
N 0 otherwise in the matricesMr, calculate the determinants af; as
where; ; € F, is the local encoding kernel coefficient the polynomialsf,.(X) € F2[X], and also find
betweene; ande;. f(X) =IIper f-(X). Then, f(X) is non-zero and has

« Dr (of size |€] x b’ for every sinkT € T), which | degree at mosN (k — 1)hA in the variableX.
describes how the symbols received by the sinkare (4) Find an irreducible polynomial of least degrggX ),
processed. The entries of the matfix- are defined as | which is coprime withf(X).

b e if head(e;) = T, (5) Let X; = pi(X)(mO(_j gzg(])). Thus, eachX; can be
Tij = 0 otherwise viewed as an elemenfc LieoR Also, for each sinKT,
the matricesh/t remain invertible as

where e, ; € F, describes the coupling between the ¢ (x)(modg(X)) # 0, as f(X)(mod g(X)) # 0.
symbols one; and theit” input.




an irreducible polynomiad(X) of least degree is to be found.is key to understanding our algorithm for obtaining network
It is shown in [7] that such a coprimg X) exists and and error correcting codes for small field sizes. For furtheadet
can be computed witl®) (TLQZog(n)) operations, wheres = on Algorithm[2, the reader is referred {0 [12].

deg(f(X)) = NhA[log(N)].

Algorithm 2: Algorithm of [12] for constructing a

1. NETWORK-ERRORCORRECTING CODES USING SMALL | network-error correcting code that meets the network Sjin-
FIELDS gleton bound.

This section presents the major contribution of this work. (1) Let F be the set of all subsets &f of size2«. Add
After briefly reviewing the network-error correcting codene an imaginary source’ and drawk = h — 2« edges from
struction algorithm in[[12], we proceed to give an algorithm s’ to s.
which can obtain network-error correcting codes using kmal (2) foreach F € F do
finite fields. (7) Starting from the original network, add an
imaginary nodev at the midpoint of each edgec F
and add an edge of unit capacity frorhto eachw.

A. Network-Error Correcting Codes - Approach of [12] (i) foreach sink T € T do
(2

An edge is said to be in error if its input symbol and Draw as many edge disjoint paths frorto 7'
output symbol (both from some appropriate fiég) are not passing through the imaginary edges added at
the same. We model the edge error as an additive error from Step(i) as possible. Lemf(g 2a) be the
F,. A network-erroris a |£| length vector oveil,, whose number of such paths.
components indicate the additive errors on the correspgnd Draw k edge disjoint paths passing througlhat
edges. A network code which enables every sink to correct are also edge disjoint from the’ paths drawn
any errors in any set of edges of cardinality at mes$ said in the previous step.
to be ana network-error correcting codeThere have been end
different approaches to network-error correction [9]}{M8e (ii1) Based on the techniques shown in the network
concern ourselves with the notations and approach of [B2],|a coding algorithm of([4] on the subnetwork
the algorithm in[[12] lends itself to be extended according comprising of the identified edge disjoint paths,
the techniques of [7]. obtain a network code with the following property.

It is known [9] that the number of messag#$ in an « Let BY be the(k + 2a) x (k +mI) matrix, the
network-error correcting code is upper bounded according|t columns of which are thé length global encoding
the network Singleton bounds M < ¢"~2*. Assuming that vectors (representing the linear combination of the
the message set is a vector space @yeof dimensionk, we input symbols an@a error symbols) of the incoming
havek < h —2a. edges at sink’ corresponding to thé + m’ edge

A brief version of the algorithm given in [12] for construct- disjoint paths. ThemBE must be full rank. As proved
ing an a network-error correcting code for a given single in [12], this ensures that the network code thus
source, acyclic network that meets the network Singleton | obtained isoe network-error correcting and meets the
bound is shown in Algorithni]2. The construction 6f[12] is network Singleton bound.

based on the network code construction algorithm_of [4]. TrPe end
algorithm constructs a network code such that all network-

errors in up t2« edges will be corrected as long as the sinks It is shown in [12] that Algorithni results in a network

!<now where the errors have o_ccurred. Such a network Co&?de which is anv network-error correcting code meeting the
is then shown[[12] to be equivalent to an network-error network Singleton bound, as long as the field size
correcting code. Other equivalent (in terms of complexity)

network-error correction algorithms can be found.inl [1Q][1 _ €]

_ e fo > |TIFI =N ( o ). (1)
One way to understand Algorithioh 2 which is relevant to our @

work is as follows. For each subsétc F of £, Algorithm The above bound on field size was further tightened in [13],

considers a subnetwork of the original network consistinghere it was shown that a construction of ametwork-error

of k£ edge-disjoint paths from the imaginary sourgeto correcting code is possible if the field siges such that

each sinkT € T and alsomk edge-disjoint paths frons’

passing through the edges Bfto each sinkl” which are also 7> Z | R (a), @)

edge-disjoint with thek paths froms’. On this subnetwork, TeT

Algorithm [2 chooses network coding coefficients such thathere Rr(«) is a set defined in_[13] for the sink in the

the k& information symbols can still be multicast to each sinfollowing way.

T irrespective of whatever information may flow on the;. Definition 2: For a sinkT, the setRr(«) is the set of all

paths. If the same choice of coefficients can be chosensdbsets of siz€a of the edge sef satisfying the following

satisfy this multicast-like constraint for eadh € F, then properties for each € Rr(a) .

there is a validv network-error correcting code which can be « A collection of k edge-disjoint paths starting from tfke

used to multicast thé information symbols from the source imaginary incoming edges at the source nad® sink

to all sinks in the network. This understanding of Algorit@m nodeT can be found.




« A collection of 2a edge-disjoint paths starting from eacha polynomialg(X) coprime with a given polynomiaf(X).
of the 2« edges to the sink’ in p can be found, such According to the complexity calculations inl[7], a bruteder
that all these paths are also edge-disjoint fromitipaths computation of Step (5) would requir@(n?log(n)) com-
from s. putations,n = deg(f(X)) = N|F|hAllog(N|F|)]. Before
An algorithm is shown in[[I3] to construct: network- We propose our method to execute Step (5) efficiently in
error correcting codes if the field size is greater than- Subsectiof I-D, we give a justification for Algorithi 3.
> rer |[Br(a)|. In many networks (see [13], for example),
this bound in [(R) could be smaller than the bound [ih (1. Justification for Algorithnil3
However, in this work, we use the Algorithih 2 which is from Ng justification is required for the steps in Algorithih 3

[12] rather than the algorithm fron [13]. We shall howevegycept Step (5). The justification for Step (5) is as follows.

give the value of the bound irL](2) for an example networkiep (5) finds ag(X) which is coprime with the product

and show that our algorithm to obtain network-error coirrt nolynomial f(X). In fact, in order to ensure that the error

codes over small fields can obtain field sizes smaller thain tharection property of the original network code is preselv

of the bound in[(R) also. it is sufficient if a polynomialg(X) is coprime with each
ponnomiaIff(X), rather than their produgt(X) (as shown

B. Network-Error Correction using Small Fields - Algorithmin Step (5)). However, the following lemma shows that both

Algorithm [3 constructs a network-error correcting cod@ri equivalje-z.nLt. B . FIX1i— b
using small field sizes (conditioned on the existence of an emma L. et.Z/{ . {fi:fi€ .[ ]’z._ 1’2"“.’7} €a
irreducible polynomial of small degree satisfying the reseey collec'u_on of unlvarlate_polynom|al_s with _coefﬁc!ents 'fm
requirements indicated in Step (5) of Algorithih 3). Notg%me fieldF. A p_olyn_om|_alg € FX] IS _re!atlvely_prlme W'th
that for the casex — 0, Algorithm [3 reduces to the EF all the polynomials in/ if and only if it is relatively prime

algorithm, i.e., Algorithm L. As in Algorithni]1, the majorg;;ho:hzgppggg&%.

Algorithm 3: Network-error correcting codes under small
field sizes D. Fast algorithm for computing least degree coprime poly-
(1) With ¢ = 2[1es(NIFDT+1 = 9k ryn Algorithm[2 to nomial
find an« network-error correcting code meeting the Algorithm[4 is a fast method to compute the least degree
network Singleton bound. Let the encoding coefficients irreducible polynomialg(X) among irreducible polynomials
for X; be ;. up to some degree: that is coprime withf (X). As a result,
(2) Express evenX; = «; as a binary polynomia;(X)
of degree at most — 1 using the usual polynomial Algorithm 4: Fast algorithm for computing(X)
representation of the finite field,. .
(3) foreach F € F do (1) Let P = {XQI +X:i=1,2, ...,m}.
foreach sinkT" € T do (2) foreachi =1,2,...,m do
Find a non-zero minor of the matri%, obtained Calculater(X) = f(X)(mod p;(X)).
from a (k +m%) x (k+ mZ%) submatrix. At if 7(X) is non-zerothen
least one such minor exists @& has rank = | Break.
k +mZ . Let the minor bef”'(X), which can be end
of degree at mostAlog(N|F]), according to end
Sectior 1l and the choice of our field size. (3) Pick p;(X) as the first polynomial (i.e. least degree)
end for which r(X) is non-zero. Note that eveny,(X) € P
end . is the product of all irreducible polynomials whose
(4) Calculate the polynomial degree divides. Also, all irreducible polynomials of
_ F degreei < j divide f(X) as allp;(X)|f(X) for all
JX) = Fl;[fTel_[TfT (X), 1 < j. Therefore, at least one of the irreducible
. polynomials of degreg is coprime with f(X).
which has degree at most|F|hAlog(N|F]). (4) Find one such polynomiaj(X) of degreej which is
(5)_F|n_d an |r_redu0|_ble polynomial of least degregX), coprime with f(X)(mod p;(X)) and therefore
which is coprime withf (X). equivalently with f(X) (Subsectiof III-E gives a
(6) Let X; = p;(X)(mod g(X)). Thus, eachX; can be justification of this step).
viewed as an element |ﬁ% Because of the fact that
ff(X)lngdg,(X)) # 0, (as f(X)(mod g(X)) # 0), th_e the key step (Step (5)) of Algorithid 3 can be performed much
new By matrices .Obtf"“ne,d after the modulo operqtlon AMQaster than having to computg X ) by brute-force. Similarly,
also fL.”.l rank, which ”T‘p"es that the error correcting this fast algorithm also enables to quicken the key stepp(Ste
capability of the code is preserved. (4)) of Algorithm[d so that its overall complexity is reduced

Note that for using Algorithnil4 to implement Step (4) of
step of Algorithm[3B is Step (5) which involves calculatingAlgorithm[dl, we fixm = [log(NN)] as any polynomial(X)



coprime with f(X) is useful only if the degree of(X) is Proposition 2:For some positive integer, let m be an in-
less than[log(N)] + 1, as only such a(X) can result in 4 . <ich that < m < n. The functionf (m) — no\, s
a network code using a smaller field than the one we startetgJ - m
with. For the same reason, in using Algorithin 4 in conjunctiog - imized atn — (121+1) ifn>2
with Algorithm[3, we choosen = [log(N|F])]. 1 if n=1.
Proof: Appendix[D.

E. Justification for Algorithni]4

The following lemma ensures that all polynomials which V- |LLUSTRATIVE EXAMPLE - NETWORK-ERROR
are found to be coprime withi(X) by directly computing the CORRECTION
gcd (or the remainder for irreducible polynomials) in theter ~ The performance of Algorithfal 1 (together with Algorithm
force method (as done in Algorithim 1), can also be found ) for a network coding problem on a combination network
running Algorithm(4, using the set of polynomidisup to the is shown in AppendiXE. We now present a network-error
appropriate degree. correction example that uses Algoritfith 3 (with Algorithin 4)

Lemma 2:For some fieldF, let f,g € F[X] be two
polynomials. Letp € F[X] be such thatglp. Theng is  Example 1:Consider the network, witi8 edges, shown
relatively prime with f if and only if g is relatively prime in Fig.[D. This network is from[[11], in which & network-

with f(mod p). error correcting code meeting the network Singleton bosnd i
Proof: Appendix(B. given by brute-force construction for this network over,
which is the smallest possible field over which such a code
F. Complexity of Algorithrhl4 exists. According to the algorithm in_[112], & network-error
The following proposition gives the complexity of Algo-Correcting code can be constructed deterministically i
rithm[4 for obtaining the coprime polynomial. o B = 306. 1n Fig. [, let the variableX; denote the

2
om. - _ encoding coefficient between edges — v4 and vy — vg.
O(2°") + O(mM), wherem = [P|, and M = deg(f(X). Similarly, let the variableX; (X3) denote the local encoding

Proof: Appendix[C. Hicients betw q
Remark 1Note that the worst-case complexity of Algorithm 0" ICIENtS DEIWeen; = v; (v6 — v7) andws — vs (vr —

@ with m = [log(N)] and M = hN[log(N)]A (correspond- vs).
ing to values required for running Step(4) of Algoritimh 1)

is O(N?) + O(hNA(log(N))?). This is clearly lesser than
the worst-case complexity of finding the coprime polynomial
g(X) by brute-force, indicated in Sectiéd 1l. Even if we test
for coprimeness only for polynomials up to degiéeg(N)],

a brute-force execution of Step (4) of Algorithmh 1 would
have a worst-case complexity @ (N2hAlog(n)) (where

n = NhAlog(N)), which is still greater than that of ours.

Proposition 1: The complexity of Algorithn{} is at most

G. Complexity of Algorithrh]3

We now calculate the complexity of Algorithin 3 (with
Algorithm[4 used to implement its key step). The compleszitie
of all the steps of Algorithriil3 is given by Talle I, along with
the references and reasoning for the mentioned complexitie

The only complexity calculations of Table | which are not
straightforward are the complexities involved in calcigtthe
polynomialg(X') coprime tof (X)) and in calculating the non- rig 1. Example network for network-error correction
zero minor of the matrixB%. The complexity of calculating
g(X) can be calculated using Proposition 1 using the valuesLet ¢ = 2° Let A = {8, 8%} and B =
m = [N|F|] and M = Nh|F|A[log (N|F])]. {B132, 3391, 3391}, where B is a primitive element offize.

Now for calculating the non-zero minor of the matdx:. Let b;(X) = XY + X* + 1 be the primitive polynomial of
There are( h r > such minors, and calculating ead_pegree@_ under consideration. )

k+m Consider two suchl network-error correcting codes ob-
takesO ((k: + mf)g multiplications overF,. As (k: + mf) tained using Algorithni12 for the network of Figl 1 as follows.
can take values up th, clearly the function to be maximized L€t A and B be two choices for the setX;, Xs, X3} with
_ B h 3 B all the other local encoding coefficients being unity. It den
is of the form f(m) = m ) for m = 0,1,...7 verified that these two network codes can be used to transmit
Propositio 2 gives the value of for which such a function one error-freéfys symbol from the source to both sinks, as
is maximized, based on which the value in Table | has betng as only single edge errors occur in the network. Table
calculated. [M gives the results of running Algorithi] 3 for this network




TABLE |

COMPLEXITY CALCULATIONS FORALGORITHM[3

Step(s) Complexity Reasoning
Algorithm 2 A= O (FINK(ENFIN + €]+ + 2a)) . 2]
Identifying non-zero minor of matrixB% B:=0 (( :1 m3) , with m = ([27+1) Theoren{?
Computing the non-zero minor (ov&s[X]) of BY | C := O (h*Alog(N|Fl)) + O ((hAlog (N|]-"|))3) 71
from a (k + m%) square submatrix
Calculating f(X) = [[per [L7e7 [5 (X). D := O (alog(a)), wherea = Nh|F|Alog (N|F]) [15]
Computing the coprime polynomigl X) E := O (N?|F]?) + O(Nh|F|Alog (N|F])?). Propositior_ 1L

| Total complexity |

A+ N|F|(B+C+D)+FE |

TABLE Il

USING ALGORITHM[Z FOR THE NETWORK INFIG.[1

Algorithm parameter Network code defined by.A | Network code defined byB
Degree off(X),
the product of the306 determinant polynomials 260 978
p(X): Firstp; (X) for which £(X)(mod p;(X)) is non-zero X2+ X X+ X
f(X)(mod p(X)) X"+ X°+X°+X° X+ X
g(X): Least degree polynomial coprime JgX) X34+ X +1 X7+ X +1
{X1, X2, X3} after the algorithm {83,538, B } {Ba, Ba, Ps}

starting from these two codes, with; and s being the
primitive elements offy, andFg respectively.

Except for{X;, X2, X3}, all the other coding coefficients
remain1 over the respective fields. It is seen from Table I
that the initial choice of the setd and B for { X1, X5, X3}
affects the complexity of the problem (i.e., degreef¢X))
and also the field size of the final network code. Withthe
resultant network-error correcting code is olgr exactly the
one reported in[[11] by brute force construction. Also, for
sink 77 and T3, the value of Rp(«) can be computed to be [7]
Rr, (1) = Rp,(1) = 65. Thus the bound from_[13] shown
in (@) for this network can be computed to be> 130. The
field size of the network-error correcting code found usiog o
algorithm can therefore still be lesser than that of the loun ]
in [13].

(3]

(4]

(5]
(6]

(8]

V. CONCLUDING REMARKS [10]

As in the original papef[7], questions remain open about the
designing of a code using the minimal field size. The hardne%l]
of calculating the minimal field size is reflected by the fact
that the initial choice of the network code and the primitivel12]
polynomial of the field over which the initial code is defined
(using which the local encoding coefficients are represkase
polynomials) control the resultant field size after the alton.
These issues are illustrated by the examples in Se€fidn | 4]
and AppendiX_E. However, it would be interesting to see i
guarantees on the reduction of the field size can be given.

(13]

[15]

REFERENCES

[1] R. Ahlswede, N. Cai, R. Li and R. Yeung, “Network Inforraat
Flow”, |IEEE Transactions on Information Theory, vol.46,.40July
2000, pp. 1204-1216.

[2] N. Cai, R. Li and R. Yeung, “Linear Network Coding”, IEEEans-
actions on Information Theory, vol. 49, no. 2, Feb. 2003, 3f1-381.

R. Koetter and M. Medard, “An Algebraic Approach to Netko
Coding”, IEEE/ACM Transactions on Networking, vol. 11, r.Oct.
2003, pp. 782-795.

S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, Kn dad
L.M.G.M. Tolhuizen, “Polynomial time algorithms for mutfist net-
work code construction”, IEEE Transactions on Informatibimeory,
vol. 51, no. 6, June 2005, pp.1973-1982.

N. Harvey, “Deterministic network coding by matrix cotefion”, MS
Thesis, 2005.

A. Lehman and E. Lehman, “Complexity classification oftwerk
information flow problems”, ACM SODA, 2004, New Orleans, USA
pp. 142-150.

J. B. Ebrahimi and C. Fragouli, “Algebraic algorithmsr feector
network coding”, IEEE Transactions on Information Theaory|. 57,
no. 02, Feb 2011, pp. 996-1007.

S. Avestimehr, S N. Diggavi and D.N.C. Tse, “Wirelesswatk infor-
mation flow” Proceedings of Allerton Conference on Commatian,
Control, and Computing, lllinois, September 26-28, 20Q7., 15-22.
R.W. Yeung and N. Cai, “Network error correction, part tdapart
2", Communications and Information and Systems, vol. 6,6204p.
19-36.

Z. Zhang, “Linear network-error Correction Codes inckat Net-
works”, IEEE Transactions on Information Theory, vol. 54, 4, Jan.
2008, pp. 209-218.

S. Yang and R.W. Yeung, “Refined Coding Bounds and Code-Co
structions for Coherent Network Error Correction”, IEEEaiisactions
on Information Theory, Vol. 57, No. 3, March 2011, 1409-1424

R. Matsumoto, “Construction Algorithm for Network Br-Correcting
Codes Attaining the Singleton Bound”, IEICE Transactionsdiamen-
tals, Vol. E90-A, No. 9, September 2007, pp. 1729-1735.

X. Guang, F. Fu, and Z. Zhang, “Construction of Network- E
ror Correction Codes in Packet Networks ”, Available on ArXi
http://arxiv.org/abs/1011.1377, Nov. 2010.

N. Cai, R. Li, R. Yeung and Z. Zhang, “Network Coding Tingb
Foundations and Trends in Communications and Informatibaoty,
vol. 2, no.4-5, 2006.

A. Borodin and I. Munro, “The computational complexity algebraic
and numeric problems”, American Elsevier Pub. Co., 1975.

APPENDIXA
PROOF OFLEMMA [I]

Proof: If part: If g is relatively prime with the product of

all the polynomials in/, then there exist polynomials b €


http://arxiv.org/abs/1011.1377

F[X] such that

®3)

a (Hﬂ) +bg = 1.
=1
.y N,

For eachj € 1,2,. we can rewrite[(3) as

(fl 1T fi) fi+bg=1,

1=1,i#]

which implies thaty is coprime with eacly; € U.

Only if part: Supposeg is relatively prime with all the
polynomials in/. Then, for eachj € 1,2,...,n, we can find
polynomialsa; andb; such thata; f;+b;9 = 1. In particular,

(4)
(®)

ay f1 +big =1,
CLQfQ + bgg =1.
Using [8) in [3),
1 = aifi(azfo + bag) + big
= (a1a2) f1f2 + (a1 fib2 + b1)g.

Thus, ¢ is relatively prime with f; f,. Continuing with the
same argument, it is clear that is relatively prime with

H?:l i |

APPENDIXB
PROOF OFLEMMA 2]

Proof: Let f = "M f;X*. We arrange the coefficients
of f as follows.

fo f fa frn-1
fn frng1 fon—2
.f2n71 fnJrl .f3n73
fan—at fu 0 0

whereaq is the largest positive integer such that—a+1 < M.

Now, note that calculating the polynomigl(mod p), is
equivalent to adding up the rows of the arrangement, while
retaining the coefficienf, as it is. There are{% rows in
the arrangement, and adding any two rows requires at most
n — 1 additions. Thus, the total number of bit additions is
O(M). [ |

We are now ready to prove Propositioh 1.

A. Proof of Propositiori 11

Proof: The worst-case for Algorithri]4 would bg =
m. By Lemmal[3, computingf(X)(mod p;(X)) for some
pi(X) € P takes at mostM operations. As there are
such p;(X)s, evaluating the remaindergX)s costs Mm
operations at most. Let

F(X)(mod p;(X)) = f(X)
be the non-zero polynomial of degree at m&t= 27.

Proof: Let f = ¢gp + r for the appropriate quotient and Now, we have to determine the complexity in obtaining

remainder polynomialg,r € F[X] with deg(r) < deg(p).
Also, asg|p, let p = hg, for the appropriaté: € F[X].

If part: As r = f(mod p) andg are relatively prime with
each other, we can obtain polynomialst’ € F[X] such that
a'r +b'g = 1. Then, we must have

L=d(f —qp)+Vg
=d'(f —qhg) + Vg
=adf+ (' —dqh)g.
Thus f andg must be coprime with each other.
Only If part: Now assume thaf and g are coprime with

each other. This means we can obtain polynomialsc F[X]
such thata f + bg = 1. Then,

1=a(gp+r)+bg
= a(ghg +r) +bg
=ar + (agh + b)g,

the polynomial of degree: which is coprime withf (X)) (or
equivalently with f(X)). ,

There are approximatel)?% irreducible polynomials of
order j. It is known (see [[15], for example) that for any
two polynomialsp(X) and ¢(X) (with degreew of p(X)
larger than degree af( X)), the complexity of dividingo(X)
by ¢(X) (or equivalently, calculatingy(X)(mod ¢(X))) is
wlog(w). Thus, the complexity of dividingf(X) by every
possible irreducible polynomial of degrge= m is at most
20 (2™log(2™)) = O(2*™).

Thus, the total complexity for finding the least degree poly-
nomialg(X') coprime withf(X) (which is assured of having a
coprime factor of degreer+1) is at mostO(22™) +O(Mm).

[ |

APPENDIXD
PROOF OFPROPOSITIONZ

Proof: The statement of the theorem is easy to verify for

which means thag andr are coprime with each other, hencer = 1. Therefore, leth > 2. Let g(k) = f(k) — f(k + 1), for

proving the lemma. [ ]

APPENDIXC
PROOF OFPROPOSITIONT

Towards proving Propositidd 1, we first prove the following

lemma.

Lemma 3:Let f,p € F3[X], be such thatleg(f) = M and
p = X" + X, for some non-negative integefd andn. The
polynomial f (mod p) can be calculated using at mast/)
bit additions.

somek, such thatd < k¥ <n — 1. Then,

g(k) = < L )k3—< o >(k+1)3
=(& ) (-G e)

(2k® + K*(2 = n) + k(1 — 2n) — n)



TABLE Il

6C3 NETWORK - ALGORITHM[ (TOGETHER WITHALGORITHM[])

Algorithm parameter Global encoding vectors.A Global encoding vectorsB
Prim. poly. b:(X) Prim. poly. b2(X) Prim. poly. b:(X) Prim. poly. b2(X)
Degree of f(X), the product of the|
20 determinant polynomials 20 40 30 55
p(X): First p;(X) for which None of the form
f(X)(mod p;(X)) is non-zero Xty X X8+ X X8+ X X¥ 4 X, fori<4
f(X)(mod p(X)) X+ X X+ X+ X+ X | X+ X+ X"+ X7 Not applicable
g(X): Least degree
polynomial coprime tof (X) X2 4 X +1 X34 X +1 X34 X +1 Not applicable
1 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 0 0
o[ 1] [0l 1] o[ 1]
Resultant network code 0 1 0 1 0 1 Not applicable
1 1 1 1 1 1
I 1 ][ 1 1 ][ 1
Ba Bi Bs s Bs s
2 4 2 3 6
1 Ba 3 3 s s

where j(k) = (2k* 4+ k*(2 — n) + k(1 — 2n) — n) . Proving
the statement of the theorem is then equivalent to showiaty th
both of the following two statements are true, which we shall
do separately for even and odd valueshof

o g(k) <0 for all integersd < k < [%].

o g(k) >0 forallintegers[ 5] +1<k<n-—1.
Case-A(n is even:. Let k = 7 + 1, for some integer such
that—4 <i < & — 1. Then,

G(k) = 2% 4+ k%(2 — 2k + 20) + k(1 — 4k + 44) — 2k + 2i
G(k) = kK*(—2 + 24) + k(4i — 1) + 2. (6)

For -2 < 4 < 0, it is clear from [6) thatg(k) < 0. If
1<i<(%-1),itis clear thatg(k) > 0. Thus, for even
values ofn, the theorem is proved.

Case-B(n is odd: Let k = [2] +i = (2EL) + 4, for some
integeri such that— (241) < i < (252). Then,

Fig. 2. ¢Cs3 network with 20 sinks

thus the mincuk being3. Using the methods i [3]=[5], &-
dimensional network code can be constructed for this nd¢wor
as long as the field sizg > 20. Let ¢ = 2°. Consider the

G(k) =2k + k*(2 -2k +2i+1)
+ k(1 —4k+4i+2)—2k+2i+1

glk) = k(=14 2i) + k(1 + 40) +2i + 1. (7)  following sets of vectors inf3,, with 3 being a primitive
Now, fori = 0, k = (2f) > 2 (asn > 2 and is odd). element off's,.
Hence,g(k) = —k* + k+1 < 0 for i = 0. If —(2H) < 1 0 0
i < 0, then by [T), it is clear thaf(k) < 0. Thus for all o, 11{,{0],
SO LT S
Forl <i < (Z232), again by [7), it is clear thag(k) > 0, A= ,
and thus the theorem holds for odd values oThis completes [ i ] [ [13 } [ 5118 }
the proof. [ | 1 31 ’ 5
APPENDIXE 1 0 0
EXAMPLE - NETWORK CODING 8 ; (1) ; (1) ;

Example 2:Consider the network shown in Figl12.

6
3
This network has20 sinks, each of which ha8 incoming

edges from som8-combination of thes intermediate nodes,



Letb (X) = X°+ X2 +1 andby(X) = X5+ X3+ X%+ forthe [ 0 ) network, after the modulo operations of the
X +1, both of them being primitive polynomials of degree . . 3 ) . , _
Note that.4 and B are valid choices (using eithé (X) or individual coding coefficients using the polynomidlX ), are

bo(X) as the primitive) for the global encoding vectors of th@'S° S?O‘Nn in Tablﬂ]l.l_cljt can bekcheg_ked th?t both fOf these
6 outgoing edges from the source, representing deterninistfts Of vectors are valid networ 6C0 Ing solutions foB-a
network coding solutions for a&-dimensional network code for dimensional network code for th network.

: . . . 3
this network. We assume that the intermediate nodes S|mplyIt is seen that for the set being the’choice of the network

forward the incoming symbols to their outgoing edges, i'ecode in the first step of Algorithiil 1 and with(X) being the

their local encoding coefficients are all , _ primitive polynomial, the final coprime polynomial has degr
Table[l illustrates the results obtained with the exesuti 5 444 thus resulting in a cod®,, which is in fact the smallest

of Algorithm [, with Algorithm[4 being used to computessssible field for which a solution exists for this networkr F
the coprime polynomial for this network with the originalg \yitn the primitive polynomiabs (X ), no solutions are found

deterministic solutions beingl or B, with b, (X) andb2(X) | sing characteristic two finite fields of cardinality lesari32.
as the primitive polynomial off3;. The solutions (global

encoding vectors of thé edges from the source) obtained
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