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Abstract—A challenging problem in multi-band multi-cell
self-organized wireless systems, such as multi-channel Wi-
Fi networks, femto/pico cells in 3G/4G cellular networks,
and more recent wireless networks over TV white spaces,
is of distributed resource allocation. This involves four
components: channel selection, client association, channel
access, and client scheduling. In this paper, we present a uni-
fied framework for jointly addressing the four components
with the global system objective of maximizing the clients
throughput in a proportionally fair manner. Our formulation
allows a natural dissociation of the problem into two sub-
parts. We show that the first part, involving channel access
and client scheduling, is convex and derive a distributed
adaptation procedure for achieving Pareto-optimal solution.
For the second part, involving channel selection and client
association, we develop a Gibbs-sampler based approach
for local adaptation to achieve the global objective, as well
as derive fast greedy algorithms from it that achieve good
solutions.

[. INTRODUCTION

Many of the existing and evolving wireless systems
operate over spectrum that spans multiple bands. These
bands may be contiguous, as in OFDM-based systems,
such as current IEEE 802.11-based WLANs (a.k.a. Wi-
Fi networks) and evolving fourth-generation LTE cellular
wireless systems; or they may be spread far apart, as in
multi-channel 802.11 systems and in recently proposed
wireless broadband networks over TV white spaces (dis-
cussed in the sequel). A common issue in these multi-band
systems is how to perform resource allocation among
different clients, possibly being served by different access
points (APs). This needs to be done so as to efficiently
utilize wireless resources—spectrum, transmission oppor-
tunities and power—while being fair to different clients.
Furthermore, unlike traditional enterprise Wi-Fi networks
and cellular wireless networks, where the placement of
APs and their operating bands are arrived at after care-
ful capacity/coverage planning, more and more of the
evolving wireless systems are going to be self-organized
networks. There is extensive literature on completely
self-organized wireless networks, also referred to as ad
hoc networks [27]], which are often based on 802.11.
Even the emerging 4G cellular wireless networks, such
as those based on LTE, are going to have a significant
deployment of self-organized subsystems: namely, pico
cells and femto cells [10]. These self-organized (sub)-
systems will require that resource allocation is performed
dynamically in a distributed manner and with minimal
coordination between different APs and/or clients.

Another emerging scenario is of broadband wireless
networks operating over TV white spaces [7], [12]. Re-
cent conversion to all-digital TV broadcast has made
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available valuable lower-frequency spectrum. A part of
this spectrum, referred to as TV white spaces, has been
mandated by FCC for unlicensed broadband access. How-
ever, designing a networking stack over the large and
fragmented TV white spaces, which may have widely
different propagation characteristics, pose new technical
challenges unseen in traditional wireless networks and
call for entirely new wireless design principles.

In this paper, we consider the problem of joint resource
allocation across different APs and their clients so as
to achieve a global objective of maximizing the system
throughput while being fair to users. Unlike the max-
min fairness used in traditional Wi-Fi networks, which has
been shown in several extensive studies to be inefficient
(181, [26], we will focus on proportional fairness. The
latter has become essentially standard across current 3G
cellular systems, as well as in emerging 4G systems based
on LTE and WiMAX. Thus, the system objective will be
to allocate wireless resources, spectrum and transmission
opportunities, so as to maximize the (weighted) sum of
the log of throughputs of different clients, which is known
to achieve (weighted) proportional fairness.

The combined resource allocation in a multi-band
multi-cell wireless system involves four components:
Channel selection, client association, channel access, and
client scheduling. The first component, Channel Selection,
decides on how different APs share different bands of the
spectrum available to the wireless system. As mentioned
earlier, the emphasis will be on self-organized networks,
which will necessitate a completely distributed approach
that dynamically adapts to varying traffic requirements
in different cells. To achieve these objectives, we will
consider a differentiated random-access based solution.
The second component, Client Association, allows a client
to decide on an AP to associate within its neighborhood
that is likely to provide the “best” performance. Unlike
the traditional approach of associating with the AP having
the highest signal strength, we will discuss an approach
that allows a client to associate with an AP that maxi-
mizes its proportionally-fair throughput while minimizing
the impact on other clients. Once an AP has chosen a
channel/band to operate in and a bunch of clients have
associated with it, the third component, Channel Access,
decides when it should access the channel so as to serve
its clients while being fair to other access points in its
neighborhood operating in the same channel. The final
component, Client Scheduling, decides which of its clients
an AP should serve whenever it successfully accesses the
channel.

Our approach addresses the four components in a
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unified framework, where the solutions to different com-
ponents are arrived at through separation of time scales
of adaptation. More specifically, our formulation allows
for the optimization problem of maximizing the clients
throughput with weighted proportional fairness to natu-
rally dissociate into two sub-parts, which are adapted at
different time scales. Assuming that the channel selection
and client association have been performed, we show that
the sub-problem of channel access and client scheduling
becomes convex, which is also amenable to a distributed
adaptation for achieving Pareto-optimal weighed propor-
tional fairness. At a slower time scale, we adapt the chan-
nel selection and client association to varying demands
and interference. This part is a non-convex problem in
general, and thus, difficult to solve for a globally optimal
solution. We develop a Gibbs-sampler based approach to
perform local adaptation while improving the global sys-
tem objective. The adaptation is randomized, and if done
slowly enough, can achieve a globally optimal solution.
In practice, however, that may not be always feasible;
hence, we derive greedy heuristics from it for channel
selection and client association, which though not globally
optimal, provide fast and good distributed solutions with
limited exchange of information, as the simulation results
indicate.

The paper is organized as follows. Section [[Il provides
an overview of some related work. Section [IIl describes
the multi-cell multi-band wireless system model and the
joint resource allocation problem that we study. Section V]
gives an overview of our approach and discusses the
separation of problems. The details of our approach and
its desirable properties, including convergence to Pareto-
optimal proportionally-fair allocation, are given in Sec-
tion M and Section VIl The results of simulations are
provided in Section[VIll Concluding remarks are discussed
in Section [VIIIl

II. RELATED WORK

There is extensive literature addressing one or a sub-
set of the aforementioned four components of wireless
resource allocation in the context of different wireless
systems—Wi-Fi networks, 3G/4G cellular networks, and
more recent, wireless broadband systems over TV white
spaces. Due to space limitation, we only discuss a small
sample of the results in each of these areas.

Distributed resource allocation has been widely studied
for IEEE 802.11-based systems. A number of CSMA-
based random-access approaches have been developed
to provide differentiated services to clients [5]], [13l,
(161, 1221, [28]. Proportional fairness in multi-contention
neighborhood has been studied in [[17]], [19]]. Specifi-
cally, [17] has established that Pareto-optimal weighted
proportional fairness can be achieved in a distributed
manner with minimal exchange of information among
contending clients. Our approach for channel access is
motivated by [[17]; we, however, consider a more general
framework that jointly addresses all the four components.
Multi-channel MACs for Wi-Fi networks have been pro-
posed in [6], [23]]. Approximation algorithms for client
association control to achieve proportional fairness have
been developed in [8]], [21], but they assume that APs do
not interfere with each other through a pre-assignment
of orthogonal channels. The work closest to this paper
is [20] where the authors have developed Gibbs-sampler
based distributed algorithms for channel selection and

client association. Their approach, however, considers
different objectives for the two components, neither of
which ensures proportional fairness.

For cellular wireless data systems, a number of cen-
tralized approaches for single-cell scheduling to achieve
proportional fairness have been developed [3[, [4], [9].
More recently, several inter-cell interference coordination
(ICIC) techniques have been proposed for interference
mitigation in LTE-based 4G cellular networks. Specifi-
cally, [24], [25] have developed distributed algorithms
for dynamic fractional frequency reuse among interfering
macro cells based on limited exchange of interference
information over dedicated control links. Given the non-
convexity of the problem, these algorithms aim to achieve
a local optimum of the weighted sum of the log of user
throughputs, which as mentioned earlier provides propor-
tional fairness, through local estimates of the appropriate
gradients. However, in self-organized subsytems of such
networks (such as those made of pico and femto cells),
explicit exchange of information may not be feasible [2],
and thus, these approaches may not be directly applicable.

Research on resource allocation in wireless networks
operating over fragmented TV white spaces is in a nascent
stage. [7]] considers a single AP serving multiple clients at
the same rate. For this scenario, it addresses three issues:
how the AP chooses a suitable band, how a new client
detects the AP’s operating band, and how disruptions
due to temporal variations, such as caused by wireless
microphones, are handled. Some of the limitations of
this approach are overcome in [11] by considering a
multi-rate multi-radio architecture. It develops a joint
strategy for white space selection and client assignment
to one of the radios, as well as designs an extension to
CSMA to achieve proportional fairness—all for a single-AP
scenario. This paper generalizes the setup by considering
a system of multiple APs and jointly addressing the four
components of resource allocation to achieve the global
system objective of maximizing clients throughput in a
proportionally fair manner.

III. SYSTEM MODEL

We consider a system with several access points (APs)
and clients that can operate in a number of channels. We
denote the set of APs by N, the set of clients by I, and the
set of channels by C. Each client 7 is associated with an
AP, which we denote by n(i), and is served by that AP.
Each AP n is equipped with u, radios that can operate
in different channels simultaneously and each client i is
equipped with only one radio. When an AP n has more
than one radios, i.e, u,, > 1, we can simplify the model by
assuming that there are u,, APs, each with one radio, that
are placed at the same place as AP n. Each of these u,, APs
corresponds to one radio of AP n. This procedure allows
us to only consider the model in which each AP has one
radio and simplifies notations. Throughout the rest of the
paper, we assume that each AP only has one radio and
operates in one channel unless otherwise specified. The
channel that an AP n is operating in is denoted by c(n).
APs can switch the channels that they operate in, although
such switches can only be done infrequently due to the
large overheads. When an AP switches channels, all its
clients also switch channels accordingly.

We focus on a server-centric scheme where each AP
schedules all transmissions between itself and all clients
that are associated with it. This scheme is applicable to



a wide varieties of wireless systems that include LTE,
WiMax, and IEEE 802.11 PCF. Later, we will also discuss
a distributed scheme where clients contend for service
from APs, such as in 802.11 DCF. We assume that time is
slotted, with the duration of a time slot equals the time
needed for a transmission. If an AP n makes a successful
transmission toward client ¢ in channel ¢, client ¢ receives
data at rate of B;, . in this slot. Since characteristics of
different channels may be different, B; ,, . depends on c.

On the other hand, we assume that the APs are not
synchronized and may interfere with each other. We con-
sider the interference relations using the protocol model
[15]. When an AP n operates in channel ¢, it may be
interfered by a subset M™¢ of APs, where n € M™¢ for
notational simplicity. When the AP n schedules a transmis-
sion between itself and one of its clients, the transmission
is successful if n is the only AP among M™¢ that transmits
in channel ¢ during the time of transmission; otherwise,
the transmission suffers from a collision and fails. We
assume that the interference relations are symmetric, i.e.,
m € M™c if and only if n € M"™¢. Note that, since
the propagation characteristics of different channels may
be different, especially in the case of TV white space
access, the subset M™¢ depends on the channel ¢. This
dependency further distinguishes our work from most
existing works on multi-channel access where interference
relations are assumed to be identical for all channels. We
also define M; := {m € N|3c € C,n € N s.t. m € M™°}
for each client s.

Since APs are not coordinated, we assume that they
access the channel by random access. Each AP n chooses a
random access probability, p,,. In each slot, AP n accesses
the channel ¢(n) with probability p,,. The transmission is
successful if n is the only AP in M™“(") that transmits
over channel c¢(n). Thus, the probability that AP n suc-
cessfully accesses the channel can be expressed as

Pn HmEMn’C(")_, (1 - pm) = 157117n HmeMn,c(n).’ (1 — pm)
m#”vc(m):C(n) C(m):c(n)
€3]

The AP is in charge of scheduling transmissions for its
clients. When AP n accesses the channel, it schedules
the transmission for client i, where n(i) = n, with
probability ¢;,, ¢i,n > 0 and 3, _, din = 1. Since
the data rate of client i when it is served is B, ,,(i),c(n(i))
and the probability that the AP n(i) makes a successful
transmission is as in Eq. (), its throughput per time slot
is, assuming n(i) = n and c¢(n) = ¢,

Ty = Bi,n,cd’i,nlf—zn HmeM”vC,c(m):c(l - pm) (2)

We now discuss an analog model for a distributed
scheme where clients contend for the service from APs,
which can be applied to completely distributed scenarios,
such as those based on 802.11 DCF. In this scheme, each
client 7 contend for the channel by accessing it with prob-
ability p; in each time slot. Two clients, ¢ and j, interfere
with each other if their associated APs interfere with each
other, that is, ¢(n(i)) = c¢(n(j)) and n(i) € M™0)-c(n(),
Client i successfully accesses the channel if none of the
other clients that can interfere with it access the channel
simultaneously. Thus, the long-term throughput per time
slot for client 7 is , assuming n(i) = n and ¢(n) = ¢,
70 = Binetg; ey =enyemne (L =pj)- .

Finally, we assume that each client is associated with
a positive weight w; > 0. We also denote the total

weights of clients associated with AP n by w", i.e., w™ :=
Zi:n(i):n w;. The goal is to achieve weighted proportional
fairness among clients, that is, to maximize ) ; ; w; logr;.
The solution to the distributed scheme is very similar to
that to the server-centric scheme. Thus, we will focus on
the server-centric scheme and only report key results of
the distributed scheme.

IV. SOLUTION OVERVIEW AND TIME-SCALE SEPARATION

We now give an overview of our approach to achieve
weighted proportional fairness, which consists of sepa-
rating the problem into four components and solving
them. By Eq. (@), we can formulate the problem of
achieving weighted proportional fairness as the following
optimization problem:

Max ) w;logr;
Pn(i)

=, wi[l0g B n(i).c(n()) T 108 G4 n(s) + log Ty

+log HmGMn(i),c(n(i)) ,c(m)=c(n(i)) (1—pm)],

s.t. ¢(n) € C, foralln;  n(i) € N;, for all 4;
0<pn <1 foralln;  ¢jne >0, forall i;
> in(iy=n Pin = 1, for all n.

Based on this formulation, the problem of achieving
weighted proportional fairness consists of four important
components, in increasing order of time scales: First,
whenever the AP accesses the channel, it needs to sched-
ule one client for service. That is, the AP has to decide
the values of ¢, ,,. Second, in each time slot, the AP has
to decide whether it should access the channel, which
consists of determining the values of p,. Third, each
client needs to decide which AP it should be associated
with, i.e., deciding n(i). Finally, each AP n needs to
choose a channel, ¢(n), to operate in. We denote the four
problems as Scheduling Problem, Channel Access Problem,
Client Association Problem, and Channel Selection Problem,
respectively. Weighted proportional fairness is achieved by
jointly solving the four problems. The problem of achiev-
ing weighted proportional fairness for the distributed
scheme can be formulated similarly and involves three
components: the Channel Access Problem, which chooses
p; for clients, the Client Association Problem, and the
Channel Selection Problem.

Since the overhead for a client to change the AP it is
associated with and for an AP to change the channel it
operates in are high, solutions to the Client Association
Problem and the Channel Selection Problem are updated
at a much slower time scale compared to solutions to
the Scheduling Problem and the Channel Access Problem.
Based on this timescale separation, we first study the
solutions to the Scheduling Problem and the Channel
Access Problem, given fixed solutions to the Client As-
sociation Problem and the Channel Selection Problem.
We then study the solutions to the Client Association
Problem and the Channel Selection Problem, under the
knowledge of how solutions to the Scheduling Problem
and the Channel Access Problem react. Thus, solutions to
the Client Association Problem and the Channel Selection
Problem are indeed joint solutions to all the four prob-
lems, and their optimal solutions achieve Pareto-optimal
weighted proportional fairness. In addition to solving the
four problems, we will show that the solutions naturally
turn into distributed algorithms where each client/ AP
makes decisions based on local knowledge.



V. THE SCHEDULING PROBLEM AND THE CHANNEL
ACCESS PROBLEM

In this section, we assume that solutions to the Client
Association Problem and the Channel Selection Problem,
i.e., n(i) and c(n), are fixed.

Since n(i) and c(n) are fixed, values of B, ,,(;),c(n(s)) are
constant. The optimization problem can be rewritten as

Max Zzeﬂ wj [log (bz n(z) + 10g 1177;)(72 )

Pm)]

+10g [ e pntir. e o(my=e(n(iy (1 =
= icrWi 108 B n(iy + D pen[w" logpy
+ (ZmEM",c(n)7c(m):c(n)wm —w™)log(1 — pn)],
s.t. 0 < Pn < 1, for all n; d)i,n(i) > O, for all i;
Y in(iy=n®in =1, for all n,

where w" = 37, _, w;, as defined in Section [II. We
also define 2" := mEMme(n) ¢(m)=c(n) w™ to be the
total weights of clients that are associated with APs that
interfere with n, including itself.

This formulation naturally decomposes the optimiza-
tion problem into two independent parts: maximizing
> wilog @; 5,y over ¢; ,, which is the Scheduling Prob-
lem, and maximizing ) [w" log p,+ (2" —w") log(1—py,)]
over p,, which is the Channel Access Problem. Thus, we
can solve these two problems independently.

We first solve the Scheduling Problem.

Theorem 1: Given n(i), c¢(n), and p,, for all ¢ and n,
>, wilogr; is maximized by setting ¢; (i) = wi/w" (@,

Proof: We have 35, ()(Zjeﬂwjlogrj) - _ws

¢1 n(l)
Since ), w;logr; is concave in [(bm] w1th the condition
Zz.n(z)—n ¢in = 1, we have that 32 = ¢ , for all 4, j

such that n() = n(j) = n, at the optlmal point. By
setting ¢; () = wi/w” n(i)  the aforementioned criterion
is satisfied. The COIIdlthIlS Gin@y = 0, forall i, and
Zm (i)=n ¢in = 1, for all n, are also satlsﬁed Thus the

Scheduling Problem is solved by setting ¢; ,,(;y = w;/w" (@),
I

We solve the Channel Access Problem next. The follow-
ing theorem is the direct result of Theorem 1 in [17].

Theorem 2: Given n(i), ¢(n), and ¢; ., for all i and n,
>, w;logr; is maximized by setting p,, = w" /2"

tn summary, when the solutions to the C ient Associ-
ation Problem and the Channel Selection Problem, i.e.,
n(i) and c(n), are fixed, the AP n should access the
channel with probability p,, = w"/z™ in each time slot
and should schedule the transmission for its client i
with probability ¢; , = w;/w"™ whenever it accesses the
channel. In addition to achieving the optimal solution
to both the Scheduling Problem and the Channel Access
Problem, this solution only requires n to know the local
information of w™ and c(m) for all AP m that may
interfere with itself. Thus, this solution can be easily
implemented distributedly.

For the distributed scheme, a theorem similar to Theo-
rem [2]shows that the Channel Access Problem is optimally
solved by choosing p; = w;/2"(").

VI. THE CLIENT ASSOCIATION PROBLEM AND THE
CHANNEL SELECTION PROBLEM

We now propose a distributed algorithm that solves
the Client Association Problem and the Channel Selection

Problem based on the knowledge of optimal solutions to
the Scheduling Problem and the Channel Access Problem.
These two problems are non-convex and a local optimal
solution to the two problems may not be globally op-
timum, which we will also illustrate by simulations in
Section [VIIl Thus, common techniques for solving convex
problems are not suitable for these problems. Instead, the
proposed algorithm uses a simulated annealing technique
that is based on the Gibbs Sampler [14]], which is proven
to converge to the global optimum point almost surely.
We first give an overview of the technique. We then
describe a centralized algorithm that achieves weighted
proportional fairness using the Gibbs Sampler. Finally,
we discuss how to turn this centralized algorithm into
a distributed protocol.

We call a joint solution to both the Client Association
Problem and the Channel Selection Problem as a configu-
ration of the system. A configuration is thus fully specified
by the AP each client is associated with, and the channel
each AP operates in. Define v); as the configuration of the
system at time ¢. We define the energy of the system under
configuration v, which we denote by U(v;), as the value
of 3, w;log r; when APs and clients choose their channels
to operate in and APs to be associated with according
to 1, and apply the optimal solution to the Scheduling
Problem and the Channel Access Problem under ;. We
then have

U() = e willog Bi,n(igl,c(n(i)) +log ]

+ ZnEN[wn lOg l;)n + (Z )1Og £ 711) ](3)
Finding the joint solution that achieves Pareto-optimal
proportional fairness is equivalent to finding the configu-
ration ¢ that maximizes U ().

We apply the Gibbs sampler to solve the Client As-
sociation Problem and the Channel Selection Problem
jointly. At each time ¢, either a client or an AP is selected
according to some arbitrary sequence. The selected client,
or AP, then changes the AP it is associated with, or
the channel it operates in, randomly, while all other
clients and APs make no changes. The solutions to the
Scheduling Problem and the Channel Access Problem are
then updated according to the new configuration.

We now discuss how the selected client, or AP, changes
the AP it is associated with, or the channel it operates in.
Let ¢;(n(i) = n) be the configuration where client i is
associated with AP n, and the remaining of the system is
the same as in configuration ;. We can define ¢, (c(n) =
c) for AP n similarly. If client 7 is selected at time ¢, it
changes the AP it is assoc1ated with to n with probability

U("L’t(n(l)—" )/ T( t)/ Z U4t (n(i)= m))/T(t)’ where T(t) is a
positive decreasing functlon On the other hand, if AP n is
selected at time ¢, it chan%es the channel it operates in to ¢
Wlth probablhty e U (e (c( ))/T(t) Z eU(wt(C(n) d))/T(t)

[14] proves that this simple randomlzed approach
maximizes U ().

Theorem 3: If T(t) satisfies the following conditions:

1) T(t) — 0, as t — oo;

2) T(t)logt — oo, as t — oo;
then limy;_,o, U(¢:) = max, U(¢) with probability 1, for
any initial configuration ;.

It remains to compute the values of U (¢ (n(i) = n)) for
client ¢ and U (¢;(c(n) = ¢)) for AP n. We first discuss how
to compute U (¢ (n(i) =n)). Let w; =37, o, . ; w;
be the total weights of clients, excluding i, associated with




AP n. Let 2", := ZWEM"’C("),c(m) c(n) W Define
U2) = > w5108 Bj ) cny + 108 —]
GEL j#i w_;
2t —w”.
no_ ™ ) log 2=t =t
+ % w (s wl) og =]

which can be thought of as the energy of the system
as if the weight of client i were zero. We then define
AUM(y) = U(be(n(i) = n)) — UZ-O. Since in the con-
figuration o:(n(i) = n) w™ = w™ for all m # n;
wh = w4+ w2 o= 2™ —l—wZ if m e Mmem) |
c¢(m) = ¢(n), and m # n; and 2™ = 2™, otherwise, we
have

AU (1)
= w;[log B,  c(n) + log 2] + Zj_n(j):n wj log w:fﬁ

Cpwn, ; log 7’((1”’133 + (2"

m

—1

+w; log % —w";)log -

Zn n +w1

+ Zme./\/l”vc(”),min c(m)=c(n) [’LU?Z- 1Og m,;lwv

(2" —w™ w;)z"

(ZT - wT) log (znl +w; )(znl _

m)+wllog zm m]

= wiflog a5 g e
m#n,c(m)=c(n)
T2 e pamen, 08Iz )T (L )
m#n,c(m)=c(n)
+log(1 — )"
willog( 25 T =)+,

meMme(n),
m#n,c(m)=c(n)

where « is a constant. Since (1 + %) ~ e* and (1 —
%)A ~ e " for all A >> w;, the last approximation
holds when 2™ >> w;, which is true in a dense network
where the weights of all clients are within the same order.

Suppose a client : is selected to change its state at time
t, at which time the configuration of the system is 1.
The probablhty that 7 chooses AP n to be associated with
is  elU2 () +AUT (91)]/T( t)/z D) AU ($)]/T()
(Buneenws e BT )““/T(t)/% where v is

Z 771]
meMmetm, T ET
m#n,c(m)=c(n)
the normalizer.

To compute the probability of choosing AP n to be
associated with, client 7 only needs the values of B; ,, .(n)
for all n € M, w™ and ™ for all m € M,. Thus,
this probability can be computed by client ¢ using its
local information. We also note that this probability has
the following properties: First, it increases with B; ,, c(n),
meaning that client 7 tends to choose the AP that has
higher data rate; Second, it decreases with 2", which is
the total weights of clients that interfere with n; Finally,
it increases with [, c vgn.ctn) mzn,c(m)=c(n) 2" -w™ which
is the probability that none of the APs that interfere with
n access the channel in a time slot. Thus, this probability
jointly considers the three important factors for the Client
Association Problem: data rate, interference, and channel
congestion.

Next we discuss the computation of the probability that
an AP n should choose channel ¢ to operate in, if it is se-
lected. Let 2™, := 3 o ppm.ctm) e(0)=c(m),0nn WO — W™ Let
U2(¢;) be the energy of the system under configuration
1)y, if the weights of all its clients were zero. That is,

U () =32 jet.n(j)sn Will08 Bjn().e(n()) + 108 wity]

+ 2 meN man W 108 ;U;L + (2™, — w™)log }m ]

We then define AUS (1) := U(¢(c(n) = ¢)) — UP. Since
in the configuration v;(c(n) = ¢), 2™ = z w” if m €
M) e(m) = ¢, and m # n; and 2™ = 2™, otherwise,
we have

AU (¢1)
= Ei:n(i):n
+ w" log f—: + (2™ —

w;[log B, =]

z—'w

) log

Lm

+ ZmEM"’C("),m#n c(m)—c(n)[ log ern
m m 20, —wmw™) 2", —w+w™
(zm, —w™)log ('(ZT o ey T W log P ]

When an AP n is selected by the Gibbs sampler at
time ¢, it changes the channel it operates randomly,
with the probability of changing to channel ¢ propor-
tional to eU@i(c(m)=c)/T(t) — lUn(p)+AUL(W0)]/T()
eAUn(¥0)/T(t) We note that, to compute AUS(v;), AP n
only needs the values of B; , ., w’, for each client i that
is associated with n, and 2™, w™ for all m € U, M™¢.
Thus, AUS(y:) can also be computed using only local
information.

Based on the above discussion, it is straightforward to
design a distributed protocol (DP) using the Gibbs sam-
pler. DP achieves the Pareto-optimal proportional fairness
as t — oo almost surely. Further, in DP, all clients and APs
in the system only need to exchange information within
their local areas, as they only need local information
to compute the probability of choosing an AP to be
associated with or a channel to operate in. Thus, DP is
easily scalable.

In addition to DP, we can also consider a greedy
policy (Greedy) that is easier to implement. Greedy works
similar to DP, except that when a client ¢, or an AP
n, is selected by the sampler, it chooses the AP that
maximizes U(y:(n(i) = n)) to be associated with, or
the channel that maximizes U(¢:(c(n) = ¢)) to oper-
ate in, respectively. It is essentially a steepest descent
direction approach and is guaranteed to converge to a
local optimal point. In addition to simple implementation,
Greedy is also consistent with the selfish behavior of
%lents Each client i chooses the AP n that maximizes

S T Lo pmectn) e(o)= e(n),o%n T, Which is indeed
the value of r; when i is associated with n. Thus, in
Greedy, every client always chooses to associate with the
AP that offers the highest throughput.

A similar protocol can also be designed for the dis-
tributed scenario where clients, instead of APs, contend
for channel access. The protocol also uses the Gibbs
sampler as DP. Define 2", z™ , U? (1), AU (1), U2 (),
and AUE (1) similar as in the server-centric scheme. We




can derive that, for the distributed protocol,

AU} (¢)

nG)
=w; 10g(Bi n.c(n) ﬁ Hj:n(j)eMn,c(n)_’ z;w#)
c(nl))=e(n),j#i
—2log ™
and
AUy (¥)
:Zi:n(i):n w; log By p,c 2 + ZmEanc(")_ w™ log zi;:%

c(m)=c(n),m#n
+ 2 in(iy=n (2" — wi) log an;,f”

VII. SIMULATION RESULTS

We have implemented both DP and Greedy algorithms.
We also compare their performances against other state-
of-the-art solutions. We only present simulation results for
the server-centric scheme due to space limitations.

We first introduce the model of channel characteristics
in our simulation. We use the ITU path loss model [1]]
to compute the received signal strength between two
devices. If two devices operate in a band with frequency
fe and are d meters apart, the received signal strength of
a device by the other is proportional to P%’ where «a is

the path loss coefficient and is set to be 3.5.

We adopt the simulation settings in [21]], which models
802.11b channels, as the base case and compute the
characteristics of other channels accordingly. A 802.11b
channel operates in the 2.4 GHz band with bandwidth 22
MHz. The bit rate between a client and an AP is 11 Mbps if
the distance between them is within 50 meters, 5.5 Mpbs
within 80 meters, 2 Mpbs within 120 meters, and 1 Mps
within 150 meters. The maximum transmission range of
802.11b channels is hence 150 meters. We assume that
two APs interfere with each other if the received signal
strength of one AP by the other is above the carrier sense
threshold, which, as the settings in ns-2 simulator, is set to
be 23.42 times smaller than the received signal strength
at a distance of the maximum transmission range. Using
the ITU path loss model, two APs interfere with each
other if they are within the interference range, which is
150 x (23.42)ﬁ = 369 meters for 802.11b channels.

For channels other than 802.11b channels, we assume
that each of these channels can support four different data
rates, corresponding to the four data rates of 802.11b
channels. Values of each supported data rate is propor-
tional to the bandwidth of the channel. The transmission
ranges of each data rate and the interference range are
computed so that the received signal strengths at the
boundary of each range is the same to that at the bound-
ary of its counterpart in 802.11b channels. For example,
consider a channel that operates in frequency 4 GHz with
bandwidth 44 MHz. The bit rate between a client and an
AP is 11 x 42 = 22 Mbps if the distance between them is

within 50/(5%)5 = 37.34 meters, 11 Mbps within 59.75
meters, 4 Mpbs within 89.62 meters, and 2 Mbps within
112.03 meters. The interference range of this channel is
275.59 meters.

We compare our algorithms, DP and Greedy, against
policies that use state-of-the-art techniques for solving

the Client Association Problem and the Channel Selec-
tion Problem. We compare with [20], which proposes a
distributed algorithm for achieving minimum total inter-
ference among APs, for the Channel Selection Problem.
For the Client Association Problem and the Scheduling
Problem, we compare with two techniques. The first
technique uses a Wifi-like approach where clients are
associated with the closest AP and the AP schedules
clients so that the throughput of each client is the same.
The protocol that applies both [20] and the Wifi-like
approach is called MinInt-Wifi. The other technique is one
that is proposed in [21]], which, under a fixed solution of
the Channel Selection Problem, is a centralized algorithm
that aims to find the joint optimal solution to the Client
Association Problem and the Scheduling Problem that
achieves weighted proportional fairness. This technique
first relaxes the Client Association Problem by assuming
that each client can be associated with more than one APs
and formulates the problem as a convex programming
problem. It then rounds up the solution to the convex
programming problem and finds a solution to the Client
Association Problem where each client is associated with
only one AP. For ease of comparison, we use the solutions
to the relaxed convex programming problem, which is
indeed an upper-bound on the performance of [21]. The
protocol that applies both [20] and [21]] is called MinInt-
PF. The Channel Access Problem is then solved by the
optimal solutions based on the resulting solutions of
MinInt-Wifi and MinInt-PF, respectively.

In each of the following simulations, we initiate the
system by randomly assigning channels to each radio of
APs. Each client is initially associated with the closest
radio, with ties broken randomly. The system then evolves
according to the evaluated policies. We compare the poli-
cies on two metrics: the weighted sum of the logarithms
of throughput for clients, » , ;w;logr;, and the total
weighted throughput 3, _; w;r;. All reported data are the
average over 20 runs. We first show the simulation results
for a simple system that consists of 3 APs and 2 different
channels. While this system may be simplistic, it offers
insights on the behavior of each policy. We then show the
simulation results for a larger system where the list of
available channels is gathered from a real-world scenario.

We first consider a system with 3 APs, each with one
radio, that are separated by 75 meters and are located
at positions (0,0), (75,0), and (150,0). There are 16
clients, all with weights 1.0, and the i*" client is located at
position (35+5¢,0). We consider two settings for channels:
one that with only one 802.11b channel and the other
with one 802.11b channel and a channel that operates at
frequency 16 GHz with bandwidth 50 MHz. This channel
can support higher data rates but has smaller transmission
and interference ranges.

Simulation results are shown in Fig.[Il DP and Greedy
outperform MinInt-Wifi and MinInt-PF in both evaluated
metrics under both 1-channel and 2-channel settings. For
the case where there is only one channel, the solutions
of the Channel Selection Problem does not have any
influence on the results. MinInt-PF does not have good
performance because it distribute clients equally to all
three APs, which leads to serious contention and collisions
within the network. MinInt-Wifi also suffers from the same
problem. On the other hand, under DP, all clients are
associated with the AP located at (75,0) and therefore
contention is avoided. This result suggests that a desirable
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Fig. 1: Performance comparison for a simple system.
id | frequency | bandwidth || id | frequency | bandwith
A | 524 MHz 12 MHz E 659 MHz 6 MHz
B 593 MHz 6 MHz F 671 MHz 6 MHz
C | 608 MHz 12 MHz G | 683 MHz 6 MHz
D | 641 MHz 6 MHz

TABLE I: List of white spaces in New York City.

algorithm for the Client Association Problem also needs
to jointly consider the effects on both the Scheduling
Problem and the Channel Access Problem.

For the case where there are two channels, both MinInt-
Wifi and MinInt-PF select the APs at (0,0) and (150,0)
to operate in the channel at frequency 16 GHz with
bandwidth 50 MHz and the AP at (75,0) to operate in
the 802.11b channel. This selection is the only one that
results in no interference within the network. On the
other hand, DP selects the APs at (0,0) and (150,0) to
operate in the 802.11b channel and the AP at (75,0) to
operate in the other channel. While this selection results
in interference between the APs at (0,0) and (150,0),
DP actually achieves better performance in both metrics.
This is because, in our setting, most clients are gathered
around the AP at (75,0) and thus an optimal solution
should allow the AP at (75,0) to operate in a channel with
higher data rates. This shows that an algorithm that aims
to minimize interference among APs may not be optimal
because it fails to consider the geographical distribution
of clients. Further, although the performance of Greedy
is suboptimal, which is because the Client Association
Problem and the Channel Selection Problem are non-
convex, it is actually close to that of DP and is much better
than those of MinInt-Wifi and MinInt-PF.

Next, we consider a larger system. The system consists
of 16 APs that are planned as a 4 by 4 grid. Each AP has
2 radios and adjacent APs are separated by 300 meters.
There are 16 clients uniformly distributed in each of the
two sectors [0,300] x [0,300] and [600,900] x [600,900];
There are 9 clients uniformly distributed in each of the
two sectors [0, 300] x [600,900] and [600,900] x [0, 300].
We consider the TV white spaces available in New York
City [11]. The list of available channels is shown in Table
We consider two settings: an unweighted setting where
all clients have weights 1.0, and a weighted setting where
clients within the region [0, 300] x [0, 900] have weights 1.5
and clients outside this region have weights 0.5.

Simulation results are shown in Fig. Bl For both the un-
weighted and weighted settings, MinInt-Wifi and MinInt-
PF are far from optimum. The total weighted throughputs
achieved by the two policies are less than half of those
achieved by DP under both settings. The performance
of Greedy is close to optimum, whose weighted total
throughputs are about 85% and 84% of those by DP for
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Fig. 2: Performance comparison for a larger system.

the unweighted and weighted settings, respectively.

VIII. CONCLUSION

We have studied the problem of achieving weighted
proportional fairness in multi-band wireless networks. We
have considered a system that consists of several APs
and clients operating in a number of available chan-
nels, accounting for interference among APs and hetero-
geneous characteristics of different channels. We have
identified that the problem of achieving weighted pro-
portional fairness in such a system involves four impor-
tant components: client scheduling, channel access, client
association, and channel selection. We have proposed a
distributed protocol that jointly considers the four com-
ponents and achieves weighted proportional fairness. We
have also derived a greedy policy based on the distributed
protocol that is easier to implement. Simulation results
have shown that the distributed protocol outperforms
state-of-the-art techniques. The total weighted through-
puts achieved by the distributed protocol can be twice
as large as state-of-the-art techniques. Simulation results
have also shown that, while being suboptimal, the perfor-
mance of the greedy policy is actually close to optimum
quite often.
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