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Abstract—Recently, Guo and Xia introduced low complexity that all these codes depend on the optimal (ML) decoder to
decoders called Partial Interference Cancellation (PIC) ad tap the full cooperative diversity.

,P'(f \(/jviththSu;cessli;/e ',”terfeszencef;rl‘zcgl:gﬂon (P'C'S'C)Whic? In [7], suboptimal decoders called PIC and PIC-SIC were
Icn;SZS,efor%oiﬁ:?to-r?(r)(i:r;rt]gMﬁMO) gtrw]annels. In ':ﬁi(':selp:/aeriré\fv:g%(\:/va introduced for decoding STB_C_S for pqlnt—to-pqlnt MIMO
that PIC and PIC-SIC decoders are capable of achieving the channels. A PIC decoder partitions the information symbols
full cooperative diversity available in wireless relay neworks. Of the code into multiple groups and decodes each group of
We give sufficient conditions for a Distributed Space-Time Bck  symbols independently of other groups. In order to decode a
gloct:jedt(alggge%g)atr?d agg‘:;‘{fugt“”ad'r‘]’:\',rvs'tzla";’ghOf'gs?rrgjcs'sv'ith particular group of symbols, a PIC decoder first implements
low complexity full-diversity PIC-SIC decoding using comgex & linear filter to eliminate the interference from symbols in
orthogonal designs. The new class of codes includes a numkfr  @ll other groups and then decodes all the symbols of the
known full-diversity PIC/PIC-SIC decodable Space-Time Bbck current group jointly. A PIC-SIC receiver uses successive
Codes (STBCs) constructed for point-to-point channels aspecial  interference cancellation along with PIC decoding) lis the
ol bt St oy o s I s XU rumber of symbol n any group, we say ha e
DSTBCs available in the literature. Simulation results shav that PIC or PIQSIC decoFier performsreal symbol PIC or PIC-
the proposed codes have better bit error rate performance tan SIC decoding respectively. Whem = 1, the PIC (PIC-SIC)
the best known low complexity, full-diversity DSTBCs. decoder reduces to ZF (ZF-SIC) decoder. Sufficient conttio
for an STBC to achieve full-diversity in point-to-point MIi®!
channel with PIC and PIC-SIC decoding were giveriin [8], [9].
Code constructions for point-to-point MIMO channels with
In wireless channels, multiple transmit and receive argsnrfull-diversity and low complexity PIC/PIC-SIC decoding kee
are used to overcome the adverse effects of fading. In sgstegiven in [9], [10], [11], [12] and with ZF/ZF-SIC decoding
where the terminals can not have multiple transmit/receiweere given in [[18], [[14]. For both multigroup ML decoding
antennas due to space considerations, such as wireless sesnsd PIC/PIC-SIC decoding, the complexity of the decoder is
networks or cellular networks for mobile phones, spatialetermined by the number of symbols per group
diversity calledcooperative diversity can be achieved by using The contributions and organization of this paper are as
the antennas of other users (relays) in the network to aid tfudlows.
communication of messages from a single sour¢e [1]In [2],« We show that PIC and PIC-SIC decoders are capable of
a two phase amplify and forward (AF) based cooperative achieving the full cooperative diversity offered by the
protocol was proposed where the relays have no channel state wireless relay network. For a two phase amplify and
information (CSI) and the destination has full CSI. At thelen forward based cooperative protocol, we give sufficient
of the second phase of this protocol, the destination evfegt conditions for a DSTBC to achieve full cooperative diver-
sees a Distributed Space-Time Block Code (DSTBC) being sity when PIC and PIC-SIC decoders are used at the des-
transmitted by the relays. If the number of independent real tination. As a special case, we also obtain full-diversity
information symbols in the DSTBC iX, then therate of the criteria for ZF and ZF-SIC decoding (Sectibnl Ill).
DSTBC isR = & complex symbols per channel use (cspcu), « We construct a new class of full-diversity PIC/PIC-
where T' is the combined duration of the first and second SIC decodable DSTBCs using Complex Orthogonal De-
phases. signs [15]. We then identify a subclass of the new
A DSTBC is said to be-group maximum-likelihood (ML) family of codes that contains-real symbol PIC-SIC
decodable if the K information symbols can be partitioned decodable DSTBCs for any number of relays > 1
into g groups,g > 1, such that each group of symbols can be and A < N with rates arbitrarily close toﬁ cspcu.
ML decoded independent of the symbols of the other groups. The new class of codes includes a number of known

|. INTRODUCTION

If the maximum number of symbols in any groupXs then
the code is also said to bereal symbol or %-complex symbol

ML decodable. Multigroup ML decodable DSTBCs based on

AF protocol were constructed inl[3],1[4].][5] and][6]. Note

full-diversity PIC/PIC-SIC decodable STBCs constructed
for point-to-point channels as special cases, such as the
codes in[[9],[10],[[12], a family of codes in[l1] and the
Toeplitz codes[[13] (Sectidn 1V).
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« The proposed full-diversity DSTBCs achieve higher rategectors {v,...,vx} € C1, that are linearly independent
when compared with the known multigroup ML decodever R. The information vector x = [zy,...,72x]7
able DSTBCs of similar decoding complexity (see Tdbledssumes values from4d. During a transmission cycle,
in Section[Y). We also present simulation results whickay the information symbol vector assumes the value
show that the new PIC-SIC decodable codes have a befter, . .., ax]” € A. During the broadcast phase, the source
bit error rate performance than the best known multigrowgynthesizes the vectar = ZiK:l a;v; € CT' and transmits

ML decodable DSTBCs (Sectidn] V). vm Pz to all the relays, whereP is the average power
The system model is explained in Sectibh Il and sonieansmitted in the network angd; > 0. The signal set4 and
related open problems are discussed in Se¢fidn VI. the vectorsy; are chosen in such a way thiaf(||z|[%) = T1.
Notation: For a complex matrix! the transpose, the conjugatel e vector received by th¢" relay isr; = fj/mi Pz + v,

and the Conjugate_transpose are denotedﬁlﬁy A* and AH j = 1, .. .7N. Here,Uj is the additive white Gaussian noise

respectively,||A||» is the Frobenius norm of the matrit, Vvector at thej!" relay and it has zerph mean and cov_ariance
I, is the n x n identity matrix, 0 is the all zero matrix of Ir;. In the cooperation phase, the ;" relay transmits a
appropriate dimension and= /—1. The cardinality of a set linearly processed version of eithe or ;. The subset

I'is denoted byT|. The complement of a s&twith respectto S C {1,..., N} denotes the set of indices of the relays that
a universal set/ is denoted by, wheneverl is clear from Processr;. For any indexed set ofV matrices or scalars
context. For a complex matriA, Az, andA;,, are its real and {C1, - .7C7_N}, letC; = Cj if j € S, andC; = C; else. The
imaginary parts respectively and:c(A) is the vectorization j'* relay is equipped with a matrix3; € C™>*". In the
of A. The expectation operator is denoted ). cooperation phase, thé" relay transmits; = |/ 7225 B;r;
Il. SYSTEM MODEL = /2227 B+ /-2 Bv;.  The real  numbers
m,m > 0 are chosen such that| T} + moR1Ts = T + Tb.

We consider a wireless relay network with a source ndde, : ; .
S he signal received by thé" antenna/ = 1, ..., Np, at the
relay nodes and a destination node. The source and the re %%tination during cooperation phasais= S°V . g. /1. +
nodes are equipped with single antennas and the destinatio 9 P phasei Zi:lg%l i
has N, antennas as shown in Fig. 1. The channel gain fromy ", (gj,lf_j,/’;ll"Tﬁffsz + 1/m"f.filgj,lijj) + w.
the source to thg'" relay is fj, and the channel gain frompere 4, is the additive circularly symmetric complex
the j'* relay to thel!” receive antenna at the destinatioya,ssian noise at thé® receive antenna with zero

ii 9.?1,” forj = 1,....N a)?ilf : L -d-vND- \rlnveif :jnakle mean and covariancdr,. The T x Np received matrix
the following assumptionsi the nodes are half-duplex ., Y sy =

constrained,i{) the channel gaing; andg;,;, j = 1,..., N, V=0 y2-ynol SatISﬂeS;/X_N [ mi P+ XH+U, Wherg
I=1,...,Np are independent circularly symmetric complexX = [B1z Baz---Byz] € C»*% is the codeword matri,
Gaussian random variables with zero mean and unit variadde= F'G is the channel matrix with” = diag(f1, ..., fn)

and with coherence interval of duration at leggtand 7, and the (j,))" entry of the matrixg € C¥*"» being
respectively, ifi) the relay nodes have no channel state infofs..- The matrixU € CT2*Nv s the total noise seen by the
mation and the destination has the knowledge of all chanrigfeiver. If we denote the columns &fby u;, I = 1,..., Np,
gains f;, g;1, and {v) the transmissions from the relay node&nen
to the destination are synchronized at the symbol level.

In each transmission cycle, the source transniitsreal B al mo P Boo: 1
information symbolsz1, . .., zx. The source is equipped with = ; \ 7P 1 %0t @)

a finite subsetd ¢ R¥ called thesignal set and K complex

0 ) The noise vectovec(U) = [uf, uj,...,u} " is zero mean
\ circularly symmetric complex Gaussian. Since- Zfil a;v;,
f 0 - it is clear that each entry of the codeword matrix
N X =[B1z Baz---Bynz| is a complex linear combina-
/ tion of a;, ¢ = 1,...,K. Thus, there exist matrices
o - o A; e CT=2xN i =1,..., K, such that the set of codewords
isC = {Zfil a;Ailla1, ..., ax]T € A}. The matrices4; are
Source M the linear dispersion or weight matrices. The finite set of
] matrices C is the DSTBC and the underlying design is

X =YK u;4,. The rate of the DSTBCC in complex
0 Gun, Destination symbols per channel use B = ﬁ and in bits per
N Relays Np Antennas channel use i "lgi‘]“f‘z'. Note that each column of the codeword
matrix X is either a linear transformation of the vectoor its

Fig. 1. Relay network model conjugatez*. Such codes are said to lbenjugate linear [6].



I1l. PARTIAL INTERFERENCECANCELLATION DECODING Theorem 1: The PIC decoding of the DSTBC in (@)

AND FULL-DIVERSITY CRITERION with the grouping schemg,, ..., Z, achieves a diversity of
A. PIC and PIC-SIC decoding of DSTBCs N (1 - %) for Np = 1 and a diversity ofN' for
Consider a DSTBC inK real symbols. A grouping Np > 1, if the following condition is satisfied for every

scheme [[7] is a partitionZ;,...,Z, of the set{1,..., K}, k=1,...4g
where 7, are called groups. There is a correspond- . foreverya, € AAz, \ {0} and everyu € RIZ:l, the rank

ing partition of the information symbols intoy vec- of (Xz, (ar) + Xz¢ (u)) is N.

tors, where fork = 1,...,g, the k' vector of infor- _ L ) )

mation symbols iszz, = [zi, ,, i o, - - Jikﬂk‘]:r’ where Proof: Proof is given in Appehdlx A. . [ |
T = {in1,ik2s o in 7y b WIth i1 <idpa <o <ig iz, _Theorem 2: The PIC-SIC decoding of_the DSTBCm_(]Z)
Let the g groups of information symbols be encoded indevith the grouping schemé,, ... 7, achieves a diversity of
pendently of each other, i.e., the DSTBC N(1- % if Np =1 and adiversity ofV if Np > 1,

if the following condition is satisfied for every =1,...,g:

K
C= {Z@Al oz, € Az, k=1, ’9} cCPN @, for everyay, € AAz, \ {0} and everyu € RIZ:I, the rank
i=1 of (Xz, (ar) + X3, (u)) is N.
for some finite subsetsdz, C R+l k = 1,...,¢. For a
complex matrix A, let vec(A) = [vec(Agre)T vec(Arm)T]T.
The received matriX” can be rewritten ag’ = vec(Y) =

Proof: The proof is similar to that of Theorelmh 1. We give
an outline of the proof in Appendix B. |
= - ~ , - The class of PIC and PIC-SIC decoders contains the ZF and

BT i wvec(AiH) + vee(U) = G’z + vee(U),  7E.SIC decoders as special cases. When each real symbol
whereG’ = i1=1,..., K, forms a group by itself, the PIC decoder reduces
to the ZF decoder and the PIC-SIC decoder reduces to the ZF-
[vec(A1H) - --vec(Ax H)) € R2VpT2xE - (3)  SIC decoder.
Corollary 1: The DSTBCC in (@) achieves a diversity
and z = [z1,22,. .., 2x]7. Considery = rf%y/ —Gr+n, Of N (1 — %)Z) for Np =1 and a diversity of N
where, I' is the covariance ofvec(U), G =T"2G" and for Np > 1, with ZF decoding and ZF-SIC decoding with
n=T"z20ec(U) is a zero mean real Gaussian vectoany ordering, if the rank ofzfil u;A; is N for every
with covariance Ion,7,. Let G ={[g1 g2---gx], where wuw=[uy,...,ug]’ € RF\ {0}.
g © = 1,...,K, are the column vectors ofs. For Proof: It is straightforward to show that the criteria of
any nonempty subsef = {i1,... 47/} C {1,...,K}, with  Theorem$l anf]2 are satisfied for the grouping scheme cor-
i1 <z < - <ig, let Gz =[gi, gi, - giz]- Let Vz, be responding to ZF and ZF-SIC decoders under the hypothesis
the column space of the matri¥z: and Pz, be the matrix of this theorem. ]
that projects a vector onto the subspagg, the orthogonal  Tpe diversity promised by Theorerfi 1 did 2 is equal to
complement of the subspat®, . Also, letZ, = Ug~xZs, VI, the full cooperative diversity obtainable by using the oyt
be the column space of the matit;, and Pz, be the matrix je., ML decoder at the destinationl [2]. We thus say that the
that projects a vector onto the subsp#&e. The PIC decoding DSTBCs satisfying the conditions in Theorelths 1 &nd 2 achieve
of the DSTBC is performed as follows fégr=1,...,g, full-diversity under PIC and PIC-SIC decoding respectively.
In Appendix C we show that codes constructed using the new
full-diversity criteria are resistant to relay node fadaras well.

The PIC-SIC decoding of the DSTBC is performed as given The criteria in Theorenid 1 afdl 2 are the same as the criteria
by the following algorithm. The decoder is initialized withgiven in [9] for an STBC to achieve full-diversity in a point-
k=1andy, =y. to-point MIMO channel with PIC/PIC-SIC decoding. Further,
« Step 1: Decode the'" vector of information symbols as @S shown in [[B], these are equivalent to the criteria given
R R in [8] for achieving full-diversity in a point-to-point MIND
i1, = arg Ming, eAs ||1Pr,yx — Pr,Grx1,|%. channel. In this cas&€ in (@) is an STBC for a MIMO
channel withNV transmit antennas and a delayBf channel
uses. Thus, all known full-diversity PIC/PIC-SIC decodgbl
conjugate linear codes designed for the collocated MIMO
B. Full-diversity criteria channel can be used as DSTBCs to achieve full-diversity in
_ _ a relay network with PIC/PIC-SIC decoding. For example,
Let Z={i1,....ip} be any non-empty subsety o oyerlapped Alamouti Codes [14] are conjugate linear and
of {l,....K} with iy <ig<---< ) For any 5re known to achieve full diversity in point-to-point MIMO
u=[ur,...,uz]T € RIZ, defineXz(u) = YI7 uiA; . For  channels with ZF and ZF-SIC decoding, and thus, they are
any set of vectorsd, let AA = {a1 — az|a1, a2 € A} full-diversity ZF/ZF-SIC decodable DSTBCs as well.

7T17T2P2
7T1P+ 1

iz, == arg ming; ea; ||Pr,y — Pr,Gr, 21, 1% (4)

o Step 2: Assigry,+1 := yr — Gz, 2z, and therk := k+1.
o Step 3: Ifk > g, stop. Else, go to Step 1.



IV. A NEW CLASS OFDSTBCS WITH FULL-DIVERSITY Proposition 2: All the DSTBCs proposed in this section
PIC/PIC-SICDECODING give full-diversity with PIC-SIC decoding under the grongi

Let the number of relays b& and N, L > 0 be integers scheme in[(5). Further, the subclass corresponding-tol, 2
such thatN = LN’. Let A < L be a positive integer. We give full-diversity with PIC decoding under the grouping

construct full-diversity PIC/PIC-SIC decodable codes fér Scheme "_1[(5)' _
relays with \ symbols per decoding group, using a Complex _ Proof: See Appendix E. u

Orthogonal Design (COD) forV’/ antennas. LefW be a  =x@mplel: A new family of full-diversity PIC‘,S(?
T/ x N’ COD in K’ real symbols. The DSTBCs in thedecodable DSTBCs based on the Alamouti design:

proposed class are parametrized by the tup¥e W, \,n), Consider the subclass ij p:f})posed codes wi¥i as
1 2

wheren > 1 is an integer. The construction for a giverthe Alamouti design . Al

(N, W, \,n) is as follows TW2 W L
P . . . parameters N'=T'=2, N an even positive integer,
The number of symbols in the resulting des¥R; w x » iS

. . L= 1<X<¥&¥ T, =N+2(n-1)and K = 4n\. Let
K = AnK' and the number of decoding groupsgis= nK’. 2wt (T AT ~2r T T
D, =[W W o, W <l <
Fork=1,...,g, thek' group is e =W(LO ,W2,07 . W] forlsfsA

and letD = [DT, DZ,..., D117, The desigrD containsn\
T ={(k—=DX+1,(k—1)A+2,..., k)\}, (5) Alamouti blocks, placed one below the other. Because of the

_ _ _ Alamouti structure, the second column Bf is composed of
i.e., the firstA symbolszy, ...,z form the first group, the complex variables that are conjugates of the complex viasab
second\ symbolszy1,. .., 2 form the second group and,. .+ i, appearing in the first column db. Further, the first
so on. Form € {l,...,n} and £ € {1,...,A}, define ¢olymn of D contains all then\ complex symbols:,, + iz,
W (m, () to be theT” x N COD W in the K" real symbols 4pnearing as entries in the desifih (6). Note that all théesntr
TAK' (m—1)4L TAK' (m—1)+L4+X) -+ TAK’ (m—1)+0+ (K’ 1) appearing in the odd columns &f (6) are contained in the first

From [8), we know that forme{1,...,n} and coi;mn of D and all the entries in the even columns GF (6)

. / .
i€{l,...,K"}, the symbols ka’(m_l}“*(z_l)ﬁ’ are contained in the second columnDdf If we choosez as
TAK! (m—1)42+(i—1)As - - -3 TAK/ (m—1)+A+(G—1)x  1orm  the

. ek :
(K'(m — 1) +i)th group. Thus, thei symbol of each the first column ofD, then thej!* column of the desigri{6),

of the designsW(m,1), W(m,2),..., W(m,\) together J = L,3,...,N — I, can be expressed a8,z for some
form the (K’(m — 1) + )" group. Now, form € {1,...,n} B € €72, Similarly, the;™ column forj = 2,4,..., N

These codes have

and £=\+1,....L define W(m,l) recursively as can be expressed &;-* for someB; € C"**"*. Thus,
W (m,t) = W(m,¢— X\). The proposed design is the resulting desigr{6) is conjugate linear @hd= 2n\ is
W1, 1) 0 0 1 the length of the vector that the source transmits to the
’ ] relays during the broadcast phase. The rate of the DSTBC
W(2,1) W(,2) - : is R= W By increasingn, rates arbitrarily close to
: w(2,2) . 0 127 can be achieved.
Example 2: A family of codes from [[9]: In Appendix F we
WL, L) show that a family of codes fror|[9] constructed in the contex
Xy a — : : W (2, L) ® of point-to-point MIMO is a special case of our construction

procedure. The resulting DSTBCs include codes fonalb 1,

A < N with rates arbitrarily close t‘?\A_y

W(n,1) : : For equal values ofV, T, and ), the codes of Exampld 1
have slightly higher rate than the codes of Exanfiple 2. In Ap-
pendix F, we show that the following full-diversity PIC/RIC

: : . : SIC decodable STBCs constructed for point-to-point MIMO

0 0 - W(n, L)] channel are specific examples of the new class of codes: codes

in [L10], [12], the Toeplitz codes [13] and a family of codes
where eachD is a7’ x N’ all zero matrix. The desigril6) from [11].

consists ofn diagonal layers. Then!" diagonal layer en-

codes theK” groupsTic (m—1) 41, Zic’ (m—1)+2; - - - » Licrm- FOF V. COMPARISON WITHMULTIGROUP ML DECODABLE
k=1,...,g, the symbol vector:7, is encoded using a finite FULL-DIVERSITY DSTBCs

subset ofZ* rotated by a full-diversity rotation matrix [16], A. Comparison of achievable rates

Q e RV, ie., Az, C QZ*. The delay of Xy wn IS Table | summarizes the comparison of achievable rates of
Tr=(m+L-1)7T" the new codes with known low decoding complexity DSTBCs.
Proposition 1: The subclass of DSTBCs proposed in thigingle real symbol ML decodable DSTBCs were constructed
section corresponding td = 1 give full diversity with ZF de- in [3] with rate at the mOStZ-Q—LN’ and in [4] with rate?.
coding and ZF-SIC decoding under any successive inteferemhe new codes of Examplé 1 and the codes in Exaple 2
cancellation ordering. corresponding to. = 1 can achieve rates uptpcspcu, which
Proof: See Appendix D. B s twice the maximum rate reported inl [4]. Single complex

0 W (n,2)




TABLE |
COMPARISON OF FULL-DIVERSITY, LOW DECODING COMPLEXITYDSTBCs

Yi et. al. | Srinath et. al| Harshan et. al.| Rajan et. al. Codes in Codes in
[l 2] [s] [6] Exampled | Example[d
Number of relays N >2 >1 >4 2m,m>1 | 2m, m > 1 >1
N N
Real symbols per group\ 1 ' 1 2 ' =5 < ?i < Ni
2 1 4 1 A P
Rate, 12 AN 1 N 2 P} P |
Full-diversity decoding method ML ML ML ML PIC-SIC PIC-SIC
T Upper bound on achievable ratsSupremum of achievable rates.
100 T T T T T 100 T T T T T T T
: —&— Proposed scheme: ZF-SIC decoded . ——8&— Proposed scheme: PIC-SIC decoded
4 — A — Srinath et. al.: ML decoded — 4A — Harshan et. al.: ML decoded
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Fig. 2. BER comparisonA = 1, Relay networkV = 8, Np = 1, 2 bpcu. Fig. 3. BER comparisonA = 2, Relay networkN = 6, Np = 4, 2 bpcu.

symbol ML decodable codes for any number of relays> 4 s p|C-SIC decoded. The code frofi [5] h&s= L only, is
were constructed ir [5] with rate at the mogty (which, in  encoded with rotated4-QAM and is ML decoded. The figure

turn, is upper bounded b¥). The A = 2 codes of ExamplEl1 shows that the new code outperforms the code fiom [5].
achieve rates upt(% irrespective of the number of relays.

In [6], 4-group ML decodable DSTBCs were constructed for

even number of relays with raté cspcu, corresponding to ,
A =2 For\ = X the codes in ExampldS 1 afifl 2 can In this paper, we have shown that PIC and PIC-SIC decoders

achieve rates arbitrarily close tﬁ(i— which is higher than} are ca_pable of achieving full cooperative diver_sity in two
hop wireless relay networks where the source is employed
for N > 2 and equals} for N = 2. ) .
with a single antenna. We have constructed a new class of

B. Smulation Results full-diversity PIC/PIC-SIC decodable DSTBCs that inclsde

For all the codes we use Gray mapping to convert bif80st known full-diversity PIC/PIC-SIC decodable STBCs as
to information symbols and the power allocation=1 and SPecial cases. We have also shown that these new codes
™ = L. This is the optimal power allocation when the dest@chieve higher rates and better bit error rate performérare t
nation uses an ML decoder to decode a DSTBC [2]. In[Big. snown multigroup ML decodable codes of similar decoding
we compare single real symbol decodable DSTBCs\for: 8, complexity. These results of this paper have brought totligh
Np = 1 and 2 bits per channel use (bpcu). The new code following problems that need to be addressed.
from Examplell uses = 3, has a symbol rate 0% cspceu, o The rates of the DSTBCs of this paper are upper bounded
uses8-PAM alphabet and is ZF-SIC decoded. It is compared by 1 cspcu since we have considered relay networks with
with the rate% cspcu code from Srinath et. dll[4]. The code  only a single antenna source. To achieve higher rates
from [4] uses16-PAM and is ML decoded. The new code in the network, one has to employ a multiple antenna
outperforms the code froni][4] by a large margin. In Fiy. 3, source. How does one design full-diversity PIC/PIC-SIC
we compare single complex symbol decodable DSTBCs, i.e., decodable DSTBCs in this case?
those with\ = 2 for N = 6 relays andVp = 4 antennas atthe « Does the full diversity criterion given in this paper hold
destination at a bit rate @ bpcu. The new code of Examjle 1 for PIC/PIC-SIC decoding in multihop wireless networks
withn =2,i.e.,R = % cspcu is compared with the code from also? How does the criterion vary in non-coherent and/or
Harshan et. al[]5]. The new code uses rotatédQAM and asynchronous networks?

VI. DISCUSSION
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It is known that the power allocatiory, = 1 andnr, = %
S

Before giving the proof of Theoref 1, we present a few

is optimal for ML decoding at the destinatidn [2]. Is theesults to be used in the proof.

same true for PIC/PIC-SIC decoding as well?
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APPENDIXA

PROOF OFTHEOREM[]

Let I be the covariance matrix of the noise vecter(U)
given in ().

01,1 01,2 Cl,ND

Ca 1 Co Co,Np
. . )

CNDJ CNsz ONDvND

r\]/\}-}?1ere the submatrice§, ;,, € C™2*72, 1 <ly,l5 < Np.
Then 011712 = ﬂ_?fglj_l ;-V:l gj-,ll._g;‘:lgBj_BgH_ + 1{[1 = l?}IT2,
for 1 <ly,lo < Np wherel{-} is the indicator function.

Proof: For 1<Il,lo<Np, Cp,=E(u,ufl).
Expanding with the help of({1) and using the fact that the
Gaussian vectors;, j = 1,..., N, andw;, [ =1,...,Np are
of zero mean and are mutually independent we héyg;,

N N  mP . B~ -HBH H
E {Zﬁ:l 2 o=t mPF9i095 12 Bin Uin U, By + wiwyg

N N s * D = = D
ZI;jl:l Zh:l #ﬁg-jl’llgjzalszl E (v-jl ’Ug) Bj_z[ +
E (wi,w’). Using the fact thak (v;,0!!) = 1{j1 = ja}Ir,
and E (wy, wi?) = 1{l; = Iy} Ir,, we get the desired result.
[ ]
For any two square matrice$ and B of same dimension,
the notationd < B implies thatB — A is a positive semidefi-
nite (PSD) matrix. LeB = max {||B;||%| j =1,..., N} and
a=T,Np + ,fl’}ffl Z;-V:l SN2 |g;.4]%. We use the following
proposition to prove Theoref 1.
Proposition 4: The covariance matrix afec(U), T satisfies
I j aI2T2ND_- ] ) o
Proof: Sincel is a covariance matrix, it is PSD and hence
has a complete set of eigenvalues\jfi = 1,...,2T5Np, are
the eigenvalues of', we haveIl' < Zf:ﬁND NI = Tr(D),
where T'r(-) represents the trace of a matrix. Sinte=
1 F’sz _FFI;:I] we haveTr(I') = Tr(I',). Note thatI”
is itself a covariance matrix and hence is Hermitian. Thils, a
of its diagonal entries are real and her€e(I';,) = Tr(I”).

From Propositiofi13, we hav&r(T') = Zf\fl Tr(Cyy). Thus,

Np

>

1=1

o 7T2P
o mP+1

71'2P
7T1P—|— 1

Tr(T)

N
> lg;a*Tr(B;Bf") + T
j=1

N Np

S5 gialPlIBslIE + TaNp

j=11=1
N Np

> > lgial?8+ TeNp = a.

j=11=1

Thus,IT" < TT(F)IQT2ND = QIQT2ND. ]
Let m be a positive integef’’ be a subspace & and

let A € R™*™ be any symmetric full-rank matrix. We have

the following result.

T P
~—mP+1

Proposition 5: If V =AV' = {Av|v e V'}, then
Vi=A"1y"t,

Proof: We have, V-* = (AVH+ =
{wjwl Av=0VYv e V'} = {w|(ATw)Tv =0 Vv € V'}.
Replacing A"w = Aw by u, we have, V+ =
{A uTv =0 Vv e V'} = A YuluTv=0Vv eV}
= A"yt |


http://arxiv.org/abs/0904.1812
http://arxiv.org/abs/1004.2773
http://www1.tlc.polito.it/~viterbo/rotations/rotations.html

whereQ(-) is the Gaussian tail function ang. = =z, — 7z
Proof of Theorem[I} Let Using the Chernoff bound on th@ function, we have

K
C = {Z ,TiAi
i=1

and for a givenN x Np complex matrix H and positive

[ PF; PPN TPY; e .
real numberp, let G = /plocc(ALH) - -vec(Ax H)] = o expressPr, and Gz, in terms of Pz, and G7, .

1g5--gh]. Fork=1,...,g, let V] be the column space .
lo1 92+~ 9] eee0 g 1LV, PaCe) ot A= T3 denote the square root @f'. SinceT and

of the matrixG’.. and P, be the matrix that projects a vector .
Cr; Lk prol '~ are PSD and symmetricA can be chosen to be the

1
onto the subspacgy, . unique PSD symmetric square root &' [L7]. From
Theorem 3 ([8]): If for every X;, X, € C and X; # Xa,  propositiori %, we havel > \/LEIQTZND. Let QF be a matrix

rank(Xy — X) is N and for everyk =1,....g, €VeIY \,qe columns form an orthonormal basis1gf and Q.

! !
ﬁ# 0 ap(t:i every alk € A“ézk \ {0}(’) szﬁk i‘?k’f then, be a matrix whose columns form an orthonormal basis of
ere exists a real number > suc at, for any Vz’,f- Thus, Py, :ngQIk and Pﬁk _ /ZTQ/Ik- Also. for

k=1,...,9, anyar € AAz, \ {0} and H # 0, we have:
1Pz, Gz, arl|% > cpl| H]|% / / : A
. ... _and ||P = . Since G = AG’, it is clear
T’ﬁe r’ésult of Theorerl 3 is independent of the statistics Rrat HGI’CUQFAGUQI”;U]G VI — AV — {AL|U|€ VLY
H. The matrixG’ in TheorenB is identical to the matriE|(3),Fr0m Pzrgpositiozrlkljs s Zélear tﬁ%ﬁ/L - spaﬁknéd
’ Ik

which arises during the PIC decoding of the DSTBCin by the column vectors of the matrixd~'Q/. Thus
a relay network with N Eelays and Np antennas at the .’ 1 T . '
destination whep = 2222 Hence, the result of Theordih 37, = A7'QF (lekA_l A‘lQ’I];) Qr A

can be used to prove diversity results for the relay netwog@lQ/IT (Q/z Asz/IT)*l QL A1,

if the two conditions of the theorem are satisfied. Now, the | ¢ l?: c ]i{l ;} and Zk € AAz \ {0}. Consider
criterion in the hypothesis of Theorel 1 is same as tﬁ\ﬁgz Gz, ax|2 ’:aT’GT PT Pr Gy ax Uksing Gy — AG
criterion given in [[9] for the cod& to achieve full-diversity andkexr;candiflgDI kasIakbg\I;e e gket. g T
in the point-to-point MIMO channel as an STBC with PIC * ’
decoding under the grouping scheg. .., Z,. Further, it is
shown in [9] that this criterion is equivalent to the suffitie

P

_ 2
kaEAIk7k:17ag}a PEP(IIk—)i‘Ik|H)§8,Ip<M) (8)

In order to derive a lower bound ofPr, Gz, ax|%,

any vectorv € R2?T2No| we have||Pr,v||r = ||Qz,v||F

_ —1

condition given in Theorerh]3. Thus, with = %"‘ff, for = (Q’IkA*QQ’ITk)fé Q. G%, arl|%.
anyk = 1,...,9, anya; € AAz, \ {0} and any channel
realizationH # 0 of the relay network, we have: Since A ~ ﬁIQTzND anld the rows oQ’Ik are orthonormal,
|| Pr, G, axl[ > cpl|H| % (7) we have(Qr, A?Q7) " = J2(Q7,QF) = = J5 1. Thus,
Let /E € d{l,...hg}. We are interest%d b|r|1 d%rivi_ng g?c , 1 . A T ,
gggg(rjing&% of0 tr;éfthes)?rer:llr)v(\)"ls\/%c?(r)rr(c); P'rl%eareléteyivegr\llnegctor 1P5, Gr el 2 HﬁIQI’“ Cronlle = EHQIk ol

y satisfiesy = Gz +n =Y 7_, Gz, 7, +n. SincePr, is the
projection onto the subspace which is orthogonal to the sub-
space spanned by the column vectorgdf, 1 < ¢ < g and
t # k, we have thatPr, Gz, =0 for 1 < £ < g, £ # k. Thus, Tpe |ast step follows froni{7). Thus, for afty=1, ..., ¢ and

_ g _
B et st Prn = PrGroan + Prn- TN ' p jz, \ {0}, we have that|Pr, G, ay 3 > 2UALE

Using this inequality with[(8) we geREP(z7, — :Ezk|I:of)

1 / ’ 2 cp||H||%
E||PIkGIkak||F > -

arg minizk EAL, ||PIk yPr, Gz, %1, ||§~“

. - 2

=arg Mgz, eAr, ||Pz, Gz, xz,, + Pr,n — PIkGIk:CIkH?: < exp (_ Cp||H||F) )
=arg mingz, Az, ||Pr, Gz, (27, — Z7,) + Pl da

The Gaussian noise vectar is white and has zero mean.\gte that |H|1% = ||FG||% = ZN_1 1152
Since Pz, is the projection ontd/Ilk, the noise vecto’r, n =
has no components in the subspdée and the component
of Pz, n along the subspacéfzt is a white Gaussian noise

N
1= 1951 ).

The squared absolute values of the channel ggff$ and
lg;.1|* are all independent of each other and are exponential
ragndom variables with unit mean. Let = >4 [g;/|2,

with zero mean and unit covariance. The difference sig S ‘ h,
vector Pr, Gz, (x7, — 77,) also lies in the subspac®t. J = Ly N Then the random variablesf; 7t
7,01, \TZ,, I pacer,. ; = 1,...,Np are independent of each other.” Further,
HE 1 H 1 2 2
Thus, the probability that the PIC decoder will decide inofav . _cplljillp _ H;V:l exp (_ cp\{:ja\ i) Since ;]2 is

of &z, when the symbatz, is transmitted, given the Ch"]mnelexponentiall distributed with unit mean, for agy> 0, we

. . . ~ Pz, Gz, a
realization , is PEP(zz, — iz, |H) = Q (w) have E(exp (—s|f;]?)) = 1, for j = 1,...,N. Thus, the




average pairwise error probability, H+#0 and every a, € AAz, \ {0}, G ai ¢ f/I’k, then,
N 2y there exists a real number>0 such that, for any
PEP(zz, — #1,) <E <H exp <_%)> k=1,...,9, anyar € AAz, \ {0} and H # 0, we have:
j=1
-1 The criterion in the hypothesis of Theordh 2 is same as
) the criterion given in[[B] for the STBQ@ to achieve full-
Substituting the values fop and a as p = 7;17;341:12 and decodir)g under the_groupin_g sc.hemle.. .., Zg. Further, it, i§
BraP ! shown in [9] that this criterion is equivalent to the suffitie

1P7, G, axl[} > eol| HI |3
N
_ cpt;
=E <1j[1 (1 +
= diversity in the point-to-point MIMO channel with PIC-SIC

=T,N N ty, we get T A
o =TNp+ 557 2ty g condition given in Theorer] 5. Thus, for ay= 1,...,g,
1+ cpty 1+ emyma P2t anyar € AAz, \ {0} and any channel realizatioH # 0 of
- = . D/ / 2 2
4oy 4 {(mP + D)TeNp + 5W2PZ§Y:1 tj/} thi rTerllilz/Pr;etwork, we havgPr G7, a||3. > cp||H||3, where
. . . . T m P41
For largeP, mi P’ + 1 ~ m P. Using this approximation and Consider thek' iteration in the PIC-SIC decoding algo-
on further simplification, we geREP(z7, — 7z, ) rithm given in Sectiof III-A in the case where all the pre\gou
N P -1 symbol vectorsez,,...,zz, , have been decoded correctly.
<E H 1+ cT2 b < . (9) Due to successive interference cancellation (Step 2 of i@e P
i1 AToNp 1 4+ S S0t SIC decoding algorithm in Sectidn_IIHA), the signg} will

In Theorem 4 of[2] an upper bound for an expression c())fnly have a noisy version of the iontrlbutlons from _symbol
: . . L vectorszz, ,...,rz,, i.€., yr = > ;. Gr,x7, + n. Since

which (9) is a special case is given. The result[in [2] for th?, s th . t.-“' o th 5 hich is orth |
special casd19) is as follows. 7. 1S the projection onto the subspace which is orthogona

) L o to the subspace spanned by the column vectors=ef,
Theorem 4 ([2]): The pairwise error probability {9) can be ~ -
upper bounded by, P~¢, wherec, is a positive real number k <£<g, we have thatPr, Gz, = 0 for k <£ < g. Thus,

. _ P =Y . Pr Grxz, + Pr.n = Pr,Gr, xz, + Pr.n.

_ _ log(logP) _ _ n Yk = >y, Pr.Gr,az, + Pr, .Gz, 77, + Pr,

andd = N (1 logP if Np =1andd = N 'f,ND ~ 1', Hence, the output of PIC-SIC decoder in thé iteration is
From Theoreril4, it is clear that the DSTBCachieves a di-

versity of d with PIC decoding, wherd = N (1 — % arg Mmingy, e Az, ||szyk - PI;C Gz,i1,||%

if Np=1andd= N if Np > 1. This completes the proof = arg minz,, ey, ||Pr,Gz,21, + Pr,n — Pr, Gz, i1, |3
of Theorent1. = arg ming, ear ||Pr, Gz, (w1, — ¥1,) + Prnll7.
APPENDIXB Using an argument similar to the proof of Theoréin 1,
OUTLINE OF THE PROOF OFTHEOREMI[Z] the probability that the PIC-SIC decoder will decide

_ - log(logP) in favor of z7, when the symbolxzz, is transmitted,
Letd = 1{Np = 1}'N(1 - _qlogl(—z’_) +1{Np>1}-N given the channel realization, can be shown to be

and let P(-) denote the probability of an event. ForPEP(:z:I — Gz |H,E{0 -0 ES )Qg,ﬁzkazkakllFQQ
k k ) —-1) — - o2

E = 1,...,9, let E, denote the event that th&!" wherea. — = — = Using the Chernoft bound on t
information symbol vectorzz, is erroneously decodedfunction’f v_ve ﬁ%ve =5 9

by the PIC-SIC decoder. We want to prove that
P(E,U---UE,) < P for large P and for some positive prp
real numbercy. Fork = 1,...,g, P(E)) satisfies[(ID) given
at the top of the next page. It is enough to show th
P(Ek|ESN---NEf ) <cP~dfork=1,...,g and some
set of positive real numbers:; }. Then, from [(ID), it can be
shown using recursion that || Pz, Gz, axl|3 > l||15;_k0’7_kak||§ >
P(E1U---UE,) <Y {_ P(Ey) < coP74, for @
some ¢, >0. We now derive an upper bound for and then the average pairwise error probability,
P(EL|ESN---NES_,), the probability of erroneously PEP(zz, — @7, |EfN---NE;_;) can be shown to be
decoding the k' symbol vector when all the previousupper bounded by, P~ for someb;, > 0. This completes
symbol vectors have been decoded correctly. For a givéi¢ proof. u
N x Np complex matrix H and real numberp, let
G' = plvec(AH) - -vec(AxH)| = g} 95 gi]. For
E=1,...,g, let ffz’k be the column space of the matrix RESISTANCE TO RELAY NODE FAILURES
G% and P7 be the matrix that projects a vector onto the consider the DSTBC in (2), designed for a relay network
subspaceffz’j. with N relays and which satisfies the full-diversity condition in
Theorem 5 ([[8]): If for any X;,X> € C and X; # X2, Theorenll or Theorefd 2. For somes {1,..., N}, suppose
rank(X; — X2) is N and for everyk=1,...,g, every « number of relay nodes stop participating in the cooperative

. —||Pz, G 7
(vz, — Gz, |H,ES NN Ef_) < exp <M>

4

althing an argument similar to the proof of Theorgn 1, it can
be shown that

cpl | H||%

)
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P(Ey) =P(Eg|E{N---NE,_{)P(E{N---NE;,_{)+P(Ex|E1U---UEr_1)P(E1U---UEk_1)
<PEREiN---NE;_{)-1+1-P(E4U---UEj_1)

k—1
<P(EE{N---NE;_)+ Y P(Bw). (10)
k=1
protocol. This may happen when the nodes move out of= [ui,...,ux] € RX \ {0}. We need to show thak =
the network or are switched off. Also, let the destinatioijfi1 u; A; is of full-rank. Let the weight matrices WV be
be aware of the nodes that are currently participating in thE, ..., A%,. From [8), it is clear that

cooperative transmission. Then, the DSTBCseen by the ~ _
destination is the cod€ with the a columns corresponding WL, 1) 0 0
to the failed relay nodes dropped from each codeword matrix. wW(2,1) W(1,1) :
One would like the new DSTBC’ to provide full-diversity .
in the modified relay network wittv — a relays. This ensures
that good error performance is maintained in the network wit : : LW(1L,1)
minimum protocol overhead when a subset of relay nodes stop ) i
participating. ¥ — : : e W(2,1)
Proposition 6: Let C satisfy the full-diversity criterion of : : :
Theoren{ll (Theoreml 2) and let the destination be employed
with a PIC (PIC-SIC) decoder. Then the DSTBC provides W(n,1)
full-diversity with PIC (PIC-SIC) decoding for the modified
network with N — a relays.

Proof: We give the proof for the case when the destination : : K :
employs a PIC decoder. The proof for PIC-SIC decoder is L O 0 c W(n, 1)
similar. Fori = 1,...,K, let A, be the T, x (N — a) ] K )
matrix formed by dropping the columns corresponding to WhereinW(p, 1) = > 5"y ugr(p—1)+; 45 forp=1,.... n.
the failed relay nodes from the matri;. Let the grouping L€tk be the smallest integer such that# 0 and let thek™"
scheme beZ,,...,Z,. The DSTBC for the modified net- Symbolz; be encoded by the:'” layer, i.e.,K’(m—1)+1 <

work satisfiesC’ = { 5| wiAlfaz, € Az, k=1,...,g}, F=Km Thus W(L, 1) =W(2,1) = =W(m-11) =
=1 7 k k

o ) ] X 0. Then X equals the matrix
which is obtained from the desigk’ =5 ., z;A]. Also,
for every k=1,...,g, the rank of Xz, (ax) + Xzc(u) is - -

N for every a;, € AAz, \ {0} and everyu € RIZl. The 0 0 0
N columns of the matrixXz, (ax) + Xz¢(u) are linearly : : : :
independent ove€. Thus, theN — a columns of the matrix 0 0 0
X%k(ak)thgi(u), formed by droppinga columns from W (m, 1) 0 0

Xz, (ax) + Xz¢(u), are also linearly independent. Hence, the

rank Oink(ak)+X’g(U) is N —a foreveryk=1,...,g, W(m+1,1)  W(m,1)

ar € AAz, \ {0} and everyu € RIZil. Thus, from Theo- f W(m+1,1) . 0
rem[1, the DSTBQ’ achieves full-diversity in the modified : . . W(m, 1)
network with N — a relays and PIC decoding. n ' ' ' m, - (11)

Propositior{ b also tells us that new full-diversity DSTBCs : : o W(m+1,1)
for relay networks withV —a relays can be obtained by simply .

dropping any set ofi columns from a known full-diversity
DSTBC for a network withNV relays. W(n,1)

APPENDIXD 0 W(n,1)

PrROOF oFPrRoOPOSITION]]

When A = 1 in the proposed desigil(6), for eagh= L 0 0 e Wine)
1,...,n we haveW(p,1) = W(p,2) = --- = W(p,L). The first (m — 1) diagonal layers of[{11) have only all-
Thus, the first diagonal layer encodes the fikst symbols zero matrices. Sinc8V is a COD its weight matrices satisfy
z1,...,xK, the second diagonal layer encodes the secom‘,lHA;JrA;HA; = 20; ;In+ [15]. Using this property of CODs
K' symbolszk/41,...,x2x, and so on. Now consider anyand the factthat € { K’ (m—1)+1, K'(m—1)+2,..., K'm},



we have Uiy,m,l = Gkj, > 0. By using the property of CODs that
AP AL + AT AL = 26; ;1 [15], we have

K/
det (W(m, DEW (m, 1)) = det Z uK/(m_l)_HQIN/ %
i=1 det (W (m, )W (m, £)) = det Zui,m,EQIN/
) N’ i=1
K
= (D urm-v+® | zuY >0, (12) K’ N
=1 = Zuiﬂmyf > Wiy mt?N > 0. (14)
i=1

where det(-) represents the determinant of a matrix. Thus,

W (m,1) is full-ranked. Using[(Z11) and the fact thHt(m,1) Thus, W (m,/) is full-ranked for eacté = 1,..., L. Given
is full-ranked, it is straightforward to show thaf is full- that W (m,1), W(m,2),...,W(m, L) are all full-ranked, it
ranked. From Corollarf]1, the DSTBC achieves full diversitis straightforward to show that the matriX in (I3) is also
with ZF and ZF-SIC decoding. B full-ranked. This completes the proof. [ |

APPENDIX E APPENDIXF
KNOWN STBCS AS SPECIFIC EXAMPLES OF THIPROPOSED
FAMILY OF CODES

When W in (G) is chosen to be the triviall x 1
%op [s1 + is2], we get a family of codes first constructed
in [Q] in the context of point-to-point MIMO channels.

ap = [ap1, ... axs] € Az, \ {0} andu € RIZ+. We need This family includes codes for allvV > 1 with parameters

to sh([)w thatX :')gzk(ak) 45)\(;(}@ is of rank N. Because ' =T" =1L L=N,1<A<N,T;=N+n—1,9=2n

Q is a full-diversity rotation matrix, none of the coordingte@nd K = 2nA. Form = 1,....n and ¢ = 1,...,A, we

of a, is equal to zero, i.eqy ; #0, forj =1,...,\. Letthe have W(m,{) = Zom_1)a4e + iT2(m—1)r+e+r, and no

k" group of symbols be encoded by the” diagonal layer conjugates of these variables appear anywhere in the design
of the design in[(B), i.e/'(m —1)+1 <k < K'm. Letthe in @). Letd,, = [WZ ,, W7, SWT T m=1,....n

weight matrices of the CODV be 4/,..., A,. Then, the Mol TR e
thegmatrixX equals b 8K and letz = [d] d¥ ---d¥]T. Sincez contains all the complex

Symbols xa(,,— 1) 4¢ + iT2(m—1)a+e4+ that appear in the

PROOF OFPROPOSITIONZ

We prove the part of the claim concerning PIC-SIC decod-
ing. The proof of the part concerning PIC decoding is simil

and hence is omitted.
We use Theorei 2 to prove this claim. Let {1,...,g},

I 0 0 0 1 design [[(6), there exist matrice®; € CT2*"A, j =1,... N,
: : : : such that the desigfl(6) equdls;z Byz - - - Byz|. Then, the
0 0 . 0 length of the vector transmitted by the source B = n\.
W(m, 1) 0 0 The rate of the DSTBC ist = ﬁ By increasingn,
Wim+1,1) W(m2) - ; rates close toﬁ can be achieved.
) In [9], it was shown that the codes discussed in the previous
W(m+1,2) - 0 paragraph include a family of codes in [11] (corresponding
) ) W (m, L) w3 to W = [s; + isp] and A = N) along with a lower
’ decoding complexity grouping scheme, and the Toeplitz sode
W(m+1,L) (corresponding tOV = [s; +iso] and\ = 1) as special cases.
: In [LQ], single complex symbol PIC decodable codes were con-
. ) structed forNV = 2, 4 antennas. Both codes belong to the class
W(n,1) : : of STBCs constructed in Sectign]IV. WitV = [s; + isa],
0 W(n,2) : n =2 and\ = 2, we get thelV = 2 code, and withW as the
Alamouti desigh,n = 2 and A = 2 we get theN = 4 code.
: : - : A family of codes constructed independently in [9] ahd][12]
L 0 0 e W(n, L)

is also a special case of the construction given in Se€fion 1V

wherein the firstm — 1 diagonal layers are composed O];I'h|s family of codes corresponds @’ being the Alamouti

I - Fon — 47 — 1 7 design and\ = £
all-zero matrices. Fop = m,...,n, an VAR The new class of DSTBCs constructed in Secfioh IV are

?Chw(ﬁ; () is some real linear combination of the matricegased on the full-diversity criteria in Theorefs 1 ahd 2.Sehe
1&' T K"_d " ) LY. We haveW (m.f) — are identical to the criteria given inl[9] for an STBC to give
K9W con5|/ erant € { AR }. We haveW(m,{) = full-diversity in a point-to-point MIMO channel with PICIE-

2= Uim,eAj for some choice of real numbers; ... g|C decoding. Hence, the family of DSTBCs constructed

i = 1,...,K' that depends upom; and u. Since the j, gection[I¥ can be used as full-diversity PIC/PIC-SIC

m!" layer encodes thé"" group of information symbols, yecodable STBCs in point-to-point MIMO channel as well.
there existiop € {1,..., K’} andjo € {1,...,A} such that
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