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Abstract—We present a superposition coding scheme for com-
munication over a network, which combines partial decode and
forward and noisy network coding. This hybrid scheme is termed
as superposition noisy network coding. The scheme is designed
and analyzed for single relay channel, single source multicast
network and multiple source multicast network. The achievable
rate region is determined for each case. The special cases of
Gaussian single relay channel and two way relay channel are
analyzed for superposition noisy network coding. The achievable
rate of the proposed scheme is higher than the existing schemes
of noisy network coding and compress-forward.

I. I NTRODUCTION

IN anN -node Discrete Memoryless Network (DMN), each
node transmits its message to a set of destination nodes and
acts as a relay to help transmit messages from other nodes. Itis
an important network model in multi-user information theory.
This general network model includes many important class of
channels as special cases. Noiseless, erasure and deterministic
networks are few examples [1], [2], [3]. The DMN also
includes the relay, broadcast, interference and multiple access
channels which are the fundamental building blocks for any
network. This DMN model can also be modified to include
Gaussian networks and networks with state.

The capacity of the discrete memoryless network is not
known in general. The best known upper bound is the cut-
set bound [4]. Cover and El Gamal [5] introduced coding
schemes for the general discrete memoryless single relay
channel. The schemes introduced in brief are decode-forward,
compress-forward and superposition-forward. Superposition-
forward is the combination of decode-forward and compress-
forward. Decode-forward and compress-forward are special
cases of superposition-forward. The superposition-forward
scheme achieves the optimal rate for all the special cases where
capacity is known.

Lim et al. [6] introduced a general lower bound for the
discrete memoryless network using the equivalent charac-
terization of compress-forward. This new scheme is termed
“noisy network coding”. Noisy network coding combines
network coding [7] with the compress-forward scheme. The
key ideas used are message repetition encoding, no Wyner-Ziv
[8] binning at the relay and joint decoding at the destination.
This scheme achieves a higher rate than the better known
compress-forward scheme for networks with multiple relays
[9]. The noisy network coding scheme naturally extends to
single and multiple source multicast networks.

In this paper, we improve the achievable rates of the noisy
network coding scheme by allowing the nodes to decode a part
of message and use it to make a better compressed signal to
be relayed. The superposition noisy network coding scheme
combines superposition-forward with network coding. Modifi-
cations are made to the superposition-forward scheme to make
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Fig. 1. The three node relay channel

it applicable to the network coding scenario. Specifically,the
input distributions at each node are chosen to be independent.

Superposition noisy network coding splits the message at
each node into two parts. A part of the message is required
to be decoded at each relay after every block. The other part
of the message is transmitted overb blocks using repetition
coding. The relay nodes use compress-forward to transmit this
message. The destination nodes decode the messages afterb
blocks of transmission using joint decoding. Similar to noisy
network coding, our scheme does not use Wyner-Ziv encoding
at the relay, employs repetition encoding and joint decoding.
These techniques have been shown to improve the achievable
rates as in the case of network coding.

For simplicity and ease of understanding, the superposition
noisy network coding scheme is explained for a simple 3
node relay channel first. In section II, the scheme is designed
and achievable rates derived for a single relay channel. In
Section III, the scheme is further extended to single source
multicast network where there is only a single source node
transmitting information to a set of destination nodes. All
other nodes can act as relays. In Section IV, the superposition
noisy network coding scheme is designed for multiple source
multicast networks. This scheme is then applied to AWGN
single and two-way relay channel to quantify performance.

II. SUPERPOSITION NOISY NETWORK CODING FOR SINGLE

RELAY CHANNEL

Consider the discrete memoryless relay channel
p(y2, y3|x1, x2) shown in Fig. 1. The source node is
terminal 1, relay node is terminal 2, and terminal 3 is the
destination node.xk denotes the transmitted symbol at
terminalk. yk denotes the received symbol at terminalk.

The rate achieved by superposition-forward scheme [5,
Theorem 7] for discrete memoryless relay channel is

RSF = sup(min{I(X1;Y3, Ŷ2|X2, U) + I(U ;Y2|X2, V ),

I(X1, X2;Y3)− I(Ŷ2;Y2|U,X1, X2, Y3)}) (1)
where the supremum is over all joint probability distributions
of the form
p(u, v, x1, x2, ŷ2, y3, y2) =

p(v)p(u|v)p(x1|u)p(x2|v)p(y2, y3|x1, x2)p(ŷ2|x2, y2, u)
(2)

http://arxiv.org/abs/1102.4646v1


subject to the constraint
I(X2;Y3|V ) ≥ I(Ŷ2;Y2|X2, Y3, U). (3)

To facilitate network coding we will restrict the
superposition-forward strategy such that the auxiliary random
variablesU and V are generated independent of each other.
This will lead to a rate loss compared to original scheme.
Nevertheless, the rates achieved would be higher than the
compress-forward or noisy network coding scheme.

The rate achieved by superposition noisy network coding
scheme for a single relay channel is stated in Theorem 1.

Theorem 1: For any discrete memoryless relay channel, the
rate supP R′ +R′′ is achievable, where

R′ < min{I(U1;Y2|X2), I(U1, V2;Y3)}, (4)

R′′ < min{I(X1; Ŷ2, Y3|X2, U1), I(X1, X2;Y3|U1, V2)−

I(Ŷ2;Y2|U1, X1, X2, Y3)}, (5)
and the supremum is taken over all joint probability distribu-
tions of the form

p(u1, v2, x1, x2, y2, y3, ŷ2) = p(u1)p(v2)p(x1|u1)·

p(x2|v2)p(y2, y3|x1, x2)p(ŷ2|x2, y2, u1) (6)
Proof: The messagem′ ∈ [1 : 2nR

′

] is transmitted
over every blockj and the messagem′′ ∈ [1 : 2nbR

′′

] is
transmitted overb blocks of transmission. The source node
transmitsx1j(m

′′|m′
j) for each blockj ∈ [1 : b]. After

block j, the relay decodes the messagem′
j and maps it to

av2,j+1j(m
′
j) codeword. It also finds a “compressed” version

ŷ2j(lj |lj−1,m
′
j ,m

′
j−1) of the relay outputy2j conditioned on

x2j andu1j . The relay transmits a codewordx2,j+1(lj |m
′
j)

in the next block. Afterb blocks of transmission, the de-
coder finds the correct messagem′′ ∈ [1 : 2nbR] using
(y31, . . . ,y3b) and joint decoding for each of theb blocks
simultaneously. The decoder has decoded all the messagesm′

j

by sliding window decoding for each blockj ∈ [1 : b]. The
details are as follows.

Codebook generation: Fix p(u1)p(x1|u1)p(v2)p(x2|v2)·
p(ŷ2|y2, x2, u1).

1) For eachj ∈ [1 : b], randomly and independently
generate2nR

′

sequencesu1j(m
′
j), m

′ ∈ [1 : 2nR
′

], each
according to

∏n
i=1 pU1(u1,(j−1)n+i).

2) For each u1j(m
′
j), randomly and independently

generate 2nbR
′′

sequences x1j(m
′′|m′

j),

m′′ ∈ [1 : 2nbR
′′

], each according to
∏n

i=1 pX1|U1
(x1,(j−1)n+i|u1,(j−1)n+i(m

′
j)).

3) Similarly, randomly and independently generate2nR
′

se-
quencesv2j(m

′
j−1), m

′
j−1 ∈ [1 : 2nR

′

], each according
to

∏n
i=1 pV2(v2,(j−1)n+i).

4) For eachv2j(m
′
j−1), randomly and independently gen-

erate 2nR̂2 sequencesx2j(lj−1|m
′
j−1), lj−1 ∈ [1 :

2nR̂2 ],m′
j−1 ∈ [1 : 2nR

′

], each according to
∏n

i=1 pX2|V2
(x2,(j−1)n+i|v2,(j−1)n+i(m

′
j−1)).

5) For each x2j(lj−1|m
′
j−1), lj−1 ∈ [1 : 2nR̂2 ]

and u1j(m
′
j), m′

j ,m
′
j−1 ∈ [1 : 2nR

′

],
randomly and independently generate
2nR̂2 sequences ŷ2j(lj |lj−1,m

′
j−1,m

′
j),

lj ∈ [1 : 2nR̂2 ], each according to

∏n
i=1 pŶ2|X2,U1

(ŷ2,(j−1)n+i|x2,(j−1)n+i(lj−1,m
′
j−1),

u1,(j−1)n+i(m
′
j)).

This defines the codebook
Cj =

{

u1j(m
′
j),v1j(m

′
j−1),x1j(m

′′|m′
j),x2j(lj−1|m

′
j−1),

ŷ2j(lj |lj−1,m
′
j−1,m

′
j) : m

′
j ,m

′
j−1 ∈ [1 : 2nR

′

],

m′′ ∈ [1 : 2nbR
′′

], lj , lj−1 ∈ [1 : 2nR̂2 ]
}

(7)
for j ∈ [1 : b].

Encoding and decoding are explained with the help of
Table I.
Encoding: Let m′

j be the message to be sent in blockj and
m′′ be the message to be sent overb blocks. The relay, upon
receivingy2j at the end of blockj ∈ [1 : b], finds an index
m′

j such that

(u1j(m
′
j),y2j ,x2j(lj−1|m̂

′
j−1)) ∈ T

(n)
ǫ′ ,

and then finds an indexlj such that
(u1j(m̂

′
j−1), ŷ2j(lj |lj−1,m̂

′
j , m̂

′
j−1),y2j ,

x2j(lj−1|m̂
′
j−1)) ∈ T

(n)
ǫ′ ,

where l0 = 1 by convention. If there is more than one such
index, choose one of them at random. If there is no such index,
choose an arbitrary index at random from[1 : 2nR̂2 ]. The
codeword pair(x1j(m

′′|m′
j),x2j(lj−1|m

′
j−1)) is transmitted

in block j ∈ [1 : b].

Decoding: Let ǫ > ǫ′. After block j, the decoder usesy3(j−1)

and y3j to find a unique messagêm′
j−1 ∈ [1 : 2nR

′

].
The unique message satisfies the following two conditions
simultaneously

(u1j(m
′
j−1),v2j(m̂

′
j−2),y3j−1) ∈ T

(n)
ǫ

(v2j(m
′
j−1),y3j) ∈ T

(n)
ǫ

At the end of blockb, after decoding all the messagesm′
j ,

j ∈ [1 : (b − 1)] the decoder finds a unique messagem̂′′ ∈
[1 : 2nbR

′′

] such that
(u1j(m̂

′
j),v2j(m̂

′
j−1), ŷ2j(lj |lj−1, m̂

′
j−1, m̂

′
j),x1j(m

′′
j |m̂

′
j−1),

x2j(lj−1|m̂
′
j−1),y3j) ∈ T (n)

ǫ , for all j ∈ [1 : b]
for somel1, l2, . . . , lb. If there is none or more than one such
message, it declares an error.

Analysis of the probability of error: Let M ′
j, denote the

messages sent at the source node forj ∈ [1 : (b − 1)], M ′′

be the message sent at the source node overb blocks andLj

denote the indices chosen by the relay at blockj ∈ [1 : b].
Define

Em′(0) :=

b
⋃

j=1

{

(U1j(m
′
j),Y2j ,X2j(lj−1|m

′
j−1)) 6∈ T

(n)
ǫ′

}

,

Em′(1) :=
{

(u1,j−1(m
′
j−1),v2,j−1(m̂

′
j−2),y3j−1) ∈ T (n)

ǫ ,

j ∈ [1 : b]
}

⋃

{

(v2j(m
′
j−1),y3j) ∈ T (n)

ǫ , j ∈ [1 : b]
}

.

To bound the probability of error in decoding message
m′

j−1, assume without loss of generality thatM ′
j−2 =

M ′
j−1 = 1. The probability of error is upper bounded by

P(E) ≤ P(Em′(0)) + P(Ec
m′(0) ∩ Ec

m′(1) ∩M ′
j−1 = 1)

+ P(Ec
m′(0) ∩ Em′(1) ∩M ′

j−1 6= 1).
By the conditional typicality lemma [10],P(Em′(0)) → 0

as n → ∞ if R′ < I(U1;Y2|X2) for sufficiently largen,
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Block 1 2 3 · · · b − 1 b

U1 u11(m′
1) u12(m′

2) u13(m′
3) . . . u1,b−1(m′

b−1) u1b(m
′
b
)

V2 v21(1) v22(m′
1) v23(m′

2) . . . v2,b−1(m′
b−2

) v2b(m
′
b−1

)

X1 x11(m′′|m′
1) x12(m′′|m′

2) x13(m′′ |m′
3) . . . x1,b−1(m′′|m′

b−1) x1b(m
′′|m′

b
)

Ŷ2 ŷ21(l1|1, 1, m′
1) ŷ22(l2|l1,m′

1,m′
2) ŷ23(l3|l2, m′

2,m′
3) . . . ŷ2,b−1(lb−1|lb−2,m′

b−2,m′
b−1) ŷ2b(lb|lb−1,m′

b−1,m′
b
)

X2 x21(1|1) x22(l1|m′
1) x23(l2|m′

2) . . . x2,b−1(lb−2|m′
b−2) x2b(lb−1 |m′

b−1)

Y3 ∅ m̂′
1 m̂′

2 . . . m̂′
b−2 m̂′

b−1 ,m̂′′

TABLE I
SUPERPOSITION NOISY NETWORK CODING FOR THE RELAY CHANNEL.

andP(Ec
m′(0) ∩ Ec

m′(1) ∩ M ′
j−1 = 1) → 0 asn → ∞. Since

the codebooks are generated independently for each block, the
two events ofEm′(1) are independent. Thus by the law of large
numbers and joint typicality lemma [10]P(Ec

m′(0) ∩ Em′(1) ∩

M ′
j−1 6= 1) → 0 asn → ∞ if

R′ < I(U1;Y3|V2) + I(V2;Y3) = I(U1, V2;Y3)
andn is sufficiently large. So the messagem′

j can be decoded
correctly at the destination provided

R′ < min{I(U1;Y2|X2), I(U1, V2;Y3)}
After decoding the messagesm′

j for j ∈ [1 : (b − 1)],
the destination decodes the messageM ′′ after b blocks. The
probability of error analysis for messageM ′′ is similar to the
noisy network coding scheme [6], given the partial information
of the messagesm′

j . It can be shown that when
R′′ < min{I(X1; Ŷ2, Y3|X2, U1), I(X1, X2;Y3|U1, V2)−

I(Ŷ2;Y2|U1, X1, X2, Y3)} − δ(ǫ)− δ(ǫ′),
the probability of error of detectingM ′′ can be made arbi-
trarily small. The probability of error analysis is omittedhere
due to limited space.

III. SUPERPOSITIONNOISY NETWORK CODING FOR

MULTICAST NETWORKS

We now describe the superposition noisy network coding
scheme for single-source discrete memoryless networks with
multicast (DMN-MC)p(y2, . . . , yN |xN ), where terminal 1 is
the source node. We assume that there is no feedback to
terminal 1. Source terminal 1 splits the message in two parts
m′ and m′′ and transmits using superposition forwarding.
The messagem′ is transmitted in the same fashion decode-
forward is extended to multicast relay networks [11], [12].
The scheme is modified to make the input distributions at
each node independent of each other. After decoding the
partial informationm′, the messagem′′ is decoded using noisy
network coding [6] given the partial information.

Theorem 2: For a discrete memoryless multicast network
p(y2, . . . , yN |xN ), the rateR′ +R′′ is achievable, where

R′ < min
k

I(V k−1;Yk|Xk, V
N
k )

R′′ < min
S

(

I(X(S); Ŷ (Sc), Yk|X(Sc), V ) −

I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yk, V
N
k−1)

)

and k ∈ D the set of destination nodes. The
minimum is over all possible cut-sets for nodek.
The random variables satisfy a joint pmf of the form
p(v1)p(x1|v1)

∏N
k=2 p(vk)p(xk|vk)p(ŷk|yk, xk, v

N
k ).

Sketch of Proof: The encoding and decoding process is
similar to superposition noisy network coding for single relay

channel. The relay nodes use an extension of decode-forward
to multicast networks. The partial message is decoded at each
of the nodes{1 : (k− 1)}, and coherently transmitted to node
k. The nodek waits for k − 1 transmissions to decode the
partial information. After decoding the partial message, the
remaining message is decoded using noisy network coding.
Due to space limit, we omit details of the encoding and
decoding processes, and the error probability analysis.

IV. SUPERPOSITIONNOISY NETWORK CODING FOR

MULTIPLE SOURCE MULTICAST NETWORKS

The superposition noisy network coding scheme can also
be generalized to anN node discrete memoryless multiple
source multicast networkp(yN |xN ), [6]. In the general setup
each node sends its independent message to a set of destination
nodes while acting as relays for messages from other sources.

We make a general assumption to make the application of
superposition noisy network coding easier. The source nodes
are restricted not to act as relays. Two-way relay channel and
interference relay channel are two examples where such an
assumption holds. With this assumption, the channel model
is now similar to single source multicast network with a
replacement of the source node with many independent nodes.
The partial information is transmitted the same way decode-
forward is extended for the single source multicast network
in Section III. The relay decodes the message from all the
sources using anm-user multiple access channel [4]. After
decoding the partial information from the source nodes, the
relay uses binning to transmit the decoded information [13].
Further relays and destination nodes decode the message in the
same multiple access fashion. The relays that have decoded
the messages act as source nodes and coherently transmit the
partial information. The remaining message is superimposed
and decoded using noisy network coding. The following
theorem provides an achievable rate for this network, using
superposition noisy network coding.

Theorem 3: For anN node discrete memoryless multiple
source multicast network withk0 source nodes, the following
rate is achievable using superposition noisy network coding

R′(S) < min
S

I(V (S);Yk|Xk, V (Sc)) (8)

R′′(S) < min
S

(

I(X(S); Ŷ (Sc), YN |X(Sc), V N
1 )

− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N
k−1)

)

(9)
where the random variables are jointly distributed according to
∏k0

k=1 p(vk)p(xk|vk)
∏N

k=k0+1 p(vk)p(xk|vk)p(ŷk|yk, xk, u1),
and the maximum is over all possible cut-setsS.

Sketch of Proof:
Codebook generation: Fix
∏k0

k=1 p(vk)p(xk|vk)
∏N

k=k0+1 p(vk)p(xk|vk)p(ŷk|yk, xk, u
N
k ).
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1) For eachj ∈ [1 : b] and k ∈ [1 : k0], randomly and
independently generate2nR

′
k sequencesvk,j(m

′
k), m

′
k ∈

[1 : 2nR
′
k ], each according to

∏n
i=1 pVk

(vk,(j−1)n+i).
2) For eachvk,j(m

′
k), j ∈ [1 : b] and k ∈ [1 : k0], ran-

domly and conditionally independently generate2nbR
′′
k

sequencesxk,j(m
′′
k |m

′
k), such thatm′′

k ∈ [1 : 2nbR
′′
k ],

m′
k ∈ [1 : 2nbR

′
k ]. The sequences are generated inde-

pendently according to the distribution
∏n

i=1 pXk|Vk
(xk,(j−1)n+i|vk,(j−1)n+i(m

′
k))

3) For all nodesk ∈ [k0 + 1 : N ] randomly and inde-
pendently generate2nR̃

′
k codewordsvk,j(κ(m

′k0
1 )). The

rate R̃′
k is chosen such that

R̃′
k ≥ max

d∈D
I(Vk;Yd|V

k0
1 )

The maximum is overD the set of all destination nodes.
κ(m

′k0
1 ) is the bin index of the messagesm

′k0
1 .

4) For eachvk,j(κ(m
′k0
1 )) and k ∈ [k0 + 1 : N ],

randomly and independently generate2nR̂k sequences
xk,j(lk,j−1|κ(m

′k0
1 )), such thatm′

k ∈ [1 : 2nR
′
k ],

lk,j−1 ∈ [1 : 2nR̂k ], each according to the probability
distribution
∏n

i=1 pXk|Vk
(xk,(j−1)n+i|vk,(j−1)n+i(κ(m

′k0
1 ))).

5) For each nodek ∈ [k0 + 1 : N ] and each
xk,j(lk,j−1|κ(m

′k0
1 )) vkj(κ(m

′k0
1 )), . . . ,vNj(κ(m

′k0
1 )),

such thatm′′
k ∈ [1 : 2nbR

′′
k ], m′

k ∈ [1 : 2nR
′
k ], lk,j−1 ∈

[1 : 2nR̂k ], randomly and conditionally independently
generate2nR̂k sequenceŝykj(lkj |m

′′
k, lk,j−1, κ(m

′k0
1 )),

lkj ∈ [1 : 2nR̂k ], each according to
∏n

i=1 pŶk|Xk,Vk
(ŷk,(j−1)n+i|xk,(j−1)n+i(m

′′
k|m

′
k),

vk,(j−1)n+i(κ(m
′k0
1 ))).

This defines the codebook
Cj =

{

vk,j(m
′
k),xk,j(m

′′
k|m

′
k), k ∈ [1 : k0],

vk,j(κ(m
′k0
1 )),xk,j(lk,j−1|κ(m

′k0
1 )),

ŷkj(lkj |m
′′
k , lk,j−1, κ(m

′k0
1 )), k ∈ [k0 + 1 : N ]

: m′
k ∈ [1 : 2nR

′
k ],m′′

k ∈ [1 : 2nbR
′′
k ],

lkj , lk,j−1 ∈ [1 : 2nR̂k ]
}

for j ∈ [1 : b].

Encoding: Let (m′
1, . . . ,m

′
k0
,m′′

1 , . . . ,m
′′
k0
) be the messages

to be sent. Each relay nodek ∈ [k0 + 1 : N ], upon receiving
ykj at the end of blockj ∈ [1 : b], decode the messagesm

′k0
1

as shown in the decoding step. After findingm
′k0
1 , the node

finds an indexlkj such that
(ŷkj(lkj |m

′′
k , lk,j−1, κ(m

′k0
1 )),ykj ,xk,j(lk,j−1|κ(m

′k0
1 )),

vk,j(κ(m
′k0
1 ))) ∈ T

(n)
ǫ′ ,

where lk0 = 1, k ∈ [k0 + 1 : N ], by convention. If there is
more than one such index, choose one of them at random. If
there is no such index, choose an arbitrary index at random
from [1 : 2nR̂k ]. Then each nodek ∈ [k0 + 1 : N ] transmits
the codewordxk,j(lk,j−1|κ(m

′k0
1 )) in block j ∈ [1 : b].

Decoding: Let ǫ > ǫ′. After each block, the decoderd ∈ D
decodes the messagesm

′k0
1 . The messages are decoded as ak0

user multiple access channel. The probability of error of de-
coding the messagesm

′k0
1 can be arbitrarily small if the (8) is

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

d

R
at

e 
(b

its
/s

)

 

 

Cut−Set
Compress and Forward
Superposition Forward

Fig. 2. Achievable rates for an AWGN single relay channel

satisfied [4]. Afterb blocks, the decoderd ∈ D finds a unique
index tuple(m̂′′

1d, . . . , m̂
′′
k0d

), wherem̂′′
kd ∈ [1 : 2nbR

′′
k ], such

that there exist some(l̂1j , . . . , l̂Nj), l̂kj ∈ [1 : 2nR̂k ], and
j ∈ [1 : b], satisfying
(v1,j(m

′
1), . . . ,vk0,j(m

′
k0
),vk0+1,j(κ(m

′k0
1 )), . . . ,

vNj(κ(m
′k0
1 )),x1,j(m

′′
1 |m

′
1), . . . ,xk0,j(m

′′
k0
|m′

k0
),

x(k0+1),j(l(k0+1),j−1|κ(m
′k0
1 )), . . . ,xN,j(lN,j−1|κ(m

′k0
1 )),

ŷ(k0+1),j(l(k0+1),j |lk0+1,j−1, κ(m
′k0
1 )), . . .

ŷNj(lNj |lk,j−1, κ(m
′k0
1 )),yNj) ∈ T (n)

ǫ

for all j ∈ [1 : b], given that the messagesm
′k0
1 have been

decoded correctly. The probability of error goes to 0 asn → ∞
if (9) is satisfied. The detailed analysis is similar to that in [6]
and is omitted here.

V. NUMERICAL RESULTS

In this section, we apply the superposition noisy network
coding scheme to additive white Gaussian noise (AWGN)
three-node relay channel and the two-way relay channel.
We compare the achievable rates to the existing schemes of
noisy network coding, compress-forward and the cut-set upper
bound.

Consider a Gaussian relay channel model [11]
Y2 = aX1 + Z1 (10)

Y3 = X1 + bX2 + Z2 (11)
where the noise termsZ1 and Z2 are uncorrelated zero
mean Gaussian random variables with variancesN1 andN2

respectively, anda and b are the channel gain constants. The
power constraints at the transmitters are1

n

∑n
i=1 x

2
1i(k) ≤

P1, ∀k ∈ M, and 1
n

∑n
i=1 x

2
2i ≤ P2, ∀yn2 ∈ Rn.

All the terminals are aligned in a line. The source and
destination are at unit distance. The relay is at distanced
from the source and distance1 − d from the destination.
We assumea = 1/d and b = 1/(1 − d). Fig. 2 plots
the rates achieved by superposition noisy network coding for
P1 = P2 = 5. They are compared to those achieved by noisy
network coding, compress-forward and the cut-set bound.
Noisy network coding achieves the same rate as compress-
forward scheme for a single relay channel.

It is observed that the superposition noisy network coding
scheme has an advantage over the noisy network coding
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Fig. 3. Achievable rates for an AWGN two-way relay channel

scheme when the relay is close to the source. This advantage
arises due to a strong source-relay link.

A. Two-Way Relay Channel

The two-way relay channel was first introduced by Shannon
[14]. The two-way relay channel is a fundamental building
block for multi-user information theory. Rankov et al. [15]
derived the achievable rates for the two-way relay channel
using the schemes decode-forward and compress-forward.
The rates achieved by superposition noisy network coding is
derived for the two way relay channel and compared to the
existing rates.

Consider the AWGN two-way relay channel [15]
Y1 = g21X2 + g31X3 + Z1,

Y2 = g12X1 + g32X3 + Z2, (12)

Y3 = g13X1 + g23X2 + Z3,
where the channel gains areg12 = g21 = 1, g13 = g31 =
d−γ/2 and g23 = g32 = (1 − d)−γ/2, and d ∈ [0, 1] is the
location of the relay node between nodes 1 and 2 (which are
unit distance apart). Source nodes1 and2 wish to exchange
messages reliably with the help of relay node3. Specializing
the Theorem 3 to the two-way relay channel gives the inner
bound that consists of all rate pairs(R1, R2) such that

R′
1 ≤ min{I(U1;Y2|U2, V3, X3),

I(U1, V3;Y2|U2, X2)}

R′
2 ≤ min{I(U2;Y1|U1, V3, X3),

I(U2, V3;Y1|U1, X1)}

R′
1 +R′

2 ≤ I(U1, U2;Y3|V3, X3)

R′′
1 ≤ min{I(X1;Y2, Ŷ3|X2, X3, U1, U2),

I(X1, X3;Y2|X2, U1, V3)−

I(Y3; Ŷ3|X1, X2, X3, Y2, U1, U2)}

R′′
2 ≤ min{I(X2;Y1, Ŷ3|X1, X3, U1, U2),

I(X2, X3;Y1|X1, U2, V3)−

I(Y3; Ŷ3|X1, X2, X3, Y1, U1, U2)}
for somep(q)p(u1)p(u2)p(v3)p(x1|u1, q)p(x2|u2, q)p(x3|v3, q)
p(ŷ3|y3, x3, q).

Fig. 3 compares the achievable rates of the schemes derived
as a function of relay distance. The power constraints at the

nodes areP1 = P2 = P3 = 10. It is observed that superpo-
sition noisy network coding provides higher rates than both
compress-forward and noisy network coding. Noisy network
coding is a special case of superposition noisy network coding
scheme. The superposition scheme performs better when the
relay is close to either of the sources and decoding partial
information is advantageous to the sum rate.

VI. CONCLUSIONS

The noisy network coding for discrete memoryless channel
is improved by superimposing partial decode and forward of
the messages. The encoding and decoding strategies are first
derived for the superposition noisy network coding in a three-
node relay channel. The rates achieved by superposition noisy
network coding is higher than the rates achieved by noisy
network coding, when the channel from the source to the
relay nodes are strong. We then derive the superposition noisy
network coding scheme for both single-source and multiple-
source multicast networks. We specialized the result to a two-
way relay channel. For Gaussian three-node and two-way relay
channels, it is numerically observed that the superposition
noisy network coding scheme provides higher rates than noisy
network coding or compress-forward.
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