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Abstract

Motivated by the broadcast view of the interference channel, the new problem of communi-
cation with disturbance constraints is formulated. The rate–disturbance region is established
for the single constraint case and the optimal encoding scheme turns out to be the same as
the Han–Kobayashi scheme for the two user-pair interference channel. This result is extended
to the Gaussian vector (MIMO) case. For the case of communication with two disturbance
constraints, inner and outer bounds on the rate–disturbance region for a deterministic model
are established. The inner bound is achieved by an encoding scheme that involves rate splitting,
Marton coding, and superposition coding, and is shown to be optimal in several nontrivial cases.
This encoding scheme can be readily applied to discrete memoryless interference channels and
motivates a natural extension of the Han–Kobayashi scheme to more than two user pairs.

I. INTRODUCTION

Alice wishes to communicate a message to Bob while causing the least disturbance to nearby
Dick, Diane, and Diego, who are not interested in the communication from Alice. Assume a
discrete memoryless broadcast channel p(y, z1, . . . , zK |x) between Alice X , Bob Y , and their
preoccupied friends Z1, . . . , ZK as depicted in Figure 1. We measure the disturbance at side
receiver Zj by the amount of undesired information rate (1/n)I(Xn;Znj ) originating from the
sender X , and require this rate not to exceed Rd,j in the limit. The problem is to determine the
optimal trade-off between the message communication rate R and the disturbance rates Rd,j .
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Figure 1. Communication system with disturbance constraints.

This communication with disturbance constraints problem is motivated by the broadcast side
of the interference channel in which each sender wishes to communicate a message only to
one of the receivers while causing the least disturbance to the other receivers. However, in this
paper, which is an extended version of [1], we focus on studying the problem of communication
with disturbance constraints itself. The application of the coding scheme developed in this paper
to deterministic interference channels with more than two user pairs is discussed in [2].
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For a single disturbance constraint, we show that the optimal encoding scheme is rate splitting
and superposition coding, which is the same as the Han–Kobayashi scheme for the two user-pair
interference channel [3, 4]. This motivates us to study communication with more than one
disturbance constraint with the hope of finding good coding schemes for interference channels
with more than two user pairs. To this end, we establish inner and outer bounds on the rate–
disturbance region for the deterministic channel model with two disturbance constraints that are
tight in some nontrivial special cases. In the following section we provide needed definitions and
present an extended summary of our results. The proofs are presented in subsequent sections,
with some parts deferred to the Appendix.

II. DEFINITIONS AND MAIN RESULTS

Consider the discrete memoryless communication system with K disturbance constraints
(henceforth referred to as DMC-K-DC) depicted in Figure 1. The channel consists of K + 2
finite alphabets X , Y , Zj , j ∈ [1:K], and a collection of conditional pmfs p(y, z1, . . . , zK |x).
A (2nR, n) code for the DMC-K-DC consists of the message set [1:2nR], an encoding function
xn : [1:2nR]→ Xn, and a decoding function m̂ : Yn → [1:2nR]. We assume that the message
M is uniformly distributed over [1:2nR]. A rate–disturbance tuple (R,Rd,1, . . . , Rd,K) ∈ RK+1

+

is achievable for the DMC-K-DC if there exists a sequence of (2nR, n) codes such that

lim
n→∞

P(M̂ 6=M) = 0,

lim sup
n→∞

(1/n)I(Xn;Znj ) ≤ Rd,j , j ∈ [1:K].

The rate–disturbance region R of the DMC-K-DC is the closure of the set of all achievable
tuples (R,Rd,1, . . . , Rd,K).
Remark 1. Like the message rate R, the disturbance rates Rd,j , for j ∈ [1:K], are measured in
units of bits per channel use. (We use logarithms of base 2 throughout.)
Remark 2. The measure of disturbance (1/n)I(Xn;Znj ) can be expanded as (1/n)H(Znj )−
(1/n)H(Znj |Xn). The first term is the entropy rate of the received signal Zj and is caused by
both the transmission itself and by noise inherent to the channel. Subtracting the second term
separates out the noise part. (For channels with additive white noise, e.g., the Gaussian case,
the second term is exactly the differential entropy of each noise sample.)
Remark 3. Our results remain essentially true if disturbance is measured by (1/n)H(Znj ) instead.
If the channel is deterministic, the two measures coincide.
Remark 4. The disturbance constraint (1/n)I(Xn;Znj ) ≤ Rd,j is reminiscent of the information
leakage rate constraint for the wiretap channel [5, 6], that is, (1/n)I(M ;Znj ) ≤ Rleak. Replacing
M with Xn, however, dramatically changes the problem and the optimal coding scheme. In the
wiretap channel, the key component of the optimal encoding scheme is randomized encoding,
which helps control the leakage rate (1/n)I(M ;Znj ). Such randomization reduces the achievable
transmission rate for a given disturbance constraint, hence is not desirable in our setting.

The rate–disturbance region is not known in general. In this paper we establish the following
results.

A. Rate–disturbance region for a single disturbance constraint

Consider the case with a single disturbance constraint, i.e., K = 1, and relabel Z1 as Z and
Rd,1 as Rd. We fully characterize the rate–disturbance region for this case.
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Theorem 1. The rate–disturbance region R of the DMC-1-DC is the set of rate pairs (R,Rd)
such that

R ≤ I(X;Y ),

Rd ≥ I(X;Z |U),

R−Rd ≤ I(X;Y |U)− I(X;Z |U),

for some pmf p(u, x) with |U| ≤ |X |+ 1.

Let R(U,X) be the rate region defined by the rate constraints in the theorem for a fixed
joint pmf (U,X) ∼ p(u, x). This rate region is illustrated in Figure 2. The rate–disturbance
region is simply the union of these regions over all p(u, x) and is convex without the need for
a time-sharing random variable.

A

B

45◦

R

Rd

R(U,X)

I(X;Y )I(X;Y |U)

I(X;Z|U)

Figure 2. Example of R(U,X), the constituent region of R.

The proof of Theorem 1 is given in Subsections III-A and III-B. Achievability is established
using rate splitting and superposition coding. Receiver Y decodes the satellite codeword while
receiver Z distinguishes only the cloud center. Note that this encoding scheme is identical to
the Han–Kobayashi scheme for the two user-pair interference channel [3, 4].

We now consider three interesting special cases.

1) Deterministic channel: Assume that Y and Z are deterministic functions of X . We show
that the rate–disturbance region in Theorem 1 reduces to the following.

Corollary 1. The rate–disturbance region for the deterministic channel with one disturbance
constraint is the set of rate pairs (R,Rd) such that

R ≤ H(Y ),

R−Rd ≤ H(Y |Z),

for some pmf p(x).

Clearly, this region is convex. Alternatively, the region can be written as the set of rate pairs
(R,Rd) such that

R ≤ H(Y |Q),

Rd ≥ I(Y ;Z |Q),

for some joint pmf p(q, x) with |Q| ≤ 2. Corollary 1 and the alternative description of the
region are established by substituting U = Z in the region of Theorem 1 and simplifying the
resulting region as detailed in Subsection III-C.
Remark 5. Consider the injective deterministic interference channel with two user pairs depicted
in Figure 3. Here, gij is a function that models the link from transmitter i to receiver j, for
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i, j ∈ {1, 2}. The combining functions fj are assumed to be injective in each argument. This
setting is a special case of the channel investigated in [7]. This can be seen by merging g11
and f1 of Figure 3 into a function f ′1 that maps (X1, Z2) to Y1. Likewise, define the function
f ′2 as the merger of g22 and f2. The modified combining functions f ′1 and f ′2 are injective
in Z2 and Z1, respectively, and therefore satisfy the assumptions in [7]. It follows that the
Han–Kobayashi scheme where the transmitters use superposition codebooks generated according
to p(z1)p(x1|z1) and p(z2)p(x2|z2) achieves the capacity region of the channel in Figure 3.

On the other hand, Corollary 1 shows that the same encoding scheme achieves the disturbance-
constrained capacity for the channels X1 → (Y ′1 , Z1) and X2 → (Y ′2 , Z2), shown as dashed
boxes in Figure 3. Here, Y ′1 and Y ′2 are the desired receivers, and Z1 and Z2 are the side
receivers associated with disturbance constraints. Note that decodability of the desired messages
at receivers Y1 and Y2 in the interference channel certainly implies decodability at Y ′1 and Y ′2
in the channels with disturbance constraint, respectively.

Y ′1

Y ′2

Y1 → M̂1

Y2 → M̂2

M1 → X1

M2 → X2

Z1

Z2

g11

g12

g21

g22

f1

f2

Figure 3. Injective deterministic interference channel with two user pairs.

Example 1. Consider the deterministic channel depicted in Figure 4(a) and its rate–disturbance
region in Figure 4(b). Note that rates R ≤ 1 can be achieved with zero disturbance rate by
restricting the transmission to input symbols {0, 1} (or {2, 3}), which map to different symbols
at Y , but are indistinguishable at Z. On the other hand, for sufficiently large Rd, the disturbance
constraint becomes inactive and R is bounded only by the unconstrained capacity log(3). In
addition to the optimal region achieved by superposition coding, the figure also shows the
strictly suboptimal region achieved by simple non-layered random codes.

2) Gaussian channel: Consider the problem of communication with one disturbance constraint
for the Gaussian channel

Y = X +W1,

Z = X +W2,

where the noise is W1 ∼ N (0, 1) and W2 ∼ N (0, N). Assume an average power constraint P
on the transmitted signal X .

The case N ≤ 1 is not interesting, since then Y is a degraded version of Z and the disturbance
rate is simply given by the data rate R. If N > 1, Z is a degraded version of Y , and the
rate–disturbance region reduces to the following.

Corollary 2. The rate–disturbance region of the Gaussian channel with parameters P > 0 and
N > 1 is the set of rate pairs (R,Rd) such that

R ≤ C(αP ),

Rd ≥ C(αP/N),

for some α ∈ [0, 1], where C(x) = (1/2) log(1 + x) for x ≥ 0.

Achievability is proved using Gaussian codes with power αP . The converse follows by
defining α? ∈ [0, 1] such that R = C(α?P ) and applying the vector entropy power inequality
to Zn = Y n + W̃n

2 , where W̃2 ∼ N (0, N − 1) is the excess noise. The details are given in
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(a) Channel block diagram
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(b) Rate–disturbance region

Figure 4. Deterministic example with one disturbance constraint.

Subsection III-D. Note that this is a degenerate form of the Han–Kobayashi scheme because the
constraint from the multiple access side of the interference channel is not taken into consideration.

3) Vector Gaussian channel: Now consider the vector Gaussian channel with one disturbance
constraint

Y = X +W1,

Z = X +W2,

where X ∈ Rn and the noise W1 ∼ N (0,K1) and W2 ∼ N (0,K2) for some positive
semidefinite covariance matrices K1,K2 ∈ Rn×n. Assume an average transmit power constraint
tr(Kx) ≤ P , where Kx = E(XXT) is the covariance matrix of X . This case is not degraded
in general.

Theorem 2. The rate–disturbance region of the Gaussian vector channel with parameters P ,
K1, and K2 is the convex hull of the set of pairs (R,Rd) such that

R ≤ 1
2 log

|Ku +Kv +K1|
|K1|

,

R−Rd ≤ 1
2 log

|Kv +K1|
|Kv +K2|

|K2|
|K1|

,

Rd ≥ 1
2 log

|Kv +K2|
|K2|

.

for some positive semidefinite matrices Ku,Kv ∈ Rn×n with tr(Ku +Kv) ≤ P .

Achievability of this rate–disturbance region is shown by applying Theorem 1. Using the
discretization procedure in [8], it can be shown that the theorem continues to hold with the
power constraint additionally applied to the set of permissible input distributions. The claimed
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region then follows by considering the special case where the input distribution p(u, x) is jointly
Gaussian. To prove the converse, we use an extremal inequality in [9] to show that Gaussian
input distributions are sufficient. The details of the proof are given in Subsection III-E.

B. Inner and outer bounds for the deterministic channel with two disturbance constraints

The correspondence between optimal encoding for the channel with one disturbance constraint
and the Han–Kobayashi scheme for the interference channel suggests that the optimal coding
scheme for K disturbance constraints may provide an efficient (if not optimal) scheme for the
interference channel with more than two user pairs. This is particularly the case for extensions
of the two user-pair injective deterministic interference channel for which Han–Kobayashi is
optimal [7] (see Remark 5). As such, we restrict our attention to the deterministic version of
the DMC-2-DC.

First, we establish the following inner bound on the rate–disturbance region.

Theorem 3 (Inner bound). The rate–disturbance region R of the deterministic channel with
two disturbance constraints is inner-bounded by the set of rate triples (R,Rd,1, Rd,2) such that

R ≤ H(Y ), (1)
Rd,1 +Rd,2 ≥ I(Z1;Z2 |U), (2)
R−Rd,1 ≤ H(Y |Z1, U), (3)
R−Rd,2 ≤ H(Y |Z2, U), (4)

R−Rd,1 −Rd,2 ≤ H(Y |Z1, Z2, U)− I(Z1;Z2 |U), (5)
2R−Rd,1 −Rd,2 ≤ H(Y |Z1, Z2, U) +H(Y |U)

− I(Z1;Z2 |U), (6)

for some pmf p(u, x).

The inner bound is convex. The expression I(Z1;Z2 |U) appears in three of the inequalities.
As in Marton coding for the 2-receiver broadcast channel with a common message, it is
the penalty incurred in encoding independent messages via correlated sequences. The region
R(U,X) defined by the inequalities in the theorm for a fixed p(u, x) is illustrated in Figure 5.

Rd,1

Rd,2

R

(1)

(2)

(3) (4)

(5)

(6)

Figure 5. Region R(U,X) for Theorem 3. Each face is annotated by the inequality that defines it.

Remark 6. The right-hand side of condition (6) can be equivalently expressed as

H(Y |Z1, Z2, U) +H(Y |U)− I(Z1;Z2 |U)

= H(Y |Z1, U) +H(Y |Z2, U)− I(Z1;Z2 |U, Y ),

This shows that the condition is stricter than the sum of conditions (3) and (4).
The encoding scheme for Theorem 3 involves rate splitting, Marton coding, and superposition

coding. The analysis of the probability of error, however, is complicated by the fact that receiver
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Y wishes to decode all parts of the message as detailed in Subsection IV-A. Receivers Z1 and
Z2 each observe a satellite codeword from a superposition codebook.
Remark 7. The encoding scheme underlying the inner bound of Theorem 3 can be readily
extended to the general (non-deterministic) DMC-2-DC.

To complement the inner bound, we establish the following outer bound on the rate–disturbance
region of the deterministic channel with two disturbance constraints.

Theorem 4 (Outer bound). If a rate triple (R,Rd,1, Rd,2) is achievable for the deterministic
channel with two disturbance constraints, then it must satisfy the conditions

R ≤ H(Y |Q),

Rd,1 ≥ I(Y ;Z1 |Q),

Rd,2 ≥ I(Y ;Z2 |Q),

for some pmf p(q, x) with |Q| ≤ 3.

The proof of this outer bound is given in Subsection IV-B. Note that this outer bound is very
similar in form to the alternative description of Corollary 1 for the single-constraint deterministic
case.

The inner bound in Theorem 3 and the outer bound in Theorem 4 coincide in some special
cases. To discuss these, we introduce the following notation. Since all channel outputs are
functions of X , they can be equivalently thought of as set partitions of the input alphabet X . Set
partitions form a partially ordered set (poset) under the refinement relation. Since this poset is a
complete lattice [10], the following concepts are well-defined. For two set partitions (functions)
f and g, let f 4 g denote that f is a refinement of g (equivalently, g is degraded with respect
to f ), let f ∧ g be the intersection of the two set partitions (the function that returns both f
and g), and let f ∨ g denote the finest set partition of which both f and g are refinements (the
Gács–Körner–Witsenhausen common part of f and g, cf. [11, 12]).

The inner bound of Theorem 3 coincides with the outer bound of Theorem 4 if Z1 or Z2 is
a degraded version of Y ∧ (Z1 ∨Z2), i.e., if the output Y together with the common part of Z1

and Z2 determine Z1 or Z2 completely.

Theorem 5. The rate–disturbance region R of the deterministic channel with two disturbance
constraints is given by the outer bound of Theorem 4 if

Y ∧ (Z1 ∨ Z2) 4 Z1, or
Y ∧ (Z1 ∨ Z2) 4 Z2.

The theorem is proved by specializing Theorem 3 as detailed in Subsection IV-C. In the
case where Z1 or Z2 is a degraded version of Y alone, achievability follows by setting U = ∅
in Theorem 3. Otherwise, we let U = Z1 ∨ Z2. This is intuitive, since U corresponds to the
common-message step in the Marton encoding scheme.
Example 2. Consider the deterministic channel depicted in Figure 6. The desired receiver output
Y is a refinement of both side receiver outputs Z1 and Z2, and hence, Theorem 5 applies.
Figure 7(a) depicts the rate–disturbance region, numerically approximated by evaluating each
grid point in a regular grid over the distributions p(x) and subsequently taking the convex
hull. Figure 7(b) contrasts the single-constraint case (where Rd,2 is set to infinity, and thus
inactive) with the case where both side receivers are under the same disturbance rate constraint
(Rd,1 = Rd,2). As expected, imposing an additional disturbance constraint can significantly
reduce the achievable message rate. Finally, Figure 7(c) illustrates the trade-off between the
disturbance rates Rd,1 and Rd,2 at the two side receivers, for a fixed data rate R.

We conclude this section by considering another case in which we can fully characterize the
rate–disturbance region of the deterministic channel with two disturbance constraints. If Z1 is a
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M → X
{0, 1, 2, 3}

0
1
2 1

3 2

0

Z2
{0, 1, 2}

0
1
2

0

3
1
2

Z1
{0, 1, 2}

Y → M̂

Figure 6. Deterministic channel with two disturbance constraints (Example 2).

degraded version of Z2 (or vice versa), the region R of Theorem 3 is optimal and simplifies to
the following.

Corollary 3. The rate–disturbance region R of the deterministic channel with two disturbance
constraints with Z1 4 Z2 or Z2 4 Z1 is the set of rate triples (R,Rd,1, Rd,2) such that

R ≤ H(Y ),

R−Rd,1 ≤ H(Y |Z1),

R−Rd,2 ≤ H(Y |Z2).

for some pmf p(x).

Achievability follows as a special case of Theorem 3. The encoding scheme underlying the
theorem carefully avoids introducing an ordering between the side receiver signals Z1 and Z2,
but such ordering is naturally given by the channel here. Consequently, the corollary follows by
setting the auxiliary U equal to the output at the degraded side receiver. This turns the encoding
scheme into superposition coding with three layers. The details are given in Subsection IV-D.

Note that the region of Corollary 3 is akin to the deterministic case with one disturbance
constraint in Corollary 1. In both cases, the side receiver signals need not be degraded with
respect to Y .
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Rd,1

Rd,2

R

(a) Rate–disturbance region

Rd

0.5

1.0

1.5

2.0

R0.5 1.0 1.5 2.0

Symmetric disturbance constraints
Single disturbance constraint

(b) Single disturbance constraint (Rd,1 = Rd, Rd,2 = ∞) and symmetric
disturbance constraint (Rd,1 = Rd,2 = Rd).

Rd,1

Rd,2
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0.5

1.0

1.5 R=2.0
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1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

(c) Contour lines of the rate–disturbance region at constant rate R.

Figure 7. Rate–disturbance region for Example 2.
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III. PROOFS FOR A SINGLE DISTURBANCE CONSTRAINT

A. Achievability proof of Theorem 1

Achievability is proved as follows.

Codebook generation. Fix a pmf p(u, x).
1) Split the message M into two independent messages M0 and M1 with rates R0 and R1,

respectively. Hence R = R0 +R1.
2) For each m0 ∈ [1 : 2nR0 ], independently generate a sequence un(m0) according to∏n

i=1 p(ui).
3) For each (m0,m1) ∈ [1:2nR0 ]× [1:2nR1 ], independently generate a sequence xn(m0,m1)

according to
∏n
i=1 p(xi |ui(m0)).

Encoding. To send message m = (m0,m1), transmit xn(m0,m1).

Decoding. Upon receiving yn, find the unique (m̂0, m̂1) such that (un(m̂0), x
n(m̂0, m̂1), y

n) ∈
T (n)
ε (U,X, Y ).

Analysis of the probability of error. We are using a superposition code over the channel from X
to Y . Using the law of large numbers and the packing lemma in [8], it can be shown that the
probability of error tends to zero as n→∞ if

R1 < I(X;Y |U)− δ(ε), (7)
R0 +R1 < I(X;Y )− δ(ε). (8)

Analysis of disturbance rate. We analyze the disturbance rate averaged over codebooks C.

I(Xn;Zn | C) ≤ H(Zn,M0 | C)−H(Zn |Xn, C)
= H(M0) +H(Zn |M0, C)−H(Zn |Xn)
(a)
≤ nR0 +H(Zn |Un)− nH(Z |X)

≤ nR0 + nH(Z |U)− nH(Z |X,U)

= nR0 + nI(X;Z |U)

≤ nRd, (9)

where (a) follows since Un is a function of the codebook C and M0. Substituting R = R0 +R1

and using Fourier–Motzkin elimination on inequalities (7), (8), and (9) completes the proof of
achievability.

B. Converse of Theorem 1

Consider a sequence of codes with P (n)
e → 0 as n→∞ and the joint pmf that it induces

on (M,Xn, Y n, Zn) assuming M ∼ Unif[1:2nR]. Define the time-sharing random variable
Q ∼ Unif[1:n], independent of everything else. We use the identification U = (Q,Y nQ+1, Z

Q−1),
and let X = XQ, Y = YQ, and Z = ZQ. Note that (X,Y, Z) is consistent with the channel.
Then

R ≤ I(X;Y ) + εn,
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as in the converse proof for point-to-point channel capacity, which uses the same identifications
of random variables. On the other hand,

nRd ≥ I(Xn;Zn)

= H(Zn)−H(Zn |Xn)

=

n∑
i=1

(
H(Zi |Zi−1)−H(Zi |Xi)

)
≥

n∑
i=1

H(Zi |Zi−1, Y ni+1)− nH(Z |X)

= nH(Z |U)− nH(Z |X,U)

= nI(X;Z |U).

Finally,

n(Rd −R)
≥ I(Xn;Zn)− nR
(a)
≥ H(Zn)−H(Zn |Xn)− I(M ;Y n)− nεn
(b)
=

n∑
i=1

(
H(Zi |Zi−1)− I(M ;Yi |Y ni+1)

)
− nH(Z |X)− nεn

=

n∑
i=1

(
H(Zi |Zi−1, Y ni+1) + I(Y ni+1;Zi |Zi−1)

−H(Yi |Y ni+1) +H(Yi |M,Y ni+1)
)
− nH(Z |X)− nεn

(c)
=

n∑
i=1

(
H(Zi |Zi−1, Y ni+1) + I(Yi;Z

i−1 |Y ni+1)

−H(Yi |Y ni+1) +H(Yi |Xi)
)
− nH(Z |X)− nεn

=

n∑
i=1

(
H(Zi |Zi−1, Y ni+1)−H(Yi |Zi−1, Y ni+1)

+H(Yi |Xi, Z
i−1, Y ni+1)

)
− nH(Z |X)− nεn

=

n∑
i=1

(
H(Zi |Zi−1, Y ni+1)− I(Xi;Yi |Zi−1, Y ni+1)

)
− nH(Z |X)− nεn

(d)
= nH(Z |U)− nI(X;Y |U)− nH(Z |X,U)− nεn
= nI(X;Z |U)− I(X;Y |U)− nεn,

where (a) uses Fano’s inequality, (b) single-letterizes the noise term H(Zn |Xn) with equality
due to memorylessness of the channel, (c) applies Csiszár’s sum identity to the second term and
channel memorylessness to the fourth term, and (d) uses the previous definitions of auxiliary
random variables. Finally, the cardinality bound on U is established using the convex cover
method in [8].
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C. Proof of Corollary 1

Using the deterministic nature of the channel, the region in Theorem 1 reduces to the set of
rate pairs (R,Rd) such that

R ≤ H(Y ), (10)
Rd ≥ H(Z |U), (11)
Rd ≥ R+H(Z |U)−H(Y |U), (12)

for some pmf p(u, x). Now fixing a rate R and a pmf p(x) and varying p(u|x) to minimize
Rd, the right hand sides of (11) and (12) are lower bounded by

H(Z |U) ≥ 0,

and

R+H(Z |U)−H(Y |U)

= R+H(Z |U)−H(Y,Z |U) +H(Z |Y,U)

= R−H(Y |Z,U) +H(Z |Y, U)

≥ R−H(Y |Z).

Note that the particular choice U = Z simultaneously achieves both lower bounds with equality
and is therefore sufficient. The rate–disturbance region thus reduces to Corollary 1.

For a fixed pmf p(x), this region has exactly two corner points: P1 = (H(Y |Z), 0) and
P2 = (H(Y ), I(Y ;Z)). As we vary p(x), there is one corner point P1 that dominates all other
P1 points. The pmf p(x) for this dominant P1 can be constructed by maximizing H(Y |Z)
as follows. For each z ∈ Z , define Yz ⊆ Y to be the set of y symbols that are compatible
with z. Let z? be a symbol that maximizes |Yz|. For each element of Yz? , pick exactly one
x that is compatible with it and z?. Finally, place equal probability mass on each of these
x values, and zero mass on all others. This pmf on X yields the dominant corner point P1,
namely (log(|Yz? |), 0). Moreover, for this distribution, P2 coincides with P1. Therefore, the
net contribution (modulo convexification) of each pmf p(x) to the rate–disturbance region
amounts to its corner point P2. This implies the alternative description of the region. Lastly, the
cardinality bound on Q in the alternative description is follows from the convex cover method
in [8].

D. Proof of Corollary 2

Achievability is straightforward using a random Gaussian codebook with power control, and
upper-bounding the disturbance rate at receiver Z by white Gaussian noise. The converse can
be seen as follows. Clearly, R ≤ C(P ). Let α? ∈ [0, 1] be such that R = C(α?P ). Then

nC(α?P ) = nR ≤ I(Xn;Y n) + nεn

= h(Y n)− h(Y n |Xn) + nεn,

and therefore,

h(Y n) ≥ n
2 log(2πe) + nC(α?P )− nεn

= n
2 log (2πe(1 + α?P ))− nεn

Since N < 1, we can write the physically degraded form of the channel as Y = X +W1,
Z = Y + W̃2, where W̃2 ∼ N (0, N − 1) is the excess noise that receiver Z experiences in



13

addition to receiver Y . Applying the vector entropy power inequality to Zn = Y n + W̃n
2 , we

conclude
1
nh(Z

n) ≥ 1
2 log

(
2

2
nh(Y

n) + 2
2
nh(W̃

n
2 )
)

≥ 1
2 log

(
2−2εn · 2πe(1 + α?P ) + 2πe(N − 1)

)
≥ 1

2 log (2πe(N + α?P ))− εn,

and finally,

Rd ≥ 1
nI(X

n;Zn)

= 1
nh(Z

n)− 1
2 log(2πeN)

≥ C(α?P/N)− εn.

E. Proof of Theorem 2

Recall the shape of R(U,X) depicted in Figure 2. The coordinates of the corner points A
and B are given by

A(U,X) : R = h(X +W1)− h(W1), (13)
Rd = h(X +W2 |U) + h(X +W1)− h(X +W1 |U)− h(W2), (14)

B(U,X) : R = h(X +W1 |U)− h(W1), (15)
Rd = h(X +W2 |U)− h(W2). (16)

Proof of achievability: We specialize Theorem 1. Consider the specific p(u, x) constructed
as follows. For given positive semidefinite matrices Ku,Kv ∈ Rn×n with tr(Ku +Kv) ≤ P ,
let

U ∼ N (0,Ku),

V ∼ N (0,Kv),

X = U + V,

where U and V are independent. Then, the terms in Theorem 1 evaluate to

I(X;Y ) = h(Y )− h(W1) =
1
2 log

|Ku +Kv +K1|
|K1|

,

I(X;Y |U) = h(Y |U)− h(W1) =
1
2 log

|Kv +K1|
|K1|

,

I(X;Z |U) = h(Z |U)− h(W2) =
1
2 log

|Kv +K2|
|K2|

.

Simplifying the right hand sides and introducing time-sharing leads to the desired result.
For completeness, the coordinates of A and B for given matrices Ku, Kv are

A(Ku,Kv) : R = 1
2 log

|Ku +Kv +K1|
|K1|

, (17)

Rd = 1
2 log

|Kv +K2|
|K2|

|Ku +Kv +K1|
|Kv +K1|

, (18)

B(Ku,Kv) : R = 1
2 log

|Kv +K1|
|K1|

, (19)

Rd = 1
2 log

|Kv +K2|
|K2|

. (20)

The constituent region R(U,X) for fixed Ku and Kv is depicted in Figure 8.
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A

B

45◦

R

Rd

R(U,X)

1
2
log |Ku+Kv+K1|

|K1|
1
2
log |Kv+K1|

|K1|

1
2
log |Kv+K2|

|K2|

Figure 8. Constituent region for Gaussian superposition codebook with parameters Ku and Kv .

Proof of converse: The converse proof of Theorem 1 continues to hold and we only
need to show that Gaussian input distributions are sufficient. We proceed as follows. Since
the rate–disturbance region is convex, its boundary can be fully characterized by maximizing
R− λRd for each λ > 0. We write

R− λRd ≤ max
(R,Rd)∈R

{R− λRd}

= max
(U,X)

max
(R,Rd)∈R(U,X)

{R− λRd} ,

where the outer optimization is over the joint distribution of (U,X) and the inner optimization
is over the region achieved by that distribution. The inner optimization can be solved explicitly
as follows. For ease of presentation, assume for the moment that the power constraint is of the
form Kx � S for some positive semidefinite matrix S. (That is, valid Kx are precisely those
that result in the matrix S −Kx being positive semidefinite.)

First, consider λ ≤ 1. For any distribution (U,X) ∼ p(u, x), point A(U,X) achieves a value
of the inner optimization at least as large as point B(U,X), or any point on the line between
them. Using the coordinates of A(U,X) in (13) and (14), we can write

R− λRd ≤ max
(U,X)

{λ (h(X +W1 |U)− h(X +W2 |U))

+ (1− λ)h(X +W1)− h(W1) + λh(W2)}
(a)
≤ λ · max

(U,X)
{h(X +W1 |U)− h(X +W2 |U)}

+ (1− λ) · max
(U,X)

{h(X +W1)} − h(W1) + λh(W2)

(b)
≤ λ · max

Kx�S

{
1
2 log

|Kx +K1|
|Kx +K2|

}
+ (1− λ) · max

Kx�S

{
1
2 log ((2πe)

n|Kx +K1|)
}

− 1
2 log ((2πe)

n|K1|) + λ
2 log ((2πe)n|K2|) .

In (a), the two maximizations are taken independently. In step (b), the first maximization is
achieved by a Gaussian X that is independent of U , due to a theorem proved by Liu and
Viswanath [9, Thm. 8]. The optimization is now only over covariances matrices. Let K? be an
optimizer of this first maximization. The second maximization is also achieved by a Gaussian
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X , and is optimized by Kx = S since f(Kx) = |Kx +K1| is matrix monotone. It follows that

R− λRd ≤ λ
2 log

|K? +K1|
|K? +K2|

+ 1−λ
2 log ((2πe)n|S +K1|)

− 1
2 log ((2πe)

n|K1|) + λ
2 log ((2πe)n|K2|)

= 1
2 log

|S +K1|
|K1|

− λ
2 log

|K? +K2|
|K? +K1|

|S +K1|
|K2|

.

But this upper bound is achieved with equality by Gaussian superposition codebooks, namely
through the point A(Ku,Kv) as specified by equations (17) and (18), with Ku = S −K? and
Kv = K?.

Now, consider λ > 1. The argument proceeds analogously to the previous case. For
completeness’ sake, the details are as follows. We can write the inner optimization explicitly
using the coordinates of B(U,X) in (15) and (16) as

R− λRd ≤ max
(U,X)

{h(X +W1 |U)− λh(X +W2 |U)}+ λh(W2)− h(W1)

(a)
≤ max
Kx�S

{
1
2 log ((2πe)

n|Kx +K1|)− λ
2 log ((2πe)n|Kx +K2|)

}
+ λ

2 log ((2πe)n|K2|)− 1
2 log ((2πe)

n|K1|) .

The optimum in (a) is achieved by a Gaussian X (independent of U ) by virtue of [9, Thm. 8],
while the other two terms are independent of the optimization variable. Let K? be an optimizer.
Then

R− λRd ≤ 1
2 log

|K? +K1|
|K1|

− λ
2 log

|K? +K2|
|K2|

.

This upper bound is achieved with equality by Gaussian superposition codebooks through the
point B(Ku,Kv) as given by equations (19) and (20) with Ku = 0 and Kv = K?. This is a
power control strategy, similar to the scalar Gaussian case.

We have thus shown that under a power constraint Kx � S, Gaussian superposition codes
are optimal. The conclusion extends to the sum power constraint tr(Kx) ≤ P by observing that

{Kx : tr(Kx) ≤ P} =
⋃

S:S�0
tr(S)≤P

{Kx : Kx � S}.

In other words, the sum power constraint can be expressed as a union of constraints of the type
Kx � S, for each of which Gaussian superposition codes are optimal. Therefore, a Gaussian
superposition code must be optimal overall, too.

IV. PROOFS FOR TWO DISTURBANCE CONSTRAINTS

A. Proof of Theorem 3

Codebook generation. Fix a pmf p(u, x). Split the rate as R = R0 +R1 +R2 +R3. Define the
auxiliary rates R̃1 ≥ R1 and R̃2 ≥ R2, let ε′ > 0, and define the set partitions

[1:2nR̃1 ] = L1(1) ∪ · · · ∪ L1(2
nR1),

[1:2nR̃2 ] = L2(1) ∪ · · · ∪ L2(2
nR2),

where L1(·) and L2(·) are indexed sets of size 2n(R̃1−R1) and 2n(R̃2−R2), respectively.
1) For each m0 ∈ [1:2nR0 ], generate un(m0) according to

∏n
i=1 p(ui).

2) For each l1 ∈ [1:2nR̃1 ], generate zn1 (m0, l1) according to
∏n
i=1 p(z1i |ui(m0)). Likewise,

for each l2 ∈ [1:2nR̃2 ], generate zn2 (m0, l2) according to
∏n
i=1 p(z2i |ui(m0)).
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3) For each (m0,m1,m2), let S(m0,m1,m2) be the set of all pairs (l1, l2) from the product
set L1(m1)× L2(m2) such that (zn1 (m0, l1), z

n
2 (m0, l2)) ∈ T (n)

ε′ (Z1, Z2 |un(m0)).
4) For each (m0, l1, l2) and m3 ∈ [1:2nR3 ], generate xn(m0, l1, l2,m3) according to

n∏
i=1

p(xi |ui(m0), z1i(l1), z2i(l2))

if (l1, l2) ∈ S(m0,m1,m2). Otherwise, we draw from Unif(Xn).
5) Choose (l

(m0,m1,m2)
1 , l

(m0,m1,m2)
2 ) uniformly from S(m0,m1,m2). If S(m0,m1,m2) is

empty, choose (1, 1).

Encoding. To send message m = (m0,m1,m2,m3), transmit the sequence

xn(m0, l
(m0,m1,m2)
1 , l

(m0,m1,m2)
2 ,m3).

Decoding. Let ε > ε′. Upon receiving yn, define the tuple

T (m0,m1,m2,m3)

=
(
un(m0), z

n
1 (m0, l

(m0,m1,m2)
1 ), zn2 (m0, l

(m0,m1,m2)
2 ),

xn(m0, l
(m0,m1,m2)
1 , l

(m0,m1,m2)
2 ,m3), y

n
)

Declare that m̂ = (m̂0, m̂1, m̂2, m̂3) has been sent if it is the unique message such that

T (m̂0, m̂1, m̂2, m̂3) ∈ T (n)
ε (U,Z1, Z2, X, Y ).

Analysis of the probability of error. Without loss of generality, assume that m0 = m1 = m2 =
m3 = 1 is transmitted. Define the following events.

Ee1 : S(1, 1, 1) is empty,
Ee2 : S(1, 1, 1) contains two distinct pairs with

equal first or second component,

Ei : {T (m0,m1,m2,m3) ∈ T (n)
ε (U,Z1, Z2, X, Y ) for

some (m0,m1,m2,m3) ∈Mi}, i ∈ {0, . . . , 5},

where the message subsets Mi are specified in Table 1. Defining the “encoding error” event
Ee = Ee1 ∪ Ee2 and the “decoding error” event Ed = Ec0 ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, the probability
of error can be upper-bounded as

P(E) ≤ P(Ee ∪ Ed) ≤ P(Ee) + P(Ed | Ece ).

The motivation for introducing Ee2 as an “error” is to simplify the analysis of the second
probability term.

We bound P(Ee) by the following lemma. Let r1 = R̃1 −R1 and r2 = R̃2 −R2.

Lemma 1. P(Ee)→ 0 as n→∞ if

r1 + r2 > I(Z1;Z1 |U) + δ(ε′), (21)
r1/2 + r2 < I(Z1;Z2 |U)− δ(ε′), (22)
r1 + r2/2 < I(Z1;Z2 |U)− δ(ε′). (23)

Proof sketch: First, consider Ee1. As in the proof of Marton’s inner bound for the broadcast
channel, the mutual covering lemma [8] implies P(Ee1)→ 0 as n→∞ if (21) holds.

Now consider Ee2, for which we need to control the number of typical pairs that can occur
in the same “row” or “column” of the product set L1(m1)×L2(m2), i.e., for the same l1 or l2
coordinate. The probability P(Ee2) tends to zero provided that (22) and (23) hold.
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Message subset m0 m1 m2 m3

M0 1 1 1 1
M1 1 1 1 6= 1
M2 1 6= 1 1 any
M3 1 1 6= 1 any
M4 1 6= 1 6= 1 any
M5 6= 1 any any any

Table 1. Message subsets for decoding error events.

This is akin to the birthday problem [13], where k samples are drawn uniformly and
independently from [1:N ], and the interest is in samples that have the same value (collisions).
It is well-known that for the probability of collision to be pc, the number of samples required
is roughly k ≈

√
−2N ln(1− pc), which scales with

√
N . In our case, the number of samples

is the cardinality of the set S(m0,m1,m2), which is roughly k = 2n(r1+r2−I(Z1;Z2 |U)). The
samples are categorized into N1 = 2nr1 and N2 = 2nr2 classes along rows and columns,
respectively. To achieve a probability of collision pc → 0 along both dimensions, we need
k � min{

√
N1,
√
N2}, which yields exactly the conditions (22) and (23).

A rigorous proof is given in Appendix A.
Before we proceed to bound the probability of decoding error, we need the following lemma,

which is proved in Appendix B.

Lemma 2 (Independence lemma). Consider a finite set A and a subset A′ ⊂ A. Let pA be an
arbitrary pmf over A. Let the random vector An be distributed proportionally to the product
distribution

∏n
l=1 pA(al), restricted to the support set {an : ak ∈ A′ for some k}. Let I be

drawn uniformly from {i : Ai ∈ A′}. Let J = ((I + s− 1) mod n) + 1 for some integer
s ∈ [1:(n− 1)]. Then, the random variables AI and AJ are independent.

We bound the probability P(Ed | Ece ) by the following lemma.

Lemma 3. P(Ed | Ece )→ 0 as n→∞ if

R3 < H(Y |Z1, Z2, U)− δ(ε), (24)

R̃1 +R3 < H(Y |Z2, U) + I(Z1;Z2 |U)− δ(ε), (25)

R̃2 +R3 < H(Y |Z1, U) + I(Z1;Z2 |U)− δ(ε), (26)

R̃1 + R̃2 +R3 < H(Y |U) + I(Z1;Z2 |U)− δ(ε), (27)

R0 + R̃1 + R̃2 +R3 < H(Y ) + I(Z1;Z2 |U)− δ(ε). (28)

Proof sketch: The events of which Ed is composed are illustrated in Figure 9, which also
depicts the structure of the codebook for m0 = 1. The product sets L1(m1)×L2(m2), for each
(m1,m2), are represented by shaded squares. In each product set, the sequence pair selected
in step 5 of the codebook generation procedure is shown with its superposed xn codewords,
as created in step 4. The correct codeword xn(1, 1, 1, 1) is shown as a white circle which is
connected to the received sequence yn. The codewords that may be mistakenly detected at the
receiver are shown as black circles. The product sets associated with decoding error events E1,
E2, E3, and E4 are labeled 1, 2, 3, and 4, respectively.

We bound the probability of each sub-event of Ed. First, note that by the conditional typicality
lemma in [8], P(Ec0) → 0 as n → ∞ (this relies on ε′ < ε). The probabilities of the events
E1 through E5 conditioned on Ece tend to zero as n→∞ under conditions (24) through (28),
correspondingly.

The events E2 and E3 require the most careful analysis, since the true codeword xn(1, 1, 1, 1)
and the codewords with which it may be confused can share the same zn1 or zn2 sequence (see
dashed line and circles on it in Figure 9). Moreover, even when the chosen pairs in two different
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Figure 9. Illustration of decoding error events, for m0 = 1.

product sets do not share one of the two coordinates (see the chosen pairs for (m1,m2) = (1, 1)
and (2, 1) in Figure 9), correlation could potentially be caused by the selection procedure in
step 5 of codebook generation. We use the independence lemma (Lemma 2) to show that the
event Ece prevents this correlation leakage from occurring. The application of the lemma is what
distinguishes this analysis from the conventional Marton inner bound for broadcast channels [14,
15]. There, analysis of the selection process can be altogether avoided since each receiver
decodes only one of the two coordinates.

A detailed proof for the event E3 is given in Appendix C, the other events follow likewise.

Analysis of disturbance rate. When viewed by receiver Z1, the codeword for message m =

(m0,m1,m2,m3) appears as zn1 (m0, l
(m0,m1,m2)
1 ). We can pessimistically assume that all

sequences zn1 (m0, l1) as created in step 2 of codebook generation can be seen at the receiver for
some message m. Therefore, the number of possible sequences at Z1, and thus its disturbance
rate, is upper-bounded by H(Zn1 ) ≤ n(R0 + R̃1). Applying the same argument for Z2, the
proposed scheme achieves

R0 + R̃1 ≤ Rd,1, (29)

R0 + R̃2 ≤ Rd,2. (30)

Conclusion of the proof. Collecting inequalities (21) through (30), recalling R = R0 + R1 +
R2 +R3, and using the Fourier-Motzkin procedure to eliminate R0, R1, R2, and R3 leads to
the (R,Rd,1, Rd,2) region claimed in the theorem.

Finally, the statement of Remark 6 follows from

− I(Z1;Z2 |U) + I(Z1;Z2 |U, Y )

= −H(Z2 |U) +H(Z2 |U,Z1) +H(Z2 |U, Y )−H(Z2 |U, Y, Z1)

= −I(Y ;Z2 |U) + I(Y ;Z2 |U,Z1),

which leads to the equality

H(Y |Z1, Z2, U) +H(Y |U)− I(Z1;Z2 |U) + I(Z1;Z2 |U, Y )

= H(Y |Z1, Z2, U) +H(Y |U)− I(Y ;Z2 |U) + I(Y ;Z2 |U,Z1)

= H(Y |Z1, U) +H(Y |Z2, U).
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B. Proof of Theorem 4

First, consider

nR ≤ I(Xn;Y n) + nεn

=

n∑
i=1

I(Xn;Yi |Y i−1) + nεn

=

n∑
i=1

I(Xi;Yi |Y i−1) + nεn

= nI(X;Y |Q)

= nH(Y |Q).

Furthermore,

nRd,1 ≥ I(Xn;Zn1 )

≥ I(Y n;Zn1 )

=

n∑
i=1

I(Yi;Z
n
1 |Y i−1)

≥
n∑
i=1

I(Yi;Z1i |Y i−1)

= nI(Y ;Z1 |Q),

where Y = YT , Z1 = Z1T , and Q = (Y T−1, T ) with T ∼ Unif[1:n]. The same argument leads
to

nRd,2 ≥ nI(Y ;Z2 |Q),

with the same random variable identifications, and the additional Z2 = Z2T . Finally, the
cardinality bound on Q follows from the convex cover method in [8].

C. Proof of Theorem 5

First, we specialize Theorem 3 as follows.

Corollary 4. The rate–disturbance region R of the deterministic channel with two disturbance
constraints is inner-bounded by the set of rate triples (R,Rd,1, Rd,2) such that

R ≤ H(Y ), (31)
Rd,1 ≥ I(Y ;Z1, U), (32)
Rd,2 ≥ I(Y ;Z2, U), (33)

Rd,1 +Rd,2 ≥ I(Y ;Z1, Z2, U) + I(Y ;U) + I(Z1;Z2 |U)

= I(Y ;Z1, U) + I(Y ;Z2, U) + I(Z1;Z2 |U, Y ), (34)

for some pmf p(u, x).

The two equivalent expressions in (34) originate from Remark 6. An example of the constituent
regions of Corollary 4 for fixed p(u, x) is depicted in Figure 10. The figure also illustrates how
the corollary follows from Theorem 3: Each constituent region of the corollary is a strict subset
of the constituent region of the theorem, for the same p(u, x).
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Rd,1

Rd,2

R

(31)

(32)
(33)(34)

Figure 10. Constituent region for Corollary 4, for a fixed p(u, x). Each face is annotated by the
inequality that defines it. For comparison, the constituent region of Theorem 3 is shown with dashed lines
(see Figure 5).

Proof of Corollary 4: In Theorem 3, consider the case where (1) is met with equality, i.e.,
R = H(Y ). This yields a subset region which is still achievable. It simplifies to

Rd,1 +Rd,2 ≥ I(Z1;Z2 |U), (35)
Rd,1 ≥ I(Y ;Z1, U), (36)
Rd,2 ≥ I(Y ;Z2, U), (37)

Rd,1 +Rd,2 ≥ I(Y ;Z1, Z2, U) + I(Z1;Z2 |U), (38)
Rd,1 +Rd,2 ≥ I(Y ;Z1, Z2, U) + I(Y ;U) + I(Z1;Z2 |U)

= I(Y ;Z1, U) + I(Y ;Z2, U) + I(Z1;Z2 |U, Y ). (39)

Clearly, conditions (35) and (38) are dominated by inequality (39), and the desired result follows.

Proof of achievability for Theorem 5: We further specialize Corollary 4. We choose
U = Z1 ∨ Z2, i.e., the common part of Z1 and Z2. This implies that condition (34) can be
omitted, since I(Z1;Z2 |U, Y ) = 0 for all p(u, x) by assumption. Furthermore, U can be
dropped from conditions (32) and (33) by virtue of being a function of Z1 and Z2. We conclude
that

R ≤ H(Y ), (40)
Rd,1 ≥ I(Y ;Z1), (41)
Rd,2 ≥ I(Y ;Z2), (42)

is achievable for all p(x). Adding a time-sharing random variable Q completes the proof.
Note that in the special case where Y 4 Z1 or Y 4 Z2, the same conclusion holds with the

choice U = ∅.

D. Proof of Corollary 3

Proof of achievability: We prove the result for Z1 4 Z2, the other case follows by symmetry.
We specialize the achievable region of Theorem 3 by choosing U = Z2. The rate–disturbance
constraints are

R ≤ H(Y ), (43)
Rd,1 +Rd,2 ≥ 0, (44)
R−Rd,1 ≤ H(Y |Z1), (45)
R−Rd,2 ≤ H(Y |Z2), (46)

R−Rd,1 −Rd,2 ≤ H(Y |Z1), (47)
2R−Rd,1 −Rd,2 ≤ H(Y |Z1) +H(Y |Z2). (48)
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Clearly, (44) is vacuous. Furthermore, (47) is dominated by (45), and (48) is dominated by the
sum of (45) and (46). This completes the proof.

Proof of converse: The first inequality follows from Fano’s inequality as

nR ≤ I(Xn;Y n) + nεn

= H(Y n) + nεn

≤ nH(Y ) + nεn,

where Y = YQ and Q ∼ Unif[1:n]. The other two inequalities follow as

n(R−Rd,1) ≤ nR− I(Xn;Zn1 )

≤ H(Y n)−H(Zn1 ) + nεn

≤ H(Y n, Zn1 )−H(Zn1 ) + nεn

= H(Y n |Zn1 ) + nεn

≤ nH(Y |Z1) + nεn,

with Z1 = Z1Q, and likewise for n(R−Rd,2).
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APPENDIX

A. Proof of Lemma 1

The product bin (m1,m2) = (1, 1) for m0 = 1 contains lm sequence pairs, where l = 2nr1

and m = 2nr2 . Each pair (Zn1 (1, l1), Z
n
2 (1, l2)), for l1 ∈ [1:l] and l2 ∈ [1:m], has probability

p
.
= 2−nI(Z1;Z2 |U) to be jointly typical. Now fix one coordinate, say l1 = 1. The corresponding

“row” of the bin contains m sequences Zn2 (1, l2), each of which has an independent probability
of p to be jointly typical with Zn1 (1, 1). Let K be the total number of typical sequences in this
row. Then

P(K = 0) = (1− p)m,
P(K = 1) = mp(1− p)m−1,
P(K ≥ 2) = 1− (1− p+mp) (1− p)m−1︸ ︷︷ ︸

≥1−(m−1)p

≤ m2p2.

We have thus upper-bounded the probability to encounter two or more typical pairs in a single
row. Consequently, the probability of two or more typical pairs occurring in any row is upper
bounded by lm2p2. Substituting definitions leads to the desired inequality. The same argument
can be made for columns of the bin.

B. Proof of independence lemma (Lemma 2)

We prove the lemma for s = 1, the remaining cases follow by symmetry. For ease of notation,
define the specialized modulo operator JxK = 1 + ((x − 1) mod n), the indicator function
1A′(a) = 1 if a ∈ A′ and 0 otherwise, and the shorthand notations Y = AI and Z = AJ .
Notice that

p(an) =

{
1
c

∏n
l=1 pA(al) if ak ∈ A′ for some k ∈ [1:n]

0 otherwise,

where c is a normalization constant, the exact value of which is not relevant. Further,

p(i | an) =

{
1∑n

k=1 1A′ (ak)
if ai ∈ A′

0 otherwise.

The joint distribution of (An, I, J, Y, Z) is then

p(an, i, j, y, z) =

{
p(an)∑n

k=1 1A′ (ak)
if ai ∈ A′, ai = y, aj = z, and j = Ji+ 1K

0 otherwise.

Partially marginalizing, it follows that

p(y, z) =

n∑
i=1

∑
an: ai∈A′
ai=y

aJi+1K=z

p(an)∑n
k=1 1A′(ak)

.

It is clear that p(y, z) = p(y)p(z) = 0 if y /∈ A′. On the other hand, for y ∈ A′, we have

p(y, z) =

n∑
i=1

∑
an: ai=y
aJi+1K=z

∏n
l=1 pA(al)

c
∑n
k=1 1A′(ak)

.

http://user-www.ie.cuhk.edu.hk/~ITIP/
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The fraction under the sum is invariant under permutations of an. Therefore,

p(y, z) =
1

c

n∑
i=1

∑
an: a1=y
a2=z

∏n
l=1 pA(al)∑n
k=1 1A′(ak)

=
n

c

∑
an=(y,z,an3 )

∏n
l=1 pA(al)∑n
k=1 1A′(ak)

=
n pA(y) pA(z)

c

∑
an3∈An−2

∏n
l=3 pA(al)

1 + 1A′(z) +
∑n
k=3 1A′(ak)

,

where an3 are the last n− 2 components of an. Observe that p(y, z) separates into a function
of z and a function of y. Independence is thus established.

C. Proof of Lemma 3, exemplified for E3
We analyze the probability of E3 as follows.

E3 =
{(
Un(1), Zn1 (1, L

(1,1,m2)
1 ), Zn2 (1, L

(1,1,m2)
2 ),

Xn(1, L
(1,1,m2)
1 , L

(1,1,m2)
2 ,m3), Y

n
)
∈ T (n)

ε ,

for some m2 6= 1, m3

}
⊆
{(
Un(1), Zn1 (1, L

(1,1,m2)
1 ), Zn2 (1, l2),

Xn(1, L
(1,1,m2)
1 , l2,m3), Y

n
)
∈ T (n)

ε ,

for some m2 6= 1, m3, l2 /∈ L2(1)
}
,

Define the event Eeq = {L(1,1,m2)
1 = L

(1,1,1)
1 }, which allows us to write P(E3 | Ece ) = P(E3 ∩

Eeq | Ece ) + P(E3 ∩ Eceq | Ece ). We consider both terms separately.

E3 ∩ Eeq ⊆
{(
Un(1), Zn1 (1, L

(1,1,1)
1 ), Zn2 (1, l2),

Xn(1, L
(1,1,1)
1 , l2,m3), Y

n
)
∈ T (n)

ε ,

for some l2 /∈ L2(1), m3

}
.

Thus,

P(E3 ∩ Eeq | Ece )

≤
∑

(un,zn1 ,y
n)∈T (n)

ε

P
(
Un(1) = un, Zn1 (1, L

(1,1,1)
12 ) = zn1 , Y

n = yn | Ece
)

·
∑

l2 /∈L2(1)

2nR3∑
m3=1

P
(
(un, zn1 , Z

n
2 (1, l2),

Xn(1, L
(1,1,1)
1 , l2,m3), y

n) ∈ T (n)
ε | Ece

)
≤ 2n(R̃2+R3) P ?,

where P ? is shorthand for the last P(·) expression. Continue with

P ? =
∑

(zn2 ,x
n)∈T (n)

ε (
Z2,X |un,zn1 ,y

n)

P
(
Zn2 (1, l2) = zn2 , X

n(1, L
(1,1,1)
1 , l2,m3) = xn

∣∣∣
Un(1) = un, Zn1 (L

(1,1,1)
1 ) = zn1 , Y

n = yn, Ece
)

(a)
=

∑
(zn2 ,x

n)∈T (n)
ε (

Z2,X |un,zn1 ,y
n)︸ ︷︷ ︸

.
=2nH(X,Z2|Z1,Y,U)

p(zn2 |un)︸ ︷︷ ︸
.
=2−nH(Z2|U)

p(xn | zn1 , zn2 , un)︸ ︷︷ ︸
.
=2−nH(X|Z1,Z2,U)
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≤ 2n(H(X,Z2|Z1,Y,U)−H(Z2|U)−H(X|Z1,Z2,U)+δ(ε))

= 2n(−H(Y |Z1,U)−I(Z1;Z2|U)+δ(ε)).

In step (a), we have used the fact that l2 /∈ L2(1), and therefore, Zn2 (1, l2) relates to a bin other
than the first one. It is independent of the conditions Y n = yn and Ece , both of which relate
only to the (1, 1) bin for m0 = 1. A similar argument applies to the second term.

Substituting back in the previous chain of inequalities implies that P(E3 ∩ Eeq | Ece )→ 0 as
n→∞ if inequality (26) holds.

Next, consider

E3 ∩ Eceq ⊆
{(
Un(1), Zn1 (1, l1), Z

n
2 (1, l2), X

n(1, l1, l2,m3),

Y n
)
∈ T (n)

ε , for some l1 ∈ L1(1) \ {L(1,1,1)
1 },

l2 /∈ L2(1), m3

}
.

We argue

P(E3 ∩ Eceq | Ece )

≤
∑

(un,yn)∈T (n)
ε

P (Un(1) = un, Y n = yn | Ece )
∑

l1∈L1(1)\{L(1,1,1)
1 }

· · ·

· · ·
∑

l2 /∈L2(1)

2nR3∑
m3=1

P
(
(un, Zn1 (1, l1), Z

n
2 (1, l2),

Xn(1, l1, l2,m3), y
n) ∈ T (n)

ε |Un(1) = un, Y n = yn, Ece
)

≤ 2n(R̃1−R1+R̃2+R3) P ?,

where P ? represents the last P(·) expression. Finally,

P ? =
∑

(zn1 ,z
n
2 ,x

n)∈T (n)
ε (

Z1,Z2,X |un,yn)

P
(
Zn1 (1, l1) = zn1 , Z

n
2 (1, l2) = zn2 ,

Xn(1, l1, l2,m3) = xn |
Un(1) = un, Y n = yn, Ece

)
=

∑
(zn1 ,z

n
2 ,x

n)∈T (n)
ε (

Z1,Z2,X |un,yn)

∑
zn2 (l′2), for

all l′2∈L2(1)

P
(
Zn2 (1, l

′
2) = zn2 (l

′
2) for

all l′2 ∈ L2(1) | Ece
)

· P
(
Zn1 (1, l1) = zn1 , Z

n
2 (1, l2) = zn2 ,

Xn(1, l1, l2,m3) = xn |
Un(1) = un, Y n = yn, Zn2 (1, l

′
2) = zn2 (l

′
2)

for all l′2 ∈ L2(1), Ece
)

(a)
≤

∑
(zn1 ,z

n
2 ,x

n)∈T (n)
ε (

Z1,Z2,X |un,yn)︸ ︷︷ ︸
.
=2nH(X,Z1,Z2|Y,U)

p(zn1 |un, Ece )︸ ︷︷ ︸
(b)

.
=2−nH(Z1|U)

p(zn2 |un)︸ ︷︷ ︸
.
=2−nH(Z2|U)

p(xn | zn1 , zn2 , un)︸ ︷︷ ︸
.
=2−nH(X|Z1,Z2,U)

≤ 2n(H(X,Z1,Z2|Y,U)−H(Z1|U)−H(Z2|U)−H(X|Z1,Z2,U)+δ(ε))

= 2n(−H(Y |U)−I(Z1;Z2|U)+δ(ε)).

Here, (a) uses uses the fact that for the l1 indices in question, Zn1 (1, l1) is independent of
Y n. This is a consequence of independence between the selected Zn1 (1, L

(1,1,1)
1 ) and the other

(non-selected) Zn1 (1, l1) due to Lemma 2. The lemma applies because the event is conditioned
(1) on Ece , which ensures that picking L(1,1,1)

1 is uniform as required by the lemma, and (2) on
Zn2 (1, l

′
2) for all l′2 ∈ L2(1), which provides for the qualifying set A′ of the lemma.
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Step (b) follows from

p(zn1 |un, Ece ) = p(zn1 |un) ·
p(Ece |un, zn1 )
p(Ece |un)

≤ p(zn1 |un) ·
1

p(Ece |un)

≤ p(zn1 |un) ·
1

1− 2−δn

≤ 2−n(H(Z1|U)−ε) · 2nδ
′

≤ 2−n(H(Z1|U)−ε−δ′).

Here, δ is the minimum slack of the three conditions for Ece in Lemma 1. Note that for any
δ, δ′ > 0, we can find an N0 such that

∀n ≥ N0 :
1

1− 2−δn
≤ 2nδ

′
.

We conclude that P(E3 ∩ Eceq | Ece )→ 0 as n→∞ if

R̃1 −R1 + R̃2 +R3 ≤ H(Y |Q) + I(X1;X2|Q)− δ(ε).

This is an implication of (27) which stems from analyzing E4, and may thus be omitted.
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