arXiv:1102.2035v1 [cs.IT] 10 Feb 2011

Quasi-Cross Lattice Tilings
with Applications to Flash Memory

Moshe Schwartz
Electrical and Computer Engineering
Ben-Gurion University of the Negev
Beer Sheva 84105, Israel
schwartz@ee.bgu.ac.il

Abstract—We consider lattice tilings of R” by a shape we former is easy to perform on single cells, the latter works
call a (k4 k—, n)-quasi-cross. Such lattices form perfect error- on large blocks of cells and physically damages the cells.
correcting codes which correct a single limited-magnitudeerror Thus, when attempting to reach a target stored value in a cell
with prescribed maximal-magnitudes of positive error and reg- C L . . .
ative error (the ratio of which is called the balance ratio). These charge is .S|0W|y injected into the cell over several itemas.
codes can be used to correct both disturb and retention erreg  If the desired level has not been reached, another round of
in flash memories, which are characterized by having limited charge injection is performed. If, however, the desiredgha
magnitudes and different signs. _ level has been passed, there is no way to remove the excess

We construct infinite families of perfect codes for any ratimal charge from the cell without erasing an entire block of cells

balance ratio, and provide a specific construction for(2,1, n)- In additi th fi f cell . d cell di
quasi-cross lattice tiling. The constructions are relatecto group n addition, the actions ot cell programming and cell regain

splitting and modular B; sequences. We also study bounds on the disturb adjacent cells by injecting extra unwanted change i
parameters of lattice-tilings by quasi-crosses, connectg the arm  them. Because the careful iterative programming procedure

lengths of the quasi-crosses and the dimension. We also p®v employs small charge-injection steps, it follows that ever
constraints on group splitting, a specific case of which shosvhat - 54ramming errors, as well as cell disturbs, are likelydweh
the parameters of the lattice tiling of (2, 1, n)-quasi-crosses is the .
only ones possible. a small magnitude of error. -
This motivated the application of the asymmetric limited-
|. INTRODUCTION magnitude error model to the case of flash membry [4], [10].
Flash memory is perhaps the fastest growing memory tedh-this model, a transmitted vecterc Z" is received with
nology today. Flash memory cells use floating gate techryologrror asy = ¢ +e € Z", where we say that asymmetric
to store information using trapped charge. By measuring theited-magnitude errors occurred with magnitude at most
charge level in a single flash memory cell and comparingiftthe error vectore = (ey,...,e,) € Z" satisfiesd <e; <k
with a predetermined set of threshold levels, the chargel lefor all i, and there are exactly non-zero entries ire.
is quantized to one aof values, conveniently chosen to . Not in the context of flash memory, it was shown In [1]
While originally g was chosen to b, and each cell stored how to construct optimal asymmetric limited-magnitudeesr
a single bit of information, currermnulti-level flashmemory correctingall errors, i.e.,t equals the code length. General
technology allows much larger valuesqfthus storindog, g  code constructions and bounds for arbitraryere given in
bits of information in each céll [4]. More specifically, fort = 1, i.e., correcting a single error,
As is usually the case, the stored charge levels in flash celdes were proposed in the context of flash in [10], but were
suffer from noise which may affect the information retridvealso described in the context of semi-cross packing in thig ea
from the cells. Many off-the-shelf coding solutions exisida work [7].
have been applied for flash memory, see for example[[5], [14]. The main drawback of the asymmetric limited-magnitude
However, the main problem with this approach is the fact thatror model is the fact that not all error types were consider
these codes are not tailored for the specific errors ocauimin during the model formulation. Another type of common error
flash memory and thus are wasteful. A more accurate modefflash memories is due tetentionwhich is a slow process
of the flash memory channel is therefore required to desighcharge leakage. Like before, the magnitude of errorsedea
better-suited codes. by retention is limited, however, unlike over-programmangl
The most notorious property of flash memory is its inheregell disturbs, retention errors are in the opposite dicecti
asymmetry between cell programming (charge injection into We therefore suggest a generalization to the error model
cells), and cell erasure (charge removal from cells). Wtiike we call the unbalanced limited-magnitude error modeA
_ _ transmitted vectorr € Z" is now received with error as
Ihls work was supported in part by ISF_grant 134/10. the vectory = c+e € Z"., where we say that unbal-
It should be noted that other alternatives have been swggydst the Lo . .
conventional multi-level modulation scheme, such as, feangple, rank anced limited-magnitude errors occurred if the error vecto
modulation [3], [6], [8], [9], [11], [L7], [18]. e = (e,...,en) € Z" satisfies—k_ < ¢; < k4 for all i,
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and there are exactlynon-zero entries im. Bothky andk_ a (k4,k_,n)-quasi-crossBy simple translationf (v) = v +
are non-negative integers, where we dall the positive-error £(0) for all v € Z".
magnitude limit, andc_ the negative-error magnitude limit.  Following the notation of([12], let
In this work we consider only single error-correcting cades
In general, assuming at most a single error occurs, the error Q={(x1,...,xn) |0<x; <1, x; € R}
sphere containing all possible received woyds ¢ + e forms ) .
a shape we call &k, k_, n)-quasi-crosgsee Figur&lL). This denqte theunit cube centered at the origin. By abuse of
is a generalization of the asymmetric semi-cross_of [7]] [L&ErMinology, we shall also call the set of unit cutfes- £ (o),

which we get when choosin = 0, and the full cross of & (k+, k-, n)-quasi-cross centered at for any v € Z".
[12] which we get when choosing, = k_. To avoid these Examples of such quasi-crosses are given in Figlre 1. We

two studied cases we shall consider ofily k_ < k.. An Note that the volume oQ + &(v) does not depend on the
error-correcting code is a packing of pair-wise disjoinagu  choice ofv and is equal tor (k- +k-) +1. _
crosses. We shall only consider perfect codes, i.e., silafghe A SetV = {v1,vy,...} C Z" defines a set of quasi-crosses
space, which form lattices, since these are easier to aenalﬁy simple translation{&(v1), £(v2), ... }. The setV is said

construct, and encode, than non-lattice packings (seeréigtp be apackingof R™ by quasi-crosses if the translated quasi-
2). crosses are pairwise disjoint. The $&ts called atiling if the

union of the translated quasi-crosses eqlisIf V happens
to be an additive subgroup #" with a basis{by, by, ..., b, },
then we callV a lattice. The n x n integer matrix formed
by placing the elements of a basis as its rows is called a
generating matrixof the lattice.

Let A C Z" be a lattice with a generating matrik(A) €
Z"" whose rows form a basi$¢by, by, ..., by} C Z". A
fundamental regiorof A is defined as

n
{ Y b
i=1

It is easily seen, by definition, that tiles R” with translates
of the fundamental region.
It is well known that the volume of a fundamental region

Dél'G]R,Ongi<l}.

Figurel. A (2,1,2)-quasi-cross and €2,1,3)-quasi-cross

The paper is organized as follows: In Sectigh Il we intro-

. o depend on the choice of basis forand equals
duce the notation and definitions used throughout the pa&ﬂﬁs not i : i
and discuss connections with known results. We continue tG(A). The densityof A is defined asl/ detG(A) and

Section[I¥ with constructions of such tilings. We follow in' A _forms a_packin_g 0f(k_+,k_,n)-quasi-crosses, then the
Section[l] with simple bounds on the parameter of IatticBaCklng densitof A is defined as

tilings of quasi crosses, and conclude in Secfidn V. nlky +k_)+1
A) =~
[I. PRELIMINARIES p(A) detG(A)
A. Quasi-Crosses, Tilings, and Lattices which intuitively measures (for a large enough finite aréa) t

In the unbalanced limited-magnitude-error channel modedtio of the area covered k¥, k—, n)-quasi-crosses centered
the transmitted (or stored) word is a vectoe Z". A single at the lattice points, to the total area. It follows that<
error is a vector ire € Z" all of whose entries ar@ except p(A) < 1, andA forms a tiling with(k., k_, n)-quasi-crosses
for a single entry with value belonging to the set if and only if p(A) =1, i.e.,detG(A) = n(k+ +k-) + 1.

M={~k—...,=2,=1,1,2,... k+}, Example 1.If we take the(3,2,2)-quasi-cross, one can verify

where the integer < k_ < k, are the negative-error andthat the lattice\ with generating matrix
positive-error magnitudes. For convenience we denotesttis 41
asM = [—k_,ki]|*. We denotef = k_/ky and call it the G(A) = <3 5>
balance ratio Obviously,0 < g < 1.

Given a transmitted vectar € Z", and provided at most js jndeed a lattice packing for this quasi-cross (see Figjire
a single error occurred, the received word resides in th& erfrhe resulting packing density is
sphere centered aboutdefined by
(@) = (o) Ulotm-e; | i€ [nlme M), o(A) = 722;”;;();)1 -1
where [n] = {1,...,n}, ande; denotes the all-zero vector
except for thei-th position which contains &. We call £(0)



A simple representation of the lattice may also be given in
matrix form: LetH = [s1,s,...,5,] be al x n matrix over
G. The latticeA is the set of vectors = (x1,...,x,) € Z"
such thatHxT = 0. Thus, plays the role of a “parity-check
matrix”.
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o — 1 | | . . Example2.Continuing Exampld, letG = Z,; and letM =
| s {-2,-1,1,2,3} = [-2,3]* stand for the multiplier set of the

(3,2, n)-quasi-cross. A possible splitting 6fis S = {1,13},
”””””””””””””””””””””””””” which results in a parity-check matriX = [1,13] for the
packing described in Examgile O

Group splitting as a method for constructing error-cofirert
codes was also discussed, for example, in the case of shift-
correcting codes [15] and integer codes![16].

C. Lattice Packings and Sequences

It was noted in[[10] that there is a connection between the
codes suggested in_[10] (which are equivalent to semi-cross
packings) and a certain sub-case of sequences called modula
B;, sequences. We detail the relevant connection in our case.

A v-modular B, (M) sequence, wherdl C Z\ {0}, is

Figure2. Partial view of a lattice packing of &3,2,2)-quasi-cross with C _
basisb; = (4,1), b, = (3,5), and packing densityl. Lattice points are a S.Ubsa S5 C Zo\ {(;)l}’ whose elemem§. {.Sl'”"sn}
marked with dots, and the hatched area is a fundamentalnregio satisfy that all sum§_;_; m;s; , wherel <i; <ip < -+ <

i, <n,andm; € M, are all distinct.
Thus, av-modular By (M) sequence is a splitting dZ.,
B. Lattice Tiling via Group Splitting defined byM and S. We note that a specific group is being

An equivalence between lattice packings and group spiPlit, i-€., & cyclic group.
ting was described in [7][12], which we describe here for AS Was also described in_[10], when we have-eodular
completeness. LeG be an Abelian group, where we shallBi1(M) sequences, ie., a splitting ofZ, by M and S,
denote the group operation as. Given somes € G and @and therefore a resulting x n parity-check matrix? =
a non-negative integem € Z, we denote byms the sum [51,52,--.,5n], We can construct other packings, provided the
s+s+4---+s, wheres appears in the summ times. The €lements of\l are co-prime ta. This is done by constructing

) L. ) . . . k . . . .
definition is extended in the natural way to negative integeRnYk x n(v" —1)/(v —1) parity-check matrix}{’ containing
m all distinct column vectors whose top non-zero elemenidmfr

A splitting of G is a pair of setsM C Z\ {0}, called S. This is equivglent to a splitting of the non-cyclic groZ[ﬁ
the multiplier set andS = {s,s,,...,5,} C G, called the by M and S being the columns of{’. We note that if?{
splitter set such that the elements of the fomms, m € M, results in a tiling, then so doex’.

s € S, are all distinct and non-zero i&. Next, we define a
homomorphismp : Z" — G by

Ill. CONSTRUCTIONS FORTILINGS OF QUASI-CROSSES

We shall now consider constructions for lattice tilings of

n
¢(x1,%2, ..., %) = insi. (k4,k_,n)-quasi-crosses. We first examine the case of a
i=1 constant balance rati@ = k_/ky and show that for any
If the multiplier set isM = [—k_, k.]*, then it may be easily rational ratio there exist infinitely-many tilings by stiliig

verifiable thatker ¢ is a lattice packing oR" by (k,k_,n)- cyclic and non-cyclic groups. We then focus on a particular
quasi-crosses. Thikr ¢ is a lattice is obvious. To show thatcase of(2, 1, n)-quasi-crosses and show an infinite family of
the lattice is a packing dfk ., k_, n)-quasi-crosses, assume tdilings for them.

the contrary two such distinct quasi-crossess (xq,...,x,)

andy = (vy1,...,yx), have a non-empty intersection, i.e4 A. Constant Balance-Ratio Quasi-Cross Tilings

mae; =y +maej, wheremy, my € M, then Construction1. Let0 < k_ < k. be positive integers such
_ N — N — , thatk +k_ = p — 1, wherep is a prime. We set the multiplier
mys; = ¢(x + mye;) = ¢(x + moe;) = mps + p €ep
18 = ¢ e1) = 9 2¢)) 2% setM = [—k_,k4]*. Consider the cyclic grou: = Z,,
which is possible only iftn; = m, andi = j, resulting in the

two quas.,i-cro.s_ses.being the same one — a contradiction. ThQ’he actual sequence is the binary characteristic sequérbe subset to
packing is a tiling iff|G| = n(k+ + k_) + 1. be defined shortly.



¢ € IN. We splitG using a splitter se& constructed recursively elements ofGF( pf ) as length# vectors ovelGF(p) (using the
in the following manner: basis1,a,...,a’"1, with « a primitive element OGF(pé)).
The elements of then become the set of all vectors of length

S1= {1} ¢ over GF(p) with the leading non-zero element beirg
Siv1=pS;U {s € me s=1 (mod p)}. We will get the same set by extending the “matrix-extension”
method implied in[[10] to our quasi-cross case.
The requested set 5= S;. Another interesting thing to note is that, using the same

Theorem 3. The setsS andM from Constructiofl split th vector notation as above, the parity—checkfmatrix for thigcka
. e ai : : -1 p'—1
formlng a tiling of (k,k_, (p* —1)/(p — 1))-quasi-crosses i simply the parity-check matrix of thgZ—, = — ¢, 3]
and ap’-modularB; (M) sequence. Hamming code oveGF(p).
Yet another observation is that we can mix Constructions

and S, = {1} split Z,. Now assumeM and S; split Z i @ and2, by taking thes’-modularB; (M) se.quence resulting
from Constructioll and applying the “matrix” method of Con-
Let us considerM, S;,q, and Zplﬂ We now show that if
B 7 ol € M s s € Sir thenm — m structior[2 to form a splitting o6 =Z X Z (X --- X Z
ms = m's’ in pitt T i i+1 - which induces a tiling of quasi-crosses. The latter worksesi

Proof: The proof is by a simple induction. Obviousi

A
ands = s’ _ _ the elements oM are all co-prime tap.
In/the first case, given any < Siv1, p 1 s, and given Finally, as is shown in the next example, we observe that
m,m’ € M, m # m', sinceM = [—k_, ky]*, it follows

L i ; the lattice tilings resulting from Constructions 1 did 2 ao¢
thatms # m's since they I(/aave dn‘terent residues moEigwIJo equivalent. Before we do so we need another definition. A
For the second case, lsts” € S, s" # s, and Ietm,lm € lattice A C Z" has period(ty,...,t,) € Z" if whenever
M, wherem andm’ are not necessarily distinct. fls" then A then alsov + tie; € A for all i. Lattices are always

ms 7 m's' since p { ms but p|m's’. We assume then that o iqgic, and, is the smallest positive integer for whitje; €
s’ =1 (mod p). Write s = gp+1 ands’ = g/p+1, 0 <
q,q' < p' =1, thenms = m's’ impliesm = m’ (by reduction _ o _ _ B
modulo p). It then follows thatmqp = mg'p (mod pi+1). Example 5. Consider six-dimensional lattice tilings of

But ged(m, p) = 1 and sog = ¢’ (mod p'), which (due to (3,1,6)-quasi-crosses. Using Constructidh we construct

the range ofj andg’) Impllesq =g ie,s=5. a lattice A1 by splitting Z,5 and getting a splitter set
For the last cases, s’ € pS;. We note that the multiples of S = {1,5,6,11,16,21}, resulting in a parity-check matrix
pinZ pi+1 are isomorphic tdzpl, and sinceM and S; split Hy = [1 5 6 11 16 21]
Zp,-, for all m,m" € M, if ms = m's' thenm = m’ and
s—g. overZ,s. This produces a generating matrix far
Finally, [M| = p—1, |S;| = (p' —1)/(p — 1), and so 25 00 0 0 O
IM|-|Se| +1= Zp[’, implying that the splitting induces a 201 0 0 0O
tiling. m G = 19 01 0 0 O
The following construction splits a non-cyclic group of the 4 00100
same parameters. 9 00010
. L 4 0 0 0 0 1
Construction 2. Let0 < k_ < k4 be positive integers such .
thatk. +k_ = p—1, wherep is a prime. We set the We confirm that
multiplier setM = [—k_,ky]|*. Consider the additive group

detGi =25=6(3+1 1
of G = GE(p'), ¢ € N. Leta € GE(p") be a primitive etG B+1)+

element, and defing = { (a) | P e MZ [x ]} where M;’M makingA, a tiling for (3,1, 6)-quasi-crosses.
denotes the set of all monic polynomials of degree strietyg! ' on the other hand, we choose to use Construd@do

than? — 1 overGE(p) in the indeterminate. construct a lattice\,, we splitGF(5%) to get a parity-check
matrix

Theorem 4. The setsS and M from Constructiorg] split the o — 011111

additive group ofGF(p’) and form a tiling of(k,k_, (p* — 2711 012 3 4

D/(p—1)). overGF(5). A corresponding generating matrix is then
Proof: Since « is primitive in GE(p’), the elements - -

1,a,42,...,a4""1 form a basis of the additive group 6 (p") g g 8 8 8 8
over GF(p). Since M = GF*(p), it is easily seen that 4141000
ms = m's’, mym' € M, s,s’ € S, impliesm = m' and Gy = 34010 0
s = s'. Again, by counting the size a¥f and S, the splitting 5400 10
induces a tiling. ] 140001

We point out several interesting observations. In Construc -

tion[2, if we takel = 1 we getS = {1}. For¢ > 1, write then Again, we confirmdet G, = 25.



Finally, to show the lattices are not equivalent, it is réadinot produce a valid tiling or even packing. For example, if we
verified that the period ak, is (25, 5,25,25,25,25), while the were to take the trivia-modularB; (M) sequence{1} and

period ofA; is (5,5,5,5,5,5). O attempt to create a parity-check matrix ov&j
The following shows there are infinitely-many tilings of 2 — 01111
guasi-crosses of any given rational balance ratio. 101 2 3

Theorem 6. For any given rational balance raffo= k_/k4, we would find thatM together With the columns of is not
0< < 1, there exists an infinite sequence of quasr crossessplitting of Z2 since2 - [1,0]T = 2-[1,2]T overZ,. Hence,

{(k( )}00 such than) < n(i+1), /k = B, the lattice formed by the parity-check matfk is not a lattice
and there exists a tiling ¢k'”, k', n())-quasi-crosses, for all Packing of (2,1, 5)-quasi-crosses.
ieNN. IV. BOUNDS ON THEPARAMETERS OFLATTICE TILINGS
Proof: Given a rational < B < 1, letk,,k_ € N be OF QUASI-CROSSES
such thatc_ /k = . Denoted = k4 + k_ and consider the In this section we focus on showing bounds on the param-
arithmetic progressiont, 1+d,1+2d,...,1+id,.... Since eters of (k;,k_,n)-quasi-cross tilings. We first consider the
ged(1,d) = 1, by Dirichlet's Theorem (see for example [2]) restrictions k., k_, n)-quasi-cross tilings imply ork., k_,
the sequence contains infinitely-many prime numbers. Fpr agndn. We then continue to study the gro@p being split to
such prime,p, there existyy € IN such thatgk, +gk_ = create the tilings, and show restrictions which, in patéigu
p — 1. We can then apply Constructidns 1 @nd 2 to form tilingsrove that the parameters of tf2, 1, n)-quasi-cross tiling of
of (gk,gk_,n)-quasi-crosses with the required balance ratiQonstructiori B are unique.

andn unbounded. _ _
A. Dimension and Arm Length Bounds

B. Construction of2, 1, )-Quasi-Cross Tilings We first discuss bounds connecting the arm lengths of the

We turn to constructing2, 1, n)-quasi-cross tilings and their quasi-cross and the dimension of the tiling. Some of the
associated modulaB; (M) sequences. The construction isheorems to follow may be viewed as extensiond td [13].
similar in flavor to Constructioh]1. Theorem 8. For anyn > 2, if
Construction 3. Letk = 2,k_ = 1, and let the multiplier set (ke 4+1) — K2
beM = {—1,1,2}. We split the grougs = Z,., ¢ € N, using ey (k- +1) — k2 ,
a splitter seb constructed recursively in the following manner: ke + k-

5, = {1} then there is no lattice tiling df, k_, n)-quasi-crosses.

j Proof: Given an integem > 2, assume gk, k_,n)-
. — . . — i+1 = ’ +7 7
Sit1 = 45U {S €Zyn|s=1 (mod4)2s<4 } quasi-cross lattice tilingA exists. Consider the plane

The requested set &= S,. {(x,4,0,...,0) | x,y € Z}. Translates of this plane til".

Within this plane, we look at the subset
Theorem 7. The setsS andM from ConstructiofB split Z ., P

forming a tiling of (2,1, (4 — 1)/3)-quasi-crosses and44- A={(xy0,...,0) | 0<x,y<ky+2 and
modularB, (M) sequence. x<k_ +2ory<k_-+2}.

Proof: The proof is by induction. The set%! and S,

) i ) : It is easily seen tha#i cannot contain two points from,, or
obviously splitZ,. AssumeM and S; split Z,; and consider

else the arms of two quasi-crosses overlap. Thus, the glensit

M and5;;. For convenience, denote of A (which we know is exactlyl / (n (k. + km) + 1), since
§+1 _ {s €Zyn |s=1 (mod 4),2s < 4i+l}' 2 |isea tiling) cannot exceed the reciprocal of the volume of

It is easily seen that due to the restrictidn < 4/*1, the 1 . 1

elements ofS’+1 and —S/ ;.1 are distinct, and together they nky +k-)4+1 ° (ky +1)2— (ky —k_)%

contain all the odd integers i#,;:. The elements oiZSl+1 Rearranging gives us the desired result. -

are then also distinct and contain all the even intege®s,in,

leaving a residue o2 modulo4. Corollary 9. There is no lattice tiling o> by (ki k_,2)-
We are then left with all the multiples df in Z ;.1 which quasi-crosses.

form a group isomorphic t&,;, and thus, by the induction  pyoof: |t is easily verifiable that for ang < k_ < k..,

hypothesis, are split byyl and4S,;.
A simple counting argument shows thad| = 3, |S,| = 2k (k- +1) - k2 <9

41 and therefordM||S;| + 1 = |Z,|. It follows that M ki +k- '

and Sg split Z,, and form a tiling. ] ]
We observe that in this case, since the elementdicdre In the following theorem and corollary we can restrict the

not co-prime tot, extending the matrix method from [10] doesarm lengths of quasi-crosses that lattice-TR&.



Theorem 10. For anyn > 2, if a lattice tiling of R" by Rearranging the two sides gives us
(k+,k_,n)-quasi-crosses exists, then < n — 1. k
ke<n—1-— ——
Proof: Let 0 < k- < k4, and letM = [—k_, k4]*. " ke +k_
Assume there is a splitting of an Abelian groGpby M and 4 sinced < k_ < k.., necessarilyc_ < n — 2.

§ = {s1,...,sn} which induces a lattice tiling ofk, k—, )- Case 2:If i # j, thenx; # x;. Thus, the number of distinct

quasi-crosses, i.jG| = n(k+ +k-) +1. _ values does not exceed their range, and we get
We first contend that for all < i < n there are integers;

andy; such that n_1< V(k++k—)+1J ks
h k- +1 ’
) n(ky+k_)+1
ke +1<x < { k—+1 J Rearranging this we get
lyil < k- L enn 1
s1%; +siy; = 0. - ST +k+—1'
To prove this, fixi and let us look at the integers If k > 2 then, by the abovek_ < n — 1. If, however,
(ks +k_) +1 ky =2, thenk_ =1 and obviouslyk_ <n —1. [ ]
0<a < k_+1 ’ 0<a2<k- Corollary 11. For anyn > 3, if a lattice tiling of R" by
] (k4 k—,n)-quasi-crosses exists akd > 5 — 1, then
and the sums;a; + s;a,. Since ,
3n i
nlky +k-)+1 k. <15 n is even,

Q raprs B A TN\ 2ty s odd,
>nlkr+k_)+1—ko +k_+1 Proof: By Theoreni8, a necessary condition for a lattice
=n(ky+k_)+2> |G tiling to exist is that

by the pigeonhole principle th ist two distinct pab 2k (k- +1) - k2
y the pigeonhole principle there exist two distinct paliis b, <n
andcy, c», such that ki + k-
s1by +s;by = 0 5161+ 5icy = 0. or after rearranging,

ki(2k-+1)—n) <k +nk_.

If k- > 5 —1, the left-hand side is positive and we get

Assume w.l.o.g. thab; > ¢; and define

d1:b1—61 dzzbz—CZ.
K2 +nk_
We now getsdy + sjda = 0, where (dq,d2) # (0,0). In ki < 2](—71
addition, (k-+1)—n
n(ke +k_)+1 We need to maximizé ., and by Theorern 10 we can restrict
0<d; < {WJ p |da| <k-. ourselves td_ < n — 1. The maximum is achieved &t =
B _ for n even, and ak_ = ”T‘l for n odd. Substituting back into

If 0 < dy < ky thensydy = —s;d, contradicts the fact tha#f  the bound ork,. gives the desired result. [ |

and M split G. Thus, o )
B. Restrictions on the Split Group
n(k+ + k,) +1 .. . .
1| We now turn to examining connections betwe(?n_propertles
- of the Abelian group being splitz, and the multiplier and
which proves our claim regarding the existencexpfindy;. splitter setsM andS. We shall eventually show, as a special
For the rest of the proof we distinguish between two casesase of the theorems presented, that (b, n)-quasi-cross
Case 1:There existi # j such thatr; = x;. In that case tilesIR” only with the parameters of Construct{dn 3. We follow
the notation and definitions of [13].

k++1<d1<{

0 = s1x; + siy; = s1Xj + sjy; L - .
_ ) Definition 12. Let G be a finite Abelian group, and Il and
in which case = s;y; = s;y;. However,—k_ <y, y; <k- g pe the multiplier and splitter sets forming a splitting @f
and to avoid contradicting the splitting, necessagily= y; =  we say the splitting ison-singulaif ged (|G|, m) = 1 for all
0. It follows thats;x; = 0. We now note that m € M. Otherwise, the splitting is callesingular If for any
—k_sy,..e,—51,0,50,. . ki primep dividing thg order oG there is somer < M such that
p|m, then the splitting is callegurely singular
are all distinct, and so the order of in G is at leastk +

k_ +1, but has to divider;. Hence, Given a finiteM C Z and some prime € IN, we denote

by 6, (M) the number of elements @¥l divisible by p. The
n(ky +k-)+ 1J following is an adaptation of [13, p. 75, Corollary 2] for eira

ey th-+1<xs { k_+1 crosses, which is required for Theorém 14.



Lemmal3.Let M = [—k_, ki]* be the multiplier set of the Proof: Assume such a splitting exists, thgod (g, m) =
(k+,k—,n)-quasi-cross. Assuntd andS are a purely-singular 1 for all m € M, and in particulaged (g, k) = 1, contradicting

splitting of a finite Abelian groufis. Thens,(M) > |M| /p* TheoreniIb. [ |
for any prime divisolp of |G|. Theorem 17.Let M = [-2% 4 1,2%]* be the multiplier set of

Proof: Since the splitting is non-singular, for any primethe (2¥,2% — 1,n)-quasi-crossw € N. If M splits Z,; then
divisor p of |G|, p divides somem € M = [~k ki]*. g =2+ for somer € N.

o .
Necessarilyp < k.. Let us assume Proof: By Theoreni Ib and Corollafy 18/ cannot split

ko =q-p+r_ ki =q+p+rs Z4 non-singularly anged(g,2%) # 1, i.e.,q is even. Denote
= 2, with ,7 € N, ¢ odd.

where0 < r_, < p. We would like, therefore, to prove ) o
F=T+ = F P Let S be the splitter set. Because of the splitting, every odd

that X . .
ky + k- number inZ, is represented uniquely ass, m € M, s € S,

5P(M) =4+ tq-= p? wh/erem ands are odd. There ar@“’/ odd numbers inM and
t2"~1 odd numbers irZ,, so2?|t2" ~1 implying ¥’ > w + 1
and the existence of exactip” —(@+1) odd numbers irs.

After rearranging, this is equivalent to proving that

paL+pg- > = Tr- Multiplying the odd numbers irs by the elements oM
p—1 covers e‘xactlyzwfZ numbers inZ,; having a residue of'
This obviously holds sincg > 2, g+ > 1, andry,r— < modulo2/*1, for all 0 < i < w. The only, thus far, uncovered
p—1,so numbers inZ, are those having residue modul@”*!. These
Py +pg. 2> T4 +§f, form a group |somorph|c t(Zq/zw.H. We also conclude that
p= all even numbers ir$ leave a residue od modulo2¥+1,
proving the claim. ] We can therefore takﬁq/zwﬂ and all the even numbers
Having proved Lemma 13, the following theorem framl[13pf S divided by 2¢*! and repeat the argument above. We
directly follows with the exact same proof. concludeg = 2"(®+1) for somer € IN. Also, the repetition

Theorem 14.[13, p. 75, Theorem 9] LeMl = [—k_,k]|* be of the above argument repeatedly dividgsby 2w+l and

the multiplier set of thék ., k_, n)-quasi-cross. IM splitsG, ~Stops when we reach the fact thett splits Z;, t odd. This is
thenM splitsZ,g,. impossible by Theoreiln 15 unless= 1, which completes the

o . . roof. ]
Theoreni 1k is important since now, to show the emstengeAS a special case of the above theorems, we reach the

or nonexistence of a lattice tiling ¢k, k_, n)-quasi-crosses, following claim
it is sufficient to check splittings a¥.,,. We shall now do ex- '
actly that, and reach the conclusion tht1, n)-quasi-crosses Corollary 18. The (2,1, n)-quasi-cross lattice-tileR" only
lattice-tile R” only with the parameters of Constructibh 3. Wwith the parameters of Constructi@n

Theorem 15.Let M = [—(k — 1),k|* be the multiplier set of Proof: Simply apply Theoreni_17 withw = 1 and
the (k, k — 1,n)-quasi-crosss > 2. If M splits a finite Abelian compare with the parameters of Construcfion 3. u
groupG, |G| > 1, thenged(k, |G|) # 1.

Proof: By Theoreni I# we may assunie= Z;. Denote  \ve considered lattice tilings aR" by (k,k_,n)-quasi-
the splitter setS = {s1,s,...,sn}. It is easily seen that if ;;5qes. These lattices form perfect codes correctinggesin
ged(f,q) =1, then(S is also a splitter set. Since= s for  gpor with limited magnitudes, and k_ for positive and
somem € M ands € S, thenged(m,q) = 1 and1 € mS. neqative errors, respectively. We have seen how thesedatti
We can therefore assume, w.l.o.g., that=1 € S. tilings are equivalent to certain group splittings, and éntain

SinceM andS split Z,, theng > 2k. If g = 2k the claim  ,qeq (when the group is cyclic), to modulr sequences.
of the theorem trivially holds. Assume then that- 2k. Let  \ye provided two constructions which may be used recur-
us consider the unique factorization efc = ms;, m € M gjely to build infinite families of such lattice tilings fany
ands; € S. We note that ify > 2k, then —k  m (mod )  given rational balance ratigh = k_ /k. . We also specifically

V. CONCLUSION

for all m € M, and sos; 7 s;. constructed an infinite family of lattice tilings for the, 1, 1)-
If —(k—1) <m<k—1,then—m € M as well, and so quasi-cross.
k = —ms; = ks, and sincek € M, we get a contradiction

We followed by studying bounds on the parameters of such
lattice tilings, showing bounds connectikg, k_, andn. We
. also examined restrictions on group splitting, and conetud
then we can divide by and gets; = —1. Butthen—1=1- ,:5,,9h a special case of the theorems presented(2hBn )-
si = (=1) - 51, wherel, —1 € M, and we get a contradiction g ,asi_crosses lattice-tilR" only with the parameters of the
to the splitting again. It follows thaged(k, q) # 1. B Construction presented earlier.
Corollary 16. There is no non-singular splitting @, by M = We conclude with a computer search looking for lattice
[—(k—1),k]*. tilings of (k4,k_,n)-quasi-crosses. It was found that for all

to the splitting. The only remaining option is that= k, and
—k = ks;. If we assume to the contrary thgtd(k,q) = 1,



0 < k- < k4 < 10and split groups = Z, of orderg < 100,
that only lattice tilings with the parameters of the constians
provided in this paper exist.
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