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Abstract
A general formalization is given for asynchronous multiple access channels which admits different assumptions on

delays. This general framework allows the analysis of so far unexplored models leading to new interesting capacity
regions. The main technical result is the single letter characterization for the capacity region in case of 3 senders,
2 synchronous with each other and the third not synchronous with them.
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1 Introduction
Ahlswede [1] and Liao [12] showed that if two senders communicate synchronously over a discrete memoryless multiple
access channel (MAC) which is characterized by a stochastic matrix W (y|x1, x2), it is possible to communicate with
arbitrary small average probability of error if the rate pair is inside the following pentagon:

0 ≤ R1 ≤ I(X1 ∧ Y |X2)

0 ≤ R2 ≤ I(X2 ∧ Y |X1)

R1 +R2 ≤ I(X1, X2 ∧ Y ) (1)

for some independent input random variables X1, X2, where P (Y = y|X1 = x1, X2 = x2) = W (y|x1, x2). Moreover,
the convex hull of the union of these pentagons can also be achieved, via time sharing, while no rate pair outside this
convex hull is achievable.

The discrete memoryless asynchronous multiple access channel (AMAC) arises when the senders can not synchronize
the starting times of their codewords, rather, there is an unknown delay between these starting times. Cover, McEliece
and Posner [3] showed that if the delay is bounded by bn depending on the codeword length n such that bn

n → 0 then
the convex closure is still achievable by a generalized time sharing method.

Poltyrev [15] and Hui and Humblet [11] addressed models with arbitrary delays known (in [15]) or unknown (in
[11]) to the receiver. For such models, the capacity region was shown to be the union of the pentagons above although
with some gaps in the proofs, see Appendix A. Verdú [18] studied asynchronous channels with memory. His model
slightly differs from common models: the time runs over a torus rather than from −∞ to ∞. Later, Grant, Rimoldi,
Urbanke and Whiting in [8] showed that in the informed receiver case the union can be achieved by rate splitting and
successive decoding. The gap in the achievability proof of [11] for the uninformed receiver case has been filled in the
book of El Gamal and Kim [7].

This paper is an extended version of the ISIT 2011 contribution [5], originating from the authors’ effort to derive the
AMAC capacity region without gaps in the proof (the result in [7] was unknown to us at the time, as was, apparently,
to the reviewers of [5]). More than doing that, in [5] a general formalization for AMACs was introduced, allowing
dependence of the capacity region on the distribution of the delays, typically through the support of that distribution.
For a particular (somewhat artificial) choice of the delay distribution, the capacity region was determined, providing
the first example that the capacity region could be strictly between the union and its convex closure.

The main technical result of this paper is new compared to [5]. It is a single letter characterization of the capacity
region for 3 senders, two synchronized with each other and the third unsynchronized with them.

In section 2 we give the formal description of the AMAC model, where several possible definitions are given, which
are analyzed in parallel. In Section 3 a general converse is presented. This converse is used when capacity region of
known (in section 4) and previously unknown (in sections 5 and 6) models are derived.

Our achievability proofs rely on the techniques of rate splitting and successive decoding developed by Grant,
Rimoldi, Urbanke, Whiting [8] and Rimoldi [13].

∗It has been presented in part at ISIT 2011, Saint Petersburg. Lóránt Farkas is with the Department of Analysis, Budapest University
of Technology and Economics, e-mail: lfarkas@math.bme.hu. Tamás Kói is with the Department of Stochastics, Budapest University of
Technology and Economics and with the MTA-BME Stochastics Research Group, e-mail: koitomi@math.bme.hu.
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2 Model of coding for the AMAC
In this paper vectors (finite sequences) will be denoted by boldface symbols. Furthermore, [i] denotes {1, 2, . . . , i}.

A K-senders asynchronous discrete memoryless multiple-access channel (K-AMAC) is defined in terms of K finite
input alphabets Xi, i ∈ [K], a finite output alphabet Y, and a stochastic matrixW : X1×X2×· · ·×XK → Y describing
the probability distribution of the output given the inputs.

Definition 1. A codebook system of block-length n with rate vector R = (R1, R2 . . . , RK) for a given K-AMAC W
consists of K codebooks C1, C2, . . . , CK , where the codebook Cm of the m-th sender has 2nRm codewords of length n
whose symbols are from Xm.

The system is symbol synchronized but not frame synchronized. The differences between the timing of the receiver
and the timings of the senders are represented by a K-tuple of delays as in Definition 3.

The senders have two-way infinite sequences of random messages, and assign codewords to their consecutive
messages. The codewords go through the channel. The sequences of the senders’ codewords and hence also the
output symbol sequence are two-way infinite sequences. Fix the location of the 0-th output symbol. The message of
sender m ∈ [K] whose codeword affects the 0’th output is denoted by Mm,0. This restricts the delays to be in the set
{0, 1, . . . , n− 1}. Formally, we use the following definitions:

Definition 2. For each integer j ∈ Z and for each m ∈ [K] let Mm,j be a uniformly distributed random variable
taking values in the set {1, 2, . . . , 2nRm}. All these random variables are independent of each other. The two-way
infinite sequence {Mm,j , j ∈ Z} represents the message flow sent by the m-th sender. For each integer j ∈ Z and for
each m ∈ [K] let Xm,j denote the Mm,j-th codeword in the codebook of sender m. Let Xm,nj+i be the i-th symbol of
Xm,j where i ∈ {0, 1, . . . , n− 1}.

Definition 3. For each n ∈ Z+, let
D(n) = (D1(n), D2(n), . . . , DK(n))

be a K-tuple of random variables, not necessarily independent of each other but independent of all previously defined
random variables, taking values in the set {0, 1, . . . , n− 1}. Dm(n) will represent the delay of sender m relative to the
receiver’s timing. The joint distribution of delays is known to the senders and the receiver. The realizations of the
random variables D1(n), D2(n), . . . , DK(n) are not known to the senders and, depending on the model, may be known
or unknown to the receiver. The sequence D = {D(1),D(2), . . . ,D(n), . . . } will be called the delay system. With a
slight abuse of notation, we also write D instead of D(n).

Remark 1. Our definition allows arbitrary distributions for the delays for each blocklength n. Clearly, in practical
models these distributions can not be arbitrary, but have to satisfy consistence conditions. We have chosen this general
model since we think that any practical model can be described this way.

Example 1. For each n ∈ Z+ and for each m ∈ [K] Dm(n) has uniform distribution on {0, 1, . . . , n − 1} and they
are independent. Following [11] it is called the totally asynchronous case in the paper.

Example 2. Let K = 2, for each n ∈ Z+ let D1(n), D2(n) be independent random variables uniformly distributed on
the even numbers of {0, 1, . . . , n− 1}. It is called the even delays case in the paper.

Example 3. Let K = 3, for each n ∈ Z+ let D1(n) = D2(n) be a random variable uniformly distributed on
{0, 1, . . . , n−1} and let D3(n) be a random variable independent of D1(n) and uniformly distributed on {0, 1, . . . , n−1}.
It is called the partly asynchronous three senders case in the paper.

For fixed n, the output sequence is defined as follows:

Definition 4. Let Ynj+i be the output random variable of the channel with transition matrix W when the inputs are
X1,nj+i+D1(n), X2,nj+i+D2(n), . . . , XK,nj+i+DK(n) where i ∈ {0, 1, . . . , n− 1}.

It is possible to define the decoder in several ways. We will consider two different definitions, which give the
strongest version of the converse and direct parts of the coding theorems, respectively.

Definition 5. An informed infinite decoder is defined as a function which assigns to each two way infinite output
sequence realization {yl, l ∈ Z} and each realization of D(n) = (D1(n), D2(n), . . . , DK(n)) , n ∈ Z+, a K-tuple of
messages {m̂m,0,m ∈ [K]}.

Definition 6. An uninformed L-block decoder, L ∈ Z+, is defined as a function which assigns to each (2Ln+ 1)-tuple
{yl, l ∈ {−Ln, . . . , 0, . . . , Ln}} of possible output realizations a K-tuple of messages {m̂m,0,m ∈ [K]}.
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Figure 1: The Setting for Two Senders

The codebooks and the decoder form an n-length coding/decoding system.
The definitions above determine the probability structure of the model. For each m the random variable sequence

{Mm,j , j ∈ Z} is the two way infinite message flow of the m-th sender. The corresponding flow of codewords is
{Xm,j , j ∈ Z}. The flows of the senders, the channel transition and the delay system D, define a two way infinite
output random variable sequence {Yl, l ∈ Z}. In case of uninformed L-block decoder the receiver examines the output
block Y−Ln, Y−Ln+1, . . . , Y0, Y1, . . . YLn from which estimations {M̂m,0,m ∈ [K] are created. In case of an informed
infinite decoder the whole output sequence and the realizations of delays are used in the estimations {M̂m,0,m ∈ [K]}.
It is assumed that the same but shifted decoding procedure occurs at the output points {nk, k ∈ Z}. Hence the
random variables of the estimations {M̂m,j ,m ∈ [K] , j ∈ Z} are also defined. See Fig. 1. for this model, in case
K = 2.

We will consider two different error definitions. As standard for multiple-access channels, both errors are average
error over messages. However, our first error type also involves averaging over delays, while the second one takes
maximum over the possible delays. In this paper, the terms average error and maximal error will be used as defined
below.

Definition 7. The average error is the following:

Pne = Pr

{
K⋃
m=1

{
Mm,0 6= M̂m,0

}}
. (2)

Definition 8. The maximal error is the following:

Pne (∗) = max
d(n):Pr{D(n)=d(n)}>0

Pr

{
K⋃
m=1

{
Mm,0 6= M̂m,0

}
|D(n) = d(n)

}
. (3)

Remark 2. The average error depends on the joint distribution of delays (D1(n), D2(n), . . . , DK(n)), while the maximal
error depends on the joint distribution of the delays only through its support.

Remark 3. The two kinds of error are related very closely. If Pne (∗)→ 0 then Pne → 0. On the other hand, if Pne → 0
exponentially as n → ∞ and if mind(n):Pr{D(n)=d(n)}>0 Pr {D(n) = d(n)} tends to 0 slower than exponentially then
also Pne (∗)→ 0 exponentially.

We have defined several types of models according to the various definitions of decoder and of error. For the sake
of brevity, the following definition is meant to define a capacity region simultaneously for all cases. Here, in case of
L-block decoder, a proper choice of L is understood. In particular cases, a suitable L will be specified, not entering
the question whether a smaller L would also do.

Definition 9. Corresponding to the delay system D, the rate vector (R1, R2, . . . , RK) is achievable if for every ε > 0,
δ > 0 for all N ∈ Z+ there exists a coding/decoding system with blocklength n > N with rates coordinate-wise exceeding
(R1 − δ,R2 − δ, . . . , RK − δ) and with error less than ε. The set of achievable rate vectors is the capacity region of the
K-AMAC.
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Remark 4. In the definition above we used the ’optimistic’ definition of capacity region, rather than the more usual
’pessimistic one’, see [4]1. The reason is that in the even delays case there are differences in the performance of
coding/decoding systems of even and odd blocklength (see Theorem 4).

Remark 5. If for some region achievability is proved in case of uninformed L-block decoder with maximal error, and
the converse is proved in case of informed infinite decoder with average error, then for any combination of the model
assumptions above the capacity region is equal to this region.

Lemma 1. For either type of AMAC model, if D and D′ are two delay systems such that for some 0 < α ≤ 1 for all
n ∈ Z+ and d(n) ∈ {0, 1, . . . , n− 1}K

Pr {D′(n) = d(n)} ≥ αPr {D(n) = d(n)} , (4)

then the capacity region under delay system D′ is contained (perhaps strictly) in the capacity region under delay system
D.

Proof: Consider an arbitrary n length coding/decoding system. Then Pne,D′(n) ≥ αP
n
e,D(n) and P

n
e,D′(n)(∗) ≥ P

n
e,D(n)(∗)

hold, where the lower indices indicate the underlying delay system. This proves the lemma. �

Remark 6. In case of any type of decoder, if two delay systems D and D′ have the same support set for each n, then
the capacity regions corresponding to delay systems D and D′ coincide in case of maximal error. Furthermore, if the
equation (4) is fulfilled by D and D′ and it is also fulfilled when the roles of D and D′ are reversed, then by Lemma
1 the capacity regions also coincide in case of average error.

3 A general converse
In this section a general converse theorem is proved, which depends on the delay system. In the following sections,
this general converse is used to derive the capacity region of special cases.

For all subset S of [K] write
XS = (Xi)i∈S , Sc = [K] \ S, (5)

and for all R = (R1, R2, . . . , RK) write
R(S) =

∑
i∈S

Ri. (6)

Let D denote the delay vector. Let XB,i+DB denote the random vector with components Xl,i+Dl , l ∈ B where B
⊂ [K] and Xm,j is defined as in definition 2; similar notation is used where + is replaced by ⊕ which means addition
modulo n.

Theorem 1. For any n length coding/decoding system for a K senders AMAC W with informed infinite decoder, the
following bounds hold for the rate vector R = (R1, R2, . . . , Rk) for all S ⊂ [K]:

R(S) ≤ I(XS,Q⊕DS ∧ ỸQ|XSc,Q⊕DSc , Q,D) + εn. (7)

Here εn = (R([K]))Pne + 1
n , the random variable Q is uniformly distributed on {0, 1, . . . , n− 1} and independent of D

and the message flows of the senders. Further, ỸQ is linked to the random variables X1,Q⊕D1
, X2,Q⊕D2

, . . . , XK,Q⊕DK
through the channelW ; formally, its conditional distribution given Q,D and X1,Q⊕D1

, X2,Q⊕D2
, . . . , XK,Q⊕DK depends

only on the values x1, x2, . . . , xK of the latter random variables and is equal to W (·|x1, x2, . . . , xK).

Remark 7. Theorem 1 will be used for sequences of coding/decoding systems with Pne → 0. In this case εn also tends
to 0.

Proof: For the sake of clarity just the two senders special case is addressed here, the full proof of Theorem 1 can be
found in Appendix B. In case of two senders the bounds (7) are:

R1 ≤ I(X1,Q⊕D1
∧ ỸQ|X2,Q⊕D2

, Q,D1, D2) + εn (8)

R2 ≤ I(X2,Q⊕D2 ∧ ỸQ|X1,Q⊕D1 , Q,D1, D2) + εn (9)

R1 +R2 ≤ I(X1,Q⊕D1
, X2,Q⊕D2

∧ ỸQ|Q,D1, D2) + εn (10)

Note that nεn = n(R1 +R2)P
(n)
e + 1. Hence

nεn ≥ H(M1,0,M2,0|M̂1,0, M̂2,0) (11)

by Fano’s inequality.
1In short, in the ’optimistic’ definition it is enough to show that there is a "good" coding/decoding system for a sequence of blocklength

nk →∞.
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Figure 2: The random variables that play role in the bound on the sum R1 +R2

We just bound R1 +R2. The bounds for R1 and R2 can be derived similarly (See also Appendix B).
Take a window of the receiver consisting of N + 1 n-length blocks YN+1 = {Y0, Y1, . . . Yn(N+1)−1}. This window

fully covers the code-blocks X1,1,X1,2, . . . ,X1,N of sender 1 and X2,1,X2,2, . . . ,X2,N of sender 2, denoted by XN
1

and XN
2 respectively. The codewords at the sides of the output window are X1,0,X2,0,X1,N+1,X2,N+1, denote this

quadruple by Xsw (the expression "side of the windows" is abbreviated by the index sw). Then we have

Nn(R1 +R2) = H(MN
1 ,M

N
2 ) (12)

= I(MN
1 ,M

N
2 ∧ M̂N

1 , M̂
N
2 ) + H(MN

1 ,M
N
2 |M̂N

1 , M̂
N
2 ) (13)

≤ I(MN
1 ,M

N
2 ∧ M̂N

1 , M̂
N
2 ) +

N∑
i=1

H(M1,i,M2,i|M̂1,i,M2,i) (14)

≤ I(MN
1 ,M

N
2 ∧ M̂N

1 , M̂
N
2 ) +Nnεn (15)

≤ I(XN
1 ,X

N
2 ∧YN+1,Xsw, D1, D2) +Nnεn (16)

where (15) comes from (11) and (16) comes from the Markov relation

(MN
1 ,M

N
2 ) 
 (XN

1 ,X
N
2 ) 
 (YN+1,Xsw, D1, D2)



 (YN+1,Yc, D1, D2) 
 (M̂N
1 , M̂

N
2 ). (17)

Note that in [5] the Markov relation (XN
1 ,X

N
2 ) 
 (YN+1, D1, D2) 
 (YN+1,Yc) was assumed, which need not

hold in general. It seems that Poltyrev [15] also made this error.
Continuing the estimations (12)-(16),

Nn(R1 +R2) ≤ I(XN
1 ,X

N
2 ∧YN+1,Xsw, D1, D2) +Nnεn (18)

= H(XN
1 ,X

N
2 ) +Nnεn −H(XN

1 ,X
N
2 |YN+1,Xsw, D1, D2) (19)

= H(XN
1 ,X

N
2 |D1, D2) +Nnεn −H(XN

1 ,X
N
2 |YN+1, D1, D2)

+ H(XN
1 ,X

N
2 |YN+1, D1, D2)−H(XN

1 ,X
N
2 |YN+1,Xsw, D1, D2) (20)

= I(XN
1 ,X

N
2 ∧YN+1|D1, D2) +Nnεn + I(Xsw ∧XN

1 ,X
N
2 |YN+1, D1, D2) (21)

≤H(YN+1|D1, D2)−H(YN+1|XN
1 ,X

N
2 , D1, D2) + 4n log |X |+Nnεn (22)

= H(YN+1|D1, D2) + 4n log |X |+Nnεn

−
N∑
j=0

n−1∑
i=0

H(Ynj+i|Ynj+i−1
0 XN

1 ,X
N
2 , D1, D2) (23)

≤
(N+1)n−1∑

j=0

H(Yj |D1, D2) + 4n log |X |+Nnεn

−
N−1∑
j=1

n−1∑
i=0

H(Ynj+i|X1,nj+i+D1 , X2,nj+i+D2 , D1, D2). (24)

In (24) we dropped some negative terms (notice that j runs from 1 to N − 1). Introduce the random variable Ỹi
linked to the random variables X1,i⊕D1 ,X2,i⊕D2 by the channel W for all i ∈ {0, 1, . . . , n − 1}, where ⊕ denotes the
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addition modulo n. For all j the joint distribution of (D1, D2, X1,nj+i+D1
, X2,nj+i+D2

, Ynj+i) is the same as the joint
distribution of (D1, D2, X1,i⊕D1 , X2,i⊕D2 , Ỹi). Using this substitution, (24) can be further bounded from above by:

≤(N − 1)

n−1∑
i=0

H(Ỹi|D1, D2) + 2n log |Y|+ 4n log |X |

− (N − 1)

n−1∑
i=0

H(Ỹi|X1,i⊕D1X2,i⊕D2 , D1, D2) +Nnεn (25)

=(N − 1)

n−1∑
i=0

I(X1,i⊕D1 , X2,i⊕D2 ∧ Ỹi|D1, D2) +Nnεn + 4n log |X |+ 2n log |Y|. (26)

Dividing by nN and introducing the random variable Q uniformly distributed on {0, 1, . . . , n−1} and independent
of the others we get:

R1 +R2 ≤

≤N − 1

Nn

n∑
i=1

I(X1,i⊕D1
, X2,i⊕D2

∧ Ỹi|D1, D2) + εn +
2 log |Y|
N

+
4 log |X |

N
(27)

≤N − 1

N
I(X1,Q⊕D1

, X2,Q⊕D2
∧ ỸQ|Q,D1, D2) + εn +

2 log |Y|
N

+
4 log |X |

N
(28)

If N →∞ then

R1 +R2 ≤ I(X1,Q⊕D1
, X2,Q⊕D2

∧ ỸQ|Q,D1, D2) + εn. (29)

�

Corollary 1. Under the assumptions of Theorem 1 the following bounds hold in the 2-senders case:

R1 ≤ I(X1,Q ∧ ŶQ|X2,Q	D, Q,D) + εn (30)

R2 ≤ I(X2,Q	D ∧ ŶQ|X1,Q, Q,D) + εn (31)

R1 +R2 ≤ I(X1,Q, X2,Q	D ∧ ŶQ|Q,D) + εn. (32)

Here Q is uniformly distributed on {0, 1, . . . , n− 1} and independent of D1, D2 and the message flows of the senders,
	 denotes the subtraction modulo n, D = D1 	D2 is the relative delay between the two senders and ŶQ is linked to
X1,Q, X2,Q	D through the channel W .

Proof: Expand the right sides of the equations (8),(9),(10) as sums for the possible values of Q,D1, D2, e.g.

I(X1,Q⊕D1
, X2,Q⊕D2

∧ ỸQ|Q,D1, D2) =

=
∑
q

∑
d1

∑
d2

1

n
· Pr(D1 = d1)Pr(D2 = d2) I(X1,q⊕d1 , X2,q⊕d2 ∧ Ỹq,d1,d2). (33)

Substituting q′ = q ⊕ d1 and d = d1 	 d2, and renaming q′ to q, the Corollary is proved. �

4 Known capacity regions with a new insight

4.1 The asynchronous one-sender model
In this section the asynchronous model from section 2 is analyzed where there is just one sender (K = 1). This will
provide the basics for the decoding method of the K-AMAC in general.

In case of K = 1, W : X → Y denotes a classical DMC. For the sake of clarity, we omit from the notations
of Section 2 the index corresponding to the unique sender. Let {x(1),x(2), . . . ,x(M)} denote the codewords of the
codebook of the sender, whereM = 2nR is the number of codewords in the codebook of the sender. The coordinates
of x(i) are denoted by (x0(i), x1(i), . . . , xn−1(i)).

The difference between this model and the classical one is that the task of the receiver is not just decoding the
codewords but also to find the beginning of the codewords. Note that related problem have been considered in the
literature, for example in [17, 16]. The known results, however, do not directly apply for our purposes.

Theorem 2. For each version of the model the capacity region of the one sender asynchronous model is the same as
that of the classical model: [0,maxp(I(p,W ))], in case of arbitrary delay system.
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Remark 8. It has crucial importance in the proof of Theorems 3 and 5 that in the achievability proof below, beyond
decoding the codewords, the receiver also finds out the delay of the sender.

Proof of Theorem 2: The converse part follows from Theorem 1.
In order to prove the direct part it is enough to restrict attention to uninformed L-block decoder and to maximal

error; actually L = 1 suffices. Classical random argument is used. Let p be an arbitrary distribution over the input
alphabet X . Chose the symbols of codewords in the codebook of rate 0 < R < I(p,W ) independently according to p.
Let Pn(xn,yn) be the joint distribution on Xn × Yn induced by the n-th power of p and by the memoryless channel
W . Let qn be the marginal of Pn on Yn. We define the decoder as follows. In order to estimate the 0-th sent message
M1,0, the receiver first examines the n-tuple of outputs (Y−n+1, Y−n+2, . . . , Y0), then it examines the next n-tuple
(Y−n+2, Y−n+3, . . . , Y1), etc. until the n-tuple (Y0, Y1, . . . Yn−1). The estimate will be M̂1,0 = s if among the examined
n-tuples there is a unique one denoted by Y n, for which ((X0(s), X1(s), . . . , Xn−1(s)), Y n) belongs to the typical set

Sδn :=

{
(xn,yn) :

∣∣∣∣ 1nlog Pn(xn,yn)

pn(xn)qn(yn)
− I(p,W )

∣∣∣∣ ≤ δ} , (34)

and also this s is unique.
It can be assumed that M1,0 is fixed, say M1,0 = 1. It is clear from the classical channel coding theorem that

if the decoder examines an n-tuple Y n which is the output of the whole codeword X(1), then the decoder will find
X(1) but no other codewords jointly typical with Y n, with probability exponentially close to 1. Hence we only have
to discuss the cases when the decoder examines output symbols in a window of length n, in which one part of the
channel input symbols are coming from the 1st codeword and the other part from another codeword r. The probability
that M1,−1 or M1,1 is equal to 1 is exponentially small. Hence it can be assumed that r 6= 1. Furthermore, it can
be assumed that the input window starts with the r′th codeword as the opposite case is similar. Hence, the channel
input symbols in the examined output window can be written as (Xn−l(r), . . . , Xn−1(r), X0(1), . . . , Xn−l−1(1)) for
some r ∈ {1, . . . ,M}, n > l > 0, r 6= 1. We will show that the probability of incorrectly recognizing typicality in this
window is small. The probability, conditioned on the previously presented structure of the examined window, that
the s’th codeword will be typical with this examined output n tuple can be written as:

Prcond
{

(X1(s), . . . , Xn(s), Y1, . . . , . . . , Yn) ∈ Sδn
}

=
∑

(xn(s),yn)∈Sδn

pn(xn(s)) · Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} (35)

=
∑

(xn(s),yn)∈Sδn

pn(xn(s))
qn(yn)

qn(yn)
Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} (36)

≤
∑

(xn(s),yn)∈Sδn

2−n(I(p,W )−δ)Pn(xn(s),yn)

qn(yn)
Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} (37)

= 2−n(I(p,W )−δ)
∑

(xn(s),yn)∈Sδn

Pn(xn(s)|yn)Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} . (38)

In the above derivation the definition of the set Sδn is used, and in the last equation Pn(xn(s)|yn) denotes the
conditional probability induced by the joint distribution Pn. At this point we have to use the structure of the examined
window. It is known that in this window the second part of the r-th codeword and the first part of the 1st codeword
were sent. We should distinguish three cases: {s 6= r, s 6= 1}, {s 6= r, s = 1}, {s = r, s 6= 1}. The first case follows
from the fact that Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} is equal to Prcond {(Y1, . . . , Yn) = yn}. The
remaining two cases can be treated very similarly. For the sake of brevity we will demonstrate the case {s 6= r, s = 1}
when the expression (38) is bounded from above by(

2−n(I(p,W )−δ)
)
·

∑
xn(r)∈Xn

pn(xn(r))
∑

(xn(1),yn)∈Xn×Yn

[
n−1∏
h=0

P (xh(1)|yh)

]
·

·

[
l−1∏
h=0

W (yh|xn−l+h(r))

][
n−1∏
h=l

W (yh|xh−l(1))

]
. (39)

Sum in the following order: xn−1(1), yn−1, xn−2(1), yn−2, . . . , xl(1), yl, we get the following expression:(
2−n(I(p,W )−δ)

)
·

∑
xn(r)∈Xn

pn(xn(r))
∑

(xl(1),yl)∈X l×Yl

[
l−1∏
h=0

P (xh(1)|yh)

]
·

·

[
l−1∏
h=0

W (yh|xn−l+r(r))

]
= 2−n(I(P,W )−δ). (40)
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Indeed, the inner sum is equal to 1, because its terms may be regarded as a joint distribution of a memoryless channel
with inputs yi and outputs xi(1).

In the above derivation we demonstrated that the probability that the receiver finds the s-th codeword typical
with an output n tuple whose input symbols consist of two different codewords, can be bounded from above by
2−n(I(p,W )−δ). Using the union bound over all codewords and over all the n tuples examined by the decoder, gives
that the probability of recognizing one of the codewords in a window where the inputs are from two different codewords
is less then nM2−n(I(p,W )−δ).

The above argument shows that the maximal error over delays of the random code is exponentially small in n.
Hence there exists a sequence of deterministic coding-decoding systems with exponentially small maximal error over
delays. Optimizing the distribution P , we can see that maxp I(p,W ) is achievable. �

Remark 9. Cases {s 6= r, s = 1}, {s = r, s 6= 1} are the main difficulties in this proof. The tricky summation in
equation (39) which solves these difficulties is adopted from Gray [9].

Remark 10. Note that using [9] a stronger result can be proved: any sequence of deterministic codes which work well
for the classical channel coding model, can be modified to work well for the asynchronous model. Namely, if the same
random sync sequence of length k ≈ log2(n) is appended to each of the original codewords, then with probability
tending to 1 it is possible to detect the sync sequence and decode the original codewords. This is how Theorem 2 was
proved in the first version of the paper. The authors are indebted to anonymous reviewers for pointing out that the
proof becomes somewhat simpler if no sync sequence is used.

4.2 The totally asynchronous case
From this point on, the paper strongly relies on the results of [8] and [13]. Though the reader is assumed familiar with
the concepts of successive decoding and rate splitting, the basics will be summarized below.

Let W be a channel with K senders.

Definition 10. The convex polytope R [W ; p(x1, x2, . . . , xK)] is the set of rate tuples R ∈ (R+)K such that

R(S) ≤ I(XS ∧ Y |XSc) , S ⊆ [K] , (41)

where the joint distribution of X1, X2 . . . , XK is p(x1, x2 . . . , xK) and Y is connected to X1, X2, . . . , XK by the channel
W .

Definition 11. Let C denote the following set:

C :=
⋃

pX1
×pX2

×···×pXK

R [W ; pX1
× pX2

× · · · × pXK ] (42)

where the union is over all product distributions.

Definition 12. The set of rate tuples (R1, R2, . . . , RK) from R [W ; pX1
× pX2

× · · · × pXK ] for which R([K]) =
I(X[K]∧Y ) is the dominant face of R [W ; pX1 × pX2 × · · · × pXK ]. It is denoted by D(R [W ; pX1 × pX2 × · · · × pXK ]).

Definition 13. We say that (R1, R2, . . . , RK) is dominated by (R̃1, R̃2, . . . , R̃K) if R1 ≤ R̃1, R2 ≤ R̃2,. . . , RK ≤ R̃K .

It can be seen2 that the points of D(R [W ; pX1 × pX2 × · · · × pXK ]) cannot be dominated by other points of
R [W ; pX1

× pX2
× · · · × pXK ], but any point from R [W ; pX1

× pX2
× · · · × pXK ] can be dominated by a point from

the dominant face.

Remark 11. According to Definition 9, if (R1, R2, . . . , RK) is dominated by an achievable rate vector then the rate
vector (R1, R2, . . . , RK) is also achievable.

Recall from [8] the description of the vertices of D(R [W ; pX1
× pX2

× · · · × pXK ]). Let π = (π1, π2, . . . , πK) be an
ordering of [K]. For all i ∈ [K] let Rππi be equal to I(Xπi ∧ Y |X{π1,...,πi−1}). For example if K = 3, and π = (2, 3, 1),
then Rπ2 = I(X2 ∧ Y ), Rπ3 = I(X3 ∧ Y |X2), Rπ1 = I(X1 ∧ Y |X2, X3). Then the rate vector Rπ = (Rπ1 , R

π
2 , . . . , R

π
K)

is a vertex, and all vertices of D(R [W ; pX1
× pX2

× · · · × pXK ]) can be written in this way with appropriate π. Note
that the vertices Rπ need not be all distinct.

In the Appendix of [8] it is proved for informed L = K block decoder that in the totally asynchronous case Rπ ∈
D(R [W ; pX1 × pX2 × · · · × pXK ]) can be achieved by successive decoding with ordering π. We summarize the proof for
R{1,2,...,K}. The coding/decoding system is randomly constructed the following way. The symbols of the codebooks
of the senders are chosen independently according to the appropriate input distributions. The receiver first decodes

2[8] states it as a consequence of the fact that R
[
W ; pX1

× pX2
× · · · × pXK

]
is a polymatroid, which was observed in [10], [14].
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by joint typicality the codewords of the first sender, considering the random codewords of the other senders as noise.
This means that the receiver behaves as if there were only one sender and the channel was the following:

W 1(y|x1) =
∑
x2∈X2

∑
x3∈X3

· · ·
∑

xk∈XK

pX2(x2)pX3(x3) · · · pXK (xK)W (y|x1, x2, . . . , xK). (43)

Next the receiver decodes the codewords of the second sender by joint typicality using the already decoded codewords
of the first sender, considering the other senders as noise. This means that the receiver behaves as it would in a one
sender model when the channel was the following:

W 2(y, x1|x2) =
∑
x3∈X3

∑
x4∈X3

· · ·
∑

xk∈XK

pX1
(x1)pX3

(x3) · · · pXK (xK)W (y|x1, x2, . . . , xK). (44)

The codewords of the other senders are decoded similarly. In the final decoding step the receiver decodes the codewords
of the K’th sender by joint typicality using the already decoded codewords of all the other senders. This means that
the receiver behaves as it would in a one sender model when the channel was the following:

WK(y, x1, x2, . . . , xK−1|xK) = pX1
(x1)pX2

(x2) · · · pXK−1
(xK−1)W (y|x1, x2, . . . , xK). (45)

More detail can be found in the Appendix of [8].
Now recall the notion of individual split from [8] with splitting function f(xa, xb) = max(xa, xb). A split of

sender i with input distribution pXi on Xi = {0, 1, . . . , |Xi| − 1} results in two virtual senders ia, ib with distributions
pXia and pXib , also on Xi, explicitly determined by pXi and a splitting parameter, such that the splitting function
f(xa, xb) = max(xa, xb) maps pXia × pXib into pXi .

Section 2 of [8] shows in the totally asynchronous case that each R ∈ D(R [W ; pX1 × pX2 × · · · × pXK ]) can be
achieved with Rate Splitting via at most K− 1 splits3. This means that a good code for W with rate vector R can be
obtained from a code with successive decoding for an auxiliary channelW ′R with 2K−1 virtual senders constructed by
splitting the original senders, perhaps some of them split repeatedly and others not at all; the rate vector of this code
equals the vertex R′

π of the dominant face of R
[
W ′R; pX̃1

× pX̃2
× · · · × pX̃2K−1

]
for some ordering π and distributions

pX̃1
×pX̃2

×· · ·×pX̃2K−1
. In particular, the i’th coordinate of R is the sum of those coordinates of R′π that correspond

to the virtual senders into which the i’th sender has been split, i = 1, 2, . . . ,K.

Theorem 3. In the totally asynchronous case (Example 1), for each model version the capacity region is C.

Proof: In the converse part it is enough to treat the case of an informed infinite decoder and average error. The right
side of eq. (7) can be bounded from above as follows.

I(XS,Q⊕DS ∧ ỸQ|XSc,Q⊕DSc , Q,D) = (46)

= H(ỸQ|XSc,Q⊕DSc , Q,D)−H(ỸQ|X[K],Q⊕D[K]
, Q,D) (47)

= H(ỸQ|XSc,Q⊕DSc , Q,D)−H(ỸQ|X[K],Q⊕D[K]
) (48)

≤ H(ỸQ|XSc,Q⊕DSc )−H(ỸQ|X[K],Q⊕D[K]
) (49)

= I(XS,Q⊕DS ∧ ỸQ|XSc,Q⊕DSc ) (50)

where (48) comes from the fact that the output depends only on the input variables.
From the fact that the delays are independent and uniform it follows that the random variables {Q⊕Di, i ∈ [K]}

are independent, hence the random variables {Xi,Q⊕Di , i ∈ [K]} are also independent. On account of this, the converse
statement follows from Theorem 1.

The achievability part needs one modification of the proof in the Appendix of [8] of the assertion that C is achievable
with informed L = 2K − 1-block decoder, considering maximal error. In order to get rid of the assumption that the
delays are known to the receiver, it is enough to use the synchronization method from Subsection 4.1 in the successive
steps of achievability of vertices. Note that it is important that in the successive steps the decoder finds the exact
delay of the actual sender (see Remark 8). �

Remark 12. In case of two senders Corollary 1 leads to a stronger result. If the relative delay D = D1	D2 is uniformly
distributed on the set {0, 1, . . . , n− 1} then, for each model version, the capacity region is C.

5 Even delays
In [7] an artificial but interesting (from theoretical point of view) model is mentioned as open problem: the possible
delays are in the set {0, 1, . . . , αn} for some α ∈ (0, 1). In this section, though this problem is not solved, a similar
artificial model is analyzed which also has theoretical interest.

3The stronger result of Section 3 of [8] is not necessary in this paper.
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Figure 3: Time sharing when the relative delay is uniform on even numbers

(a) Capacity region in the totally asyn-
chronous case

(b) Capacity region in the even delays case

Figure 4: Change of the capacity region with the change in the distribution of the delays

Theorem 4. In the even delays case (Example 2), for each version of the model the capacity region consists of those
rate pairs that either belong to C or are linear combinations with weights 1

2 ,
1
2 of points in C. Moreover, using

coding/decoding systems of odd length, only C can be achieved.

Proof: In order to prove the direct part it is enough to restrict attention to uninformed L-block decoder and to
maximal error. Let n be even. Then the senders can do time sharing with weights 1

2 ,
1
2 using separately the even and

the odd symbols and using the coding/decoding method of Theorem 3. Figure 3 demonstrates this fact. Note that in
this case L can be chosen as 3.

In the converse part it is enough to treat the case of an informed infinite decoder and average error. The proof
uses Corollary 1.

In case of coding/decoding systems of even length the relative delay is uniformly distributed on the even numbers
in {0, 1, . . . , n − 1}. Write the upper bounds in Corollary 1 as a sum for the possible values of Q and define two
random variables Q1, Q2 as uniform on even/odd numbers and independent of each other and everything else. Then
the following can be written:

R1 ≤ I(X1,Q ∧ ŶQ|X2,Q	D, Q,D) + εn (51)

=
1

n

n−1∑
i=0

I(X1,i ∧ Ŷi|X2,i	D, D) + εn (52)

≤1

2

2

n

∑
i∈odd

I(X1,i ∧ Ŷi|X2,i	D) +
1

2

2

n

∑
i∈even

I(X1,i ∧ Ŷi|X2,i	D) + εn (53)

≤1

2
I(X1,Q1

∧ ŶQ1
|X2,Q1	D) +

1

2
I(X1,Q2

∧ ŶQ2
|X2,Q2	D) + εn. (54)

Similarly we get

R2 ≤
1

2
I(X2,Q1	D ∧ ŶQ1

|X1,Q1
) +

1

2
I(X2,Q2	D ∧ ŶQ2

|X1,Q2
) + εn (55)

R1 +R2 ≤
1

2
I(X1,Q1

, X2,Q1	D ∧ ŶQ1
) +

1

2
I(X1,Q2

, X2,Q2	D ∧ ŶQ2
) + εn (56)

where X1,Q1
,X2,Q1	D and X1,Q2

,X2,Q2	D are independent. This proves the converse result for even blocklength (see
[4] Lemma 14.4+, or its generalization, Lemma 2 in Section 6 of this paper).

In the subsequent part of this proof the symbol n denotes odd integer. Now we prove that with coding/decoding
systems of odd length, just the union of the pentagons can be achieved. Given such sequence of coding/decoding
systems, where Pne → 0, let cn be a sequence with cn → 0 and Pne

cn
→ 0 such that cnn is integer.
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Recall that the delays D1(n) and D2(n) are independent and uniformly distributed random variables on the set
{0, 2, . . . , n− 1}. For all i ∈ {0, 1, . . . , n− 1} let K(i) be the number of those pairs d1, d2 ∈ {0, 2, . . . , n− 1} for which
the relative delay d = d1 	 d2 is equal to i, then:

K(i) =

{
n−i+1

2 if i is even
i+1
2 if i is odd.

Let D
′

1(n) and D′2(n) be two random variables taking values in the set {0, 2, . . . , n−1} with the following joint dis-
tribution. For each d1, d2 ∈ {0, 2, . . . , n−1}, if d1	d2 ∈ {cnn, cnn+1, . . . , n−1−cnn} let Pr {D′1(n) = d1, D

′
2(n) = d2}

be equal to 1
n(1−2cn)K(d1	d2) , otherwise 0. Then for each d1, d2 ∈ {0, 2, . . . , n − 1} the following bound holds if n is

large enough:

4

(n+ 1)2
= Pr {D1(n) = d1, D2(n) = d2} ≥ cnPr {D′1(n) = d1, D

′
2(n) = d2} . (57)

Using the same idea as in the proof of Lemma 1 and the fact that Pne
cn
→ 0 we can conclude that the given sequence

of coding/decoding systems has average error also tending to 0 under the delay system D′ described by the random
variables D′1(n) and D′2(n). Hence if we show that under delay system D′ only C can be achieved, the assertion is
proved.

Under delay system D′ the relative delay D′(n) = D′1(n)	D′2(n) is uniformly distributed on the set {cnn, cnn+
1, . . . , n− 1− cnn}. By Corollary 1 the following bounds hold for the rates:

R1 ≤ I(X1,Q ∧ ŶQ|X2,Q	D′ , Q,D
′) + εn

R2 ≤ I(X2,Q	D′ ∧ ŶQ|X1,Q, Q,D
′) + εn

R1 +R2 ≤ I(X1,Q, X2,Q	D′ ∧ ŶQ|Q,D′) + εn. (58)

Let D̄(n) be a random variable uniformly distributed on the set {0, 1, . . . , n−1}. As the variation distance between
the product joint distributions of (Q,D′) and (Q, D̄) tends to 0, the following differences also tend to 0 as n→∞:

I(X1,Q, X2,Q	D′ ∧ ŶQ|Q,D′)− I(X1,Q, X2,Q	D̄ ∧ ŶQ|Q, D̄),

I(X1,Q ∧ ŶQ|X2,Q	D′ , Q,D
′)− I(X1,Q ∧ ŶQ|X2,Q	D̄, Q, D̄),

I(X2,Q	D′ ∧ ŶQ|X1,Q, Q,D
′)− I(X2,Q	D̄ ∧ ŶQ|X1,Q, Q, D̄). (59)

Taking into account that X1,Q and X2,Q	D̄ are independent, the assertion is proved (See also Remark 12). �

Example 4. There are two well-known examples ([2], [4]) which show that the convex hull operation can be useful.
Here we use [4]. Let the channel be defined by X1 = X2 = Y = {0, 1}, W (0|0, 0) = 1, W (1|1, 0) = W (1|0, 1) = 1 and
W (1|1, 1) = W (0|1, 1) = 1

2 . The capacity regions in the totally asynchronous and in the even delays case are shown
on Figure 4a and on Figure 4b. In the latter case a hill appears in the middle of the picture.

Remark 13. Remarkably, it does not seem possible to extend this result for uniform relative delay distributions on
{0, 1, . . . , n/2}, although this distribution has the same entropy as the uniform distribution on even (or odd) numbers.
Similar results can be achieved if the distribution is uniform on numbers which are divisible by 3. In this case time
sharing with weights 1

3 ,
2
3 becomes possible.

Remark 14. This also means that if the senders of the totally asynchronous AMAC want to time share with weights
( 1

2 ,
1
2 ), they can do that if a one-shot 1-bit side-information about the delays is available to the senders.

6 Partly asynchronous three-senders case
In this section we will prove coding theorem in case of K = 3, when D1(n) = D2(n) and D3(n) are independent and
uniformly distributed on the set {0, 1, . . . , n− 1}.

Theorem 5. In the partly asynchronous three senders case (Example 3), for each version of the model the capacity
region is ⋃

pX3

Conv

 ⋃
pX1
×pX2

R [W ; pX1 × pX2 × pX3 ]

 . (60)

In words, it consists of the convex combination of rate triples from C whose corresponding convex polytopes are defined
by the same third distribution.
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Remark 15. Using the Carathéodory-Frenchel Theorem (e.g. Chapter 15 of [4]) in Theorem 5, it suffices to take convex
combinations involving at most three rate triples.

Proof of the converse part in Theorem 5: It is enough to treat the case of an informed infinite decoder and average
error. Theorem 1 can be used as follows.

If S ⊂ {1, 2, 3} then the following bound holds:

R(S) ≤
n∑
i=1

1

n
I(XS,i⊕DS ∧ Yi|XSc,i⊕DSc ,D) + εn. (61)

Summing over the possible values of D1 = D2 we get the following bounds:

R1 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X1,i⊕d ∧ Ỹi|X2,i⊕d, X3,i⊕D3 , D3) + εn

R2 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X2,i⊕d ∧ Ỹi|X1,i⊕d, X3,i⊕D3

, D3) + εn

R3 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X3,i⊕D3

∧ Ỹi|X1,i⊕d, X2,i⊕d, D3) + εn

R1 +R2 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X1,i⊕d, X2,i⊕d ∧ Ỹi|X3,i⊕D3

, D3) + εn

R2 +R3 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X2,i⊕d, X3,i⊕D3

∧ Ỹi|X1,i⊕d, D3) + εn

R1 +R3 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X1,i⊕d, X3,i⊕D3

∧ Ỹi|X2,i⊕d, D3) + εn

R1 +R2 +R3 ≤
n−1∑
i=0

n−1∑
d=0

1

n

1

n
I(X1,i⊕d, X2,i⊕d, X3,i⊕D3

∧ Ỹi|D3) + εn. (62)

Note that, X3,i⊕D3
is independent of the other variables, and has the same distribution for all i. Note also that

the above inequalities can be overestimated by dropping D3 from the condition (same argument as in Theorem 3).
Hence the converse part follows from Lemma 2 below. �

The achievability part in Theorem 5 is proved later in this section.

Lemma 2. Given k sets R
[
W ; pXi1 × pXi2 × pXi3

]
, i ∈ [k], a vector (R1, R2, R3) equals a convex combination with

weights αi of k vectors from these sets if and only if they are contained in R(α1, α2, . . . , αk) which is defined by the
following inequalities:

0 ≤ R1 ≤
k∑
i=1

αiI(Xi
1 ∧ Y i|Xi

2, X
i
3)

0 ≤ R2 ≤
k∑
i=1

αiI(Xi
2 ∧ Y i|Xi

1, X
i
3)

0 ≤ R3 ≤
k∑
i=1

αiI(Xi
3 ∧ Y i|Xi

1, X
i
2)

R1 +R2 ≤
k∑
i=1

αiI(Xi
1, X

i
2 ∧ Y i|Xi

3)

R1 +R3 ≤
k∑
i=1

αiI(Xi
1, X

i
3 ∧ Y i|Xi

2)

R2 +R3 ≤
k∑
i=1

αiI(Xi
2, X

i
3 ∧ Y i|Xi

1)

R1 +R2 +R3 ≤
k∑
i=1

αiI(Xi
1, X

i
2, X

i
3 ∧ Y i). (63)
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Proof: This proof follows the proof of Lemma 14.4+ in [4]. The sets R
[
W ; pXi1 × pXi2 × pXi3

]
, i ∈ [k], and the set

R(α1, α2, . . . , αk) are convex polytopes with 16 vertices. Using the fact that the mutual and the conditional mutual
information are always non-negative, it can be easily derived that there are no redundant inequalities between the
defining equations of the sets R

[
W ; pXi1 × pXi2 × pXi3

]
, i ∈ [k], and R(α1, α2, . . . , αk). This means for example that it

is not possible that the sum of the bounds for R1 +R2 and R3 is strictly less then the bound for R1 +R2 +R3. Using
this fact the vertices of R

[
W ; pXi1 × pXi2 × pXi3

]
, i ∈ [k], can be written in the following way. First v0

i = (0, 0, 0) is
a vertex. The remaining 15 vertices can be divided into three groups of equal size. The first group consists of those
vertices (R1, R2, R3) for which R1 is equal to its own bound, i.e, of the vertices:

v1
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), 0, 0)

v2
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), I(Xi

2 ∧ Y i|Xi
3, 0)

v3
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), I(Xi

2 ∧ Y i|Xi
3, I(Xi

3 ∧ Y i)
v4
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), 0, I(Xi

3 ∧ Y i|Xi
2)

v5
i = (I(Xi

1 ∧ Y i|Xi
2, X

i
3), I(Xi

2 ∧ Y i), I(Xi
3 ∧ Y i|Xi

2) (64)

The two other groups (v6
i ,v

7
i , . . . ,v

10
i ) and (v11

i ,v
12
i , . . . ,v

15
i ) are obtained similarly.

Note that R
[
W ; pXi1 × pXi2 × pXi3

]
can be degenerate in the sense that these sixteen vertices need not be all

distinct. The vertices of R(α1, α2, . . . , αk) are the points
∑k
i=1 αiv

j
i , 0 ≤ j ≤ 15. As these vertices are contained

in the (convex) set of convex combinations with weights αi of vectors in the sets R
[
W ; pXi1 × pXi2 × pXi3

]
, i ∈ [k],

therefore whole R(α1, α2, . . . , αk) is contained. The reverse inclusion is obvious. �
By Definition 12, the points (R1, R2, R3) of D(R [W ; pX1

× pX2
× pX3

]) satisfy the inequalities in (41), with R1 +
R2 + R3 = I(X1, X2, X3 ∧ Y ). An edge of this dominant face is characterized by another inequality in (41) fulfilled
with equality. The set S corresponding to that inequality will be called the type of this edge.

The following lemma states that rate triples lying on edges with a fixed type behave similarly in context of rate
splitting and successive decoding. It can be considered as a remark to the general theory of [8], [13] in the special case
K = 3.

Lemma 3. For every fixed nonempty S ( {1, 2, 3} there exists a 4-senders channel W ′ derived from W by splitting the
first or the second sender, and an ordering π = (π1, π2, π3, π4) of the 4 senders with the following property. If W ′ is de-
rived from W by splitting the first sender, then to any input distributions pX1

, pX2
, pX3

of W and for all (R1, R2, R3) ∈
D(R [W ; pX1

× pX2
× pX3

]) lying on the edge of type S, there exist input distributions pX1a
, pX1b

and non-negative num-
bers R1a, R1b with R1a + R1b = R1 such that (R1a, R1b, R2, R3) is the vertex of D(R [W ′; pX1a

× pX1b
× pX2

× pX3
])

described by ordering π. If W ′ is derived from W by splitting the second sender, then to any input distributions
pX1 , pX2 , pX3 of W and for all (R1, R2, R3) ∈ D(R [W ; pX1 × pX2 × pX3 ]) lying on the edge of type S, there exist input
distributions pX2a

, pX2b
and non-negative numbers R2a, R2b with R2a + R2b = R2 such that (R1, R2a, R2b, R3) is the

vertex of D(R [W ′; pX1
× pX2a

× pX2b
× pX3

]) described by ordering π.

Proof: Assume for example that a rate triple (R1, R2, R3) ∈ D(R [W ; pX1
× pX2

× pX3
]) lies on the edge of type

S = {1, 3}, hence R1 +R2 +R3 = I(X1, X2, X3 ∧Y ), R1 +R3 = I(X1, X3 ∧Y |X2). The other cases are similar. Then
R2 = I(X2 ∧Y ) and (R1, R3) lies on D(R

[
Ŵ ; pX1 × pX3

]
), where Ŵ (y, x2|x1, x3) = pX2(x2)W (y|x1, x2, x3) (see [13],

beginning of section 3c). Denote by Ŵ ′ the three senders channel derived from Ŵ by splitting the first sender. We
could split the third sender instead of the first sender, but we want to leave the third sender unsplit. Using the basic
rate splitting result of [8] for two senders channels, there exist input distributions pX1a

, pX1b
and non-negative numbers

R1a, R1b with R1a+R1b = R1 such that (R1a, R1b, R3) is the vertex of D(R
[
Ŵ ′; pX1a

× pX1b
× pX3

]
) described by the

ordering (1a, 3, 1b). Hence, (R1a, R1b, R2, R3) is the vertex of D(R [W ′; pX1a × pX1b
× pX2 × pX3 ]) described by the

ordering (2, 1a, 3, 1b), where W ′ is the 4-senders channel derived from W by splitting the first sender. This argument
shows that for S = {1, 3}, the channel W ′ derived from W by splitting the first sender, and the ordering (2, 1a, 3, 1b)
on the senders of W ′ fulfill the requirements of this lemma. �

The next lemma shows that each x which is not in C but can be written as the convex combination of rate triples
from C, can be dominated by a convex combination of rate triples from C which lie on edges of same type.

Lemma 4. Given k sets R
[
W ; pXi1 × pXi2 × pXi3

]
, i ∈ [k], if a vector x is not in C, but can be written as x =∑k

i=1 αixi, where xi ∈ R
[
W ; pXi1 × pXi2 × pXi3

]
, 0 ≤ αi < 1, i ∈ [k],

∑k
i=1 αi = 1, then x can be dominated by an x′

which can be written as
∑k
i=1 α

′
ix
′
i, where x′i ∈ D(R

[
W ; pXi1 × pXi2 × pXi3

]
), 0 ≤ α′i < 1, i ∈ i ∈ [k],

∑k
i=1 α

′
i = 1 and

the vectors x′i, i ∈ [k] , lie on edges of same type.
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Figure 5: The set of convex combination of two dominant faces. One of them is degenerate (triangle).

Proof: It can be assumed that αi > 0 for all i. If xi is not on D(R
[
W ; pXi1 × pXi2 × pXi3

]
) then we can take a

dominating x̃i from the dominant face, for all i. Then x̃ =
∑k
i=1 αix̃i dominates x. So it can be assumed that the

rate triple xi is on D(R
[
W ; pXi1 × pXi2 × pXi3

]
) for all i.

The dominant face of a set R
[
W ; pXi1 × pXi2 × pXi3

]
is a hexagon4 on a plane with normal vector (1, 1, 1). We say

that the height of the plane with normal vector (1, 1, 1) is a if its equation is x+y+z = a. The height of a dominant face
is the height of its plane. As in Lemma 2 let us consider the setR(α1, α2, . . . , αk). This is the set of convex combinations
with weights αi, 1 ≤ i ≤ k of the sets R

[
W ; pXi1 × pXi2 × pXi3

]
, 1 ≤ i ≤ k. The dominant face D(α1, α2, . . . , αk) of

R(α1, α2, . . . , αk) consists of those points (R1, R2, R3) for which R1 + R2 + R3 =
∑k
i=1 αiI(Xi

1, X
i
2, X

i
3 ∧ Y i). Note

that x ∈ D(α1, α2, . . . , αk) because the points xi are on the dominant face of R
[
W ; pXi1 × pXi2 × pXi3

]
respectively.

Any edge of D(α1, α2, . . . , αk) consists of those points for which one of the inequalities (63) is fulfilled with equality.
Hence the edges of D(α1, α2, . . . , αk) consist of points which are convex combinations with weights α1, α2, . . . , αk of
points lying on edges of same type. If x is on an edge of D(α1, α2, . . . , αk) then we proved the assertion. Hence
it can be assumed that x is an inner point of D(α1, α2, . . . , αk). Suppose first that there exists m, l such that
I(Xm

1 , X
m
2 , X

m
3 ∧ Y m) > I(X l

1, X
l
2, X

l
3 ∧ Y l). Let us define new weights: If i 6= m, i 6= l then let α

′

i = αi, and let
α
′

m = αm + ε, α
′

l = αl − ε. Then the height of D(α
′

1, α
′

2, . . . , α
′

k) is larger than the height of D(α1, α2, . . . , αk). If
ε is small then one of the points of D(α

′

1, α
′

2, . . . , α
′

k) will dominate x. We increase ε until this property holds or
until α

′

l becomes 0. Then, using continuity, an edge point of D(α
′

1, α
′

2, . . . , α
′

k) will dominate x or α
′

l = 0 holds. This
argument shows that it is enough to restrict attention to the case when I(Xm

1 , X
m
2 , X

m
3 ∧ Y m) = I(X l

1, X
l
2, X

l
3 ∧ Y l)

for all m, l. This means that the dominant faces of sets R
[
W ; pXi1 × pXi2 × pXi3

]
are in the same plane. Using

again the continuous change of D(α1, α2, . . . , αk): if αi → 1, and αj → 0 if j 6= i, then D(α1, α2, . . . , αk) tends to
D(R

[
W ; pXi1 × pXi2 × pXi3

]
). As x is not in C, it is not in D(R

[
W ; pXi1 × pXi2 × pXi3

]
) for either i ∈ [k], hence there

are weights α∗1, α∗2, . . . , α∗k for which x is on an edge of D(α∗1, α
∗
2, . . . , α

∗
k). So it is a convex combination of points lying

on edges of same type. �
The proof of achievability in Theorem 5: In order to prove the direct part it is enough to restrict attention to

uninformed L-block decoder and to maximal error.
Theorem 3 shows that the rate triples of C can be achieved in the totally asynchronous case considering uninformed

L = 5-block decoder with maximal error. It follows that in the party asynchronous three senders case, C is also
achievable considering uninformed L = 5-block decoder with maximal error with the same coding/decoding method.

Hence, using also Remark 15, it is enough to consider points which are not in C but can be written as the convex
combination of two or three rate triples from C whose corresponding sets R [W ; pX1

× pX2
× pX3

] have the same third
distribution. Note that the following part of this proof shows that in the latter cases L = 4-block decoder suffices. For
the sake of clarity we deal only with points which can be written as the convex combination of two rate triples whose
corresponding sets R [W ; pX1

× pX2
× pX3

] have the same third distribution. The case of convex combination of three
rate triples can be derived similarly.

Let (R1, R2, R3) be in D(R [W ; pX1
× pX2

× pX3
]) and (R̃1, R̃2, R̃3) in D(R

[
W ; pX̃1

× pX̃2
× pX3

]
). Note that the

third input distribution is the same in case of both convex polytopes. We want to show that α(R1, R2, R3) + (1 −
4The hexagon can be degenerated since some vertices can be identical
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α)(R̃1, R̃2, R̃3) can be achieved in the partially asynchronous three senders case, α ∈ (0, 1). Using Lemma 4 it can be
assumed that (R1, R2, R3) and (R̃1, R̃2, R̃3) lie on edges of same type. Without loss of generality it can be assumed
that this common type is S = {1, 3}.

Let W ′ and π be the 4-senders channel and the ordering in Lemma 3 for S = {1, 3}. From the proof of Lemma 3
it can be seen that W ′ is the first sender split version of W and π = (2, 1a, 3, 1b). As a consequence of Lemma 3 there
exist R1a, R2a with R1a +R2a = R1 and R̃1a, R̃2a with R̃1a + R̃2a = R̃1 and input distributions pX1a

, pX1b
, pX̃1a

, pX̃1b

such that (R1a, R1b, R2, R3) and (R̃1a, R̃1b, R̃2, R̃3) are those vertices of D(R [W ′; pX1a
× pX1b

× pX2
× pX3

]) and
D(R

[
W ′; pX̃1a

× pX̃1b
× pX̃2

× pX3

]
) respectively, which can be described by ordering π.

If a sender is split, then the delays of the two virtual senders are equal to the delay of the original sender. Hence
it is enough to prove that α(R1a, R1b, R2, R3) + (1 − α)(R̃1a, R̃1b, R̃2, R̃3) can be achieved for channel W ′ when the
delay system is the following: D1a(n) = D1b(n) = D2(n) and D3(n) are independent and uniformly distributed on the
set {0, 1, . . . , n− 1}.

Note that the coordinates of the 4-tuple (R1a, R1b, R2, R3) can be described as follows: R2 = I(X2 ∧ Y ), R1a =
I(X1a ∧ Y |X2), R3 = I(X3 ∧ Y |X1a, X2) and R1b = I(X1b ∧ Y |X1a, X2, X3), where the joint distribution of (X1a,
X1b, X2, X3, Y ) is determined by the product input distribution pX1a

× pX1b
× pX2

× pX3
and the channel transition

W ′. Similarly the coordinates of the 4-tuple (R̃1a, R̃1b, R̃2, R̃3) can be described by the equations: R̃2 = I(X̃2 ∧ Ỹ ),
R̃1a = I(X̃1a ∧ Ỹ |X̃2), R̃3 = I(X3 ∧ Ỹ |X̃1a, X̃2) and R̃1b = I(X̃1b ∧ Ỹ |X̃1a, X̃2, X3), where the joint distribution
of (X̃1a, X̃1b, X̃2, X3, Ỹ ) is determined by the product input distribution pX̃1a

× pX̃1b
× pX̃2

× pX3
and the channel

transition W ′.
Random coding argument is used, assuming without any loss of generality that αn and (1−α)n are integers. The

symbols of the random codebooks are independent but not identically distributed random variables. The codewords
of the virtual senders 1a, 1b, and sender 2 consist of two parts. The first αn symbols have distributions pX1a

, pX1b
and

pX2
respectively, while the last (1− α)n symbols have distributions pX̃1a

, pX̃1b
and pX̃2

respectively. The symbols of
codewords of sender 3 are identically distributed according to the distribution pX3

. We show that with this codebook
structure it is possible to achieve the rate tuple α(R1a, R1b, R2, R3) + (1−α)(R̃1a, R̃1b, R̃2, R̃3), by successive decoding
with ordering (2, 1a, 3, 1b) for channel W ′ if senders 1a, 1b, 2 are synchronized but sender 3 is not synchronized with
them.

Note that we do not assume that the receiver knows the delays.
First the receiver decodes the codewords of sender 2. The situation is now more complicated than in case of

identically distributed symbols. From the receiver’s point of view the codewords of the second sender go through two
different channels according to the different symbols of the codewords of the other senders. From the fact that the
senders 1a, 1b, 2 are synchronized the receiver knows that the first αn consecutive symbols of codewords go through
the channel

W 2(y|x2) =
∑

x1a∈X1

∑
x1b∈X1

∑
x3∈X3

pX1a
(x1a)pX1b

(x1b)pX3
(x3)W ′(y|x1a, x1b, x2, x3), (65)

and the last (1− α)n consecutive symbols of codewords go through the channel

W̃ 2(y|x2) =
∑

x1a∈X1

∑
x1b∈X1

∑
x3∈X3

pX̃1a
(x1a)pX̃1b

(x1b)pX3
(x3)W ′(y|x1a, x1b, x2, x3). (66)

The decoder does the following. As in Theorem 2 the n tuples (Y−n+1, . . . Y0), . . . , (Y0, . . . Yn−1) are examined. The
receiver decodes the s-th codeword as the 0-th message of sender 2 if there exists an n tuple of examined output
(Y−n+i, . . . Yi−1) such that the first αn symbols of the s-th codewords are jointly typical with the first αn symbols of
(Y−n+i, . . . Yi−1) and the same is true for the last (1 − α)n symbols according to channels W 2 and Ŵ 2 respectively,
and there are no other codewords with this property. With the shifted versions of this decoding technique the receiver
also decodes the −2,−1, 1, 2-th messages of sender 2 to ensure the decoding of the 0’th message of sender 1b in the
last successive step. Note also that implicitly the receiver learns the delay of sender 2 (See Remark 8).

In the following successive step the receiver decodes the −2,−1, 0, 1, 2-th codewords of sender 1a considering
typicality according to the channels

W 1a(y, x2|x1a) =
∑

x1b∈X1

∑
x3∈X3

pX1b
(x1b)pX2

(x2)pX3
(x3)W ′(y|x1a, x1b, x2, x3) (67)

and
W̃ 1a(y, x2|x1a) =

∑
x1b∈X1

∑
x3∈X3

pX̃1b
(x1b)pX̃2

(x2)pX3(x3)W ′(y|x1a, x1b, x2, x3). (68)

In the third successive step the decoder deals with sender 3. Note that sender 3 is not synchronized with senders
1a, 1b, 2, hence using the -2,-1,0,1,2’th codewords of the senders 2 and 1a the receiver can decode (surely) just the
−1, 0, 1-th codewords of sender 3. It is also true in this case that the symbols of the codewords of sender 3 go through
two different channels:

W 3(y, x1a, x2|x3) =
∑

x1b∈X1

pX1a(x1a)pX1b
(x1b)pX2(x2)W ′(y|x1a, x1b, x2, x3) (69)
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and
W̃ 3(y, x1a, x2|x3) =

∑
x1b∈X1

pX̃1a
(x1a)pX̃1b

(x1b)pX̃2
(x2)W ′(y|x1a, x1b, x2, x3). (70)

But there is an essential difference: due to the assumption on the delays it is not known which part of the codewords
goes through the channel W 3, it can be any αn consecutive symbols of the codewords. Here the word consecutive
is understood modulo n. When the receiver is looking for typicality, n2 joint typicality examinations are necessary
according to the n possible positions of the separating line of the two possible channels and the possible codeword
positions.

In the final successive step the receiver decodes the 0-th codeword of sender 1b considering typicality according to
the channels

W 1b(y, x1a, x2, x3|x1b) = pX1a(x1a)pX2(x2)pX3(x3)W ′(y|x1a, x1b, x2, x3) (71)

and
W̃ 1b(y, x1a, x2, x3|x1b) = pX̃1a

(x1a)pX̃2
(x2)pX̃3

(x3)W ′(y|x1a, x1b, x2, x3). (72)

Following the calculation method of Theorem 2 it can be calculated that the rate tuple α(R1a, R1b, R2, R3) + (1−
α)(R̃1a, R̃1b, R̃2, R̃3) is achievable with this method. Note that a genie added version of the model is necessary to a
fully rigorous error estimation, as in [8]. It is also crucial that the number of joint typicality examinations is polynomial
in n. One part of the complete calculation can be found in Appendix C. �

7 Summary
This paper provides a general converse for the asynchronous multiple access channels which depends on the distribution
of the delays. Interesting examples of capacity regions between the simple union and its convex closure are given.
These previously unknown capacity regions are: when the set of possible delays are restricted to the even numbers, and
when 2 out of 3 senders are synchronized but the third is not. These examples show, that the theory of asynchronous
systems is far from complete. For further results we refer to [6].

8 Appendix A
The coding theorem for totally asynchronous MAC (with two senders) was first stated in [15], for the case when
receiver knows the delays. The theorem was stated for maximal error but the converse actually proved even for
average error. While the paper [15] is hard to read, with the help of reviewers of a previous version of this paper we
have checked that the converse proof is correct, up to a minor gap pointed out after eq. (17) which is first filled here.
The achievability proof in [15] is not addressed here since more accessible proofs have been published since then. In
[11] the same capacity region was claimed to be achievable also when the receiver was uninformed. However, in the
delay-detection part of the proof in Appendix 1 of [11] there is a gap, in eq. (12b) an independence is assumed that
need not hold when the examined n-block of channel input symbols consists of two parts, a codeword part and a sync
sequence part. The other part of the proof addresses decoding the sent codewords when the delay is already known.
This part is correct, giving rise to a valid achievability proof in the case of informed receiver. Another such proof was
given in [8] via rate splitting and successive decoding, for any number of senders. Achievability in the uninformed
receiver case has not been revisited until recently. The mentioned error in [11] was corrected in [7]. Our approach to
delay detection differs from that of [11] and [7] not so much in using a sync sequence but rather in our relying on a
technique from [9] to bound the probability of delay detection error.

9 Appendix B - Proof of Theorem 1
Let S ⊂ [K]. We will derive a bound for R(S). As in Section 3, take a window of the receiver consisting of N + 1
n-length blocks YN+1 = {Y0, Y1, . . . , Yn(N+1)−1} and the codewords having index between 1 and N from all senders
(they are fully covered by this window). Recall that D denotes the delay vector and XB,i+DB denotes the random
vector with components Xl,i+Dl , l ∈ B where B ⊂ [K]. Denote by Xsw the 2K input codewords which overlap with
the beginning and end of YN+1. Then

NnR(S) = (73)

= H(MN
S ) (74)

= I(MN
S ∧ M̂N

S ) + H(MN
S |M̂N

S ) (75)

≤ I(MN
S ∧ M̂N

S ) +Nnεn (76)

≤ I(XN
S ∧YN+1,Xsw,D) +Nnεn (77)
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= H(XN
S |D)−H(XN

S |YN+1,D) + H(XN
S |YN+1,D)−H(XN

S |Xsw,YN+1,D) +Nnεn (78)

≤H(XN
S |XN

Sc ,D)−H(XN
S |YN+1,XN

Sc ,D) + I(Xsw ∧XN
S |YN+1,D) +Nnεn (79)

= I(XN
S ∧YN+1|XN

Sc ,D) +Kn log |X |+Nnεn (80)

= H(YN+1|XN
Sc ,D)−H(YN+1|XN

S ,X
N
Sc ,D) +Kn log |X |+Nnεn (81)

= H(YN+1|XN
Sc ,D) +Kn log |X |+Nnεn −

N∑
j=0

n−1∑
i=0

H(Ynj+i|Ynj+i−1
1 ,XN

S ,X
N
Sc ,D) (82)

≤H(YN+1|XN
Sc ,D)−

N−1∑
j=1

n−1∑
i=0

H(Ynj+i|X[K],nj+i+D[K]
,D) +Kn log |X |+Nnεn. (83)

Now introduce the a random variable Ỹi linked to the random variables X1,i⊕D1 ,X2,i⊕D2 ,. . . ,XK,i⊕DK by the
channel W for all i ∈ {0, 1, . . . , n− 1}. Then (83) is continued as

≤
n−1∑
i=0

[
(N − 1) H(Ỹi|XSc,i⊕DSc ,D) +

n−1∑
i=0

H(Yi)

+

Nn+n−1∑
i=Nn

H(Yi)− (N − 1) H(Ỹi|X[K],i⊕D[K]
,D)

]
+Kn log |X |+Nnεn (84)

≤(N − 1)

n−1∑
i=0

I(XS,i⊕DS ∧ ỸQ|XSc,i⊕DSc |D) + 2n log |Y|+Kn log |X |+Nnεn. (85)

Dividing by Nn and going with N to infinity give

R(S) ≤ I(XS,Q⊕DS ∧ ỸQ|XSc,Q⊕DSc , Q,D) + εn.

This proves Theorem 1.

10 Appendix C - Some calculations to Theorem 5
The coding/decoding task of sender 3: the random codebook of the third sender consists of i.i.d symbols with distri-
bution pX3

. This codebook contains 2(nαI(X3∧Y |X1a,X2)+(1−α)I(X3∧Ỹ |X̃1a,X̃2))−δ′ codewords. αn consecutive symbols
of an input codeword go through channel W 3, while (1−α)n consecutive symbols of the codeword go through channel
W̃ 3. Here ’consecutive’ is understood modulo n. Let us denote by T ⊂ {0, . . . , n−1} those indices whenW 3 was used.
T will be called separating pattern. Note that |T | = αn and T contains consecutive numbers. The separating pattern
depends on the relative delay D between the synchronized senders 1a, 1b, 2 and the unsynchronized sender 3. The
decoder sees an output flow (note that the symbols of senders 1a, 2 are also the part of the output). The decoder does
not know where the codewords are separated, and does not know the separating pattern of the two possible channels.
Hence the decoder should check the same output n tuples as the decoder of Section 2 when looking for joint typicality,
but when it examines an output n tuple Y n the decoder should check every possible separating pattern. We say that
the s’th codeword is typical in window Y n relative to separating pattern T if parts of the codewords consisting of the
T coordinates of Xn(s) and Y n are jointly typical according to channel W 3, and the same is true for the coordinates
T c = {0, . . . , n− 1}\T according to channel W̃ 3. If s is the only codeword which is typical in all the examined output
windows relative to all separation patterns, then the decoder’s estimation is s for the 0’th message. Let us consider
first the case when the examined output window is an output of the r’th codeword and when the real separating
pattern is T . Then in this window the r’th codeword will be typical relative to T with probability exponentially close
to 1 by classical arguments. First we show that no other codewords will be typical in this window. Let T

′
be any

separation pattern (it can be T too). We will estimate the probability that the s 6= r’th codeword will be typical in
this window relative to T

′
.

For any separation patter T
′
let PT

′

X3
(xn, yn) be the joint distribution on X |T

′
|×Y |T

′
| induced by the |T ′ |-th power

of pX3
and by the memoryless channel W 3. Let qT

′

X3
be the marginal of PT

′

X3
on Y |T

′
|. Similarly let P̃T

′

X3
(xn, yn) be the

joint distribution on X |T
′
| × Y |T

′
| induced by the |T ′ |-th power of pX3

and by the memoryless channel W̃ 3. Let q̃T
′

X3

be the marginal of P̃T
′

X3
on Y |T

′
|. Furthermore, if x is an n-length sequence, then xT

′

will denote the vector of length
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|T ′ | consisting of those coordinates of x which are in |T ′ |.

Prcond
{

(X1(s), . . . , Xn(s), Y1, . . . , . . . , Yn) ∈ Sδn(T
′
)
}

(86)

=
∑

(xn(s),yn)∈Sδn(T ′ )

pnX3
(xn(s))Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} (87)

=
∑

(xn(s),yn)∈Sδn(T ′ )

pnX3
(xn(s))

qT
′

X3
(yT

′

)q̃T
′c

X3
(yT

′c
)

qT
′

X3
(yT

′
)q̃T

′c
X3

(yT
′c)

· Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} (88)

≤
∑

(xn(s),yn)∈Sδn(T ′ )

2−nα(I(X3∧Y |X1a,X2)−δ)2−n(1−α)(I(X3∧Ỹ |X̃1a,X̃2)−δ)

·
PT
′

X3
(xT

′

(s),yT
′

)P̃T
′c

X3
(xT

′c
(s),yT

′c
)

qT
′

X3
(yT

′
)q̃T

′c
X3

(yT
′c)

·

· Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} (89)

≤ 2−nα(I(X3∧Y |X1a,X2)−δ)2−n(1−α)(I(X3∧Ỹ |X̃1a,X̃2)−δ)

·
∑

(xn(s),yn)∈Sδn(T ′ )

PT
′

X3
(xT

′

(s)|yT
′

)P̃T
′c

X3
(xT

′c
(s)|yT

′c
)

· Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} . (90)

Note that (X1(s), . . . , Xn(s)) is independent from the output window (s 6= r), hence 1 is an upper bound of the
inner sum. Note also that if one should expand Prcond {(Y1, . . . , Yn) = yn|(X1(s), . . . , Xn(s)) = xn(s)} then the real
separation pattern T should be considered. If the examined output window is related to two codewords (the r’th and
the l’th codewords, where r 6= l) then the same argument works if s 6= l and s 6= r. If one of them is equal to s then
Gray’s summing technique works, the derivations can be done as in Section 4a.
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