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Abstract—Phase-change memory (PCM) is an emerging non- called the RESET operation, we can RESET them together to
volatile memory technology that promises very high perfornance. avoid interference.) We call this model theystalline-domain
It currently uses discrete cell levels to represent data, edrolled mode| because the domains have a different state from the

by a single amorphous/crystalline domain in a cell. To impree b hen th talli Th h d .
data density, more levels per cell are needed. There exist aim- cell base when they are crystalline. gorphous-domain

ber of challenges, including cell programming noise, drifing of Model where the cell base is crystalline and the domains can
cell levels, and the high power requirement for cell progranming. be amorphous, can also be defined. Due to the space limitation
In this paper, we present a new cell structure calledpat- we omit its details, and focus on the crystalline-domain etod
terned cell, and explore its data representation schemes. Multiple
domains per cell are used, and their connectivity is used to
store data. We analyze its storage capacity, and study its mn-
correction capability and the construction of error-control codes.

(a) top electrode (b) top electrode

amorphous base amorphous base
|. INTRODUCTION crystalline crystalline/"\ crystallin
. . . domain domain domain
Phase-change memory (PCM) is an important emerging . . . .
nonvolatile memory (NVM) technology that promises high
bottom electrodes bottom electrodes

performance. It uses chalcogenide glass as cells, whictwioas

stable states: amorphous and crystalline [2]. The amophou (¢ pottom side of cell @00
state has very high electrical resistance, and the criystall .
‘ e N crystalline

state has low resistance. Intermediate states, calledhlpart /

. . . A " ®W ) W T domain
crystalline states, can also exist. High temperaturescied iy S, @ m IO
electrical currents are used to switch the state of a pordfon ! 2 | 3marphous

n

the cell, which is called domain By quantizing cell resistance 1*7 ié o

into multiple discrete levels, one or more bits per cell can \ 7

be stored. Currently, four-level cells have been developed bottom electrodes

improve data dens_lty, more levels are needed [2] Fig. 1. Patterned cell with the crystalline-domain moda).A PCM cell with

The current multi-level cell (MLC) approach faces a numbewo bottom electrodes and one crystalline domain. The twitoboelectrodes
of challenges, including cell-programming noise, cellele are not connected (i.e., there is high resistance betwemm)th(b) The two
crifting, and high power consumption [2], [3]. It is iffcul 50157 eectodes are carnected by wo everapping chatonsin. (o)
to program cell levels accurately due to cell heterogeraity (d) The 10 different connectivity patterns for tiex 2 rectangular array
noise. The cell levels can drift away significantly aftertlzee 9f qomai‘ns shown in (c). The black vertices are‘crystalliwfiins (called
programmed, making it even harder to control their accuracf, *rie#, e hie veres ave ot ysiaine fe o verices)

And the high power requirement for cell programming is
hindering PCM'’s application in mobile devices [3].

In this paper, we explore a new cell structure and its dataWe let every domain have two basic states:(crystalline)
representation scheme. In the new structure, caliterned or off (amorphous). If two neighboring domains are both
cells multiple domains per cell are used. An example ign, they overlap and become electrically connected (iosv, |
shown in Fig. 1, where two or four domains exist in a cellesistance). The connectivity of domains can be detected by
whose states are independently controlled by their relsgectmeasuring the resistance between their bottom electrodes,
bottom electrodes. (The state of a domain is switched by thwiich uses low reading voltage and does not change the state
current between the bottom and top electrodes. We assudfighe domains. We use the connectivity patterns of domains
that the PCM layer is sufficiently thin such that changintp represent data. As an example, the connectivity pattefrns
a domain to the crystalline state, which is called the SEfie four domains in Fig. 1 (c) are illustrated in Fig. 1 (d).
operation and requires a lower temperature/current, vatl n  Pattern cell is a new approach to store data using the iterna
affect its neighboring domains.) The base of a cell is istructure of domains in PCM cells. The two basic states
the amorphous state, while every domain can be switchedaits domains may eliminate the high precision and power
the crystalline state. (To change domains back to amorphoreqjuirements imposed by programming cell levels. The data




representation scheme is a new type of code defined basedorCapacity of One-dimensional Array

graph connectivity. In this paper, we explore this new s&em 1 js no difficult to compute the rate @f when|V| is small.

anaIyzg its storage capaciFy, and study its error-comectij, this paper, we focus on larg¥| (especially forlV'| — oo),

capability and the construction of error-control codes. —\hich corresponds to using numerous domains in a large PCM
The rest of the paper is organized as follows. In Section LL;\yer. Letn = |V|, and defineN (n) 2 |C| = ||. We define

we study the storage capacity of patterned cell. In Sectipn Ithe capacityof G ascap — lim,, o logaN(n)

we study error correction and detection for patterned ¢ell. We first consider the case Whe?e the domains form

Section IV, we present concluding remarks. a one-dimensional array. That is, in graphi —

Il. STORAGE CAPACITY OF PATTERNED CELL (V,E), we have V. = {uvj,v9,---,v,} and E =
{(v1,v2), (v2,v3), -, (Un—1,vn)}. We denote theapacityof

In this section, we present the graph model for connectivit{’€ one-dimensional array by:p: p.
based data representation. Then we analyze the storage capa s
ity of domains that form one or two dimensional arrays. Theorem2. Let \* = % (100 + 12 x v/69) / +

2 2
A. Graph Model for Connectivity-based Data Representatioff1oo+12xv69)"/” + 5~ 1.7549. We have

Let G = (V, E) be a connected undirected graph, whose
verticesV' represent the domains in a cell. An edge v)
exists if the two domains are adjacent (which means they Proof: The valid configuration of a one-dimensional array
overlap if they are bothon). Let S : V' — {0,1} de- is a constrained system, where every run of 1s (i.e., “on”
note the states of verticest v € V, S(v) = 1 if v is vertices) needs to have length at least two. The Shannom cove

cap1p = logy A" &~ 0.8114.

on, and S(v) = 0 if v is off. Denote the[V| vertices of the system is shown in Fig. 2. Its adjacency matrix is
by vi,v2,--- , vy We call (S(vl),S(vg),--- ,S(U|V‘)) a 1 10

configurationof G. Let U = {0,1}!V] denote the set of A= | 0 0 1 |.By solving|A— | = —(\> —2)\% +

all configurations. Since in the crystalline-domain modie¢ 1 0 1

purpose of making a domain crystalline is to connect it td — 1) = 0, we find that for matrix4, its eigenvalue of the
at least one crystalline neighbor, we focus on configuratiogreatest absolute value ¥ ~ 1.7549. It is known that the
denoted byi/ that satisfy this property: “For any € V that capacity of the constrained systemlig, \*. u
is on, at least one of its neighbors is also on.” Thatds+=

{(S(v1),S(v2), -+, S(uywy)) € U VL <i < |V, if S(v;) = O@m@m@

1, then3v; € V such that(v;,v;) € E and S(v;) = 1}. We

call U the set ofvalid configurations. O(oﬁ)\—/ 1 (on)

Let C : V x V — {0,1} denote the connectivity between 0 (off)
Ve.mceS: v ow # W2 6, v, O(wl’wQ) = 1 if there Fig. 2. Shannon cover for one-dimensional array.
exists a sequence of verticésn = wuy,ug, - ,ur = wo)
such that (ui,uiﬂ) € FE and S(ul) = S(ui+1) =1
for i = 1,2,---,k — 1; otherwise,C(w;,w;) = 0. And We further present the number of valid configurations for a

for any w € V, we setC(w,w) = 1 by default” Two oOne-dimensional array with vertices.
verticesw,, wo are connectedf C(wq,ws) = 1. The vector
(C(v1,v1),C(v1,v2), -+, C(vr,vpv); Clvz, v1), Clv2,v2), Theorem 3. Let a1, ao, a3 be the three solutions to for the
, Clug,vpyy);eee e s C(vpvysv1), Clupy,v), - equation:® —2x2+x—1 = 0, and letuy, pi2, us be the numbers
C(vjv,vv))) is called the connectivity patternof G. that satisfy the linear equation set
Clearly, not all vectors in{0,1}/VI*IVl are connectivity

patterns that correspond to valid configurations (or eveh ju pon + poan + pisos =1

configurations). So to be specific, Igt ¢ — {0,1}VI*IVI be paf + ppad + pzai =2

the function that maps a valid configuration to its connéytiv p1a8 + poad + pzad =4

pattern. LetC = {f(%) | & € U}, and we callC the set of ) )

valid connectivity patterns (We geta; = 2 - (100 + 12v/69)35 + 2 - (100 + 121/69) "5
+2 ~ 17549, as = —5 - (100 + 121/69)5 — & - (100+

Lemma 1. The mappingf : U — C is a bijection. 12v/69)"5 + 21 (1_\/23 (100 4 12v/69)5 — @ - (100+

Proof: Given a connectivity patterdi € C, we see that a 12V/69) %) ~ 0.1226 + 0.7449i, a3 = —£5 - (100+
vertexv € V is on if and only if it is connected to at least12v/69)% — 1 -(100+12/69) 5 +2 —i-(¥2.(100+12/69)5 —
one neighbor. So the configuration is determineccby = @ - (100 + 12\/@)7%) ~ 0.1226 — 0.7449i, 1 ~ 0.7221,

A PCM can read the connectivity pattern. We store data by, ~ 0.1389 + 0.2023i, andus ~ 0.1389 — 0.2023:.) Then
mapping elements i€ to symbols. The rate of grap& is for a one-dimensional array with vertices, we haveN (n) =

log,|C| __ logy|U| 1y i i
T = T bits per vertex (i.e., domain). IC| = [U| = p1af + paa + psaf.



. Proof; We derive the value ofV (r%) by re_cursiye func- Rectangular Log%ggg%g) Loweg.(gia'ls;léﬁmg) U%?gg?i%%nd

tions. Defineg(n) to be the set of valid configurations for a| Triangular 0.987829 0.987218 0.990029

linear array withn vertices given that the first vertex is “on”. TABLE |

That is,g(n) = {(sl, S, ,sn) ceu | S1 = 1}. UPPER AND LOWER BOUNDS FOR TWEDIMENSIONAL ARRAY 'S CAPACITY.
To computeg(n), we notice that for a valid configuration

(s1,82, -+ ,8,) €U, if s1 =1, thense, = 1 and we also have

1) Lower Bound based on Tilinglf we consider a distri-
bution 6 on the valid configuration sét, then the rate ofy
is

the following properties:

o If s3 = 0, the states of the last — 3 vertices can be
any configuration for a one-dimensional array with- 3
vertices. There aré/(n — 3) such configurations. R(9) =

o If s3 = 1, the states of the last — 1 vertices can be So another expression for capacity is
any configuration irg(n — 1). There ardg(n — 1)| such
configurations. cap = max nh—>nolo R(0).

So we getig(n)| = N(n —3) +[g(n — 1)|.
To computeN (n), we notice that for a valid configuration

H(6)

For any distributior®, lim,,_, . R(#) is a lower bound forap.
. Different ways of constructing lead us to different methods.
(51,82,"',Sn)€u. .1s .
. In [4], Tiling was proposed as a variable-length encod-
o If sy = 0 the. states of the _Iasi __1 vertices can be ing technique for two-dimensional (2-D) constraints, sash
any.conflgura'uon fora one-dlmenS|01'!aI array with- 1 runlength-limited (RLL) constraints and no isolated bitg.p.)
vertices. There aréV(n — 1) such configurations. cqnsyraints. The idea of tiling is that we can divide all th® 2
« It 51 = 1, the states of the vertices can be any config-yane ysing shifted copies of two certain shapes, refersed a
uration ing(n). There argg(n)| such configurations.  w» and ‘B iles. Here, we say that a set of verticesis a shift

So we g_etN(n) =N(m-1)+ |g(n_)|- or shifted copy of another sdt if and only if their vertices
Combing the above two equations, we get the recursigge one-to-one mapped and the position movement (vector)
function between each vertex id and its corresponding vertex iB

is fixed. For these two types of tiles — ‘W’ tiles and ‘B’ tiles,

— they have the following properties:

By solving the recursive function and using the boundary 1) The ‘W’ tiles are freely configurable. That means given

conditions thatN (1) = 1, N(2) = 2, N(3) = 4, we get any configuration for all the ‘W’ tiles, we can always

the conclusion. u find a configuration for all the ‘B’ tiles such that they

. . , satisfy the 2-D constraints.

C. Capacity of Two-dimensional Arrays 2) Given any configuration for all the ‘W’ tiles, the con-
We now consider the case where the domains form a figurations for the ‘B’ tiles are independent with each

two-dimensional array. Specifically, we study two types th other.

rectangular array and the triangular array, illustrated i According to these properties, we can first set ‘W' tiles
Fig. 3. We denote the capacity of the two-dimensional arrgygependently based on a predetermined distributiprand
by cap. * Some existing techniques based on convex/concaygn configure the ‘B’ tiles uniformly and independently
programming, including tiling, bit-stuffingtc, can be applied (given the ‘W' tiles). Finally, the maximal information &t
here to obtain the upper and lower bounds of the capacity. ey R(n) is a lower bound of the array’s capacity.
summarize the bounds in Table I. It is interesting that the a5 discussed previously, our constraint for a valid configur
capacity is really high (close to 1) for both arrays. In thetretion is that each “on” vertex has at least one “on” neighbor. F

N(n)=2N(n—1)— N(n—2)+ N(n - 3).

of this section, we will discuss the bounds in detail. the rectangular/triangular arrays, we can use the tilihgses
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Fig. 3. Two types of two-dimensional arrays.

es e

11t will be clear from the context which array it refers to. Ang comment

that compared to the rectangular array, it is possible td jpmenains more Fig. 4. Tiling schemes for the rectangular (left) and trialag (right) arrays.
compactly in the triangular array.



According to Theorem 3.1 in [4], we have such that (1) the configuration distribution @his stationary,
H(m) + ¥, Pr(9)IS(9)] and (2) given some: € {0,1}/”!, we havey(0]z) = 0 to
cap > max R(7) = max . guarantee that each “on” vertex has at least one “on” neighbo
" " Wi+ 18] Since the inequality above holds for all the vertices except

Here, [W] (or |B|) is the size of each ‘W’ ('B’) tile, e.g., the boundary vertices, a lower bound of the capacity can be
|[W| = 12 in the left-side tiling of Fig. 4 andB| = 2 in the \yritten as
right_-sic_ie ti_Iing (.)f Fig. 4;H (7) i'_s the _entropy cor‘re?ponding maxmi/anS’(z)H(v(yk))
to distribution7; ¢ is the configuration of the ‘W’ blocks LA
around a ‘B’ block (four blocks in Fig. 4), whose distributio
is a function ofr, denoted as’;(¢); |S(¢)| is the number of
available distinct configurations for a ‘B’ blocks given thg’
blocks around it. Based on this formula, we are able to
the lower bounds in the first column of Table | using conv « o
programming with linear constraints.

2) Lower Bound based on Bit-Stuffinginother way to e e e o *
obtain the lower bounds for the capacities of 2-D constr: '
codes is based on bit-stuffing [5]. In bit-stuffing, @tdenote e o ®! * ° * *
the vertices near the left and top boundaries, called bayn .
vertices. Assume we know the state configuratiordpthen ° ° . e ©
we can programm the remaining vertices one by one such
the ith vertex depends on a set of programmed vertices I.....
it, denoted byDl-. In this scheme, for differeritj, we have Fig. 5. The bit-stuffing schemes for the rectangular anahgudar arrays.
that the setD; | Ji is a shift of the setD; | j, and for all4,

the conditional distributionP(z;|z(D;)) is fixed, denoted by  Fig. 5 shows the bit-stuffing schemes that we use to
7, wherez(D;) is the configuration ofD;. ~ calculate the lower bounds of the 2-D arrays’ capacities. In
Let 6 denote the probability distribution of the configuratiofpig figure, the vertex is marked as a gray squard), is
on all the vertices/, and leté denote the probability distri- jndicated by the black vertices that the vertedepends on;
bution of the configuration on the boundary islaritisThen  the stationary constraint is applied to the regiothat includes
we see thad is uniquely determined by and the conditional g the vertices plotted. Based on these schemes, we get the
distribution Y- It is not hard to prove that for any Cond|t|0na||ower bounds for the Capacitiesy which are given in the seécon
distribution v, when the 2-D array is infinitely large, therecoiumn in Table |.
exists a distributiod such tha® is stationary. That means for 3) Upper Bound based on Convex Programmirig: [6],
any subsetd C V and its arbitrary shifo(A) C V, A and  convex programming was used as a method for calculating
o(A) have the same configuration distribution, namely,  an ypper bound on the capacity of 2-D constraints. The idea
Py(z(A) = a) = Py(x(c(A)) = a) is_ bf';\seq on the observr?\tions.that there exists an optimal
] ) ) o distribution#* such that* is stationary and symmetric when
for any state conﬁgur_atl_on_. !\lote that this equat_lon is tr_uethe array is sufficiently large. The stationary property lige
only when the block is infinity large; otherwisé,is quasi- 4t for any set of verticest, — let o(A) be an arbitrary
stationary [5]. o _ shift of A, — A ando(A) have the same state (configuration)
Given this stationary dlstnbutlo@, we woulq like to calcu- istribution. The symmetric property depends on the type of
late the relative entropy?; of the ith vertex given the states o array For a rectangular array, if two sets of vertideand
of the vertices programmed before it. (Here #le vertex iS40 reflection symmetric about a horizontalivertical lime o
not a boundary vertex). Assume the state distributionZin 5 45_gegree line, then they have the same state (configayatio
is ¢; then according to the definition of bit-stuffing distribution. Note that the reflection symmetry about a 45-
R, = Z &(2)H (y(y|2)) degree I_ine is also called transposition invarian_ce ip [6].
For a triangular array, there are more symmetries: if two
sets of verticesA and B are reflection symmetric about a

Whi?'ﬁ?' IS t?e sarrt1e fort (t:irl]fferemtso ‘INe ;?% also Wm.e it horizontal/vertical line or a 30/60-degree line, then theye
as|D|. Itis not easy to get the exact value Bf because is o < me state (configuration) distribution.

;JonkTJ(;Vrv;ngset}r?;nssss(iz?[isrr::rtheée ?eilea;?r? r?ﬁgycg?gfrt;?r;?;s Now let us consider the distribution over a small region
9 Y. BY 9 T for both arrays, as shown in Fig. 6. For example, in

i H H ) /
\évgsg;ta?osr?;of :g:'?ﬁ;?}nse?%’ céllg;%edd .ig(‘;s f} 'ggcgrg;t the rectangular array, assume the distribution7orfthe 12
! ! y vertex (imi ! X vertices) is¢; then given the first ten vertices, the relative

near theith vertex). Therefore, entropy of the next vertex is a function ¢f denoted byR (o).
R; > min Z &' (2)H (v(y|2)) Let's index all the vertices by, 2, 3, ..., n from left to right and
ye{0,1},2€{0,1}ID| then from top to bottom and IR, = H(z;|z1, 22, ..., Ti—1).

under the constraints. (For more discussions, please $ge [5

y€{0,1},2€{0,1}IP:l



. . . . A. One-dimensional Array

Let G = (V, E) be a one-dimensional array of vertices:
v1,v2, -+ ,v,. Whenn — oo and given the overreach error

’ ’ ) ) ’ ’ ’ ’ probability p., let cap;(p.) denote its capacity.
i ° m ! o
i i o © Theorem 4. For one-dimensional arraggp: (pe) >
Fig. 6. The schemes for calculating the upper bounds of thaaites. 2—x 4z
ax{0.5 a 1-H H .
max{05, max (1~ 1) + 270 (52)

Proof: We prove the theorem constructively by presenting
It is easy to see that if a vertéxis not on the boundary, thenerror-correcting codes for one-dimensional arrays.

To see thata <) > 0.5, considem to be even. Partition
R; SH($i|{$1,172,---,17i71}ﬂT):R(¢)- P1(pe) >

the n vertices into pairs:(vy,vs), (v3,v4), -, (Vn—1,Vn)-
That implies thatR(¢) is an upper bound for Store one bit in every paifva;—1,vz;) (fori = 1,2,---,5) -
N this way: if the bit is 0, set both vertices as “off”; if the bit
cap = lim max Dimy B is 1, set both vertices as “on”. Clearly, the code can correct
n=oo 6 n all overreach errors. And its rate is 0.5 bit per vertex. So

So our work is to maximizeR(¢) such thatg is stationary ceP1(pe) = 0.5. In the following, we need to prove that
and symmetric orf". Thus we get the upper bounds for the 9 _ T ( Az )

capacity of the rectangular array in Table I. The same methodc@P1 (pe) > Ié%aéi4] z(1— H(pe)) + 1 5

also applies to the triangular array. w
Given a valid configuratiors = (s1,82, -+ ,8,) € U C

lll. ERRORCORRECTION ANDDETECTION {0,1}", a 1-run (respectively, 0-run) is a maximal segment in

the vectors whose elements are all 1s (respectively, all 0s).

In this section, we study error correction/detection fdget m be a positive integer. Definé,,; C U to be the set
patterned cells. We focus on one-dimensional arrays ane tvi$ valid configurations that satisfy the following conshrisi
dimensional rectangular arrays. When programming domain&he configuration has exactly, + 1 1-runs and O-runs in
a common error is to make a domain too large such thatt@tal. Every 1-run or O-run has at least two elements. The firs
changes the connectivity pattern unintentionally. Twoetypf fun (i.e., the left-most run) is a 1-run.” Defirlg,, o in the
such errors are shown in Fig. 7, where in (a) two diagon&me way except that a configurationZify, o starts with a
“on” domains over'ap, and in (b) an “on” domain toucheg'run (instead of a 1'run). The ana|ySiS below is very simila
its neighboring “off” domain’s bottom electrode. It can bdor bothl/n, 1 andify, o. So to be succinct, we sometimes only
proved that the former type of errors can always be correctéfiesent the analysis @, ;.
because the two concerned domains’ states can be correctlfor a configurations’ = (s1,s2,- -+, s5) IN U1 (OF Upn,0),
determined by checking if they are connected to one of thé@t L1, L2, -+~ L1 denote the lengths of its: + 1 1-runs
four neighbors. So in this paper, we focus on the latter tyg@d 0-runs. (Clearlyy """ L, = n.) We define thesignature
of error, which is important and less trivial. We call thetéat ©f 5, denoted bysig(s), as
?rr?r anoverreach erroy whi.ch Tapf)ens only between an sig(5) = (L1 mod 2, Z{lLi mod 2,
on” vertex and a neighboring “off” vertex, and the error 5 1 dzz_ m 7 49
makes them become connected. We assume that between every 2= Li mod?2, » 2= i mod 2).
pair of neighboring “on” and “off” vertices, the overreachgz'g(g) is a binary vector of lengthn.
error happens independently with probabilpy. Given p., Given a binary vector] = (dy,dy,--- ,d,,), we define its
we define thecapacityas the maximum number of bits thatgifference VectQ,A(J) as
can be stored per vertex such that the data can be decoded _
correctly with high probability (which approaches one as th A(d) = (di, d2 +di mod 2, d3 +d2 mod 2, ---,

array’s size approaches infinity). dm +dm—1 mod 2).
(@ (b) A(cf) is also a binary vector of lengtl. Given any binary
botom T vector ¢, let w(ij) denote its Hamming weight.
We first prove the following property:
u cystaline « Propertyd: Letd = (dy,da, -+ ,d,,) be a binary vector

of lengthm. Let n > 2m + w(A(d)) + 2, and letn —

=

Fig. 7. Error models. (a) Two diagonal domains overlap. (b@i@ach error. w(A(d)) be even. Then we have

-

{5 € Ui | 5ig(s) = d}| = |{5 € Uno | sig(s) = d}




B % -1 (depending on if the 1st information bit is 1 or 0) whose
( ) signatures equaj, where the mapping is injective.
. We now show how to decode the codewords (i.e., configu-
Due to the symmetry betweed(y; and Uno (ust rations) inD; U Dy to recover the information bits, where the
replace 1-runs with O-funs and vice versa), we hay Adewords can contain overreach errors (with error praipabi
(5€ U, | sig(3) = d}’ - ]{s € Up.o | sig(3) = d}’. So ).
we just need to show thak{é’e U | sig(s) =d}| = Let 8= (s1,82,--,s,) € D1 UD, denote the codeword
(configuration) that is stored, and letdenote the information
( ~!). To prove that, consider a configuratish= pits encoded into codeword. After 5 is stored, overreach
(s1,82,--,sn) € Um,1 Whose signaturesig(s) = d. Let errors happen and change the connectivity pattern.ﬂ_ei
Ly,Lo,---, Lypy1 denote itsm + 1 1-runs and O-runs, from (3, 35,---,8,) € {0,1,2,3}" denote the connectivity pat-
left to right. It is not hard to see that if th#h element in tern detected after overreach errors happen, defined asvéll

n—w(A(d)
2

the vectorA(d) is 0, thenL; > 2 and L; is even; if theith “For i = 1,2,--- ,n, if the ith vertex is not connected to
element inA(d) is 1, thenL; > 3 and L; is odd. any other vertex, thers; = 0; if ¢ > 1 and it is only
Let us obtain a new binary vectory = connected to thei — 1)th vertex, thens; = 1; if i < n

(y1,y2, ... ,ynwm@)) this way: first, fori = 1,2,--- ,m, and it is only connected to thg + 1)th vertex, thens; = 2;
now @)

. _ . = _ if 1 <4 <nanditis connected to both thg — 1)th vertex
if the ith elemer_1t LnA(d) is 1, decrease the length of thin | the(i + 1)th vertex, then3; = 3" (For example, if§ —
1-run or O-run ins by one; then, fori = 1,2,--- . m + 1,

) (1,1,0,0,1,1,1,0,0,1,1) and two overreach errors connect
reduce the length of théth 1-run or O-run by half. Clearly, the 2nd vertex with the 3rd vertex and connect the 4th vertex

7 is a binary vector of length™=*2(@) that hasm + 1 ith the 5th vertex, therd = (2,3,1,2,3,3,1,0,0,2,1).)

1-runs and O-runs (without any Ilmltat|on on the lengths Cﬁased ong, the decoding algorithm will recover both the
the 1-runs and O-runs), and there is a one-to-one Mapp¥ewords and the information bits.

between conflguratlorls(%{m 1 of signatured and suchj  gince every 1-run or O-run i has length at least two, if
vectors. There aréifl) such vectorgj. So Property 51 =0, thens € U,, o and the first information bit irb is O;
& is true. otherwise,s € U,,,; and the first information bit i is 1. In
We now considerm — oo, let m be even, and let the following, without loss of generality (w.l.0.9.), wesasne
¢ be an arbitrarily small constant. Defin& £ {y e thatp; =1 and present the corresponding decoding method.
{0,1}™ | w(A(y)) = % }. Note that for a random binary vec- Let  Li,La,---, Ly, be our estimation of
tor 7 € {0, 1} whose elements are i.i.d. and equally likely td’1, Lo, - - - , Lm+1 (the lengths of 1-runs and O-runs &),
be 0 and 1, with high probability we hatien,,, ., “>%) —  computed as follows. Foi = 1,2,---, 2 +1, let Ly; | be
L Solim, .. is evenlogfn'K| 1. Let K — K be a set the length of th/eth segment i3 of the form(2,3,---,3,1),
- and letag;_1,a4, ; € {1,2,---,n} denote the first and last
whose elements are uniformly randomly chosen frEnsuch - . .
. log, | K| ) positions of that segment, respectively. (That is, the ssgm
thatlim,,_,, .. is even—m ~ = 1 = H(pe) — e It is not begins with 2, ends with 1 and has zero or more 3's in
between.) Foi = 1,2, - let Ly; = Qi1 — Oy 4 — L.

difficult to see that/ is an error-correcting code of length .
(with m — o), rate1 — H(p.) (we makee — 0) that can % A

A
correct binary symmetric errors with error probability. Define the signature cﬂ aSSZg(ﬁ) (11372, + s 0m) = (Ln

mod 2,57 L; mod 2,3 | L; mod2,---, " L;
Letn > 3m + 2, and letn — 2 be even. By Propertyh, mod 2). Let sig(s) — (/Lhﬂ?a ) be the signature of

m_q
for every vectory € K, there are( m ) conflguianons s. It is not hard to see we have the following property:
in u”” (and in 4y, ) of signaturey. Define = = 7, o Fori=1,3,5,---,m— 1, if there is no overreach error

D {S € Uny | Iy € K suchthatsig(s) = g}, between the Iast vertex of théh run (which is a 1-run)
and DO {5 € Ung | Iy € K such thatsig(s) = g}. and the first vertex of thé + 1)th run (which is a 0-run)
Sincelim,, 00 logi(_f"%l = limy, m—oo H(#) = in 3, thenz = 23:1 L; and therefore), = w;;
H(5%), we can encode + [nz(1 — H(pe) —€)] + [n(3 — otherwse,ZF 22:1 L; + 1 and thereforey; =
2 %)H(;‘TZ)J information bits into the configurations in pi +1 mod 2. '
D1 UDy as follows: e Fori = 2,4,6,---,m, if there is no overreach error
1) If the 1st information bit is 1, the codeword will be a  Petween the last vertex of thah run (which is a O-
configuration inl4,, ;; otherwise, it will be a configura- run) and the first vertex Of the + 1)th run (which is
tion in U, o. al- run) ins, then> ", L; T >_j=1L; and therefore
2) The next|naz(1 — H(p.) — ¢)] information bits are ni = pi; otherwise, ZF = Z;Zl L; —1 and
mapped to one of the vectors Id, where the mapping thereforeqi =p; +1 mod 2.
is injective. Lety denote the corresponding vectorinh So the overreach errors have a one-to-one mapping to the 1's

3) The last|n(3 — £ — 1)H(5%)] information bits are in the vector(u; +7; mod 2, ua+n2 mod 2, -+, flyn + Tm

mapping to one of the configurations &), 1 or U,,, mod 2). Sincesig(s) is a codeword ink, and the codey



can correct binary symmetric errors with error probabifity « For any two valid configurations, ¢ € U,, F(5) < F(t)

we can decodeig(/3) to recover the correct value afg(3) if and only if B(3) < B(t).
(with probability one asm — oc). Then based omig(5) That is, the functionF' sorts the valid configurations of the
and Ly, -+, Ly, we can recover the values @f;,---, L, redundant vertices based on their lexical order.Eet denote

and therefore the codeword (configuratichy U,,, 1. Based the inverse function ofF. We will introduce the specific
on sig(s) € K, we can recover thénz(l — H(p.) — ¢)] computations used b§ andF~* at the end of the subsection.
information bits that follow the first information bit. Then e now introduce how to encode the valueyofising the
based or¥, we can recover the lagt(} — % — %)H(%)J configuration of ther redundant vertices. We choosedo be
information bits. That concludes the decoding algorithm.  the smallest positive integer such thal(r) > m. Let §

We now analyze the raté&? of the above code. Wheni/,. denote the programmed configuration of theedundant
n,m — oo, we haveR = z(1 — H(p.)) + QTT””H(Q%). Since vertices. Then as the the encoding algorithm, we chabse
n>3m+2,z="2¢[0,0.4]. That leads to the conclusion.such that .

[ | F(0) = x.

We introduce details of the decoding (i.e., error detegtion
It is noticeable that the overreach error is a type of asymmetocess. Let¥ = (z1,22, - ,2m) € {0,1}™ denote our
ric error for graph connectivity. In the following, we prege estimated configuration of the information vertices, define
an error-detecting code that can detaittoverreach errors. Its as follows:

underlying idea is closely related to the well-known Berger , We measure the connectivity between the information

code [1] for asymmetric errors. vertices. Fori = 1,2,--- ,m, if vertex v; is connected
The framework of the code construction is as follows. We to at least one other information vertex, thep = 1;

use m information vertices anad redundant vertices, which otherwise,xz; = 0.

form a one-dimensional array of = m + r vertices. (The Similarly, let 7 = (y1,92,---,y-) € {0,1}" denote our

redundant vertices follow the information vertices in theag)  estimated configuration of the redundant vertices, defireed a
Let the constantsyi, ae, as, 1, e, u3 be as specified in fgllows:

Theorem 3. Then information vertices store data from an

_ « We measure the connectivity between the redundant ver-
alphabet of sizeN(m) = paf® + p2a + pzaf'. When

X i ) i tices. Fori =1,2,---,r, if vertex u; is connected to at
m is large, them information vertices store aboGt8114m least one other redundant vertex, then= 1; otherwise
information bits, andr ~ log; 7549m. (So the redundancy " ’ ' ’
J1 T .

is logarithmic in the codeword length.) Let denote the
number of connected components in the subgraph induce A
by the information vertices, which overreach errors caryonl 1) LetX be the number of connected components among
decrease. We use the redundant vertices to record the value the information vertices derived from (|.e.,qcomeuted
of x, and the mapping is constructed such that the recorded 2@sed on) the estimated configuratienif F(y) > X,
value can only be increased by overreach errors. This way, th __ then either one or more overreach errors exist.
mismatch between information vertices and redundantoesti  2) If the two vertices,, andu, are connected but either
can be used to detect all overreach errors. om = Lyy = 0" 0Or “a,, = 0,41 = 17, then there is
We now present details of the code. Let,vo, -, v, an overreach error betwees), andu;.
denote them information vertices. A connected com-

. ) . Theorem 5. The above code can detect all overreach errors.
ponent among them is a maximal segment of vertices

(vi, Vi1, -+ ,vj) such that their corresponding bottom elec-  Proof: If overreach errors happen among the information
trodes are all electrically connected. Lgt and x denote vertices, we will havey < . Let overreach errors happen
the number of connected components among the informatigfong the redundant vertices, some “off” redundant vestice
vertices before and after overreach errors happen (if anyjill be incorrectly estimated to be “on”, so we will have
respectively. Clearlyl < x < x < m. If there is one or F(j) > F(§). Since F(d) = y, if overreach errors happen
more overreach errors among theinformation vertices, then among information vertices or among redundant vertices (or

Jhe decoding (i.e., error detection) algorithm is as fokow

X < x; otherwise,x = x. both), we will haveF (i) > ¥, and the errors will be detected.
Let uy,uo, - - - ,u, denote ther redundant vertices, and let The only remaining case is that no overreach error happens
U, C {0,1}" denote the set of valid configurations for themamong the information vertices or among the redundant ver-
For everys = (s1,82,--+,8.) € Uy, let B(5) £ 37, s; - tices, however there is an overreach error between the two
27t We havelld,| = N(r) = piaf + poab + psal. We build  segments (namely, betweep, andu+). In this caseg,, and
a bijective function y1 will be the true states of the two vertices, and the second
step of the algorithm will detect the error. ]

F : U —{1,2,--- N(r)}
Theorem 6. Letm > 2 be an integer. Let be the smallest
with the following property: positive integer such that,af + peah + psa > m. (The



constants , e, a3, pi1, o, 13 are specified in Theorer8.) If j =n—1, we haves, =0.If j <n—2, we haves;1; =0
Then, there is an error-detecting code of length- r and rate and

logy (p1ad* + poa 4+ psaf?) (0,+++,0,8)42,85+3," - , sr)
m+r = F*l(z—N(r—i)—Z-;;1+1N(r—k—1)).
bits per vertex that can detect all overreach errors. When With the above recursion, we can easily determifiel(z).

oo, we haver = log, m =~ log; ;549 m, and the rate of the
code iscap1p = log, a1 = 0.8114, which reaches the capacityB. Two-dimensional Array

of one-dimensional arrays. We now focus on the capacity of two-dimensional rectangu-
lar array when i.i.d. overreach errors happen with proligbil

We now introduce how the functionf” : U, : . . -
{1,2,---, N(r)} maps configurations to integers, and how itg® between neghbormgn andoff vertices. Letz = (V, F) be
anm x m two-dimensional rectangular array, whene— oc.

i i 7]‘ . .. I
inverse funct_lonF {1,2,--- ,N(r)} — U, maps integers Let capa(p.) denote its capacity.
to configurations.

We first show that given any valid configuration = B 3
L s3,cee15) € U, how to computeF(5). If § — Theorem 7.For anyq € [0,1/2], letn(q,pe) = (1 — ¢*)(pe +

S . .
EO 0 0, then (5 = 1. So n the following we assume (L — Pe)(1 = (1 = (1 — q)pe)?)). Then for two-dimensional
§;é 7(0 0’---’ 0). Let rectangular array,

4
i =min{k € {1,2,--- 7} | sx = 1. caps(pe) = ¢ qg})agfslﬂ(l —q+qn(g;pe)) — ¢H (n(g, pe)).
Letj e {i+1,i+2,---,r} be defined as follows: it; = Proof: The proof is constructive. First, consider a tile of
sit1 = --- = s, = 1, thenj = n; otherwise, letj be the 5 vertices as in Fig. 8 (a), where the 5 vertices are denoted by
integer such that; = s;.1 = --- = s; = L ands;1 = 0. For a,b,c,d, e, respectively. Ley € [0, 1] be a parameter we will

any two Eonfigur@ions},t} € U,, we sayt; is smaller than optimize. Let the on/off states of the four verticesh, ¢, d
ta it F(t1) < F(t2). Namely,t, is smaller thanis if 1 is  be ii.d., wherea (or b,¢,d) is on with probability 1 — ¢
lexically smaller thart,. We have the following observation: and off with probability . We set the state of vertex —

o The smallestV (r — i) configurations(a;, as, - - - ,a,) € the vertex in the middle — this way: “I&, b, ¢, d are all off,
U, are those witha; = ay = --- = a; = 0; the next thene is off; otherwise.c is on” Clearly, the above approach

N(r—i—2) smallest configurations are those with= guarantees that evegn vertex has at least one neighboring
oo =a;.1 =0, a; = aj41 = 1 anda;.o = 0; the Vertex that is alsocon. Let S(a), S(b), S(c),S(d) € {0,1}
next N (r — i — 3) smallest configurations are those witiflenote the states of the vertices, c, d, respectively. We let
a1 = -+ = a1 =0, a; = ai41 = aj42 = 1 and e€ach of the four vertices, b, c,d store a bit, which equals
a;+3 = 0; and so on. S(a), S(b), S(c), S(d), respectively.
Consequently, we obtain the following formula: It is well known that the small tiles can be packed per-
’ ' fectly to fill the two-dimensional space. It is illustrated i

F(®= N(r—i)+Yi_iNr—k-1) Fig. 8 (b). To differentiate the vertices in different smils,
+F((0,---,0,8j+2, 843, ,Sr))- fori=1,2,3---, the five vertices in théth tile are denoted
L by a;, b;, c;, d;, e;, respectively.
(By default, let N(0) = 1; and if j > r — 1, let | etysfocus on the stored tt(a; ). (The analysis applies to
F((0,--+,0, 8542, 8543, -+ ,5r)) = 1.) The above recursion ye other stored bits in the same way.) After overreach grror
can be easily used to computgs). happen, letS’(a;) denote our estimation of the fit(a; ). We
Next, we show thlat given an integerc {1,2,---, N(r)},  determineS’(a;) this way:
?hogyw;?*f?z?iutfo, (Z )’g).(fﬁ ’tffe’ ;‘(;iI(;\fvTi%gewbéTé;]cs jm:el>’ « If vertex a; is connected ta; (the central vertex in its

small tile), thenS’(a,) = 1; otherwise,S’(a;) = 0.
We can see that if(a1) = 1, there will be no decoding error
for this bit because we will hav8’(a;) = 1. If S(a1) =0,

1. Let i be the greatest integer such thsitr —i + 1) > z;
then we have

$1=8 =---=s8,_1=0 and s; =1. with a certain probability? (which we will analyze later) the
_ overreach errors will maké&’(a;) be 1. So the channel for
Let j be the smallest integer such that the stored bits is asymmetric, similar to the Z-channel tmit n
j memoryless. We first show the following property:
N(r—i)+ Z N(ir—k—-1)>=z. o Property:
k=i+1

P<(1=¢*)(pe+ (1 —pe)(1— (1~ (1—q)pe)®)).

To prove Propertyh, assumeS(a;) = 0. If S’(a1) =1, then
Si =841 =---=8; = 1. S(e1) = 1, and there must be an overreach error that connects

(By default, letN(0) = N(—1) = 1.) Then we have



(a) c

cannot affect two vertices separated by two consecuiffe
vertices, the decoding errors for two different large tige
independent.

Build a sub-channel as follows: Take one vertex from each
large tile (which is either am,, b;,c; or d; vertex, but not
an e¢; vertex), and let each vertex store one bit as described
before (i.e., the vertex stores bit 0 with probabilityand bit
1 with probability 1 — ¢). (For example, we can take the
vertex a shown in Fig. 8 (c) in each large tile.) Overall,
the large tiles contairl N such sub-channels. Consider one
sub-channel, whose capacity is clearly a lower bound of the
capacity of the aggregation of tHé&v sub-channels. The errors
for the different vertices in the sub-channel are indepahde
and asymmetric (like a Z-channel); and due to the existence
of the buffer vertices, the probability that its stored biisO
correctly decoded as 1 (i.e., the cross-over probabilitthe
Z-channel) isat mostP. Let X,Y € {0,1} denote the input
and output bit of the channel, respectively. Then we get

I(X;Y)

H(Y) - H(Y|X)

HY) =3 ey Pr{X =2}HY|X =2)
H(1—q+qP)—qH(P)
H(1—q+qn(q,pe)) — ¢H(n(q,pe))

Since in every small tile, 4 out of the 5 vertices are used to
store bits, we get the conclusion. [ ]

It can be seen that whem. — 0, the low bound in the
above theorem approachégs.

VIV

IV. CONCLUSION

Fig. 8. Tiling and coding in two-dimensional rectangularagr (a) A small

tile of 5 vertices. (b) Packing the small tiles in (a) to filktlwo-dimensional In this paper, a hew cell structure named patterned cell is
space. (c) Separating large tiles usioff vertices. Here the black vertices . '

form a large tile. The white vertices are buffer vertices ame alwaysoff, 'ntrOdUC_ed for phase'Change memories. It ha§ a new data rep-

and they separate the large tiles in the two-dimensionatespa resentation scheme based on graph connectivity. The storag
capacity of the scheme is analyzed, and its error correction
and detection performance is studied.

a; to a neighbor that isn. We havePr{S(e;) = 1|S(a1)
0} = Pr{S(by) = 1, or S(c;) = 1, or S(dy) 1} (1]
1 — ¢3. Given S(e;) = 1, the probability that an overreach[z]
error connects; to eithere; or one of theon vertices among
{bs, ca,d2} — see Fig. 8 (b) — equajs. + (1 — p.)(1 — (1 —

(1 —q)pe)?). So Property is true.

We now useN small tiles to form a large tile, and use
infinitely many such large tiles to fill the two—dimensiona[s]
space with the following special arrangement: These lalge t
are separated by buffer vertices that are always seffaand [6]
for any two vertices in two different large tiles, there ate a
least two consecutive buffer vertices separating them gn an
path between them. (We illustrate it in Fig. 8 (c), where one
large tile and the buffer vertices surrounding it are shaMate
that for easy illustration, in the figure a large tile corsisf
only N = 4 small tiles. However, for our proof on capacity,
we will make NV sufficiently large such that the buffer vertices
have a negligible impact on the capacity.) Clearly, due o th
existence buffer vertices and the fact that overreach rror

(3]
(4]
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