
Patterned Cells for Phase Change Memories
Anxiao (Andrew) Jiang
Computer Sci. and Eng.
Texas A&M University

College Station, TX 77843
ajiang@cse.tamu.edu

Hongchao Zhou
Electrical Engineering

Caltech
Pasadena, CA 91125
hzhou@caltech.edu

Zhiying Wang
Electrical Engineering

Caltech
Pasadena, CA 91125
zhiying@caltech.edu

Jehoshua Bruck
Electrical Engineering

Caltech
Pasadena, CA 91125

bruck@caltech.edu

Abstract—Phase-change memory (PCM) is an emerging non-
volatile memory technology that promises very high performance.
It currently uses discrete cell levels to represent data, controlled
by a single amorphous/crystalline domain in a cell. To improve
data density, more levels per cell are needed. There exist a num-
ber of challenges, including cell programming noise, drifting of
cell levels, and the high power requirement for cell programming.

In this paper, we present a new cell structure calledpat-
terned cell, and explore its data representation schemes. Multiple
domains per cell are used, and their connectivity is used to
store data. We analyze its storage capacity, and study its error-
correction capability and the construction of error-control codes.

I. I NTRODUCTION

Phase-change memory (PCM) is an important emerging
nonvolatile memory (NVM) technology that promises high
performance. It uses chalcogenide glass as cells, which hastwo
stable states: amorphous and crystalline [2]. The amorphous
state has very high electrical resistance, and the crystalline
state has low resistance. Intermediate states, called partially
crystalline states, can also exist. High temperatures induced by
electrical currents are used to switch the state of a portionof
the cell, which is called adomain. By quantizing cell resistance
into multiple discrete levels, one or more bits per cell can
be stored. Currently, four-level cells have been developed. To
improve data density, more levels are needed [2].

The current multi-level cell (MLC) approach faces a number
of challenges, including cell-programming noise, cell-level
drifting, and high power consumption [2], [3]. It is difficult
to program cell levels accurately due to cell heterogeneityand
noise. The cell levels can drift away significantly after they are
programmed, making it even harder to control their accuracy.
And the high power requirement for cell programming is
hindering PCM’s application in mobile devices [3].

In this paper, we explore a new cell structure and its data
representation scheme. In the new structure, calledpatterned
cells, multiple domains per cell are used. An example is
shown in Fig. 1, where two or four domains exist in a cell,
whose states are independently controlled by their respective
bottom electrodes. (The state of a domain is switched by the
current between the bottom and top electrodes. We assume
that the PCM layer is sufficiently thin such that changing
a domain to the crystalline state, which is called the SET
operation and requires a lower temperature/current, will not
affect its neighboring domains.) The base of a cell is in
the amorphous state, while every domain can be switched to
the crystalline state. (To change domains back to amorphous,

called the RESET operation, we can RESET them together to
avoid interference.) We call this model thecrystalline-domain
model, because the domains have a different state from the
cell base when they are crystalline. Theamorphous-domain
model, where the cell base is crystalline and the domains can
be amorphous, can also be defined. Due to the space limitation,
we omit its details, and focus on the crystalline-domain model.

crystalline
domain

top electrode(a)

bottom electrodes

crystalline

amorphous base

domain

top electrode(b)

bottom electrodes

amorphous base

crystalline crystalline
domain domain

(c) bottom side of cell

bottom electrodes

(d)

amorphous
base

Fig. 1. Patterned cell with the crystalline-domain model. (a) A PCM cell with
two bottom electrodes and one crystalline domain. The two bottom electrodes
are not connected (i.e., there is high resistance between them). (b) The two
bottom electrodes are connected by two overlapping crystalline domains. (c)
The bottom-side view of a cell withn = 4 potential crystalline domains.
(d) The 10 different connectivity patterns for the2 × 2 rectangular array
of domains shown in (c). The black vertices are crystalline domains (called
“on” vertices); the white vertices are not crystalline (called “off” vertices).
The edges between vertices denote their connectivity.

We let every domain have two basic states:on (crystalline)
or off (amorphous). If two neighboring domains are both
on, they overlap and become electrically connected (i.e., low
resistance). The connectivity of domains can be detected by
measuring the resistance between their bottom electrodes,
which uses low reading voltage and does not change the state
of the domains. We use the connectivity patterns of domains
to represent data. As an example, the connectivity patternsof
the four domains in Fig. 1 (c) are illustrated in Fig. 1 (d).

Pattern cell is a new approach to store data using the internal
structure of domains in PCM cells. The two basic states
of its domains may eliminate the high precision and power
requirements imposed by programming cell levels. The data

representation scheme is a new type of code defined based on
graph connectivity. In this paper, we explore this new scheme,
analyze its storage capacity, and study its error-correction
capability and the construction of error-control codes.

The rest of the paper is organized as follows. In Section II,
we study the storage capacity of patterned cell. In Section III,
we study error correction and detection for patterned cell.In
Section IV, we present concluding remarks.

II. STORAGE CAPACITY OF PATTERNED CELL

In this section, we present the graph model for connectivity-
based data representation. Then we analyze the storage capac-
ity of domains that form one or two dimensional arrays.

A. Graph Model for Connectivity-based Data Representation

Let G = (V,E) be a connected undirected graph, whose
verticesV represent the domains in a cell. An edge(u, v)
exists if the two domains are adjacent (which means they
overlap if they are bothon). Let S : V → {0, 1} de-
note the states of vertices:∀ v ∈ V , S(v) = 1 if v is
on, and S(v) = 0 if v is off. Denote the|V | vertices
by v1, v2, · · · , v|V |. We call

(

S(v1), S(v2), · · · , S(v|V |)
)

a
configuration of G. Let Ũ = {0, 1}|V | denote the set of
all configurations. Since in the crystalline-domain model,the
purpose of making a domain crystalline is to connect it to
at least one crystalline neighbor, we focus on configurations
denoted byU that satisfy this property: “For anyv ∈ V that
is on, at least one of its neighbors is also on.” That is,U =
{
(

S(v1), S(v2), · · · , S(v|V |)
)

∈ Ũ | ∀1 ≤ i ≤ |V | , if S(vi) =
1, then∃vj ∈ V such that(vi, vj) ∈ E andS(vj) = 1}. We
call U the set ofvalid configurations.

Let C : V × V → {0, 1} denote the connectivity between
vertices: “∀ w1 6= w2 ∈ V , C(w1, w2) = 1 if there
exists a sequence of vertices(w1 = u1, u2, · · · , uk = w2)
such that (ui, ui+1) ∈ E and S(ui) = S(ui+1) = 1
for i = 1, 2, · · · , k − 1; otherwise,C(w1, w1) = 0. And
for any w ∈ V , we setC(w,w) = 1 by default.” Two
verticesw1, w2 are connectedif C(w1, w2) = 1. The vector
(C(v1, v1), C(v1, v2), · · · , C(v1, v|V |);C(v2, v1), C(v2, v2),
· · · , C(v2, v|V |); · · · · · · ;C(v|V |, v1), C(v|V |, v2), · · · ,
C(v|V |, v|V |)) is called the connectivity pattern of G.
Clearly, not all vectors in{0, 1}|V |×|V | are connectivity
patterns that correspond to valid configurations (or even just
configurations). So to be specific, letf : U → {0, 1}|V |×|V | be
the function that maps a valid configuration to its connectivity
pattern. LetC = {f(~u) | ~u ∈ U}, and we callC the set of
valid connectivity patterns.

Lemma 1.The mappingf : U → C is a bijection.

Proof: Given a connectivity pattern~c ∈ C, we see that a
vertex v ∈ V is on if and only if it is connected to at least
one neighbor. So the configuration is determined by~c.

A PCM can read the connectivity pattern. We store data by
mapping elements inC to symbols. The rate of graphG is
log2|C|
|V | = log2|U|

|V | bits per vertex (i.e., domain).

B. Capacity of One-dimensional Array

It is not difficult to compute the rate ofG when|V | is small.
In this paper, we focus on large|V | (especially for|V | → ∞),
which corresponds to using numerous domains in a large PCM
layer. Letn = |V |, and defineN(n) , |C| = |U|. We define
the capacityof G ascap = limn→∞

log2N(n)
n .

We first consider the case where the domains form
a one-dimensional array. That is, in graphG =
(V,E), we have V = {v1, v2, · · · , vn} and E =
{(v1, v2), (v2, v3), · · · , (vn−1, vn)}. We denote thecapacityof
the one-dimensional array bycap1D.

Theorem 2. Let λ∗ = 1
6

(

100 + 12×
√
69
)1/3

+
2

3(100+12×
√
69)

1/3 + 2
3 ≈ 1.7549. We have

cap1D = log2 λ
∗ ≈ 0.8114.

Proof: The valid configuration of a one-dimensional array
is a constrained system, where every run of 1s (i.e., “on”
vertices) needs to have length at least two. The Shannon cover
of the system is shown in Fig. 2. Its adjacency matrix is

A =





1 1 0
0 0 1
1 0 1



. By solving |A− λI| = −(λ3 − 2λ2 +

λ − 1) = 0, we find that for matrixA, its eigenvalue of the
greatest absolute value isλ∗ ≈ 1.7549. It is known that the
capacity of the constrained system islog2 λ

∗.

0 1 2
1 (on) 1 (on)

0 (off)
0 (off) 1 (on)

Fig. 2. Shannon cover for one-dimensional array.

We further present the number of valid configurations for a
one-dimensional array withn vertices.

Theorem 3.Let α1, α2, α3 be the three solutions tox for the
equationx3−2x2+x−1 = 0, and letµ1, µ2, µ3 be the numbers
that satisfy the linear equation set











µ1α1 + µ2α2 + µ3α3 = 1

µ1α
2
1 + µ2α

2
2 + µ3α

2
3 = 2

µ1α
3
1 + µ2α

3
2 + µ3α

3
3 = 4

(We getα1 = 1
6 · (100 + 12

√
69)

1
3 + 2

3 · (100 + 12
√
69)−

1
3

+ 2
3 ≈ 1.7549, α2 = − 1

12 · (100 + 12
√
69)

1
3 − 1

3 · (100+
12

√
69)−

1
3 + 2

3 + i · (
√
3

12 · (100 + 12
√
69)

1
3 −

√
3
3 · (100+

12
√
69)−

1
3) ≈ 0.1226 + 0.7449i, α3 = − 1

12 · (100+
12

√
69)

1
3 − 1

3 ·(100+12
√
69)−

1
3 + 2

3−i·(
√
3

12 ·(100+12
√
69)

1
3 −√

3
3 · (100 + 12

√
69)−

1
3) ≈ 0.1226 − 0.7449i, µ1 ≈ 0.7221,

µ2 ≈ 0.1389 + 0.2023i, andµ3 ≈ 0.1389 − 0.2023i.) Then
for a one-dimensional array withn vertices, we haveN(n) =
|C| = |U| = µ1α

n
1 + µ2α

n
2 + µ3α

n
3 .

Proof: We derive the value ofN(n) by recursive func-
tions. Defineg(n) to be the set of valid configurations for a
linear array withn vertices given that the first vertex is “on”.
That is,g(n) = {(s1, s2, · · · , sn) ∈ U | s1 = 1}.

To computeg(n), we notice that for a valid configuration
(s1, s2, · · · , sn) ∈ U , if s1 = 1, thens2 = 1 and we also have
the following properties:

• If s3 = 0, the states of the lastn − 3 vertices can be
any configuration for a one-dimensional array withn− 3
vertices. There areN(n− 3) such configurations.

• If s3 = 1, the states of the lastn − 1 vertices can be
any configuration ing(n− 1). There are|g(n− 1)| such
configurations.

So we get|g(n)| = N(n− 3) + |g(n− 1)|.
To computeN(n), we notice that for a valid configuration

(s1, s2, · · · , sn) ∈ U :

• If s1 = 0, the states of the lastn − 1 vertices can be
any configuration for a one-dimensional array withn− 1
vertices. There areN(n− 1) such configurations.

• If s1 = 1, the states of then vertices can be any config-
uration ing(n). There are|g(n)| such configurations.

So we getN(n) = N(n− 1) + |g(n)|.
Combing the above two equations, we get the recursive

function

N(n) = 2N(n− 1)−N(n− 2) +N(n− 3).

By solving the recursive function and using the boundary
conditions thatN(1) = 1, N(2) = 2, N(3) = 4, we get
the conclusion.

C. Capacity of Two-dimensional Arrays

We now consider the case where the domains form a
two-dimensional array. Specifically, we study two types: the
rectangular array and the triangular array, illustrated in
Fig. 3. We denote the capacity of the two-dimensional array
by cap. 1 Some existing techniques based on convex/concave
programming, including tiling, bit-stuffing,etc., can be applied
here to obtain the upper and lower bounds of the capacity. We
summarize the bounds in Table I. It is interesting that the
capacity is really high (close to 1) for both arrays. In the rest
of this section, we will discuss the bounds in detail.

(a) Rectangular array (b) Triangular array

Fig. 3. Two types of two-dimensional arrays.

1It will be clear from the context which array it refers to. Andwe comment
that compared to the rectangular array, it is possible to pack domains more
compactly in the triangular array.

Lower (Tiling) Lower (Bit-Stuffing) Upper Bound
Rectangular 0.959338 0.961196 0.963109
Triangular 0.987829 0.987218 0.990029

TABLE I
UPPER AND LOWER BOUNDS FOR TWO-DIMENSIONAL ARRAY ’ S CAPACITY.

1) Lower Bound based on Tiling:If we consider a distri-
bution θ on the valid configuration setU , then the rate ofG
is

R(θ) =
H(θ)

n
.

So another expression for capacity is

cap = max
θ

lim
n→∞

R(θ).

For any distributionθ, limn→∞ R(θ) is a lower bound forcap.
Different ways of constructingθ lead us to different methods.

In [4], Tiling was proposed as a variable-length encod-
ing technique for two-dimensional (2-D) constraints, suchas
runlength-limited (RLL) constraints and no isolated bits (n.i.b.)
constraints. The idea of tiling is that we can divide all the 2-D
plane using shifted copies of two certain shapes, referred as
‘W’ and ‘B’ tiles. Here, we say that a set of verticesA is a shift
or shifted copy of another setB if and only if their vertices
are one-to-one mapped and the position movement (vector)
between each vertex inA and its corresponding vertex inB
is fixed. For these two types of tiles – ‘W’ tiles and ‘B’ tiles,
– they have the following properties:

1) The ‘W’ tiles are freely configurable. That means given
any configuration for all the ‘W’ tiles, we can always
find a configuration for all the ‘B’ tiles such that they
satisfy the 2-D constraints.

2) Given any configuration for all the ‘W’ tiles, the con-
figurations for the ‘B’ tiles are independent with each
other.

According to these properties, we can first set ‘W’ tiles
independently based on a predetermined distributionπ, and
then configure the ‘B’ tiles uniformly and independently
(given the ‘W’ tiles). Finally, the maximal information rate
maxπ R(π) is a lower bound of the array’s capacity.

As discussed previously, our constraint for a valid configura-
tion is that each “on” vertex has at least one “on” neighbor. For
the rectangular/triangular arrays, we can use the tiling schemes
in Fig. 4.

W

W

W B

W

W

W W

W

B

Fig. 4. Tiling schemes for the rectangular (left) and triangular (right) arrays.

According to Theorem 3.1 in [4], we have

cap ≥ max
π

R(π) = max
π

H(π) +
∑

φ Pπ(φ)|S(φ)|
|W |+ |B| .

Here, |W | (or |B|) is the size of each ‘W’ (‘B’) tile, e.g.,
|W | = 12 in the left-side tiling of Fig. 4 and|B| = 2 in the
right-side tiling of Fig. 4;H(π) is the entropy corresponding
to distribution π; φ is the configuration of the ‘W’ blocks
around a ‘B’ block (four blocks in Fig. 4), whose distribution
is a function ofπ, denoted asPπ(φ); |S(φ)| is the number of
available distinct configurations for a ‘B’ blocks given the‘W’
blocks around it. Based on this formula, we are able to get
the lower bounds in the first column of Table I using convex
programming with linear constraints.

2) Lower Bound based on Bit-Stuffing:Another way to
obtain the lower bounds for the capacities of 2-D constraint
codes is based on bit-stuffing [5]. In bit-stuffing, let∂ denote
the vertices near the left and top boundaries, called boundary
vertices. Assume we know the state configuration of∂; then
we can programm the remaining vertices one by one such that
the ith vertex depends on a set of programmed vertices near
it, denoted byDi. In this scheme, for differenti, j, we have
that the setDi

⋃

i is a shift of the setDj

⋃

j, and for all i,
the conditional distributionP (xi|x(Di)) is fixed, denoted by
γ, wherex(Di) is the configuration ofDi.

Let θ denote the probability distribution of the configuration
on all the verticesV , and letδ denote the probability distri-
bution of the configuration on the boundary islands∂. Then
we see thatθ is uniquely determined byδ and the conditional
distributionγ. It is not hard to prove that for any conditional
distribution γ, when the 2-D array is infinitely large, there
exists a distributionδ such thatθ is stationary. That means for
any subsetA ⊂ V and its arbitrary shiftσ(A) ⊂ V , A and
σ(A) have the same configuration distribution, namely,

Pθ(x(A) = a) = Pθ(x(σ(A)) = a)

for any state configurationa. Note that this equation is true
only when the block is infinity large; otherwise,θ is quasi-
stationary [5].

Given this stationary distributionθ, we would like to calcu-
late the relative entropyRi of the ith vertex given the states
of the vertices programmed before it. (Here theith vertex is
not a boundary vertex). Assume the state distribution onDi

is φ; then according to the definition of bit-stuffing

Ri =
∑

y∈{0,1},z∈{0,1}|Di|

φ(z)H(γ(y|z))

where|Di| is the same for differenti, so we can also write it
as|D|. It is not easy to get the exact value ofRi becauseφ is
unknown (it depends onγ) and there are too many constraints
to guarantee thatθ is stationary. By relaxing the constraints,
we get a set of distributions onDi, denoted as{φ′}, such that
θ is stationary near theith vertex (limited in a fixed areaT
near theith vertex). Therefore,

Ri ≥ min
φ′

∑

y∈{0,1},z∈{0,1}|D|

φ′(z)H(γ(y|z))

such that (1) the configuration distribution onT is stationary,
and (2) given somez ∈ {0, 1}|D|, we haveγ(0|z) = 0 to
guarantee that each “on” vertex has at least one “on” neighbor.

Since the inequality above holds for all the vertices except
the boundary vertices, a lower bound of the capacity can be
written as

max
γ

min
φ′

∑

z

φ′(z)H(γ(y|z))

under the constraints. (For more discussions, please see [5].)

i

i

Fig. 5. The bit-stuffing schemes for the rectangular and triangular arrays.

Fig. 5 shows the bit-stuffing schemes that we use to
calculate the lower bounds of the 2-D arrays’ capacities. In
this figure, the vertexi is marked as a gray square;Di is
indicated by the black vertices that the vertexi depends on;
the stationary constraint is applied to the regionT that includes
all the vertices plotted. Based on these schemes, we get the
lower bounds for the capacities, which are given in the second
column in Table I.

3) Upper Bound based on Convex Programming:In [6],
convex programming was used as a method for calculating
an upper bound on the capacity of 2-D constraints. The idea
is based on the observations that there exists an optimal
distributionθ∗ such thatθ∗ is stationary and symmetric when
the array is sufficiently large. The stationary property implies
that for any set of verticesA, – let σ(A) be an arbitrary
shift of A, – A andσ(A) have the same state (configuration)
distribution. The symmetric property depends on the type of
the array. For a rectangular array, if two sets of verticesA and
B are reflection symmetric about a horizontal/vertical line or
a 45-degree line, then they have the same state (configuration)
distribution. Note that the reflection symmetry about a 45-
degree line is also called transposition invariance in [6].
For a triangular array, there are more symmetries: if two
sets of verticesA and B are reflection symmetric about a
horizontal/vertical line or a 30/60-degree line, then theyhave
the same state (configuration) distribution.

Now let us consider the distribution over a small region
T for both arrays, as shown in Fig. 6. For example, in
the rectangular array, assume the distribution onT (the 12
vertices) isφ; then given the first ten vertices, the relative
entropy of the next vertex is a function ofφ, denoted byR(φ).
Let’s index all the vertices by1, 2, 3, ..., n from left to right and
then from top to bottom and letRi = H(xi|x1, x2, ..., xi−1).

i i

Fig. 6. The schemes for calculating the upper bounds of the capacities.

It is easy to see that if a vertexi is not on the boundary, then

Ri ≤ H(xi|{x1, x2, ..., xi−1}
⋂

T) = R(φ).

That implies thatR(φ) is an upper bound for

cap = lim
n→∞

max
θ

∑n
i=1 Ri

n

So our work is to maximizeR(φ) such thatφ is stationary
and symmetric onT . Thus we get the upper bounds for the
capacity of the rectangular array in Table I. The same method
also applies to the triangular array.

III. E RROR CORRECTION ANDDETECTION

In this section, we study error correction/detection for
patterned cells. We focus on one-dimensional arrays and two-
dimensional rectangular arrays. When programming domains,
a common error is to make a domain too large such that it
changes the connectivity pattern unintentionally. Two types of
such errors are shown in Fig. 7, where in (a) two diagonal
“on” domains overlap, and in (b) an “on” domain touches
its neighboring “off” domain’s bottom electrode. It can be
proved that the former type of errors can always be corrected,
because the two concerned domains’ states can be correctly
determined by checking if they are connected to one of their
four neighbors. So in this paper, we focus on the latter type
of error, which is important and less trivial. We call the latter
error an overreach error, which happens only between an
“on” vertex and a neighboring “off” vertex, and the error
makes them become connected. We assume that between every
pair of neighboring “on” and “off” vertices, the overreach
error happens independently with probabilitype. Given pe,
we define thecapacityas the maximum number of bits that
can be stored per vertex such that the data can be decoded
correctly with high probability (which approaches one as the
array’s size approaches infinity).

(a)
bottom
electrode

crystalline
domain

(b)

Fig. 7. Error models. (a) Two diagonal domains overlap. (b) Overreach error.

A. One-dimensional Array

Let G = (V,E) be a one-dimensional array ofn vertices:
v1, v2, · · · , vn. Whenn → ∞ and given the overreach error
probabilitype, let cap1(pe) denote its capacity.

Theorem 4.For one-dimensional array,cap1(pe) ≥

max{0.5, max
x∈[0,0.4]

x(1 −H(pe)) +
2− x

4
H

(

4x

2− x

)

}.

Proof: We prove the theorem constructively by presenting
error-correcting codes for one-dimensional arrays.

To see thatcap1(pe) ≥ 0.5, considern to be even. Partition
the n vertices into pairs:(v1, v2), (v3, v4), · · · , (vn−1, vn).
Store one bit in every pair(v2i−1, v2i) (for i = 1, 2, · · · , n

2)
this way: if the bit is 0, set both vertices as “off”; if the bit
is 1, set both vertices as “on”. Clearly, the code can correct
all overreach errors. And its rate is 0.5 bit per vertex. So
cap1(pe) ≥ 0.5. In the following, we need to prove that

cap1(pe) ≥ max
x∈[0,0.4]

x(1 −H(pe)) +
2− x

4
H

(

4x

2− x

)

.

Given a valid configuration~s = (s1, s2, · · · , sn) ∈ U ⊆
{0, 1}n, a 1-run (respectively, 0-run) is a maximal segment in
the vector~s whose elements are all 1s (respectively, all 0s).
Let m be a positive integer. DefineUm,1 ⊆ U to be the set
of valid configurations that satisfy the following constraints:
“The configuration has exactlym + 1 1-runs and 0-runs in
total. Every 1-run or 0-run has at least two elements. The first
run (i.e., the left-most run) is a 1-run.” DefineUm,0 in the
same way except that a configuration inUm,0 starts with a
0-run (instead of a 1-run). The analysis below is very similar
for bothUm,1 andUm,0. So to be succinct, we sometimes only
present the analysis forUm,1.

For a configuration~s = (s1, s2, · · · , sn) in Um,1 (or Um,0),
let L1, L2, · · · , Lm+1 denote the lengths of itsm+ 1 1-runs
and 0-runs. (Clearly,

∑m+1
i=1 Li = n.) We define thesignature

of ~s, denoted bysig(~s), as

sig(~s) = (L1 mod 2,
∑2

i=1 Li mod 2,
∑3

i=1 Li mod 2, · · · , ∑m
i=1 Li mod 2).

sig(~s) is a binary vector of lengthm.
Given a binary vector~d = (d1, d2, · · · , dm), we define its

difference vector∆(~d) as

∆(~d) = (d1, d2 + d1 mod 2, d3 + d2 mod 2, · · · ,
dm + dm−1 mod 2).

∆(~d) is also a binary vector of lengthm. Given any binary
vector~y, let w(~y) denote its Hamming weight.

We first prove the following property:

• Property♣: Let ~d = (d1, d2, · · · , dm) be a binary vector
of lengthm. Let n ≥ 2m + w(∆(~d)) + 2, and letn −
w(∆(~d)) be even. Then we have
∣

∣

∣{~s ∈ Um,1 | sig(~s) = ~d}
∣

∣

∣ =
∣

∣

∣{~s ∈ Um,0 | sig(~s) = ~d}
∣

∣

∣

=

(n−w(∆(~d))
2 − 1

m

)

.

Due to the symmetry betweenUm,1 and Um,0 (just
replace 1-runs with 0-runs and vice versa), we have
∣

∣

∣{~s ∈ Um,1 | sig(~s) = ~d}
∣

∣

∣ =
∣

∣

∣{~s ∈ Um,0 | sig(~s) = ~d}
∣

∣

∣. So

we just need to show that
∣

∣

∣{~s ∈ Um,1 | sig(~s) = ~d}
∣

∣

∣ =
(n−w(∆(~d))

2 −1
m

)

. To prove that, consider a configuration~s =

(s1, s2, · · · , sn) ∈ Um,1 whose signaturesig(~s) = ~d. Let
L1, L2, · · · , Lm+1 denote itsm + 1 1-runs and 0-runs, from
left to right. It is not hard to see that if theith element in
the vector∆(~d) is 0, thenLi ≥ 2 andLi is even; if theith
element in∆(~d) is 1, thenLi ≥ 3 andLi is odd.

Let us obtain a new binary vector~y =
(

y1, y2, · · · , yn−w(∆(~d))
2

)

this way: first, fori = 1, 2, · · · ,m,

if the ith element in∆(~d) is 1, decrease the length of theith
1-run or 0-run in~s by one; then, fori = 1, 2, · · · ,m + 1,
reduce the length of theith 1-run or 0-run by half. Clearly,
~y is a binary vector of lengthn−w(∆(~d))

2 that hasm + 1
1-runs and 0-runs (without any limitation on the lengths of
the 1-runs and 0-runs), and there is a one-to-one mapping
between configurations inUm,1 of signature~d and such~y

vectors. There are
(n−w(∆(~d))

2 −1
m

)

such vectors~y. So Property
♣ is true.

We now considerm → ∞, let m be even, and let
ǫ be an arbitrarily small constant. DefinẽK , {~y ∈
{0, 1}m | w(∆(~y)) = m

2 }. Note that for a random binary vec-
tor ~y ∈ {0, 1}m whose elements are i.i.d. and equally likely to
be 0 and 1, with high probability we havelimm→∞

w(∆(~y))
m =

1
2 . So limm→∞,m is even

log2|K̃|
m = 1. Let K ⊂ K̃ be a set

whose elements are uniformly randomly chosen fromK̃ such
that limm→∞,m is even

log2|K|
m = 1 − H(pe) − ǫ. It is not

difficult to see thatK is an error-correcting code of lengthm
(with m → ∞), rate 1 − H(pe) (we makeǫ → 0) that can
correct binary symmetric errors with error probabilitype.

Let n ≥ 5
2m + 2, and letn − m

2 be even. By Property♣,
for every vector~y ∈ K, there are

(n
2 −m

4 −1
m

)

configurations
in Um,1 (and in Um,0) of signature~y. Define x , m

n ,
D1 , {~s ∈ Um,1 | ∃~y ∈ K such that sig(~s) = ~y},
and D0 , {~s ∈ Um,0 | ∃~y ∈ K such thatsig(~s) = ~y}.

Since limn,m→∞
log2 (

n
2

−m
4

−1
m)

n
2 −m

4 −1 = limn,m→∞ H(m
n
2 −m

4 −1) =

H(4x
2−x), we can encode1 + ⌊nx(1−H(pe)− ǫ)⌋+ ⌊n(12 −

x
4 − 1

n)H(4x
2−x)⌋ information bits into the configurations in

D1 ∪ D0 as follows:

1) If the 1st information bit is 1, the codeword will be a
configuration inUm,1; otherwise, it will be a configura-
tion in Um,0.

2) The next ⌊nx(1 − H(pe) − ǫ)⌋ information bits are
mapped to one of the vectors inK, where the mapping
is injective. Let~y denote the corresponding vector inK.

3) The last⌊n(12 − x
4 − 1

n)H(4x
2−x)⌋ information bits are

mapping to one of the configurations inUm,1 or Um,0

(depending on if the 1st information bit is 1 or 0) whose
signatures equal~y, where the mapping is injective.

We now show how to decode the codewords (i.e., configu-
rations) inD1 ∪D0 to recover the information bits, where the
codewords can contain overreach errors (with error probability
pe).

Let ~s = (s1, s2, · · · , sn) ∈ D1 ∪ D0 denote the codeword
(configuration) that is stored, and let~b denote the information
bits encoded into codeword~s. After ~s is stored, overreach
errors happen and change the connectivity pattern. Let~β =
(β1, β2, · · · , βn) ∈ {0, 1, 2, 3}n denote the connectivity pat-
tern detected after overreach errors happen, defined as follows:
“For i = 1, 2, · · · , n, if the ith vertex is not connected to
any other vertex, thenβi = 0; if i > 1 and it is only
connected to the(i − 1)th vertex, thenβi = 1; if i < n
and it is only connected to the(i + 1)th vertex, thenβi = 2;
if 1 < i < n and it is connected to both the(i − 1)th vertex
and the(i + 1)th vertex, thenβi = 3.” (For example, if~s =
(1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1) and two overreach errors connect
the 2nd vertex with the 3rd vertex and connect the 4th vertex
with the 5th vertex, then~β = (2, 3, 1, 2, 3, 3, 1, 0, 0, 2, 1).)
Based on~β, the decoding algorithm will recover both the
codeword~s and the information bits~b.

Since every 1-run or 0-run in~s has length at least two, if
β1 = 0, then~s ∈ Um,0 and the first information bit in~b is 0;
otherwise,~s ∈ Um,1 and the first information bit in~b is 1. In
the following, without loss of generality (w.l.o.g.), we assume
thatβ1 = 1 and present the corresponding decoding method.

Let L̂1, L̂2, · · · , L̂m+1 be our estimation of
L1, L2, · · · , Lm+1 (the lengths of 1-runs and 0-runs in~s),
computed as follows. Fori = 1, 2, · · · , m2 + 1, let L̂2i−1 be
the length of theith segment in~β of the form(2, 3, · · · , 3, 1),
and letα2i−1, α

′
2i−1 ∈ {1, 2, · · · , n} denote the first and last

positions of that segment, respectively. (That is, the segment
begins with 2, ends with 1, and has zero or more 3’s in
between.) Fori = 1, 2, · · · , m

2 , let L̂2i = α2i+1 − α′
2i−1 − 1.

Define the signature of~β assig(~β) = (η1, η2, · · · , ηm) , (L̂1

mod 2,
∑2

i=1 L̂i mod 2,
∑3

i=1 L̂i mod 2, · · · ,∑m
i=1 L̂i

mod 2). Let sig(~s) = (µ1, µ2, · · · , µm) be the signature of
~s. It is not hard to see we have the following property:

• For i = 1, 3, 5, · · · ,m− 1, if there is no overreach error
between the last vertex of theith run (which is a 1-run)
and the first vertex of the(i+1)th run (which is a 0-run)
in ~s, then

∑i
j=1 L̂j =

∑i
j=1 Lj and thereforeηi = µi;

otherwise,
∑i

j=1 L̂j =
∑i

j=1 Lj + 1 and thereforeηi =
µi + 1 mod 2.

• For i = 2, 4, 6, · · · ,m, if there is no overreach error
between the last vertex of theith run (which is a 0-
run) and the first vertex of the(i + 1)th run (which is
a 1-run) in~s, then

∑i
j=1 L̂j =

∑i
j=1 Lj and therefore

ηi = µi; otherwise,
∑i

j=1 L̂j =
∑i

j=1 Lj − 1 and
thereforeηi = µi + 1 mod 2.

So the overreach errors have a one-to-one mapping to the 1’s
in the vector(µ1+η1 mod 2, µ2+η2 mod 2, · · · , µm+ηm
mod 2). Sincesig(~s) is a codeword inK, and the codeK

can correct binary symmetric errors with error probabilitype,
we can decodesig(~β) to recover the correct value ofsig(~s)
(with probability one asm → ∞). Then based onsig(~s)
and L̂1, · · · , L̂m, we can recover the values ofL1, · · · , Lm

and therefore the codeword (configuration)~s ∈ Um,1. Based
on sig(~s) ∈ K, we can recover the⌊nx(1 − H(pe) − ǫ)⌋
information bits that follow the first information bit. Then
based on~s, we can recover the last⌊n(12 − x

4 − 1
n)H(4x

2−x)⌋
information bits. That concludes the decoding algorithm.

We now analyze the rateR of the above code. When
n,m → ∞, we haveR = x(1−H(pe))+

2−x
4 H(4x

2−x). Since
n ≥ 5

2m+ 2, x = m
n ∈ [0, 0.4]. That leads to the conclusion.

It is noticeable that the overreach error is a type of asymmet-
ric error for graph connectivity. In the following, we present
an error-detecting code that can detectall overreach errors. Its
underlying idea is closely related to the well-known Berger
code [1] for asymmetric errors.

The framework of the code construction is as follows. We
usem information vertices andr redundant vertices, which
form a one-dimensional array ofn = m + r vertices. (The
redundant vertices follow the information vertices in the array.)
Let the constantsα1, α2, α3, µ1, µ2, µ3 be as specified in
Theorem 3. Them information vertices store data from an
alphabet of sizeN(m) = µ1α

m
1 + µ2α

m
2 + µ3α

m
3 . When

m is large, them information vertices store about0.8114m
information bits, andr ≈ log1.7549 m. (So the redundancy
is logarithmic in the codeword length.) Letχ denote the
number of connected components in the subgraph induced
by the information vertices, which overreach errors can only
decrease. We use the redundant vertices to record the value
of χ, and the mapping is constructed such that the recorded
value can only be increased by overreach errors. This way, the
mismatch between information vertices and redundant vertices
can be used to detect all overreach errors.

We now present details of the code. Letv1, v2, · · · , vm
denote the m information vertices. A connected com-
ponent among them is a maximal segment of vertices
(vi, vi+1, · · · , vj) such that their corresponding bottom elec-
trodes are all electrically connected. Letχ and χ̂ denote
the number of connected components among the information
vertices before and after overreach errors happen (if any),
respectively. Clearly,1 ≤ χ̂ ≤ χ ≤ m. If there is one or
more overreach errors among them information vertices, then
χ̂ < χ; otherwise,χ̂ = χ.

Let u1, u2, · · · , ur denote ther redundant vertices, and let
Ur ⊆ {0, 1}r denote the set of valid configurations for them.
For every~s = (s1, s2, · · · , sr) ∈ Ur, let B(~s) ,

∑r
i=1 si ·

2r−i. We have|Ur| = N(r) = µ1α
r
1+µ2α

r
2+µ3α

r
3. We build

a bijective function

F : Ur → {1, 2, · · · , N(r)}

with the following property:

• For any two valid configurations~s,~t ∈ Ur, F (~s) < F (~t)
if and only if B(~s) < B(~t).

That is, the functionF sorts the valid configurations of the
redundant vertices based on their lexical order. LetF−1 denote
the inverse function ofF . We will introduce the specific
computations used byF andF−1 at the end of the subsection.

We now introduce how to encode the value ofχ using the
configuration of ther redundant vertices. We chooser to be
the smallest positive integer such thatN(r) ≥ m. Let ~θ ∈
Ur denote the programmed configuration of ther redundant
vertices. Then as the the encoding algorithm, we choose~θ
such that

F (~θ) = χ.

We introduce details of the decoding (i.e., error detection)
process. Let~x = (x1, x2, · · · , xm) ∈ {0, 1}m denote our
estimated configuration of the information vertices, defined
as follows:

• We measure the connectivity between the information
vertices. Fori = 1, 2, · · · ,m, if vertex vi is connected
to at least one other information vertex, thenxi = 1;
otherwise,xi = 0.

Similarly, let ~y = (y1, y2, · · · , yr) ∈ {0, 1}r denote our
estimated configuration of the redundant vertices, defined as
follows:

• We measure the connectivity between the redundant ver-
tices. Fori = 1, 2, · · · , r, if vertex ui is connected to at
least one other redundant vertex, thenyi = 1; otherwise,
yi = 0.

The decoding (i.e., error detection) algorithm is as follows:
1) Let χ̂ be the number of connected components among

the information vertices derived from (i.e., computed
based on) the estimated configuration~x. If F (~y) > χ̂,
then either one or more overreach errors exist.

2) If the two verticesvm andu1 are connected but either
“xm = 1, y1 = 0” or “xm = 0, y1 = 1”, then there is
an overreach error betweenvm andu1.

Theorem 5.The above code can detect all overreach errors.

Proof: If overreach errors happen among the information
vertices, we will haveχ̂ < χ. Let overreach errors happen
among the redundant vertices, some “off” redundant vertices
will be incorrectly estimated to be “on”, so we will have
F (~y) > F (~θ). SinceF (~θ) = χ, if overreach errors happen
among information vertices or among redundant vertices (or
both), we will haveF (~y) > χ̂, and the errors will be detected.

The only remaining case is that no overreach error happens
among the information vertices or among the redundant ver-
tices, however there is an overreach error between the two
segments (namely, betweenvm andu1). In this case,xm and
y1 will be the true states of the two vertices, and the second
step of the algorithm will detect the error.

Theorem 6. Let m ≥ 2 be an integer. Letr be the smallest
positive integer such thatµ1α

r
1 + µ2α

r
2 + µ3α

r
3 ≥ m. (The

constantsα1, α2, α3, µ1, µ2, µ3 are specified in Theorem3.)
Then, there is an error-detecting code of lengthm+ r and rate

log2 (µ1α
m
1 + µ2α

m
2 + µ3α

m
3)

m+ r

bits per vertex that can detect all overreach errors. Whenm →
∞, we haver = logα1

m ≈ log1.7549 m, and the rate of the
code iscap1D = log2 α1 ≈ 0.8114, which reaches the capacity
of one-dimensional arrays.

We now introduce how the functionF : Ur →
{1, 2, · · · , N(r)} maps configurations to integers, and how its
inverse functionF−1 : {1, 2, · · · , N(r)} → Ur maps integers
to configurations.

We first show that given any valid configuration~s =
(s1, s2, · · · , sr) ∈ Ur, how to computeF (~s). If ~s =
(0, 0, · · · , 0), thenF (~s) = 1. So in the following we assume
~s 6= (0, 0, · · · , 0). Let

i = min{k ∈ {1, 2, · · · , r} | sk = 1}.

Let j ∈ {i + 1, i + 2, · · · , r} be defined as follows: ifsi =
si+1 = · · · = sr = 1, then j = n; otherwise, letj be the
integer such thatsi = si+1 = · · · = sj = 1 andsj+1 = 0. For
any two configurations~t1, ~t2 ∈ Ur, we say~t1 is smaller than
~t2 if F (~t1) < F (~t2). Namely, ~t1 is smaller than~t2 if ~t1 is
lexically smaller than~t2. We have the following observation:

• The smallestN(r − i) configurations(a1, a2, · · · , ar) ∈
Ur are those witha1 = a2 = · · · = ai = 0; the next
N(r− i− 2) smallest configurations are those witha1 =
· · · = ai−1 = 0, ai = ai+1 = 1 and ai+2 = 0; the
nextN(r − i− 3) smallest configurations are those with
a1 = · · · = ai−1 = 0, ai = ai+1 = ai+2 = 1 and
ai+3 = 0; and so on.

Consequently, we obtain the following formula:

F (~s) = N(r − i) +
∑j−1

k=i+1 N(r − k − 1)
+F ((0, · · · , 0, sj+2, sj+3, · · · , sr)).

(By default, let N(0) = 1; and if j ≥ r − 1, let
F ((0, · · · , 0, sj+2, sj+3, · · · , sr)) = 1.) The above recursion
can be easily used to computeF (~s).

Next, we show that given an integerz ∈ {1, 2, · · · , N(r)},
how to computeF−1(z) = (s1, s2, · · · , sr) ∈ Ur. If z = 1,
thenF−1(z) = (0, 0, · · · , 0). In the following we assumez >
1. Let i be the greatest integer such thatN(r − i + 1) ≥ z;
then we have

s1 = s2 = · · · = si−1 = 0 and si = 1.

Let j be the smallest integer such that

N(r − i) +

j
∑

k=i+1

N(r − k − 1) ≥ z.

(By default, letN(0) = N(−1) = 1.) Then we have

si = si+1 = · · · = sj = 1.

If j = n−1, we havesn = 0. If j ≤ n−2, we havesj+1 = 0
and

(0, · · · , 0, sj+2, sj+3, · · · , sr)
= F−1

(

z −N(r − i)−∑j−1
k=i+1 N(r − k − 1)

)

.

With the above recursion, we can easily determineF−1(z).

B. Two-dimensional Array

We now focus on the capacity of two-dimensional rectangu-
lar array when i.i.d. overreach errors happen with probability
pe between neighboringonandoff vertices. LetG = (V,E) be
anm×m two-dimensional rectangular array, wherem → ∞.
Let cap2(pe) denote its capacity.

Theorem 7.For anyq ∈ [0, 1/2], let η(q, pe) = (1− q3)(pe +
(1 − pe)(1 − (1 − (1 − q)pe)

3)). Then for two-dimensional
rectangular array,

cap2(pe) ≥
4

5
max

q∈[0,0.5]
H(1− q + qη(q, pe))− qH(η(q, pe)).

Proof: The proof is constructive. First, consider a tile of
5 vertices as in Fig. 8 (a), where the 5 vertices are denoted by
a, b, c, d, e, respectively. Letq ∈ [0, 12] be a parameter we will
optimize. Let the on/off states of the four verticesa, b, c, d
be i.i.d., wherea (or b, c, d) is on with probability 1 − q
and off with probability q. We set the state of vertexe –
the vertex in the middle – this way: “Ifa, b, c, d are all off,
thene is off ; otherwise,e is on.” Clearly, the above approach
guarantees that everyon vertex has at least one neighboring
vertex that is alsoon. Let S(a), S(b), S(c), S(d) ∈ {0, 1}
denote the states of the verticesa, b, c, d, respectively. We let
each of the four verticesa, b, c, d store a bit, which equals
S(a), S(b), S(c), S(d), respectively.

It is well known that the small tiles can be packed per-
fectly to fill the two-dimensional space. It is illustrated in
Fig. 8 (b). To differentiate the vertices in different smalltiles,
for i = 1, 2, 3 · · · , the five vertices in theith tile are denoted
by ai, bi, ci, di, ei, respectively.

Let us focus on the stored bitS(a1). (The analysis applies to
the other stored bits in the same way.) After overreach errors
happen, letS′(a1) denote our estimation of the bitS(a1). We
determineS′(a1) this way:

• If vertex a1 is connected toe1 (the central vertex in its
small tile), thenS′(a1) = 1; otherwise,S′(a1) = 0.

We can see that ifS(a1) = 1, there will be no decoding error
for this bit because we will haveS′(a1) = 1. If S(a1) = 0,
with a certain probabilityP (which we will analyze later) the
overreach errors will makeS′(a1) be 1. So the channel for
the stored bits is asymmetric, similar to the Z-channel but not
memoryless. We first show the following property:

• Property♣:

P ≤ (1− q3)(pe + (1− pe)(1− (1 − (1− q)pe)
3)).

To prove Property♣, assumeS(a1) = 0. If S′(a1) = 1, then
S(e1) = 1, and there must be an overreach error that connects

a

b

c

d

1a

1e1b

c 1

d1

a2

b2

c 2

d2e2 a3

b3

c 3

d3e3

a4

b4

c 4

d4e4

a

(a) (b)

(c)

e

Fig. 8. Tiling and coding in two-dimensional rectangular array. (a) A small
tile of 5 vertices. (b) Packing the small tiles in (a) to fill the two-dimensional
space. (c) Separating large tiles usingoff vertices. Here the black vertices
form a large tile. The white vertices are buffer vertices andare alwaysoff,
and they separate the large tiles in the two-dimensional space.

a1 to a neighbor that ison. We havePr{S(e1) = 1|S(a1) =
0} = Pr{S(b1) = 1, or S(c1) = 1, or S(d1) = 1} =
1 − q3. Given S(e1) = 1, the probability that an overreach
error connectsa1 to eithere1 or one of theon vertices among
{b3, c2, d2} – see Fig. 8 (b) – equalspe + (1 − pe)(1 − (1 −
(1− q)pe)

3). So Property♣ is true.

We now useN small tiles to form a large tile, and use
infinitely many such large tiles to fill the two-dimensional
space with the following special arrangement: These large tiles
are separated by buffer vertices that are always set asoff, and
for any two vertices in two different large tiles, there are at
least two consecutive buffer vertices separating them on any
path between them. (We illustrate it in Fig. 8 (c), where one
large tile and the buffer vertices surrounding it are shown.Note
that for easy illustration, in the figure a large tile consists of
only N = 4 small tiles. However, for our proof on capacity,
we will makeN sufficiently large such that the buffer vertices
have a negligible impact on the capacity.) Clearly, due to the
existence buffer vertices and the fact that overreach errors

cannot affect two vertices separated by two consecutiveoff
vertices, the decoding errors for two different large tilesare
independent.

Build a sub-channel as follows: Take one vertex from each
large tile (which is either anai, bi, ci or di vertex, but not
an ei vertex), and let each vertex store one bit as described
before (i.e., the vertex stores bit 0 with probabilityq and bit
1 with probability 1 − q). (For example, we can take the
vertex a shown in Fig. 8 (c) in each large tile.) Overall,
the large tiles contain4N such sub-channels. Consider one
sub-channel, whose capacity is clearly a lower bound of the
capacity of the aggregation of the4N sub-channels. The errors
for the different vertices in the sub-channel are independent
and asymmetric (like a Z-channel); and due to the existence
of the buffer vertices, the probability that its stored bit 0is
correctly decoded as 1 (i.e., the cross-over probability inthe
Z-channel) isat mostP . Let X,Y ∈ {0, 1} denote the input
and output bit of the channel, respectively. Then we get

I(X ;Y)
= H(Y)−H(Y |X)
= H(Y)−∑

x∈{0,1} Pr{X = x}H(Y |X = x)

≥ H(1− q + qP)− qH(P)
≥ H(1− q + qη(q, pe))− qH(η(q, pe))

Since in every small tile, 4 out of the 5 vertices are used to
store bits, we get the conclusion.

It can be seen that whenpe → 0, the low bound in the
above theorem approaches4/5.

IV. CONCLUSION

In this paper, a new cell structure named patterned cell is
introduced for phase-change memories. It has a new data rep-
resentation scheme based on graph connectivity. The storage
capacity of the scheme is analyzed, and its error correction
and detection performance is studied.

REFERENCES

[1] J. M. Berger, “A note on an error detection code for asymmetric channels,”
Information and Control, vol. 4, pp. 68–73, March 1961.

[2] G. W. Burr et al., “Phase change memory technology,”Journal of Vacuum
Science and Technology, vol. 28, no. 2, pp. 223–262, March 2010.

[3] D. Lammers, “Resistive RAM gains ground,” inIEEE Spectrum, pp. 14,
September 2010.

[4] A. Sharov and R. M. Roth, “Two-Dimensional constrained coding based
on tiling”, IEEE Transactions on Information Theory, vol. 56, no. 4, pp.
1800–1807, 2010.

[5] I. Tal and R. M. Roth, “Bounds on the rate of 2-D bit-stuffing encoders”,
IEEE Trans. on Information Theory, vol. 56, no. 6, pp 2561-2567, 2010.

[6] I. Tal and R. M. Roth, “Convex programming upper bounds onthe
capacity of 2-D constraints”,IEEE Transactions on Information Theory,
vol. 57, no. 1, pp 381–391, 2011.

