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Abstract—Finite alphabet iterative decoders (FAID) with mul-
tilevel messages that can surpass BP in the error floor region for
LDPC codes on the BSC were previously proposed in [1]. In this
paper, we propose decimation-enhanced decoders. The technique
of decimation which is incorporated into the message update
rule, involves fixing certain bits of the code to a particular value.
Under appropriately chosen rules, decimation can significantly
reduce the number of iterations required to correct a fixed
number of errors, while maintaining the good performance of the
original decoder in the error floor region. At the same time, the
algorithm is much more amenable to analysis. We shall provide
a simple decimation scheme for a particularly good 7-level FAID
for column-weight three codes on the BSC, that helps to correct
a fixed number of errors in fewer iterations, and provide insights
into the analysis of the decoder. We shall also examine the
conditions under which the decimation-enhanced 7-level FAID
performs at least as good as the 7-level FAID.

I. INTRODUCTION

The design and analysis of message-passing (MP) algo-
rithms for low-density parity-check (LDPC) [2] codes have
recieved much attention over the last decade. Techniques such
as density evolution [3] by Richardson and Urbanke, have been
proposed for asymptotic analysis of MP decoders on LDPC
code ensembles. For finite-length analysis of codes with fixed
number of iterations, methods such as the use of computation
trees by Wiberg [4], pseudocodeword analysis by Kelly and
Sridhara [5], and graph-cover decoding analysis by Vontobel
and Koetter [6], have been proposed. The characterization
of the error floor phenomenon of MP algorithms has also
been well investigated using the notion of stopping sets for
the binary erasure channel (BEC)[7] by Di et. al., and using
notions of trapping sets by Richardson [8] and instantons by
Chernyak et. al. [9] for other general channels. Burshtein and
Miller proposed the technique of using expander arguments
for MP for proving that code ensembles can correct a linear
fraction of errors [10].

Inspite of the aforementioned techniques proposed for finite-
length analysis, the problem of analyzing a particular MP
algorithm for a fixed number of iterations still remains a
challenge. This is because the dynamics of MP gets too
complex beyond a certain number of iterations, and there is
exponential growth in the number of nodes with number of
iterations in the computation trees of the codes. Although
Burshtein and Miller’s method of using expander arguments

which allows for use of large number of iterations, provides
bounds of great theoretical value, they are practically less sig-
nificant. Moreover, for the Binary Symmetric channel (BSC),
the problem of correcting a fixed number of errors assumes
greater importance as it determines the slope of the error floor
in the performance of the decoder [11]. Therefore, it would
be desirable to have an MP decoder that is able to correct a
fixed number of errors within fewest possible iterations, and
for which we will be able to provide performance guarantees
in terms of guaranteed correction capability. Even from a
practical standpoint, this would be an attractive feature with
many present-day applications requiring much higher decoding
speeds and much lower target frame error rates.

Recently we proposed a new class of finite alphabet iterative
decoders (FAID) for LDPC codes on the BSC coined as
multilevel decoders in [1] and showed that these decoders
have potential to surpass belief propagation (BP) in the error
floor region with much lower complexity. These decoders were
derived by identifying potentially harmful subgraphs that could
be trapping sets present in any finite-length code and designing
to correct error patterns on these subgraphs in an isolated
manner. Although the numerical results in [1] demonstrated
the efficacy of these decoders, providing provable statements
in terms of guaranteed error correction capability still remains
a difficult task since the convergence of the decoder for an
error pattern in a trapping set is heavily influenced by the
neighborhood of the trapping set in a non-trivial manner. This
was also identified by Declercq et. al. in [12], where subgraphs
induced by codewords were used in the decoder design.

In this paper, we propose decimation-enhanced finite al-
phabet iterative decoders for LDPC codes on the BSC. Dec-
imation, a method originally developed for solving constraint
satisfaction problems in statistical physics, involves guessing
the values of certain variables and fixing them to these values
while continuing to estimate the remaining variables. In [13],
Montanari et. al. analyzed a BP-guided randomized decimation
procedure that estimates the variables in the k-SAT problem.
Dimakis and Wainwright used a similar notion in the form of
facet guessing for linear programming (LP) based decoding
in [14], and Chertkov proposed a bit-guessing algorithm in
order to reduce error floors of LDPC codes under LP decoding
[15]. In contrast, we propose a simple decimation procedure
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in this paper that serves as a guide to help the multilevel
FAID algorithm to coverge faster on a small number of
errors. Our main insight is that the role of decimation should
not necessarily be to correct errors, but to ensure that more
variable nodes in the graph that initially receive right values
from the channel are shielded from the errorneous messages
emanating from the error nodes by decimating those correct
variable nodes.

The rest of the paper is organized as follows. Section II
provides preliminaries. In Section III, we provide a detailed
description of the decimation-aided FAID algorithm. Finally in
Section IV, we provide some theoretical as well as numerical
results and conclude with a discussion.

II. PRELIMINARIES

Let G = (V ∪ C,E) denote the Tanner graph of an (n,m)
binary LDPC code C with the set of variable nodes V =
{v1, · · · , vn} and set of check nodes C = {c1, · · · , cm}. E is
the set of edges in G. A code C is said to be dv-left-regular if
all variable nodes in V of graph G have the same degree dv .
The degree of a node is the number of its neighbors.

Let r = (r1, r2 . . . , rn) be the input to the decoder from
the BSC. A trapping set T(r) is a non-empty set of variable
nodes in G that are not eventually corrected by the decoder
[8]. Note that during analysis of decoders in this paper, it is
implicitly assumed that the all-zero codeword is transmitted.
This is a valid assumption since we consider only symmetric
decoders, as explained in [3].

A multilevel FAID F , as defined in [1], is a 4-tuple given
by F = (M,Y,Φv,Φc). The messages are levels confined to
a message alphabet M which is defined as M = {0,±Li :
1 ≤ i ≤M}, where Li ∈ R+ and Li > Lj for any i > j. The
set Y denotes the set of possible channel values. For the case
of BSC, Y is defined as Y = {±C}, and for each variable
node vi in G, the channel value yi ∈ Y is determined by
yi = (−1)riC, i.e., we use the mapping 0→ C and 1→ −C.

Φv : Y×Mdv−1 →M is the update rule used at a variable
node with degree dv . The map Φv can be described in closed
form as a linear or non-linear threshold function, or simply as
a look-up table (LUT). For this paper, we shall use the LUT
form. The LUT of Φv for a particularly good 7-level FAID
that we shall be using throughout this paper is given in Table
I for yi = +C (for yi = −C, the LUT can be obtained by
symmetry).

Φc : Mdc−1 →M is the update function used at a check
node with degree dc. The function is given by

Φc(m1, . . . ,mdc−1) =

dc−1∏
j=1

sgn(mj)

 min
j∈{1,...,dc−1}

(|mj |)

where sgn denotes the standard signum function.
The important concept of isolation assumption was also

introduced in [1] and here we remind the reader on the intution
behind it. The isolation assumption provides conditions on
the neighborhood of the subgraph, such that the messages
entering into the subgraph from outside are not affected by

TABLE I
LUT OF Φv USED FOR THE 7-LEVEL DECODER FOR yi = +C

m1\m2 -L3 -L2 -L1 0 L1 L2 L3

-L3 -L3 -L3 -L2 -L1 -L1 -L1 L1

-L2 -L3 -L1 -L1 0 L1 L1 L3

-L1 -L2 -L1 0 0 L1 L2 L3

0 -L1 0 0 L1 L2 L3 L3

L1 -L1 L1 L1 L2 L2 L3 L3

L2 -L1 L1 L2 L3 L3 L3 L3

L3 L1 L3 L3 L3 L3 L3 L3

the messages being propagated within the subgraph for a
certain a number of iterations. Consequently, for a certain
number of iterations, decoding on the subgraph can be carried
out in an isolated manner without explicit knowledge of its
neighborhood.

III. DECIMATION-ENHANCED FAID ALGORITHM

We first provide some basic definitions and notations before
we formally introduce the class of decimation-enhanced finite
alphabet iterative decoders.

Let N (u) denote the set of neighbors of a node u in the
graph G and let N (U) denote the set of neighbors of all u ∈
U . Let mk(vi, cj) denote the message being passed from a
variable node vi to the check node cj , in the kth iteration, and
let mk(cj , vi) be defined similarly. Let mk(vi,N (vi)) denote
the set of outgoing messages from vi to all its neighbors in
the kth iteration, and let mk(cj ,N (vi)) be defined similarly.
Let bki denote the bit associated to a variable node vi ∈ V
that is decided by the iterative decoder at the end of the kth

iteration.
Definition 1: A variable node vi is said to be decimated

at the end of lth iteration if bki = b∗i ∀k ≥ l. Then
mk(vi,N (vi)) = {(−1)b

∗
iLM}, ∀k ≥ l irrespective of its

incoming messages mk(N (vi), vi), i.e., vi will always send
strongest possible messages.
The process of decimation at the end of some lth iteration
is carried out by the iterative decoder using a decimation
rule β : Y × Mdv → {−1, 0, 1} that is a function of the
incoming messages and the channel value in the lth iteration.
For convenience, with some abuse of notation, let βi denote
the output of function β determined at node vi. If βi = 0,
then the node is not decimated. If βi = 1, then b∗i = 0, and if
βi = −1, then b∗i = 1.

Remark: In this paper, we only consider decoders that use
a single decimation rule β but the same rule may be used in
different iterations. Hence, β is not iteration dependent, and
whenever we refer to βi, it implies the output of β for node
vi at the end of some lth iteration. Note that the function β
is symmetric.

A decimation-enhanced multilevel FAID FD is defined as
a 4-tuple given by FD = (M,Y,ΦD

v ,Φc), where M, Y , Φc

are the same maps defined for a multilevel FAID. The map
ΦD

v : Y×Mdv−1×{0, 1} →M is similar to Φv of the decoder
F except that it uses the output of β in some lth, βi, as an
additional argument in the function. For the sake of simple
exposition, we shall define ΦD

v for the case of column-weight



three codes and 7 levels. Let m1 and m2 denote incoming
messages to a node vi ∈ V in the kth iteration. Then ΦD

v is
defined as

ΦD
v (m1,m2, yi, βi) =

{
Φv(m1,m2, yi), βi = 0
βiL3, βi = ±1

We now provide a simple example to illustrate the potential
benefits of decimation, and then we will describe the basic
decimation scheme used in this paper.

A. Motivating example
Consider a particular 4-error configuration on a Tanner

graph G, whose induced subgraph forms an 8-cycle as shown
in Fig. 1. In the figure, black circles represent the variable
nodes initially in error, whereas white circles represent the in-
tially correct nodes that are in the neighborhood of the 4-error
pattern. The black and white squares denote the degree one
and degree two checks in the induced subgraph respectively.

Let V ′={v1, v2, v3, v4} denote the set of variable nodes
initially in error. Let C1={c1, c3, c5, c7} denote the set of
degree one checks and C2={c2, c4, c6, c8} denote the set of
degree two checks. We shall now examine the behavior of
MP on this particular error configuration from the context of
multilevel FAID algorithms without any assumptions on its
neighborhood. Messages with a positive sign will be referred
to as good messages, and messages with a negative sign
will be referred to as bad messages (under all-zero codeword
assumption). Also a weakly good or bad message refers to
±L1, and a strongly good or bad message refers to ±Li where
Li > L1. In the first iteration, for all vi ∈ V ′, m1(vi,N (vi))
will be weakly bad, and for all vj ∈ N (C1 ∪ C2)\V ′,
m1(vj ,N (vj)∩ (C1∪C2)) entering into the subgraph will be
weakly good messages. In the second iteration, for all vi ∈ V ′,
m2(vi,N (vi)∩C2) will be either weakly good or weakly bad
depending on the Φv (such as Table I), but m2(vi,N (vi)∩C1)
which are messages sent to checks in C1, will be strongly bad.
As a result, variable nodes vi ∈ N (C1)\V ′ will start receiving
strongly bad messages. If the decoder does not converge within
the next few iterations, then these bad messages become more
stongly bad and can subsequently spread further to other
nodes in the graph depending how dense the neighborhood is.
Eventually too many nodes get corrupted by the bad messages
being propagated in the graph causing the decoder to fail.

Remarks: 1) At the kth iteration, there may have been
many variable nodes vi such that vi /∈ N (C1 ∪ C2), whose
incoming messages already converged to the right value in
some k′ < k iteration, but eventually these nodes became
corrupted by the bad messages flowing out of the subgraph. 2)
If certain variable nodes initially correct in the neighborhood
of the subgraph induced from the error pattern, are isolated
from the bad messages possibly through decimation, then the
decoder is more likely to converge. This is precisely where
the role of decimation becomes important.

B. Basic scheme for the decimation-enhanced FAID algorithm
We propose a scheme that uses successive decimations for

a certain number of iterations. Let the number of successive

Fig. 1. Subgraph induced by the 4-error pattern which forms an 8-cycle

decimations be Nd. The skeleton of the algorithm is given
below. Note that for this proposed scheme, decimation starts at
the end of the third iteration (reasons for which we will explain
later), and after each decimation, the decoder is restarted.

Algorithm 1 Decimation-enhanced FAID algorithm
1) Initialize βi = 0 ∀vi ∈ V .
2) Run the decoder using update maps Φv and Φc already

defined for the 7-level FAID decoder.
3) At the end of third iteration, perform decimation using

the rule β for every node vi ∈ V .
4) Restart the decoder by setting all the messages to zero.
5) Repeat step 3) for nodes whose βi = 0, followed by 4)

until Nd decimations have been carried out.
6) Run the decoder for the remainder of iterations using

maps ΦD
v and Φc.

Note that restarting the decoder implies, that the decimated
nodes vi will send βiL3 and the non-decimated nodes vj will
send Φv(0, 0, yj).

Remarks: 1) The reasons for choice of three iterations
to start the decimation are as follows. First, there should
exist messages in the graph that have a magnitude of L3

in order to have a reliable decimation process. Secondly
and more importantly, decimating only after three iterations
makes the algorithm much more amenable to analysis. It
becomes possible to analyze whether a particular node will be
decimated or not and derive explicit conditions on the graph
under which the nodes in error will not get decimated to the
wrong value for a particular configuration. We shall in fact
derive such conditions for the previous example. 2) Restarting
the decoder after each decimation simplifies analysis.

C. Design of decimation rule β

The design of the rule β can be considered as a procedure of
selecting the sets of incoming messages to node vi for which
βi = ±1. We would like to do the selection with particular
focus on correcting small number of errors typically associated
with trapping sets in the error floor region. Referring back to
the previous example, a good decimation rule would be one
where βj for most or all nodes vj ∈ N (C1∪C2)\V ′ is 1 and
βi for nodes vi ∈ V ′ is 0 or 1, at the end of all decimations.
We will now describe a good decimation rule selected for



TABLE II
SETS OF INCOMING MESSAGES WITH yi = +C FOR WHICH βi = 1

m1 m2 m3

L3 L3 L3

L3 L3 L2

L3 L3 L1

L3 L3 0
L3 L3 -L1

m1 m2 m3

L3 L2 L2

L3 L2 L1

L3 L2 0
L3 L2 -L1

L3 L1 L1

m1 m2 m3

L3 L1 0
L3 L1 -L1

L3 0 0
L2 L2 L2

L2 L2 L1

the particular 7-level FAID whose LUT is shown in Table I.
Before we describe the rule, we highlight two main points to
be considered during the selection.

Firstly, while considering a particular set of incoming mes-
sages, the magnitudes of the incoming messages should play
a role in the selection.

Secondly, the inherent structure of the particular Φv used in
the decoder must be taken into consideration during selection.
For this, we need to look at what outgoing messages a variable
node would send for that particular set of incoming messages,
and then decide if this set is good to select for decimation.
For example, if a variable node vi whose channel value is
+C, receives −L2,−L3,−L2, this set might seem to be a
possible candidate (to decimate vi to 1). However, the outgoing
messages will be −L3,−L1,−L3, which perhaps indicates that
this may not be a reliable node to decimate since all outgoing
messages are not −L3 or even −L2.

Table II shows all possible distinct sets of incoming mes-
sages with yi = +C, for which βi = 1. Using the symmetry of
β, we can derive the sets of incoming messages with yi = −C,
for which βi = −1. Note that an important condition that
was used in defining the rule β, was that there must be a
strict majority of signs of messages between all the messages
coming to a node vi and channel value yi, and the majority
sign must match with the sign of yi, in order for vi to be
decimated.

IV. ANALYSIS OF DECIMATION-ENHANCED FAID
ALGORITHMS

A. Theoretical results

We first state the following lemma which is obtained due
to the conditions used for decimation.

Lemma 1: The decimation-enhanced FAID algorithm will
never decimate a node initally correct to a wrong value, and
a node initially wrong to a correct value.

Proof: By virtue of β that requires strict majority of
signs of messages between incoming messages and yi, and
the majority sign matching sign of yi.

Remark: This simplifies the analysis as we need to only be
concerned about decimation of nodes that are initially in error.
At the same time, note that decimation alone can never correct
errors.

Corollary 1: As a consequence of Lemma 1, the only
necessary condition for success of a decimation-enhanced
multilevel decoder is that a node initially in error must not
be decimated.

Lemma 2: Given an error pattern, if no node initially in
error gets decimated at the end of third iteration, then a node

initially in error will never get decimated in the susbsequent
iterations.

Proof: (Details omitted) By restarting the decoder after
each decimation, and by virtue of β, a node vi initially in error
will not receive the required messages for βi = −1.

Now for a particular error configuration in a graph G, we
can analyze the conditions under which a node that is initially
in error is decimated at the end of third iteration and then
use Lemma 2. We can then place conditions on the graph
such that the node in error is never decimated. To show this,
we revert back to the example of the 4-error configuration
whose induced subgraph forms an 8-cycle, and provide such
conditions in the following theorem. Note that the proof will
involve using Tables I and II and also the same notations
previously defined in the example.

Theorem 1: Consider the 4-error pattern contained in a
graph G, whose induced subgraph forms an 8-cycle. Also
consider the decimation-enhanced 7-level FAID for decoding
on this error pattern. If the graph G has girth-8, and no three
check nodes of the 8-cycle share a common variable node,
then the nodes initially in error will not be decimated by this
decoder in any iteration.

Proof: Firstly note that by virtue of Φv of the 7-level
FAID (Table I), the highest magnitude of a message that any
node vi ∈ V can send is L1 in the first iteration and L2 in
the second iteration. Since a node vj ∈ N (C1 ∪ C2)\V ′ can
be connected to atmost two checks in subgraph, the node vj
in the worst case recieves two −L1 messages from checks
in C1 ∪ C2 and L1 from outside at the end of first iteration.
Node vi ∈ V ′ will also receive two −L1 messages from check
nodes in C2 and L1 from ck ∈ C1 ∩ N (vi). At the end of
the second iteration, the node vi ∈ V ′ will once again receive
two −L1 from checks in C2, and L1 from ck ∈ C1. This
means that node vi will receive two −L1 messages once gain
from checks in C2 at the end of third iteration. In order for
it to be decimated, from Table II, it must receive −L3 from
ck ∈ C1 ∩ N (vi). This means that the node vj in the worst
case has to receive at least one −L3 at the end of the second
iteration, but this is not possible by virtue of Φv in the second
iteration. Hence, a node initially in error can not get decimated
at the end of third iteration and using Lemma 2, will never
get decimated.

Remarks: Note that the above condition is easily satisfied
in most practical codes. This implies that on most practical
codes, 4 errors on an 8-cycle will not be decimated.

Similarly, we can analyze under what conditions a node
initially correct is decimated. For example, we may be able to
derive conditions on the neighbors of the 4-error configuration
such that they get decimated. In this manner, we can link
analytical results of decimation to guaranteed error-correction
capability.

Given that nodes initially in error are not decimated,
it would be interesting to know whether the decimation-
enhanced FAID can perform as good as multilevel FAID.
In other words, given the necessary condition is satisfied,
if a 7-level decoder corrects a particular K-error pattern,



does the decimation-enhanced decoder also correct the pattern.
Intuitively, this may appear to be true since only nodes initially
correct are decimated and they continuously send strong
correct messages for the entire decoding process. However,
it is true only under certain conditions given in the following
theorem.

Theorem 2: Let there be a K-error pattern on a code C with
a Tanner graph G, whose graph satisfies conditions such that
nodes initally in error are not decimated under the decimation-
enhanced FAID. Assume that the multilevel FAID corrects this
error pattern in I iterations. If under the decimation-enhanced
FAID algorithm, the decimation of a particular node does not
lead to a bad message being sent from one of its adjacent
check nodes in any iteration, then the decimation-enhanced
FAID algorithm is also guaranteed to correct the pattern in
atmost I iterations,

Proof: Due to page constraints, proof is omitted. But the
idea of the proof involves analyzing how messages flowing
along the edges of the computation tree towards the root under
the FAID algorithm, are affected by using the decimation-
enhanced FAID algorithm.

Remark: Although Theorem 2 includes a specific condition
on the decimation (under the assumption that nodes initially
in error are not decimated), such a condition typically occurs
for larger errors and decoding with much larger number of
iterations. Therefore on small number of errors in trapping
sets with a smartly chosen decimation rule, if nodes initially
in error are not decimated, then decimation-enhanced FAID
will most likely correct the pattern.

B. Numerical Results and Discussion

In this subsection, we present numerical results on the
well-known (155,93) Tanner code in order to evaluate the
performance of the decimation-enhanced FAID. The frame-
error rate curves for various decoders are shown in Fig. 2.
The decimation-enhanced FAID was run using Nd = 4 and
all decoders used a maximum of 100 iterations. Note that the
decimation-enhanced FAID was designed primarily to correct
a fixed number of errors (in this case 5 errors) in fewer
iterations compared to 7-level FAID. On the Tanner code,
with Nd = 1, the decimation-enhanced FAID corrects all 5
errors within 10 iterations (after decimation) whereas the 7-
level FAID requires 15 iterations. At the same time, we see
that decimation-enhanced FAID performs just as good as the
7-level FAID (which was known beforehand to surpass BP),
if not better.

We conclude by mentioning that our main goal was to pro-
vide a simple decimation scheme for multilvel FAID decoders
that allows us to analyze their behaviour while maintaining
good performance. From the theoretical analysis, we see that
the role of decimation is important not just in improving the
decoder performance or reducing the decoder speed but more
so in terms of increasing the feasibility to obtain provable
statements on the performance MP decoders such as FAID
that are known to be empirically good. We finally remark that
with more sophisticated versions of decimation such as use of
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Fig. 2. Frame error rate performance comparison of Belief Propagation (BP),
Finite Alphabet Iterative Decoder (FAID) and Decimation-enhanced FAID
(DFAID) on the (155,93) Tanner code

multiple decimation rules, it might be possible to obtain an
even more significant performance improvement.
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