
A New Capacity Result for the Z-Gaussian
Cognitive Interference Channel

Stefano Rini, Daniela Tuninetti and Natasha Devroye
ECE Deptartment, University of Illinois at Chicago, Chicago, IL 60607, USA,

Email: srini2, danielat, devroye@uic.edu

Abstract—This work proposes a novel outer bound for the
Gaussian cognitive interference channel in strong interference at
the primary receiver based on the capacity of a multi-antenna
broadcast channel with degraded message set. It then shows that
for the Z-channel, i.e., when the secondary receiver experiences
no interference and the primary receiver experiences strong
interference, the proposed outer bound not only is the tightest
among known bounds but is actually achievable for sufficiently
strong interference. The latter is a novel capacity result that from
numerical evaluations appears to be generalizable to a larger (i.e.,
non-Z) class of Gaussian channels.

Index Terms—Capacity; Interference channel; MIMO BC with
degraded message set; Outer bound; Strong interference; Z-
channel.

I. INTRODUCTION

Cognitive radio is a novel paradigm for wireless networks
whereby a node changes its communication scheme to effi-
ciently share the spectrum with licensed and unlicensed users.
The actual communication scheme used depends on the overall
instantaneous network activity, which the cognitive device is
assumed to be able to track. In its simplest form a cognitive
network is modeled as a two-user interference channel, where
one transmitter-receiver pair is referred to as the primary pair
and the other as the cognitive/secondary pair. The primary
transmitter has knowledge of one of the two independent
messages to be sent, while the cognitive transmitter has full,
non-causal knowledge of both messages, thus idealizing the
cognitive user’s ability to detect network activity.

A. Past work

The information theoretic capacity of the cognitive inter-
ference channel (CIFC) remains elusive in general. The CIFC
was first considered in [1], where an achievable rate region
(for general discrete memoryless channels) and a broadcast-
channel outer bound (in Gaussian noise only) were proposed.

Inner bounds: Since the cognitive transmitter can “broad-
cast” information to both receivers, achievable strategies for
the CIFC contains features of both the interference and of the
broadcast channel, such as rate splitting, superposition coding,
binning and simultaneous decoding. A comparison of all the
transmission schemes proposed in the literature was presented
in [2], in which we showed that our region in [2, Th.5.1] is
provably the largest known achievable rate region to date.

Outer bounds: The tightest known outer bound for the
general CIFC was derived in [3, Th.4] using a technique
originally developed for the broadcast channel in [4]. Both

the “weak interference” outer bound of [5, Th.3.2] and the
“strong interference” outer bound of [6, Th.4] may be derived
by loosening [3, Th.4]. The outer bound in [3, Th.4] is
however difficult to evaluate because it contains three auxiliary
random variables for which no cardinality bounds are given
on the corresponding alphabets. Moreover, for the Gaussian
channel, the “Gaussian maximizes entropy” property alone
does not suffice to show that Gaussian inputs exhaust the
outer bound. For these reasons, in [2, Th.4.1] we proposed
an outer bound that exploits the fact that the capacity region
only depends on the conditional marginal distributions (as for
broadcast channels [7], since the receivers do not cooperate).
The resulting outer bound does not include auxiliary random
variables and every mutual information term involves all the
inputs, like in the cut-set bound [8, Th.15.10.1]; this implies
that it may be easily evaluated for many channel of interest,
including the Gaussian channel.

Capacity Results: The first capacity results for the CIFC
were determined in [5, Th.3.4] for channels with “very weak
interference” at the primary receiver and in [9, Th.6] for
channels with “very strong interference”. In [2, Th.7.1], we
showed that the outer bound of [5, Th.3.2] is achievable in
what we termed the “better cognitive decoding” regime, which
includes both the “very weak interference” and the “very
strong interference” regimes and is the largest class of discrete
memoryless CIFCs for which capacity is known.

For the Gaussian CIFC (G-CIFC), capacity in “weak inter-
ference” was determined in [5, Th.3.7] and in independently
in [10, Th.4.1], and in “very strong interference” in [9,
Th.6]. In [2, Th.4.1] we proposed a unified derivation of
the outer bounds for the “weak interference” and for the
“strong interference” regimes of [5, Th.3.7] and [3, Th.5],
respectively. Moreover, in [11, Th.3.1] we showed that the
outer bound in [2, Th.4.1] is achievable also in the primary
decodes cognitive regime, which only in part coincides with
the “very strong interference” regime for which capacity was
known [6, Th.6]. The outer bound in [2, Th.4.1] is also tight
for the class of semi-deterministic CIFCs with a noiseless
output at the primary receiver [12, Th.2], and is capacity to
within 0.5 bit/s/Hz per real-dimension for any G-CIGC [12,
Th.3] (thus improving on our previous constant gap result of
1.87 bit/s/Hz per real-dimension in [13, Sec. IV]).

Z-channel: The special case where only one receiver expe-
riences interference is known as the Z-channel. For the case
where the cognitive transmitter does not create interference
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to the primary receiver and the cognitive-primary link is
noiseless, inner and outer bounds were obtained in [14];
the Gaussian counterpart is trivial. For the case where the
primary transmitter does not create interference to the sec-
ondary receiver capacity is known by specializing the “weak
interference” result of [5, Th.3.7] or the “primary decodes
cognitive” result of [11], [15, Th.3.1]; capacity remains open
for sufficiently strong interference.

B. Contributions and Paper Organization

This paper presents two main results:
1) We first propose a novel outer bound for the G-CIFC

with strong interference at the primary receiver based
on enhancing the original channel into a multi-antenna
broadcast channel with degraded message set. By using
the “extremal inequality” of [16], we show that Gaussian
input is optimal for the novel bound.

2) For the Z-G-CIFC with strong interference (where the
secondary receiver does not experience interference and
the primary receiver experiences strong interference)
we show that there exists a set of parameters where
our novel outer bound is the tightest known. We then
propose an achievable scheme based on superposition
coding that meets the novel outer bound for sufficiently
strong interference thus proving a new capacity result.

The rest of the paper is organized as follows. Section
II defines the G-CIFC and reports the outer bound of [11,
Th.2.2]. In Section III we present our novel outer bound and
in Section IV we prove a new capacity result the Z-G-CIFC
with strong interference. We also show in Section V by means
of a numerical example that the proposed outer bound meets
an achievable scheme – up to Matlab numerical precision –
for some general (i.e., non-Z) G-CIFC; for these channels
however a formal proof of capacity is not yet available. Section
VI concludes the paper. The Appendix contains some of the
proofs. Our notation follows the convention of [17].

II. CHANNEL MODEL

A. Gaussian Channel (G-CIFC)

A two-user complex-valued G-CIFC in canonical form [2],
as depicted in Fig. 1, has outputs:

Y1 = X1 + aX2 + Z1,

Y2 = |b|X1 +X2 + Z2,

where the channel gains a and b are constant and known to
all terminals, the inputs are subject to the power constraint:

E[|Xi|2] ≤ Pi, Pi ∈ R+
, i ∈ {1, 2},

and the noise Zi is N (0, 1), i ∈ {1, 2}. Each transmitter i,
i ∈ {1, 2}, wishes to communicate a message Wi, uniformly
distributed on [1 : 2NRi ], to receiver i in N channel uses at rate
Ri. The two messages are independent. Message W2 is also
available to transmitter 1. A rate pair (R1, R2) is achievable
if there exists a sequence of encoding functions XN

1 (W1,W2)

and XN
2 (W2), and a sequence of decoding functions Ŵi(Y

N
i ),
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|b|
1

+

+X2
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Fig. 1. The general Gaussian Cognitive Interference Channel (G-CIFC).
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Fig. 2. The Broadcast Channel with Degraded Message Set (BC-DMS) that
outer bounds the G-CIFC in Fig. 1 for |b| ≥ 1.

i ∈ {1, 2}, such that the error probability vanishes as N →
∞. The capacity region is the convex closure of the set of
achievable rates [8] and is indicated with C(a, |b|, P1, P2).
The capacity C(a, |b|, P1, P2) is not known in general.

B. Gaussian Z-Channel (Z-G-CIFC)

A G-CIFC is said to be a Z-channel if either a or b are
zero. If |b| = 0, i.e., the primary receiver does not experience
interference from the cognitive transmitter, the capacity is
trivially given by

C(a, 0, P1, P2) = {R1 ≤ log(1 + P1), R2 ≤ log(1 + P2)}.

If a = 0, i.e., the cognitive receiver does not experience
interference from the primary transmitter, the capacity is only
known for |b| ≤ 1 [5] and for 1 < |b| ≤

√
1 + P2

P1+1 [11];
in both cases C(0, |b|, P1, P2) is given in (1) below. The case
|b| >

√
1 + P2

P1+1 will be used in Section IV as a case-study
for our novel outer bound developed in Section III.

C. Known Outer Bound

The best known computable outer bound for the G-CIFC is
given by the “unifying outer bound” of [11, Th.2.2], i.e.,

R1 ≤ log (1 + αP1) , (1a)

R2 ≤ log
(

1 + |b|2P1 + P2 + 2
√
ᾱ|b|2P1P2

)
, (1b)

R1 +R2 ≤ log
(

1 + |b|2ᾱP1 + P2 + 2
√
ᾱ|b|2P1P2

)
+ [log (1 + αP1)− log

(
1 + |b|2αP1

)
]+ (1c)

taken over the union of all α ∈ [0, 1].
Remark: When is the outer bound in (1) tight? In “strong

interference” (|b| > 1) the region in (1) reduces to the outer
bound [3, Th.4], which is tight in “very strong interference” [9,
Th.6]. The bound in (1) is also tight in “weak interference”
(|b| ≤ 1) [5, Lemma 3.6] and [10, Th.4.1] as well as in
the “primary decodes cognitive” regime [11, Th.3.1]. For
other parameter values, the bound in (1) is capacity to within



0.5 bits/s/Hz per real-dimension [12, Th.3] and to within a
factor two [12, Th.4].

Remark: Can the outer bound in (1) be tight in general?
The bound in (1) is not tight in general. To see this, consider
the case |b| > 1 and P2 = 0 (the primary user is silent). This
channel is equivalent to a degraded broadcast channel (BC)
with input X1 whose capacity C(a, |b|, P1, 0) given by [18]:

R1 ≤ log

(
1 +

αP1

ᾱP1 + 1

)
, R2 ≤ log

(
1 + |b|2ᾱP1

)
,

for all α ∈ [0, 1], with ᾱ = 1−α. For P2 = 0 and |b| > 1 the
outer bound in (1) reduces to:

R1 ≤ log(1 + P1), R1 +R2 ≤ log(1 + |b|2P1).

It is easy to see that the latter region fully contains the former.
The derivation of a bound that is tighter than (1) in strong
interference (|b| > 1) is the first goal this paper.

III. BC-BASED OUTER BOUND

In this section we propose an outer bound that is tighter
than (1). The following observation is key: if we provide
the primary transmitter with the cognitive message, the CIFC
becomes a BC with input X = (X1, X2); thus, an outer bound
valid for a general (not necessarily Gaussian) CIFC is:

R(BC−PR) ∩R(CIFC), (2)

where R(BC−PR) is the capacity region (or an outer bound)
for the BC with private rates only and where R(CIFC) is any
outer bound for the CIFC. For the G-CIFC the bound in (2)
is as follows: R(BC−PR) is the capacity with Private Rates
(PR) only of MIMO BC with two antennas at the transmitter,
one antenna at each receiver, and with a per-antenna power
constraint, as originally used in [1, page 1819], and R(CIFC)

is given in (1).
The bound in (2) may be further tightened for the G-CIFC

in the “strong interference” (|b| > 1) regime as follows. As
previously noted in [3, Sec. 6.1], in the “strong interference”
regime there is no loss of optimality in having the primary
receiver decode the cognitive message in addition to its own
message. Indeed, after decoding W2, receiver 2 can reconstruct
XN

2 (W2) and compute the following estimate of Y1

Ỹ N1 ,
Y N2 −XN

2

|b|
+ aXN

2 +

√
1− 1

|b|2
ZN0 ∼ Y N1 ,

where ZN0 ∼ N (0, I) and independent of everything else.
Hence, if the secondary receiver can decode W1 from Y N1 , so
can the primary receiver from Ỹ N1 . For this reason the capacity
region of the G-CIFC with |b| > 1 is unchanged if receiver 2
is required to decoded both messages. If we further allow the
two transmitters to fully cooperate, the resulting channel is a
Gaussian MIMO BC with Degraded Message Set (DMS) (see
Fig. 2), where message W2 is to be decoded at receiver 2
only and message W1 at both receivers. The capacity of the
Gaussian MIMO BC-DMS and an input covariance constraint

was determined in [19, Th.5]. Following from the previous
discussion:

Theorem 1. BC-DMS-based outer bound for the G-CIFC.
The capacity of a G-CIFC in “strong interference” (|b| > 1)
satisfies:

C(a, |b|, P1, P2) ⊆ R(BC−DMS) ∩R(SI), (3)

where R(BC−DMS) is the capacity of the Gaussian MIMO BC
with degraded message set and R(SI) is the outer bound in (1)
for |b| > 1.

The analytical evaluation of the outer bound in (3) for a
general G-CIFC is quite involved. For the special case of Z-
G-CIFC (i.e., a = 0) a closed form expression may be obtained
as follows (the proof may be found in the Appendix):

Corollary 2. BC-DMS-based outer bound for the Z-G-
CIFC. For a G-CIFC with a = 0 and |b| ≥ 1 the outer bound
in (3) is contained into the region:

R1 ≤ log (1 + αP1) , (4a)

R2 ≤ log

1 +

√P2 +

√
|b|2P1ᾱ

1 + αP1

2
 , (4b)

R1 +R2 ≤ log
(

1 + P2 + |b|2P1 + 2
√
ᾱ|b|2P1P2

)
. (4c)

Moreover, the R2-bound from the MIMO BC-DMS outer
bound (from (4b)) is more stringent than the R2-bound from
the “strong interference” outer bound (from the difference
of (4c) and (4a)) if

|b| ≥
√
P2 + 1. (5)

IV. NEW CAPACITY RESULT

By using the outer bound of Corollary 2, together with the
general achievable region of [2, Sec. VIII], we have:

Theorem 3. Capacity for some Z-G-CIFCs. For a G-CIFC
with a = 0 and with

|b| ≥
√

1 + P2(1 + P1) +
√
P1P2 (6)

the outer bound in Corollary 2 is tight.

Proof: We consider a simple superposition coding
scheme [2, Scheme (E), Sec.VIII]. Encoding: let X2 ∼
N (0, P2) and X1 =

√
(1− β)P1/P2X2 +

√
βP1U1c, with

U1c ∼ N (0, 1) independent of X2, and with β ∈ [0, 1].
Decoding: decoder 2 jointly decodes X2 and U1c from

Y2 =
(

1 +
√

(1− β)|b|2P1/P2

)
X2 +

√
β|b|2P1U1c + Z2;

decoder 1 only decodes U1c by treating X2 as noise from

Y1 =
√

(1− β)P1/P2X2 +
√
βP1U1c + Z2.



The achievable region is:

R1 ≤ log

(
1 +

βP1

1 + (1− β)P1

)
, (7a)

R2 ≤ log
(

1 + (
√
P2 +

√
(1− β)|b|2P1)2

)
, (7b)

R1 +R2 ≤ log
(

1 + P2 + |b|2P1 + 2
√

(1− β)|b|2P1P2

)
.

(7c)

Let now β
1+(1−β)P1

= α, that is, β = 1+P1

1+αP1
; with this

choice we have (7a)=(4a) and (7b)=(4b). If we show that when
the sum-rate in (7c) is redundant when the condition in (5) is
met then we have shown that the achievable region in (7)
coincides with the outer bound in (4); this is the case if

1 + P2 + |b|2P1 + 2
√

(1− β)|b|2P1P2

≥ 1 + P1

1 + (1− β)P1
(1 + P2 + |b|2P1 − β|b|2P1

+ 2
√

(1− β)|b|2P1P2), ∀β ∈ [0, 1]

⇐⇒ |b|2 ≥ 1 + P2 + 2
√

(1− β)|b|2P1P2, ∀β ∈ [0, 1],

⇐⇒ |b|2 ≥ 1 + P2 + 2
√
|b|2P1P2,

which corresponds to (6). Clearly the regime identified by (6)
is such that the condition is (5) is met. QED.

Remark: Our capacity result in Th.3 and our previous
capacity result in [11, Th.3.1] imply that the capacity of the
Z-G-CIFC with

|b| ∈

[√
1 + P2

(
1− P1

P1 + 1

)
,
√

1 + P2(1 + P1) +
√
P1P2

]
is still open, i.e, in this regime the capacity is only known to
within 0.5 bit/s/Hz per real-dimension [12, Th.3].

V. NUMERICAL RESULT

For a general G-CIFC (with a 6= 0) it is challenging to
analytically show that the outer bound region in Th.1 meets the
general inner bound region in [2, Sec. IV] due to the numerous
parameters involved in determining the points on the convex
closure of the inner and outer bounds. In Fig. 3 we show the
result of the numerical optimization of the outer bound region
in Th.1 and of the general inner bound region in [2, Sec. IV]
for a = 0.01, |b| = 10, P1 = P2 = 5. We see that the inner
and outer bounds coincides up to Matlab numerical precision.
Although this does not constitute a formal proof of capacity,
it shows that our outer bound region in Th.1 could be capacity
for a more general class of C-IFC than that identified by Th.3.

VI. CONCLUSION

In this paper we proposed a novel outer bound for the
Gaussian cognitive interference channel in strong interference
by noticing that in this regime the channel may be enhanced
to a MIMO BC with degraded message set if the transmit-
ters are allowed to cooperate. For the special case of the
Z-Gaussian cognitive interference channel we showed that
the proposed bound is tighter than existing ones for certain
parameter regimes and that it is capacity for sufficiently strong
interference.
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Fig. 3. The outer bound in Th.1 and the general achievable region of [2,
Sec. IV] for the G-CIFC with a = 0.01, |b| = 10, P1 = P2 = 5. Notice
the the vertical axis starts at 1.5.

APPENDIX

The capacity region of the general BC-DMS where re-
ceiver 2 must decode both messages is [20]

R1 ≤ I(U ;Y1), (8a)
R2 ≤ I(X;Y2|U), (8b)

R1 +R2 ≤ I(X;Y2), (8c)

for all joint distributions PU,X . A closed form expression
for (8) for the Gaussian MIMO BC-DMS was derived in [21];
it was however not obtained as a direct computation of (8)
but was instead expressed as the intersection of the capacity
region of a general Gaussian MIMO BC-PR and an additional
sum-rate constraint; the evaluation of the Gaussian MIMO BC-
PR region involves maximization over covariance matrices and
“dirty paper coding” orders and is thus very difficult to carry
out in closed form. By using the recent “extremal inequality”
result of [16, Th.1], together with a series of steps as in [19],
it is not difficult to show that jointly Gaussian (U,X) are
optimal in (8) for a general Gaussian MIMO BC-DMS with
an arbitrary input covariance constraint; this result, formally
proved in [22, Th.3.3], greatly simplifies the evaluation of (8).

We now evaluate the region in (8) for the following jointly
Gaussian input. For an input covariance Cov[X] = S, with:

S ,

(
P1 ρ

√
P1 P2

ρ∗
√
P1 P2 P2

)
(9)

let U ∼ N (0,B1) independent of V ∼ N (0,B2), and let
X = U + V , with:

B1 =

[
α1P1 ρ1

√
α1P1 α2P2

ρ∗1
√
α1P1 α2P2 α2P2

]
,

B2 =

[
ᾱ1P1 ρ2

√
ᾱ1P1 ᾱ2P2

ρ∗2
√
ᾱ1P1 ᾱ2P2 ᾱ2P2

]
,

such that:

(α1, α2, |ρ1|, |ρ2|) ∈ [0, 1]4 : ρ1
√
α1 α2 + ρ2

√
ᾱ1 ᾱ2 = ρ.

The condition (α1, α2) ∈ [0, 1]2 is to guarantee that the per-
antenna power constraint is met.



Since (8a) and (8b) correspond to the DPC (dirty paper
coding) region for a BC-PR (with user 2 encoded last) and
since the sum-rate in (8c) depends only on the parameter ρ in
(9), we write the BC-DMS region for the equivalent BC with
channel matrices h1 = [1 0] and h2 = [|b| 1] as:

R(BC−DMS) =
⋃

|ρ|≤1 α1∈[0,1]

(
R(DPC)(ρ, α1) ∩R(sum)(ρ)

)

⊆
⋃

|ρ|≤1,α1∈[0,1]

{
R1 ≤ R(DPC)

1 (α1)

R2 ≤ R(DPC)
2 (ρ, α1)

where the region R(BC−DMS) has been enlarged by removing

R(sum)(ρ)

=
{
R1 +R2 ≤ log(1 + |b|2P1 + P2 + 2Re{ρ}

√
|b|2P1P2)

}
and where the region R(DPC)(ρ, α1) is defined by:

R
(DPC)
1 (α1)

∆
= log

(
1 +

α1P1

1 + ᾱ1P1

)
, (10a)

R
(DPC)
2 (ρ, α1)

∆
= max
ρ1,ρ2,α2 s.t. ρ=ρ1

√
α1α2+ρ2

√
ᾱ1ᾱ2

log(1 + |b|2ᾱ1P1 + ᾱ2P2 + 2Re{ρ2}
√
ᾱ1ᾱ2|b|2P1P2)

≤ log(1 + |b|2ᾱ1P1 + P2 + 2
√
ᾱ1|b|2P1P2), (10b)

where the inequality follows by optimizing over
(α2, |ρ1|, |ρ2|) ∈ [0, 1]3 without accounting for the constraint.

The inequalities in (10) prove that for the Z-G-CIFC,
R(DPC)(ρ, α1), and thus also R(BC−DMS), is contained in the
region:

R1 ≤ log(1 + αP1)
∆
= R

(BC−DMS−Z)
1 , (11a)

R2 ≤ log

1 +

√|b|2 (1− α)P1

1 + αP1
+
√
P2

2
 ∆

= R
(BC−DMS−Z)
2 ,

(11b)

taken over the union of all α ∈ [0, 1], with the “change of
variable”: α = α1

1+ᾱ1P1
.

Finally, the BC-DMS outer bound of (11) is more stringent
than the outer bound in (1) if

R
(BC−DMS−Z)
1 +R

(BC−DMS−Z)
2 ≤ R(SI)

sum ∀α ∈ [0, 1]

⇐⇒ αP1 +
(√
|b|2(1− α)P1 +

√
P2(1 + αP1)

)2

≤ P2 + |b|2P1 + 2
√

(1− α)|b|2P1P2 ∀α ∈ [0, 1]

⇐⇒ 1 + P2 − |b|2 ≤ 0,

as claimed in (5). QED.
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