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Abstract—In a recent work, a capacity-achieving scheme for
the common-message two-user MIMO broadcast channel, based
on single-stream coding and decoding, was described. This was
obtained via a novel joint unitary triangularization which is
applied to the corresponding channel matrices. In this work,
the triangularization is generalized, to any (finite) number of
matrices, allowing multi-user applications. To that end, multiple
channel uses are jointly treated, in a manner reminiscent ofspace-
time coding. As opposed to the two-user case, in the general case
there does not always exist a perfect (capacity-achieving)solution.
However, a nearly optimal scheme (with vanishing loss in thelimit
of large blocks) always exists. Common-message broadcasting
is but one example of communication networks with MIMO
links which can be solved using an approach coined “Network
Modulation”; the extension beyond two links carries over tothese
problems.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) Gaussian channels
are a basic building block of many communication networks,
due to their potential to enhance the throughput of communica-
tion systems, and have been extensively studied both in terms
of the theoretical limits (see, e.g., [1]) as well as in terms
of modulation and coding schemes that allow to approach
these limits. In different communication scenarios, different
assumptions on the channel behavior and of the availability
of channel state information are appropriate (see [2], [3] and
references therein).

A recent approach, coined “Network Modulation” [4],
tackles the problem of conveying information over different
multiple-antenna multi-terminal networks where full channel
state information is available at all terminals (i.e., a fully
closed-loop scenario). The approach is based on jointly tri-
angularizing several matrices using the same unitary matrix
on one side (joint encoder or decoder) and different unitary
matrices on the other side (separate decoders or encoders),
such that the diagonals of the resulting triangular matrices
satisfy desirable properties, e.g., that they are equal. This
decomposition, along with successive interference cancellation
(SIC) or dirty paper coding (DPC) [5], transforms the channels
into parallel scalar additive white Gaussian noise channels
(AWGN). Thus, employing this scheme along with (any)
scalar codes which are good for the AWGN channel, provides
“practical” capacity-achieving schemes, for scenarios inwhich
the capacity is known. Furthermore, somewhat surprisingly,
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it has been demonstrated that the approach allows to obtain
new achievable rate regions to several information-theoretic
problems, such as the two-way MIMO relay problem [6] and
the problem of joint source-channel coding of a source over a
MIMO broadcast channel [4].

A scenario of significant importance is that of sending a
common message over a MIMO Gaussian broadcast (BC)
channel, henceforth themulticasting scenario. The channel is
given by

yi = Hix+ zi , i = 1, 2 , (1)

wherex is the complex-valued channel input vector of length
n subject to a power constraint,yi (i = 1, 2) is the output
vector of useri of lengthmi, Hi is themi×n complex channel
matrix to useri, and zi is an additive circularly-symmetric
complex Gaussian noise vector of lengthmi. Without loss
of generality, we assume that both the noise elements and
the input signal have unit power, i.e.,zi ∼ CN(0, Imi

)
and E

[

x†x
]

≤ 1, where † denotes the conjugate transpose
operator. It was shown in [4] that it is possible to jointly
triangularize the channel matricesH1 and H2 using unitary
matrices, such that the ratio between the resulting diagonals
is constant. This in turn allows to achieve the common-
message capacity using single-stream encoding and decoding
of standard AWGN codes along with SIC (much like in V-
BLAST transmission for a single user [7]). As we recall in
the sequel, the problem of multicasting over several MIMO
channels is tightly connected to the problems of universal
coding over parallel channels, as well as rateless coding for
Gaussian channels. Thus, the results we derive are relevant
also to the latter problems.

The joint triangularization of [4] was limited to only two
matrices, and hence, only two-user multicasting (or “perfect
two-rate” in the rateless problem [8]) could be treated. Theaim
of the current work is to generalize the network modulation
approach to more than two users. This is done by utilizing
multiple uses of the channel, reminiscent of space-time coding
techniques [9], [10].

II. BACKGROUND: NETWORK MODULATION

In this section we recall the joint triangularization of two
matrices [4], and its application to the two-user multicasting
problem. We then demonstrate the relevance of the scheme to
the special case of a two-rate scalar Gaussian rateless problem.
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A. Unitary Matrix Triangularization

The network modulation approach is based on several forms
of matrix decompositions, one of which is thegeometric
mean decomposition (GMD) [11]. For simplicity, we will only
consider the decomposition ofsquare matrices throughout this
work. As we show in the sequel, this does not pose any
restriction on the communication problems addressed. The
GMD [11] of an n× n matrix A is given by:

A = UTV † , (2)

whereU andV aren×n unitary matrices, andT is an upper-
triangularn×n matrix such that all its diagonal values equal
λ, whereλ is a real-valued non-negative number.

Building on the GMD, the following decomposition, which
will be referred to as Joint Equi-diagonal Triangularization
(JET), was introduced in [4]. LetA1 andA2 be two complex
matrices of dimensionsn × n such thatdet(A) = det(B).
Then, the joint triangularization ofA1 andA2 is given by:

A1 = U1R1V
†

A2 = U2R2V
† , (3)

whereU1, U2, V aren × n unitary matrices, andR1, R2 are
upper-triangularn × n matrices with the same real-valued,
non-negative diagonal values, namely,

[R1]ii = [R2]ii ∀i = 1, . . . , n .

B. MIMO Multicast Scheme

We now recall how the JET decomposition can be used to
obtain a practical scheme for transmitting a common message
over a MIMO Gaussian BC with two receivers, as described by
(1). Define the mutual information between a Gaussian input
vectorx, having a covariance matrixCx , E

[

xx†], and the
channel outputyi, by

I(Hi, Cx) , log det
(

I +HiCxH
†
i

)

. (4)

The common-message capacity is given by the (worst-case)
compound-channel capacity expression (see, e.g., [12]):

C = max
Cx: tr(Cx)≤1

min
i=1,2

I(Hi, Cx) . (5)

Let Cx be an admissible covariance matrix, and assume for
simplicity that I(H1, Cx) = I(H2, Cx) = R. The following
scheme [4] achieves the rateR.

Define the followingaugmented matrices:

G̃i ,

[

Fi

In

]

,

whereFi , Hi

√
Cx andIn is then× n identity matrix.

Next, the matrices̃Gi are transformed into square matrices,
by means of the QR decomposition:

G̃i = QiGi , (6)

whereQi is an(mi+n)×n matrix with orthonormal columns
andGi is ann × n upper-triangular matrix with real-valued

positive diagonal elements. Now, assuming thatI(H1, Cx) =
I(H2, Cx) = R, this implies [4, Proposition 1]:

det(G1) = det(G2) = 2
R

2 .

Therefore,G1, G2 can be jointly triangularized using the JET:

Gi = UiRiV
† , i = 1, 2 , (7)

where R1 and R2 are upper-triangular, having the same
diagonal elements. The transmission scheme is as follows:

1) Constructn optimal codes for scalar AWGN channels.
Thek-th codebook is designed for a SISO AWGN chan-
nel with a rate2 log rk, whererk is the k-th diagonal
element ofR1 (and also ofR2).

2) In each channel use, ann-length vectorx̃ is formed
using one sample from each codebook. The transmitted
vectorx is then obtained using the following precoder:

x =
√

CxV x̃ . (8)

3) At the receiving ends, thei-th user calculates

ỹi = U
†
i Q̃

†
iyi , (9)

whereQ̃i consists of the firstn rows ofQi.
4) Finally, the codebooks are decoded using SIC, starting

from then-th codeword and ending with the first one:
The n-th codeword is decoded first, using then-th
element ofỹi, treating the other codewords as AWGN.
The effect of then-th element of̃x is then subtracted out
from the remaining elements of̃y. Next, the(n− 1)-th
codeword is decoded, using the(n− 1)-th element of
ỹi - and so forth.

The optimality of this scheme was proved in [4, Sec. IV].
Example 1 (Application to the two-rate rateless problem):

Consider the scalar Gaussian rateless problem defined in [13]:

ym = αxm + zm , m = 1, 2, . . . ,M .

The gainα is known only to the receiver, and can take one
of M possible values, such that a gain ofαm implies that the
message should be decodable usingm received blocks:1

R = m log(1 + |αm|2) , m = 1, 2, . . . ,M .

Specializing the problem to the case of one (possible) in-
cremental redundancy block (M = 2), the perfect two-rate
rateless problem can be viewed as a 2-user MIMO-BC channel
with channel matrices

H1 =

(

α1 0
0 0

)

, H2 =

(

α2 0
0 α2

)

.

Applying the scheme of Section II-B yields the following
precoding matrix [8]:

V =

√

1

2R/2 + 1

(

1 2R/4

2R/4 −1

)

,

which coincides with the result in [13, Section III].

1Alternatively, this can be viewed as a scheme that works for every value
of α, but designed to be optimal only forM specific values.



Erez, Trott and Wornell [13] also treated the case ofM =
L = 3, and found a condition for which a “perfect” scheme
exists. In the sequel we will shed light on this condition.

III. JOINT TRIANGULARIZATION OF MANY MATRICES

In this section we extend the network modulation technique
to a any finite number of users, using arecursion principle.
Specifically, givenK matricesG1, . . . , GK , we wish to findK
matrices with orthonormal columnsU1, . . . , Uk, and another
such matrixV , such that the matricesRi , U

†
i GiV are upper-

triangular, havingequal diagonals. We shall refer to this as
K-matrix JET, or simplyK-JET.

The proof of the existence of a JET decomposition of two
matricesG1 andG2 [4] is based upon applying the GMD (2) to
the single matrixG1G

−1
2 . Similarly, we show in the following

lemma that(K + 1)-JET is equivalent to simultaneous GMD
of K matrices, which will be referred to asK-GMD.

Lemma 1: Let G1, . . . , GK+1 be n × n complex valued
matrices with equal determinants, and define theK matrices:

Ai = GiG
−1
K+1 , i = 1, . . . ,K . (10)

Then, there existK + 1 matrices with orthonormal columns
U1, . . . , UK+1, of dimensionsn×m, such that

U
†
i AiUK+1 = Ti , i = 1, . . . ,K , (11)

where{Ti} are upper-triangular with all diagonal entries equal
to 1, if and only if there exists ann × m matrix V with
orthonormal columns, such that

U
†
i GiV = Ri , i = 1, . . . ,K + 1 ,

where{Ri} are upper-triangular with equal diagonals.
Proof: See a constructive proof in Appendix A.

Remark 1: Constructing matrices with constant diagonals
could be advantageous in practice, as this corresponds to equal
gains of all the resulting sub-channels, and hence enables to
use thesame (single) codebook over all of them.

We are thus left with the task of performingK-GMD to
K matrices. In Section IV we state sufficient and necessary
conditions for the existence of the above decomposition for
the special case of two real-valued2 × 2 matrices. We will
then, in Section V, present a different approach, involvingjoint
triangularization of block-diagonal matrices, which enables a
nearly-optimal network-modulation scheme, even when exact
triangularization is not possible.

IV. EXACT TRIANGULARIZATION WITH CONSTANT

DIAGONALS OF TWO REAL-VALUED 2× 2 MATRICES

We now provide a necessary and sufficient condition for the
existence of2-GMD for real-valued 2× 2 matrices.

Theorem 1 (2-GMD for 2× 2 real-valued matrices): Let
A1 andA2 be real-valued 2 × 2 matrices with determinants
equal to1. Apply (any) JET decomposition to them:2

Ai = UJET
i Ri

(

V JET
)†

, i = 1, 2 , (12)

2The JET decomposition is, in general, not unique.

where:

Ri =

(

r1 xi

0 r2

)

.

Then, there exist three complex-valued2× 2 unitary matrices
UGMD
1 , UGMD

2 , V GMD such that:

(

UGMD
i

)†
AiV

GMD =

(

1 ∗
0 1

)

if and only if the following inequality is satisfied:

r2

(

x1 + x2

2

)2

≤ r2 +
x1x2

r1 − r2
. (13)

Without loss of generality, we can assume that the solution is
of the form:

V GMD =

(

s1 s2
s∗2 −s∗1

)

. (14)

Proof: The proof is straightforward, and is given in
Appendix C.

Remark 2: Although this theorem is valid only forreal-
valued matricesA1 and A2, the resulting unitary matrices
U1, U2, andV are, in general,complex-valued. In Section V-A
we bring a restatement of the theorem, which involves only
real-valued orthogonal transformations.

Remark 3: This theorem can be applied to the three-rate
rateless problem defined in Section II-B. This yields a con-
dition for the existence of a perfect scheme, namely,R ≤
6 log

(

3+
√
5

2

)

≈ 8.331, as in [13]. The details are given in
Appendix D.

V. SPACE-TIME TRIANGULARIZATION

As indicated by Theorem 1, joint triangularization with
constant diagonal values is not always possible. However, even
when the condition for joint triangularization does not hold,
we can still perform nearly-optimal network modulation, by
utilizing multiple uses of the same channel realization. The
idea of mixing the same symbols between multiple channel
uses has much in common with Space-Time Codes [9], [10].

A. Restatement of Theorem 1

In order to introduce the space-time like structure, we start
by a restatement of Theorem 1.

Recall the two-user common-message broadcast MIMO
channel (1) with two transmit antennas (n = 2), and a general
number of antennasmi at each receiver. We now utilize
transmission in two consecutive time instances (as in [9]).This
is equivalent to sending extended symbols over the following
extended channel:

Yi = HiX+ Zi , i = 1, 2 .

The extended vectorsX,Y,Z are composed of two “physical”
input, output, and noise vectors, respectively, andHi is the
(2mi)× 4 extended channel matrix defined as (i = 1, 2)

Hi = ⌈Hi⌋⊗2 (15)



where⌈A⌋⊗N denotes the Kronecker productIN ⊗A, viz. a
block-diagonal matrix withN blocks ofA on its diagonal:

⌈A⌋⊗N ,











A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A











.

The power constraint now becomesE
[

XTX
]

≤ 2.
Let Cx be a covariance matrix satisfyingtrace (Cx) ≤ 1,

and define the augmented matricesGi as in (6). Following
Lemma 1, we define the two2× 2 matrices:

A1 , G1G
−1
3 , A2 , G2G

−1
3 .

Also define the following4× 4 extended matrices (i = 1, 2):

Gi , ⌈Gi⌋⊗2 , Ai , ⌈Ai⌋⊗2 . (16)

Since the matricesA1 andA2 are real-valued matrices, we
can obtain2-GMD of the matricesA1 andA2 under the same
conditions as in Theorem 1, such that all the involved unitary
transformations becomereal-valued. Following Lemma 1, this
yields a 3-JET of the three matricesG1,G2,G3:

Gi = UiRiV
† ,

whereRi are upper triangular with equals diagonals.
In particular, the complex precoding matrixV GMD given by

(14) implies the following (real) orthogonal space-time block
code structure ofVGMD [14]:

VGMD =









a −c b d

b d −a c

c a d −b

−d b c a









.

The same scheme as in Section II-B can now be employed,
such that the two channel uses are effectively transformed into
four scalar AWGN channels, having the same capacities for
all three users. Note that the matrix̃Qi of (9) is replaced with
its extended version,

⌈

Q̃i

⌋

⊗2
.

B. Nearly-Optimal 2-GMD

We now show how to utilize a space-time structure in order
to obtain nearly-optimal joint triangularization of two matrices,
such that the resulting triangular matrices have a constant
diagonal. This method will later be generalized to any number
of matrices, using Lemma 1. The resulting scheme becomes
asymptotically optimal for large values ofN , whereN is the
number of channel uses assembled together for the purpose of
joint decomposition. Note that the proposed scheme is nearly
optimal for any two complex-valued channelsHi (and not
restricted to real-valued matrices, in contrast to the perfect
construction of Theorem 1).

Theorem 2 (Nearly-Optimal 2-GMD): Let A1 and A2 be
two complex-valuedn× n matrices, and define the following
nN × nN extended matrices:

Ai = ⌈Ai⌋⊗N , i = 1, 2, . (17)

Then there exist threenN×n
(

N−(n−1)
)

matricesU1,U2,V

with orthonormal columns, such that:

U
†
iAiV =















1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1















, i = 1, 2 .

By using this decomposition together with Lemma 1, the
same scheme as in Section II-B can be employed, such that the
N channel uses are effectively transformed inton(N − n+ 1)
scalar AWGN channels. The sum of the capacities of these
channels tends to the capacity of the original channel for large
values ofN , where the only loss comes from edge effects
(truncating the extremen(n− 1) elements).

The full proof of the theorem is given in Appendix E. The
main idea of the proof is demonstrated by the proof for the
2× 2 case, presented next.

Proof of Theorem 2 for n = 2: We start by jointly
triangularizing the matricesA1 andA2:

(

UJET
i

)†
AiV

JET =

(

r1 xi

0 r2

)

(18)

where r1r2 = 1. We now apply the decomposition (18) to
each block separately, using:

U
JET
i =

⌈

UJET
i

⌋

⊗N
, VJET =

⌈

V JET
⌋

⊗N
,

which yields the matrices

(

UJET
i

)†
AiV

JET =























r1 xi 0 0 · · · 0 0
0 r2 0 0 · · · 0 0
0 0 r1 xi · · · 0 0
0 0 0 r2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · r1 xi

0 0 0 0 · · · 0 r2























.

(19)
Note that the sub-matrix

Λ =

(

r2 0
0 r1

)

does not depend oni, and therefore it can be decomposed
using the GMD (2),Λ = UGMDT

(

V GMD
)†

, where T is
upper-triangular with only1s on the diagonal. We use this
decomposition to construct a second transformation – only
this time it is not be applied on each block separately, but
rather “mixes” pairs of consecutive blocks, using:

UGMD =









0 0 · · · 0
⌈

UGMD
⌋

⊗(N−1)

0 0 · · · 0









,VGMD =









0 0 · · · 0
⌈

V GMD
⌋

⊗(N−1)

0 0 · · · 0









.



Applying this transformation to (19) yields the following
(2N − 2)× (2N − 2) upper-triangular matrix:

U
†
iAiV =















1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1















,

whereUi , UJET
i UGMD andV , VJETVGMD.

C. Nearly-Optimal K-GMD

By using Lemma 1, we can generalize Theorem 2 to any
number of users, as follows:

Theorem 3 (Nearly-Optimal K-GMD): Let A1, . . . , AK be
K complex-valuedn×n matrices with determinants equal to
1, and defineA1, . . . ,AK as in (17). Then there existK + 1
matricesU1, . . . ,UK ,V, with orthonormal columns, such that:

U
†
iAiV =















1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1















, i = 1, . . . ,K .

Proof: A sketch of the proof is given in Appendix B.

VI. D ISCUSSION

Theorem 1 provides sufficient and necessary conditions for
joint GMD of two real-valued 2 × 2 matrices. This naturally
raises the question of how this condition can be carried over
to the complex-valued case, and to general dimensionsn×n.

Furthermore, we demonstrated that (exact)K-GMD, not
using any space-time structure, is not always possible. Nev-
ertheless,nearly-optimal communication schemes can always
be constructed, which become optimal in the limit of largeN .
It remains an open question whether an exact triangularization
can be obtained using only a finite number of channel uses.
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APPENDIX A
PROOF OFLEMMA 1

Proof of Lemma 1: The direct part holds trivially. We are
therefore left with the task of proving the converse part. We
start with the QR decompositionG−1

K+1UK+1 = V S, where
V is of dimensionsn×m with orthonormal columns, andS is
anm×m upper-triangular matrix. Thus, using (10) and (11),
we obtain the following equalities:

U
†
i GiV S = Ti , i = 1, . . . ,K

U
†
K+1GK+1V S = I .

Multiplying by S−1 on the right yields:

U
†
i GiV = TiS

−1 , i = 1, . . . ,K

U
†
K+1GK+1V = S−1 .

SinceTi are upper-triangular with only1s on the diagonal, the
matricesRi , TiS

−1 (i = 1, . . . ,K) andRK+1 , S−1 have
equal diagonals, which completes the proof.

APPENDIX B
SKETCH OF PROOF OFTHEOREM 3

Proof Idea: The theorem has already been proved for the
special case ofK = 2. For larger values ofK we prove by
induction, applying repeatedly Lemma 1 and of Theorem 2:

1) According to Lemma 1, performingK-GMD is equiv-
alent to(K + 1)-JET. We can thus transformK upper-
triangular matrices withconstant diagonal values into
K + 1 upper-triangular matrices of the same size,
R1, . . . , RK+1 with equal diagonals.

2) Given the matricesR1, . . . , RK+1, construct the block-
diagonalextended matricesRi, as in (17). Using the
technique of Theorem 2, we construct matrices with or-
thonormal columns,U(K+1)

1 , . . . ,U
(K+1)
K+1 ,V(K+1), such

that the matrices
(

U
(K+1)
i

)†
RiV

(K+1) are upper-
triangular, with constant diagonals. Finally, the loss in
rate could be made arbitrarily small by takingN to be
sufficiently large.

APPENDIX C
CONDITION FOR2-GMD OF REAL-VALUED 2× 2

MATRICES

We now prove the necessary and sufficient condition for the
existence of joint-triangularization of two2 × 2 real-valued
matrices.

Proof of Theorem 1: Let A1 and A2 be real-valued
2 × 2 matrices with determinants equal to1. Apply the JET
decomposition to these matrices, to obtain

Ai = UJET
i Ri

(

V JET
)†

, i = 1, 2, (20)

where:

Ri =

(

r1 xi

0 r2

)

such thatr1r2 = 1. The matricesUJET
i , V JET are real-valued

unitary matrices, and we can assume without loss of generality
that det

(

V JET
)

= 1.
If there exist three complex-valued2 × 2 unitary matrices

U1, U2, V such that:

U
†
i AiV =

(

1 ∗
0 1

)

, (21)

then according to (20),

(

UGMD
i

)†
RiV

GMD =

(

1 ∗
0 1

)

,

where

UGMD
i =

(

UJET
i

)†
Ui

V GMD =
(

V JET
)†
V .



Denote the entries of the first column ofV GMD by s1 ands∗2,
i.e.,

V GMD =

(

s1 ∗
s∗2 ∗

)

,

where|s1|2+ |s2|2 = 1. The first column ofR1V
GMD and of

R2V
GMD is therefore:

RiV
GMD =

(

r1s1 + xis
∗
2 ∗

r2s
∗
2 ∗

)

, i = 1, 2 ,

wherex1 andx2 denote the off-diagonal elements ofR1 and
R2 respectively. These two columns must have a norm of1,
namely:

|r1s1 + xis
∗
2|2 + |r2s∗2|2 = 1 , i = 1, 2 .

Since r1, r2, x are real-valued,s1 and s2 must satisfy the
following three equations:

|s1|2 + |s2|2 = 1

r21 |s1|2 + (x2
1 + r22)|s2|2 + 2r1x1Re(s1s2) = 1

r21 |s1|2 + (x2
2 + r22)|s2|2 + 2r1x2Re(s1s2) = 1 .

Denotingα ≡ s1
s∗
2

, and substitutingα in these equations, results
in:

1 + |α|2 =
1

|s2|2
(22)

r21 |α|2 + (x2
1 + r22) + 2r1x1Re(α) =

1

|s2|2
(23)

r21 |α|2 + (x2
2 + r22) + 2r1x2Re(α) =

1

|s2|2
. (24)

Subtracting (24) from (23) yields:

(x1 + x2) + 2r1Re(α) = 0 ,

So we have:

|α|2 =
1

|s2|2
− 1 (25)

Re(α) = −
(

x1 + x2

2

)

r2 (26)

(Re(α))2 =

(

x1 + x2

2

)2

r22 (27)

(Im(α))2 =
1

|s2|2
− 1−

(

x1 + x2

2

)2

r22 . (28)

Thus, equation (23) and (24) become:

|s2|2 =
r21 − 1

r21 − r22 + x1x2
,

and therefore equation (27) becomes

(Im(α))
2

=
r21 − r22 + x1x2

r21 − 1
− 1−

(

x1 + x2

2

)2

r22 .

Thus, the following conditions are necessary and sufficientfor
the existence of a solution:

r21 − 1

r21 − r22 + x1x2
≥ 0

r21 − r22 + x1x2

r21 − 1
− 1−

(

x1 + x2

2

)2

r22 ≥ 0 ,

which are equivalent to

r2

(

x1 + x2

2

)2

≤ r2 +
x1x2

r1 − r2
. (29)

This proves that (29) is anecessary condition for the
existence of the decomposition (21).

Now, assume that this condition holds, and define the
matrix:

V GMD =

(

s1 s2
s∗2 −s∗1

)

.

We now apply the QR decomposition to the matricesR1V
GMD

andR2V
GMD:

(

UGMD
i

)†
RiV

GMD =

(

ai bi
0 ci

)

. (30)

The first columns of bothR1V
GMD and R2V

GMD have
norms equal to1. Therefore, from the construction of the QR
decomposition, it follows thata1 = a2 = 1. Consequently,
since both matrices have a unit determinant,c1 = c2 = 1
must hold as well. Thus, (30) becomes:

(

UGMD
i

)†
RiV

GMD =

(

1 ∗
0 1

)

,

and therefore,

Ai = Ui

(

1 ∗
0 1

)

V † ,

where

Ui = UJET
i UGMD

i

V = V JETV GMD .

Furthermore, since the matrixV GMD is of the form

V GMD =

(

s1 s2
s∗2 −s∗1

)

,

andV JET is a real-valued unitary matrix with unit determi-
nant, it is easy to see that the matrixV is also of the form

V =

(

s1 s2
s∗2 −s∗1

)

,

which completes the proof of the theorem.

APPENDIX D
THREE-RATE RATELESS

We now consider the three-rate “rateless” problem, as
defined in Section II-B, withM = L = 3 and a given rateR:

H1 =





α1 0 0
0 0 0
0 0 0





H2 =





α2 0 0
0 α2 0
0 0 0





H3 =





α3 0 0
0 α3 0
0 0 α3



 ,



whereα1, α2, α3 are the positive values satisfyinglog(1 +
α2
1) = 2 log(1 + α2

2) = 3 log(1 + α2
3) = R. As in the 2-

rate case, the covariance matrix in this problem is the identity
matrix, Cx = I. SinceH3 is a s scaled identity matrix, we
can ignore it and concentrate on the remaining two matrices.

The augmented matrices, as defined in (6), are:

G1 =





2
R

2 0 0
0 1 0
0 0 1





G2 =





2
R

4 0 0

0 2
R

4 0
0 0 1



 .

The decomposition (12) becomes:

R1 = 2
R

2 ·





1 z w

0 2−
R

12 x

0 0 2
R

12





R2 = 2
R

2 ·





1 z 0

0 2−
R

12 0

0 0 2
R

12



 ,

where

x = −
(

1− 2−
R

6

)

√

1 + 2
R

6 + 2
R

3 .

It then follows from Theorem 1 that there exists a perfect
solution over the complex field if and only if:

x2 − 4 ≤ 0 ,

or explicitly:

2−
R

3

(

1 + 2
R

6

)2 (

1− 3 · 2R

6 + 2
R

3

)

≤ 0 .

This condition is satisfied if and only if:

R ≤ 6 log

(

3 +
√
5

2

)

≈ 8.331 ,

which coincides with the result that was obtained in [13].
For rates higher than this threshold, a perfect capacity-

achieving solution does not exist. However, as explained
earlier, multiple channel usages can be utilized in order to
approach capacity asymptotically.

APPENDIX E
NEARLY OPTIMAL 2-GMD FORn ≥ 2

We now bring the proof of Theorem 2 for the general case
n ≥ 2.

Proof of Theorem 2:
Let A1 andA2 be the twon× n complex valued matrices,

with determinants equal to1. As in (16), we define the
extended matrices,

Ai =











Ai 0 · · · 0
0 Ai · · · 0
...

...
. . .

...
0 0 · · · Ai











.

We are looking for threenN×n(N−n+1) matricesU1,U2,V

with orthonormal columns, such that

U
†
iAiV

are upper-triangular, with only1s on the diagonal.
We accomplish that using three steps:

a) Joint Triangularization: As in the n = 2 proof, we
start by jointly triangularizing the matricesA1 andA2:

(

UJET
i

)†
AiV

JET =











r1 ∗ · · · ∗
0 r2 · · · ∗
...

...
. . .

...
0 0 · · · rn











.

We now apply this transformation to each block separately:

AJET
i =

(

UJET
i

)†
AiV

JET , (31)

where

U
JET
i =











UJET
i 0 · · · 0
0 UJET

i · · · 0
...

...
. . .

...
0 0 · · · UJET

i











VJET =











V JET 0 · · · 0
0 V JET · · · 0
...

...
. . .

...
0 0 · · · V JET











.

b) Reordering: It will now be convenient to re-order the
columns ofAJET

i such that the following columns:

kn, kn+ (n− 1), kn+ 2(n− 1), · · · , kn+ (n− 1)2

will become “grouped together” for everyk.3 Formally, We do
so by introducing the followingnN×n(N−n+1) re-ordering
matrix O:

Oij =

{

1 i = πj

0 Otherwise,
(32)

where the functionπ is defined as follows:

• For 1 ≤ j ≤ n(N − n+ 1),

πj = (n− 1) · [(j − 1)%n] + n ·
⌊

j − 1

n

⌋

+ n.

As a result of this re-ordering, we obtain an upper-triangular
(N − n + 1)n × (N − n + 1)n matrix, which has a block-
triangular structure:

OTAJET
i O =















Λ ∗ · · · ∗ ∗
0 Λ · · · ∗ ∗
...

...
...

. . .
...

0 0 · · · Λ ∗
0 0 · · · 0 Λ















,

3Note that this set includes exactly one symbol from each ofn consecutive
channel uses.



where

Λ =











rn 0 · · · 0
0 rn−1 · · · 0
...

...
. . .

...
0 0 · · · r1











.

c) GMD: Since the matrixΛ does not depend oni, we
can decompose it using GMD:

Λ = UGMDT
(

V GMD
)†
,

whereT is upper-triangular with only1s on its diagonal.
We now apply the GMD to all the blocks ofOTAJET

i O:

UGMD =











UGMD 0 · · · 0
0 UGMD · · · 0
...

...
. . .

...
0 0 · · · UGMD











VGMD =











V GMD 0 · · · 0
0 V GMD · · · 0
...

...
. . .

...
0 0 · · · V GMD











,

to obtain:

(

UGMD
i

)†
OTGJET

i OVGMD =















Ti ∗ · · · ∗ ∗
0 Ti · · · ∗ ∗
...

...
...

. . .
...

0 0 · · · Ti ∗
0 0 · · · 0 Ti















,

(33)
whereTi are upper-triangular with only1s on the diagonal.

We conclude by combining (33) with (31) to obtain:

U
†
iAiV =















Ti ∗ · · · ∗ ∗
0 Ti · · · ∗ ∗
...

...
...

. . .
...

0 0 · · · Ti ∗
0 0 · · · 0 Ti















,

where

Ui = UJET
i OUGMD (34)

V = VJETOVGMD , (35)

which completes the proof of the theorem.
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