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Abstract—In a recent work, a capacity-achieving scheme for it has been demonstrated that the approach allows to obtain
the common-message two-user MIMO broadcast channel, basednew achievable rate regions to several information-th@ore
on single-stream coding and decoding, was described. Thisay problems, such as the two-way MIMO relay problém [6] and

obtained via a novel joint unitary triangularization which is th bl f ioint h | codi f
applied to the corresponding channel matrices. In this work € probiem or joint source-channel coding ot a source over a

the triangularization is generalized, to any (finite) number of MIMO broadcast channel [4].
matrices, allowing multi-user applications. To that end, nultiple A scenario of significant importance is that of sending a

channel uses are jointly treated, in a manner reminiscent ofpace- common message over a MIMO Gaussian broadcast (BC)

time coding. As opposed to the two-user case, in the generalse .\, nne| henceforth theulticasting scenario. The channel is
there does not always exist a perfect (capacity-achievingplution.

However, a nearly optimal scheme (with vanishing loss in themit ~ 9Iven by
of large blocks) always exists. Common-message broadcasgi )
is but one example of communication networks with MIMO yi=Hx+z;, i=1,2, 1)
links which can be solved using an approach coined “Network ) )
Modulation”; the extension beyond two links carries over tothese Wherex is the complex-valued channel input vector of length
problems. n subject to a power constraing; (: = 1,2) is the output
vector of usei of lengthm,, H; is them,; xn complex channel
matrix to useri, and z; is an additive circularly-symmetric
Multiple-input multiple-output (MIMO) Gaussian channelssomplex Gaussian noise vector of lengthy. Without loss
are a basic building block of many communication networksf generality, we assume that both the noise elements and
due to their potential to enhance the throughput of comnauniche input signal have unit power, i.ez; ~ CN(0,1,,,)
tion systems, and have been extensively studied both irsteramd E [xx| < 1, where{ denotes the conjugate transpose
of the theoretical limits (see, e.g[,/[1]) as well as in termsperator. It was shown inJ[4] that it is possible to jointly
of modulation and coding schemes that allow to approatfengularize the channel matricd$, and H, using unitary
these limits. In different communication scenarios, défg@ matrices, such that the ratio between the resulting didgona
assumptions on the channel behavior and of the availabilisy constant. This in turn allows to achieve the common-
of channel state information are appropriate ($ée [2], [8] amessage capacity using single-stream encoding and decodin
references therein). of standard AWGN codes along with SIC (much like in V-
A recent approach, coined “Network Modulation™] [4],BLAST transmission for a single user] [7]). As we recall in
tackles the problem of conveying information over diffarerthe sequel, the problem of multicasting over several MIMO
multiple-antenna multi-terminal networks where full cheh channels is tightly connected to the problems of universal
state information is available at all terminals (i.e., alyful coding over parallel channels, as well as rateless coding fo
closed-loop scenario). The approach is based on jointly tbaussian channels. Thus, the results we derive are relevant
angularizing several matrices using the same unitary ratglso to the latter problems.
on one side (joint encoder or decoder) and different unitary The joint triangularization of[]4] was limited to only two
matrices on the other side (separate decoders or encodergtrices, and hence, only two-user multicasting (or “perfe
such that the diagonals of the resulting triangular matricenvo-rate” in the rateless problem [8]) could be treated. @ine
satisfy desirable properties, e.g., that they are equais Tlof the current work is to generalize the network modulation
decomposition, along with successive interference ctatmsl  approach to more than two users. This is done by utilizing
(SIC) or dirty paper coding (DPC)][5], transforms the chdanemultiple uses of the channel, reminiscent of space-timéngpd
into parallel scalar additive white Gaussian noise channééchniques[[9],[110].
(AWGN). Thus, employing this scheme along with (any)
scalar codes which are good for the AWGN channel, provides Il. BACKGROUND: NETWORK MODULATION
“practical” capacity-achieving schemes, for scenarioslich
the capacity is known. Furthermore, somewhat surprising|¥l

|. INTRODUCTION

In this section we recall the joint triangularization of two
atrices [[4], and its application to the two-user multioegpt

* This work was supported in part by the U.S. - Israel BinaticBeience problem.. We then demonstrate the reIevanpe of the scheme to
Foundation under grant 2008/455. the special case of a two-rate scalar Gaussian rateleskeprob
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A. Unitary Matrix Triangularization positive diagonal elements. Now, assuming th@t,, Cyx) =

The network modulation approach is based on several forffd?2, Cx) = R, this implies [4, Proposition 1]:
of matrix deC(_)r_npositions, one of \(vhic_h_is trgeo_metric det(Gy) = det(Go) = 2%
mean decomposition (GMD) [11]]. For simplicity, we will only o _ _ _
consider the decomposition sfuare matrices throughout this Therefore G, G2 can be jointly triangularized using the JET:

work_. As we show in the _sequel, this does not pose any G, = UiR\V', i=12, )

restriction on the communication problems addressed. The

GMD [17] of ann x n matrix A is given by: where R, and R, are upper-triangular, having the same
A= UTv 2 diagonal elements. The transmission scheme is as follows:

o ' 2) 1) Constructn optimal codes for scalar AWGN channels.

whereU andV aren x n unitary matrices, and’ is an upper- Thek-th codebook is designed for a SISO AWGN chan-

triangularn x n matrix such that all its diagonal values equal ~ nel with a rate2logrx, wherery, is the k-th diagonal

A, where ) is a real-valued non-negative number. element of?; (and also ofRy).

Building on the GMD, the following decomposition, which 2) In each channel use, amnlength vectorx is formed
will be referred to as Joint Equi-diagonal Triangularieati using one sample from each codebook. The transmitted
(JET), was introduced in [4]. Leti; and A, be two complex vectorx is then obtained using the following precoder:
matrices of dimensions x n such thatdet(A) = det(B). -

Then, the joint triangularization off; and A» (is)given t()y:) x = /CVx. (8)
3) At the receiving ends, theth user calculates
A =UR VT .
Ay = U2R2v’f ’ (3) Yi = UJQZYi ) (9)

whereQi consists of the first rows of Q;.

4) Finally, the codebooks are decoded using SIC, starting
from the n-th codeword and ending with the first one:
The n-th codeword is decoded first, using theth

[Ri],; =[Ra2];; VYi=1,...,n. element ofy;, treating the other codewords as AWGN.
) The effect of the:-th element ok is then subtracted out
B. MIMO Multicast Scheme from the remaining elements §f Next, the(n — 1)-th
We now recall how the JET decomposition can be used to  codeword is decoded, using tlie — 1)-th element of
obtain a practical scheme for transmitting a common message y; - and so forth.
over a MIMO Gaussian BC with two receivers, as described e optimality of this scheme was proved i [4, Sec. IV].
(I). Define the mutual information between a Gaussian iNputExample 1 (Application to the two-rate rateless problem):

vectorx, having a covariance matri& = E [xx'], and the consider the scalar Gaussian rateless problem definédjn [13
channel outpuy;, by

whereUy,U,, V aren x n unitary matrices, and?,, Ry are
upper-triangulam x n matrices withthe same real-valued,
non-negative diagonal values, namely,

t Ym = Oy + Zm m:1,2,...,M.
I(H;, Cy) 21 dt(] H, xH}). 4 o .
(Hi, Cx) £ log de T HiCxH; “) The gaina is known only to the receiver, and can take one
The common-message capacity is given by the (worst-case) of M possible values, such that a.gainco,tf implies that the
compound-channel capacity expression (see, €.d., [12]): Message should be decodable usingeceived blocks]
C= max minI(H;Cy). (5) R=mlog(l+ |aml?), m=12,...,M.
Cx:tr(Cx)<1i=1,2

o . . Specializing the problem to the case of one (possible) in-
Let Cx be an admissible covariance matrix, and assume f&remental redundancy block{ — 2), the perfect two-rate

simplicity that I(H,, Cx) = I(Hs,Cx) = R. The following |ateless problem can be viewed as a 2-user MIMO-BC channel
scheme([4] achieves the rafe with channel matrices

Define the followingaugmented matrices.
H, — (5] 0 H, — (6%} 0
Lo o) P00 o )

[ f]
In Applying the scheme of Section 1B yields the following
where F; £ H;\/Cx and I, is then x n identity matrix. precoding matrix[[B]:
Next, the matricess; are transformed into square matrices, 1 1 9R/4
by means of the QR decomposition: V=4 oRIZ 11 < oR/A 4 ) )
Gi = QiGi, (6)  which coincides with the result in_[13, Section Il1].

WhereQ_i is an(m;+n)xn mamx with Orthonqrmal columns LAlternatively, this can be viewed as a scheme that works Yeryevalue
and G; is ann x n upper-triangular matrix with real-valuedof «, but designed to be optimal only fdv/ specific values.



Erez, Trott and Wornell [13] also treated the caseMpf= where:
L = 3, and found a condition for which a “perfect” scheme R — ( T T ) _
exists. In the sequel we will shed light on this condition. ’ 0 m

111. JOINT TRIANGULARIZATION OF MANY MATRICES Then, there exist three CompleX'ValLﬁéd 2 Unitary matrices

GMD GMD GMD .
In this section we extend the network modulation techniunel U2V such that:
(UEMP) ! 4,y eMD ( Lo )
) T -

to a any finite number of users, usingrecursion principle.

Specifically, givenK matricesiy, . . ., G, we wish to findK’ 0 1

matrices with orthonormal columns,, ..., U,, and another ] o o o

such matrixV/, such that the matrice®; £ UiTGiV are upper- if and only if the following inequality is satisfied:
triangular, havingequal diagonals. We shall refer to this as 21+ 29\ 2 T

K-matrix JET, or simplyK-JET. T < 5 ) <o+ Ep—— (13)

The proof of the existence of a JET decomposition of two
matrices’; andGs [4] is based upon applying the GMDI(2) toWithout loss of generality, we can assume that the solugon i
the single matrixG; G5 . Similarly, we show in the following of the form:

lemma that(K + 1)-JET is equivalent to simultaneous GMD yGMD _ ( 51 52 ) _ (14)
of K matrices, which will be referred to a-GMD. §3 =57
Lemma L Let Gi,...,Gk+1 ben x n complex valued Proof: The proof is straightforward, and is given in

matrices with equal determinants, and define Ehenatrices: AppendixC. -

A =G.GA i=1,.... K. (10) Remark 2: Although this theorem is valid only foreal-
T T K410 ) 9 . . . .
) ) ) valued matrices 4; and A, the resulting unitary matrices
Then, there eX|sK +1 matrlces with orthonormal cqumnsUl’ U, andV are, in generaomplex-valued. In Sectiorl V-A
Ui, ..., Uk 1, of dimensions, x m, such that we bring a restatement of the theorem, which involves only
UZTAiUKJrl T, i=1,... K, (11) real-valued orthpgonal transformations. _
. . . _ Remark 3: This theorem can be applied to the three-rate
where{T;} are upper-triangular with all diagonal entries equahteless problem defined in Sectibn II-B. This yields a con-
to 1, if and only if there exists am x m matrix V' with  dition for the existence of a perfect scheme, namély<

orthonormal columns, such that 6 log (%‘E) ~ 8.331, as in [13]. The details are given in
UlGV = R;, i=1,...,K+1, AppendixD.
where{R;} are upper-triangular with equal diagonals. V. SPACE-TIME TRIANGULARIZATION

Proof: See a constructive proof in Appendi¥ A. =
Remark 1: Constructing matrices with constant diagonalg
could be advantageous in practice, as this correspondsitd e

As indicated by Theoreri] 1, joint triangularization with

onstant diagonal values is not always possible. Howeven e

. . Yhen the condition for joint triangularization does not dhol

gains of all thg resulting sub-channels, and hence enad)le%vte can still perform nearly-optimal network modulation, by

use thesame (single) codebook over all of them. utilizing multiple uses of the same channel realizatione Th
We are thus left with the task of performing-GMD to idea of mixing the same symbols between multiple channel

K matrices. In Sectiof IV we state sufficient and necessai¥es has much in common with Space-Time Codes[[9], [10].

conditions for the existence of the above decomposition for

the special case of two real-valu@dx 2 matrices. We will A. Restatement of Theorem[l

then, in SectioflV, present a different approach, involyaigt In order to introduce the space-time like structure, wet star
triangularization of block-diagonal matrices, which eleaba by a restatement of Theordh 1.

nearly-optimal network-modulation scheme, even when ©xac Recall the two-user common-message broadcast MIMO
triangularization is not possible. channel[{lL) with two transmit antennas £ 2), and a general

IV. EXACT TRIANGULARIZATION WITH CONSTANT number of antennasn; at each receiver. We now utilize
DIAGONALS OF TWO REAL-VALUED 2 X 2 MATRICES transmission in two consecutive time instances (aslin [9)s
: . . is equivalent to sending extended symbols over the follgwin
We now provide a necessary and sufficient condition for t ended channdl:
existence oR2-GMD for real-valued 2 x 2 matrices. '
Theorem 1 (2-GMD for 2 x 2 real-valued matrices): Let Y, =H,X+Z;, i=1,2.
A; and A, be real-valued 2 x 2 matrices with determinants
equal tol. Apply (any) JET decomposition to thef: The extended vectoiX, Y, Z are composed of two “physical”
input, output, and noise vectors, respectively, &idis the
A =UPTR, (VPN =12, (12) (2m;) x 4 extended channel matrix defined asi(= 1,2)

2The JET decomposition is, in general, not unique. H; = (Hij®2 (15)



where[A] r denotes the Kronecker produkt ® A, viz. a Then there exist threeN x n(N —(n—1)) matricesl;, Uz, V
block-diagonal matrix withV blocks of A on its diagonal: ~ with orthonormal columns, such that:

A0 0 1 = *
loa o0 01 :
(AJ QN — . . . . . +
o R U; AV = : Do , 1=1,2
00 4 00 1«
The power constraint now becomBg X X] < 2. 00 - 01

Let Cx be a covariance matrix satisfyingace (Cx) < 1,

and define the augmented matric6s as in [B). Following By using this decomposition together with Lemida 1, the

Lemmall, we define the twd x 2 matrices: same scheme as in Section 1I-B can be employed, such that the
' N channel uses are effectively transformed inf& — n + 1)
A1 2 GGy, Ay 2 GoGY scalar AWGN channels. The sum of the capacities of these

channels tends to the capacity of the original channel fgela
values of N, where the only loss comes from edge effects
g, & [GiJ®2 LA E MiJ@oz . (16) (truncating the extreme(n — 1) glements?.

The full proof of the theorem is given in Appendi} E. The

Since the matricesl; and A, are real-valued matrices, Wey,5in idea of the proof is demonstrated by the proof for the
can obtair2-GMD of the matricesd; and.As under the same 2 % 2 case, presented next

conditions as in Theorefd 1, such that all the involved upitar Proof of Theorem [ for n — 2: We start by jointl
transformations beconreal-valued. Following LemmadL, this trianaularizing the matrices. an_dA.' vy y
yields a 3-JET of the three matrics, G2, Gs: 9 9 ! z

C— U R VT T roox;
5 = URYV! U e (I

Also define the followingt x 4 extended matrices € 1, 2):

where®R; are upper triangular with equals diagonals.

In particular, the complex precoding matii&c™MP given by wherer;r, = 1. We now apply the decompositioh {18) to
(TI4) implies the following (real) orthogonal space-timedd each block separately, using:
code structure oVSMP [14]:

a —c b d

b d —a c

GMD __

v - c a d —b
—d b c a

WET =[BT

; J®N | VIET — [IET |

®N 7

which yields the matrices

r. x; | 0 0 0 0

The same scheme as in Section]I-B can now be employed, 0 /7|00 0 0
such that the two channel uses are effectively transformted i 00 |m!'ay 0 0
four scalar AWGN channels, having the same capacities fc{UgET)TANJET —|1 0 0[]0 nr 0 0

all three users. Note that the matrix of (@) is replaced with
its extended versionﬁQiJ
@2

s}
e}
s}
<
—
8
N

B. Nearly-Optimal 2-GMD R R
We now show how to utilize a space-time structure in ord@fote that the sub-matrix
to obtain nearly-optimal joint triangularization of two inaes, .
such that the resulting triangular matrices have a constant A= (| r2 0 |)
diagonal. This method will later be generalized to any numbe
of matrices, using Lemmla 1. The resulting scheme becomes ) )
asymptotically optimal for large values of, whereN is the 90€s not depend oi and therefore it canTbe decomposed
number of channel uses assembled together for the purpos#®Rg the GMD [2),A = USMPT(VEMP)T, where T is
joint decomposition. Note that the proposed scheme is yeadPPer-triangular with onlyls on the diagonal. We use this
optimal for any two complex-valued channel®; (and not decomposition to construct a second transformation — only
restricted to real-valued matrices, in contrast to the quérf this time it is not be applied on each block separately, but
construction of Theoref 1). rather “mixes” pairs of consecutive blocks, using:
Theorem 2 (Nearly-Optimal 2-GMD): Let A; and As be
two complex-valuedh x n matrices, and define the following 00 -0 00 - 0
nN x nN extended matrices: UCMD _ [UGMDJ@NA) ,YOMD _ | [ GMD|
0 0

Lo— - =

®R(N-1)

Ai=[Ailgy, 1=1,2,. (17) 0 --- 0 0 ... 0



Applying this transformation to[ {19) yields the followingSinceT; are upper-triangular with onlys on the diagonal, the

(2N —2) x (2N — 2) upper-triangular matrix: matricesR; £ T;5~! (i=1,...,K) and Rk, = S~! have
i ORI, equal diagonals, which completes the proof. [ |
T L0 1] * APPENDIXB
WAV=| + + -~ |, SKETCH OF PROOF OFTHEOREMI[3]
00 : 1o« : Proof Idea: The theorem has already been proved for the
00 0 1, special case of{ = 2. For larger values of we prove by

wherell; £ UETYCEMD gandy £ PIETYGMD, m induction, applying repeatedly Lemrha 1 and of Theofém 2:

1) According to Lemmd]l, performing-GMD is equiv-
alent to(K + 1)-JET. We can thus transfortiy upper-
triangular matrices wittconstant diagonal values into

number of users, as follows: K + 1 upper-triangular matrices of the same size,
Theorem 3 (Nearly-Optimal K-GMD): Let Ay,..., Ax be Ri,..., R+ with equal diagonals.

K complex-valuedh x n matrices with determinants equal to 2) Given the matrice®,, ..., Rx.1, construct the block-
1, and defineA, ..., Ax as in [IT). Then there exidt + 1 diagonal extended matrices®;, as in [IT). Using the

C. Nearly-Optimal K-GMD
By using Lemmd1l, we can generalize Theofdm 2 to any

matricesly, . .., Ug,V, with orthonormal columns, such that: technique of Theorelf 2, we construct matrices with or-
1 % - % % thonormal columnsi({* 1 . ulE Y vE+D such
e T
; 01 or that the matrices(U* ™) R,VE+D are upper-
Uz AV = : Do ) i=1... K. triangular, with constant diagonals. Finally, the loss in
0 0 -~ 1 =« rate could be made arbitrarily small by takiig to be
00 --- 01 sufficiently large.
Proof: A sketch of the proof is given in Appendix Bl
P g ppendix APPENDIXC
VI. DISCUSSION CONDITION FOR2-GMD OF REAL-VALUED 2 x 2
Theorent ]l provides sufficient and necessary conditions for MATRICES

joint GMD of two real-valued 2 x 2 matrices. This naturally  \ve now prove the necessary and sufficient condition for the
raises the question of how this condition can be carried oVgfistence of joint-triangularization of twd x 2 real-valued
to the complex-valued case, and to general dimensions.. matrices.

Furthermore, we demonstrated that (exaBhGMD, not Proof of Theorem [ Let A; and A, be real-valued
using any space-time structure, is not always possible- Ney, 9 matrices with determinants equal to Apply the JET
erthelesspearly-optimal communication schemes can alwayéecomposition to these matrices. to obtain
be constructed, which become optimal in the limit of lafge ’

It remains an open question whether an exact trianguléoizat A; = UiJETRZ.(VJET)T , i=1,2, (20)
can be obtained using only a finite number of channel uses.
where:
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P g such thatry7 = 1. The matriced//ET, VET are real-valued

APPENDIXA unitary matrices, and we can assume without loss of geherali
PROOF OFLEMMATT] thatdet (V7ET) = 1.
Proof of Lemma[lt The direct part holds trivially. We are I there exist three complex-valuexx 2 unitary matrices
therefore left with the task of proving the converse part. W&, Us, V' such that:
start with the QR decompositioﬁi}l_HUKH = VS, where

V' is of dimensions: x m with orthonormal columns, anfl is UJAiV = ( Lo > , (21)
anm x m upper-triangular matrix. Thus, using{10) afd](11), 0 1
we obtain the following equalities: then according ta (20),
T _ 7 -

U/GiVS=T;, i=1,....K (U.GMD)TR.VGMD (1

Uk 1 GrVS=1. i ‘ 0 1)
Multiplying by S~ on the right yields: where

UJGZ-V =T85!, i=1,....K UZ_GMD _ (UZ_JET)TUi

U}(HGKHV:S_l. yeMD (VJET)TV_



Denote the entries of the first column BFFMP by s; ands3, which are equivalent to

ie., 2
yomp _ (s x - (:101 + :102) <ot T1T2 ' (29)

85 % ’ 2 Ty —7T2
where|s; |2 + |s2|? = 1. The first column of?, VEMP and of Thls proves that[(29) IS anecessary condition for the
R,VEMD s therefore: existence of the decomp_osmdn__(_Z_l). _

. Now, assume that this condition holds, and define the

RiVGMD _ r181 + TiSy ¥ ’ i = 17 2’ matrix:
T255 * YGMD _ ( S1  So )
wherex; andz, denote the off-diagonal elements Bf and $3 =57
R respectively. These two columns must have a norm,of we now apply the QR decomposition to the matriggd” SMP
namely: and R,V &MD:
* (2 * |2 .
1181 + XS5 + |rasy|T =1, 1=1,2. . )
- | 2| | 2| - (Ul-GMD)TRiVGMD _ ( a; b; ) . (30)
Since r1,ry,z are real-valueds; and s, must satisfy the 0 ¢
following three equations: The first columns of bothR;VEMP and R,VEMDP have
lsi]> +|s2> = 1 norms equal td. Therefore, from the construction of the QR
r2(51[2 + (22 + r2)|sof? + 2z Re(s150) = 1 decomposition, it follows that; = ax = 1. Consequently,

since both matrices have a unit determinant,= cy = 1

2 2 2 2 2 —
rilsi” 4 (23 +r3)ls2|” + 2rzoRe(s1s2) = 1. must hold as well. Thus[{B0) becomes:
Denotinga = Z:, and substituting in these equations, results aMDA D 1«
in: ’ (UFP) RV - (O 1)7
1
1+]af = —5 (22) and therefore,
|s2]?
2| |2 2,2 1 A - U 1 = vt
rilal” + (27 +r3) + 2rizRe(e) = PNE (23) = Yiloa ’
1 where
r2|lal? + (22 +72) + 2rizaRe(a) = PNER (24) e
Uu, = U*U;
Subtracting[(24) from[(23) yields: Vv . yIETGMD
2r1 R =0 . .
(21 +22) + 2r1Re(a) ’ Furthermore, since the matrix“MP s of the form
So we have: . .
1 GMD _ 1 2
o = 522 -1 (25) v ( 55 —si > ’
2
1 + oo and V'ET is a real-valued unitary matrix with unit determi-
Re(a) = — < 2 > T2 (26) nant, it is easy to see that the matfixis also of the form
2
2 1+ X2 _ ([ st $2
e = (57 3 @7 v=(n ),
) .
1 which completes the proof of the theorem.
(n(0)? = —p-1-(202) 3. (28) :
|52/ 2
Thus, equation(23) anf (24) become: APPENDIXD
, r2 1 THREE-RATE RATELESS
|s2f” = 72 =12 +aas We now consider the three-rate “rateless” problem, as
and therefore equatiofi27) becomes defined in Sectiof 1I-B, with\/ = L = 3 and a given ratek:
7% — 13 4 1 z1 422\ a 00
(Im(a))2 — %_1_ ) 3. H, = 0 0 0
Tl 1 2 0 0 0
Thus, the following conditions are necessary and suffidient as 0 0
the existence of a solution: H, — 0 as 0
2
—1
> 0 0 00
7°1_7”2+$;$2 az 0 0
r%—r%—i—xlxg_l_ xr1 + 2o 20> 0 Hy = 0 a3 O ,
7’% -1 2 2 = ’ 0 0 a3



where a1, as, a3 are the positive values satisfyirigg(1 + We are looking for three N x n(N —n+1) matricesly, Uz, V
a?) = 2log(l + a3) = 3log(l + %) = R. As in the 2- with orthonormal columns, such that
rate case, the covariance matrix in this problem is the igent :
matrix, Cx = I. SinceH3 is a s scaled identity matrix, we U; AV
can ignore it and concentrate on the remaining two matricea'sre upper-triangular, with onlys on the diagonal.
The augmented matrices, as definedih (6), are: We accomplish that using three steps:

22 0 0 a) Joint Triangularization: As in then = 2 proof, we
G = 0 1 0 start by jointly triangularizing the matrice4; and As:
0 0 1
ST I
24 0 0 . Py e %
92 _ 0 2§ 0 ) (Ui]ET) AiVJET _ ' ' . '
0 0 1 0 0 - o

We now apply this transformation to each block separately:

1 z w
R, = 2%. -5 g AJET — (JET) g, pIET (31)
R
0 0 2 where
1 z 0 JET
Ry = 2.1 0 27% o0 |, Uio UPET 8
0 0 2f WrET = _ y .
where O O . .. UJ.ET
x:_(l_Q*%)\/l_}_Q%—FQ%. JET '
It then follows from Theorenil1 that there exists a perfect o _ 0o VEL .0
solution over the complex field if and only if: o : : . :
:C2—4<O, 0 0 VJET
or explicitly: b) Reordering: It will now be convenient to re-order the

) columns of AJET such that the following columns:
R R R R
~3 s —3.25 4+23)<0.
2 3(1+26) (1 3 26+23)_0 kn,kn+ (n—1),kn+2(n —1),--- ,kn+ (n — 1)*
This condition is satisfied if and only if: will become “grouped together” for evev‘gE Formally, We do

so by introducing the following N x n(N —n+1) re-orderin
R <6log <3+\/5> ~ 8.331, matr)i/x O g 9 ( ) d
O" _ 1 1= 7Tj . (32)
which coincides with the result that was obtained[in| [13]. * 0 Otherwise,

For rates higher than this threshold, a perfect capacit\xl—
achieving solution does not exist. However, as explaine
earlier, multiple channel usages can be utilized in order to® Forl <j<n(N-n+1),
approach capacity asymptotically.

ere the functionr is defined as follows:

APPENDIXE

NEARLY OPTIMAL 2-GMD FORn > 2 As a result of this re-ordering, we obtain an upper-triangul
We now bring the proof of Theorel 2 for the general caggV — n + 1)n x (N — n + 1)n matrix, which has a block-

n > 2. triangular structure:
Proof of Theorem[Z

mp=(n—1)-[(j—1)%n] +n- V%J +n.

Let A; and A, be the twon x n complex valued matrices, -13%2%'_"_:_*_ ! x
with determinants equal td. As in (I8), we define the N R
extended matrices, OTAETO = oo - |,

T R T
A 0 - 0 00 A
0 A - 0 0707770 TR

A; =

SNote that this set includes exactly one symbol from each obnsecutive
channel uses.

e
S
S



where

Tn 0 0

0 Tn—1 0
A fmd

0 0 - 1

¢) GMD: Since the matrixA does not depend oi) we

can decompose it using GMD:
A= UGMDT(VGMD)T

whereT' is upper-triangular with onlyls on its diagonal.
We now apply the GMD to all the blocks @i A/ETO:

U GMD 0 0
LGMD 0 yGMD | 0
0 0 UG'MD
VGMD 0 0
VGMD 0 VGMD 0
0 0 VG.MD
to obtain:
Ty % ooy % 4 %
O VT R
R Bl Ll Bl
(UEMPYTOTGIETOYaMD — | s
T
0,0 S S
OO0

We conclude by combinind (83) witli (B1) to obtain:

Tij o po ) x
TOOT e
e el L e
u;f_AiV: oo e ,
[
010, -1 T5 %
'f)_l_o_l___l_O_Fﬂ'
where
ui _ uJETouGMD
v _ vJETovGMD

which completes the proof of the theorem.
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