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Wireless Network Simplification:
the GaussianV-Relay Diamond Network
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Abstract—We consider the GaussianN-relay diamond net-
work, where a source wants to communicate to a destination roe
through a layer of N-relay nodes. We investigate the following
guestion: what fraction of the capacity can we maintain by uig
only k£ out of the N available relays? We show that independent
of the channel configurations and the operating SNR, we can
always find a subset ofk relays which alone provide a rate
ﬁc — G, where C' is the information theoretic cutset upper
bound on the capacity of the whole network andG is a constant
that depends only on N and & (logarithmic in N and linear in
k). In particular, for k = 1, this means that half of the capacity
of any N-relay diamond network can be approximately achieved
by routing information over a single relay. We also show that
this fraction is tight: there are configurations of the N-relay
diamond network where every subset oft relays alone can at
most provide approximately a fraction kLH of the total capacity.
These high-capacityk-relay subnetworks can be also discovered
efficiently. We propose an algorithm that computes a constan
gap approximation to the capacity of the GaussianN-relay
diamond network in O(N log N) running time and discovers a
high-capacity k-relay subnetwork in O(kN) running time.

This result also provides a new approximation to the capacit
of the Gaussian N-relay diamond network which is hybrid in
nature: it has both multiplicative and additive gaps. In the inter-
mediate SNR regime, this hybrid approximation is tighter than
existing purely additive or purely multiplicative approxi mations
to the capacity of this network.

I. INTRODUCTION

Fig. 1. The GaussiaiV-relay diamond network. The source is connected
to the relays through a broadcast channel, while the reley<@nnected to
the destination through a multiple-access channel.

the capacity of a wireless network by using only a (small)
subset of (perhaps a large number of) available relay nodes?
Traditionally, network information theory aims to charac-
terize the best end-to-end communication rate we can aehiev
in a network, without providing any understanding of the
importance of each relay for achieving this rédte [L], [3]},[2
[4], [6]. However, in order to design simple and efficient
communication architectures for wireless networks, ajpar
knowing the capacity of a large network, it may be even more
useful to know what is the largest rate we can achieve by using
only a given number of the relays. We may want to know how

Consider a source connected to a destination through#s rate increases if we allow for more relays; how it conegar
network of wireless relays arranged in an arbitrary topplogy, the capacity of the network; and how to efficiently disaove
There are several ways to use this network. For exampjge subset of relays providing the largest capacity.

we can route the information from the source to the desti-
nation over a single path, using point-to-point connedion
Or, following an information theoretic approach, we cankseq
to optimally utilize all the available relays to achieve th
network capacity, the largest end-to-end communicatida r
this network can support. Clearly the first approach has flow;
complexity and uses fewer resources of the network, wh
the second can potentially achieve much higher throughp
In this paper, we aim to understand the fundamental tra

off between using fewer relays and achieving larger rates,
perhaps the possibility of having both at the same time.

ask the following question: can we achieve (a good part osf

Such an understanding can help with the design of more
energy efficient communication protocols, that betteriagil
he limited wireless resources. For example, relay nodas th

Rontribute marginally to capacity can be shut down to save
Ebattery life. Alternatively, different parts of the networcan

e activated one at a time for maximal power efficiency. In a
fetwork with multiple information flows, knowing how much
ﬁ‘ferent relay groups contribute to the throughput of each
w, can allow for an informed allocation of the relays asros
ifferent flows.

As a first step in this direction, in this paper, we consider a
urce that communicates to a destination over the Gaussian
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(estage network, where the source node is connectddtelays

through a broadcast channel and the relays are connecteal to t
destination through a multiple-access channel. We askt wha
fraction of the capacity we can achieve by using ahnlgut of
the N relays (for example, if we route the information between
the source node and the destination over a single relay).
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t ¢
®\ diamond networks where the capacity efery k-relay sub-
Case (a) e @ diamond network is at most
k
< 1
t 9 2 Ck_k+1C+G, 2
where C' is the capacity of the whole network an@ is a
t 12 constant linear ik and independent of everything else. For
the casek = 1 and N = 2, one such example is case (b) in
Case (b) @ Fig.[2.
We prove the result{1) in two steps. We first show that
@t

in every GaussianV-Relay diamond network, there exists a
subset of-relay nodes such that the information-theoretic cut-
set upper bound on the capacity of thiselay sub-network is
larger thankLHU— G, i.e., this step only involves the cut-set
upper bounds on the capacities of the corresponding neswork

The fraction of the capacity we can get with relays S
naturally depends on the channel gains. Indeed, consider Yie then use the .compress-and-forward type of strat_egles n
, over thisk-relay sub-network. These strategies are

example the case wheré = 2, the diamond network, and the[4J’ [5]. 6]

example in FiglR. For the identical channel gains in Elg) 2(§1°Wn to achieve the cut-set upper bound on the capacity of
we can show that the communication rate achieved using oy arbitrary Gaussian relay network within a gap that iedn
one of the relays is onlyl bit/s/Hz away from the cut-set N the _num.ber of relay nodes U'FI|Ized. In particular, theutes
upper bound on the capacity of the network; while for thgf [6l |mpI|es. that we can achieve the_ cut-set upper bound
anti-symmetrical channel gains as in Figy. 2(b) using onlg or?" the capacity of thé-relay network withinl.3% bits/s/Hz.

of the relays achieves (within 1 bit/s/Hz) oriiglf of the cutset Combirlling thgse t\lNo .steps yields ﬁ]l)' is of iderad f
upper bound on the capacity of the network. An alternative relaying strategy that is often conside

To avoid channel-specific results, we can try to IoroViutgeN—reIay diamond network in the literature is amplify-and-

worst-case guarantees that hold universally for all pdnssiﬁorward (7], [€], [11]. For example,_ [11] shows that amplify
channel gains. For example, is it possible that2imelay and-forward a!t the relays can a_chleve the cutset upper bound
networks, we can always find a single relay to use and S@P the capacity of theV-relay Fj'a”.‘O”d ne_twork withirg.6
achievehalf of the capacity of the diamond network within fts/s/Hz when all channel gains n the f”§t and th? sef:ond
1 bit/s/Hz (as was the case for the two examples in [Eig. fages are equal. To. show that_ this approximate optimdlity o
We prove in this paper that this is indeed always the case. pllfy-anq-forward is only limited to the_ the case .Of equal
fact, we show that even if we have an arbitrary numieof c annel gains, we show that the rat_e achieved by this syrateg
relays, we can remove all but one of them and still achieve approm_mately equal t_o the capacity of the best r_elayalon
approximately half of the capacity of the whole network. In any arbitraryN -relay diamond network. More precisely, we

Our main result is to show that in every Gaussisirrelay show that
diamond network, there exist &-relay sub-network whose Car < Cy+2logN
capacityC), satisfies where C,r is the best rate achievable with amplify-and-
o forward at the N relays, andC; is the rate achieved by
Cr > k—+10 —-13k-G (1) using only the best relay (say, with a decode-and-forward
strategy) while keeping the rest of the relays silent. This
where C is the cut-set upper bound on theesult says that amplify-and-forward with th€ relays can
capacity of the N-relay diamond network andat most provide a beamforming gain, bounded Zipg IV,
G = max (3 log N — log 2747, 2log N) is a universal constant over the best relay. Since our result [d (2) shows that there
independent of the channel gains and the operating SNRe configurations ofV-relay diamond networks where the
Intuitively, this holds because if alf-relay subnetworks have best relay alone can at most provide approximately half the
small capacity, the capacity of the whole network cannetpacity of the whole network, the two results together impl
be too large. Ask increases, the difference between ththat amplify-and-forward can be limited to approximatestfh
capacity of the best-relay subnetwork and that of the wholethe capacity of the network in certain configurations. This
network naturally decreases. The surprising outcome rgeremplies that amplify-and-forward fails to provide constan
that the fraction of the capacity we can get withrelays gap approximations for the capacity of tiérelay diamond
is independent of the number of available relay no@és network, such as those provide by the compress-and-forward
Moreover, it increases quite quickly witk: in the high- type of strategies in[4],[15],[16],[19] or partial-decodex
capacity regime, we can get at least half-the capacity ofyevdorward in [10].
N-relay diamond network by simply routing information over Finally, a natural question given our existence resulfin (1
the best relay, using relays we achieve a fraction &/3, is whether such high-capaciti-relay subnetworks can be
etc. discovered efficiently. Our existence proof naturally segig
We also show that the lower bound ifil (1) is tight iran algorithm for discovering such networksGrixN') running
the multiplicative fraction, i.e., it is possible to finW-relay time given the cutset upper bourdd and the configuration

Fig. 2. Two instantiations of a diamond relay network.



of the N-relay diamond network. However, a direct compuan auxiliary parameter (in our ca¢g. Earlier works in the
tation of C itself requires evaluating the cut capacity oveliterature have either aimed to characterize the capadttyirw
exponentially many cuts. [12] shows that the problem @&n additive gap by allowing no multiplicative gapl [4].] [5],
computing a constant gap approximationocan be casted or vice-a-versal[11]. These purely additive or multiplicat

as a minimization of a submodular function and solved icapacity approximations are relevant in the high or the low
O(N%a + N°) running time using state-of-the-art algorithms$SNR regimes respectively, while a hybrid approximation can
for submodular function minimization, whereis the time it be also useful at intermediate SNR's.

takes to compute the value of a single cut which is typically The fact that[{B) can be tighter thad (4) also implies that
polynomial in N. Our work reveals that information flow employing an unnecessarily large number of relays with the
in wireless networks has much more structure than merempress-and-forward type of strategies [in [4], [5], [6hca
submodularity. We show that the combinatorial structui thindeed deteriorate rather than improve the communicagite r
allows us to obtain the simplification result ial (1) can b&ecall that the result in[13) is obtained by applying these
also used to devise an algorithm to compute a constant gsipategies with a carefully chosen subsetkofelays, while
approximation to the cutset upper bound on the capacityeof tf{]) is obtained by using the same strategy with all fkie
N-relay diamond network i® (N log N) time. The properties relays. Motivated by this observation, recent wdrk! [1010][2
of wireless information flow beyond submodularity are ferth has demonstrated the need to optimize the quantizatiofsleve
exploited in [13] where Non-Shannon properties of Gaussiém these strategies which allows to achieve the information
random variables are used to obtain simplification reswits ftheoretic cutset upper bound on the capacity of Meelay

the N-relay diamond network with multiple antennas. diamond network withinD(log N) bits/s/Hz. More precisely,
these works show thdil(4), valid for any wireless networkwit
[I. RELATED WORK AND POSITIONING N relays, can be refined to
Two lines of work have previously looked at a form of net- C—log(N+1)—logN-1<C<C

work simplification for wireless networks. First, relayaetion ) )

techniques in[[14],T15]/116], design practical algoritaat fOr the N-relay diamond network. This new result can be
allow to select the best single relay in an N-relay diamorf§adily used to tighten our simplification result I (1) to
network, and show that such algorithms provide cooperative B

diversity. These works look only at maintaining diversityda Ck > 1 C —log(k+1) —logk —1-G,

not capacity. Second, work in_[11], [17], [18], [19] looks atb . . - o

selecting a subset of the best relays when restricted tizeautil y simply using the optimized quantization levels for the
an amplify and forward strategy. Our work differs in tha{elay subnetwork.

we do not restrict our attention to specific strategies (or a

single relay) but instead provide universal capacity tssfalr 1. M ODEL

arbitrary strategies. We consider the GaussiaN-relay diamond network de-

Our result can also be regarded as a new approximationgigted in Fig[l where the source noglants to communicate
the capacityC' of the GaussianV-Relay diamond network. {4 the destination nodé with the help of N relay nodes. Let

We show that X;[t] and X;[t] denote the signals transmitted by the source
- k — nodes and the relay nodéc {1,..., N} respectively at time
k+ 10 — 13k = k+ 1G sC<C ¥k lsksN-1 instantt € N. Let Y[¢t] andY;[t] denote the signals received

— (3) by the destination nodé and the relay node e {1,...,N}
where C' denotes the cut-set upper bound. The best of thespectively at time instarit The transmitted signaX;[t] by

earlier approximation results in![4].][5]./[6] yield relay i is a causal function of the its corresponding received
C_13N<C<CT (@) signal Y;[t]. The received signals relate to the transmitted
T signals as

for the N-Relay diamond network.

The lower bound we provide ifl(3) is tighter tham (4) in the
intermediate SNR regime and whénis large. The auxiliary N
parametert in (@) allows to optimize this lower bound as a Yalt] = ZhidXi[t] + 211,
function of C and N. When N is large, choosing a small =1
reduces the additive gap fro@(N) in (@) to O(log N). This where h;; denotes the complex channel coefficient between
improvement in the additive gap can be more important théme source node and the relay nodend h;; denotes the
the %HC“ loss due to the multiplicative gap whefi (and complex channel coefficient between the relay nbded the
thereforeC) is not too large, overall yielding a tighter lowerdestination nodeZ;[t], i = 1,..., N andZ[t] are independent
bound than[(#). Whe is large andN is small increasing and identically distributed white Gaussian random proeess
k to N reduces[(B) to[{4). This approach suggests a neM power spectral density aiV,/2 Watts/Hz. All nodes are
approximation philosophy to the capacity of wireless nekso subject to an average power constrathand the narrow-band
where multiplicative and additive gaps to the cutset uppseystem is allocated a bandwidth @f. We assume that the
bound are allowed simultaneously and are traded throughannel coefficients are known at all the nodes.

Yilt] = his Xs[t] + Zi[t],



IV. MAIN RESULTS where C; is the capacity provided by routing over the best

The main result of this paper is summarized in the followingglay-
theorems. Finally, we address the algorithmic complexity of discever
Theorem 1:Consider an arbitrary GaussiaN-relay dia- ing @ high-capacityi-relay subnetwork in Theorefd 1.
mond network. LetC}, be the largest rate at which we can Theorem 3:A constant gap approximation to the capacity
communicate from the source node to the destination usiffthe Gaussiaiv-relay diamond network can be computed in
only k out of the N relays while the remainingV — k relays O(N log N) running time. Thek-relay subnetwork satisfying

are kept silent. Then (8 can be discovered i®(kN) running time, given the
I configuration of the network and the approximation to the
Crp > k—+16 (5) cutset upper bound.

Theorem[1L is proven if_VI, Theorefy 2 is proven in
— 1.3k — Lmax (3 log N — log §,210g N) ’ Section[VIIl, and Theorerh]3 is proven in SectionVIl. The
k+1 4 following section derives a simple approximation to thesetit
whereC denotes the cut-set upper bound on the capacity épPer bound on the capacity of thé-relay diamond network,
the N-relay network. Moreover, there exist configurations o#hich forms the basis for all these results.
the GaussianV-relay diamond network such that

k 27 V. APPROXIMATING THE CUT-SET UPPERBOUND
Cp < ——C+1.3k+max (3 log k — log —,210gk> , (6) _ _ _
k+1 4 In this section we derive upper and lower bounds on the cut-

whereC is the capacity of theV-relay network. set upper bound, that essentially reduce calculating iiseva
Remark 1:For the casek = 1, we have the following to @ purely combinatorial problem. B
tighter bound, Let[N]={1,2,---,N} and for a subset C [N], A=[N]\
1 1 97 A. By the cut-set upper bound [21, Theorem 14.10.1], the
Cy > B C — B max (3 log N — log Z,2log]\7> . capacityC of the network is upper bounded by,
The theorem states that in every Gaussisrrelay dia- C<C=_ max min I(X,, Xp;Y, Y3 | Xz)  (7)

Xy X1, XN AC[N]

mond network, there exists a subsetkofelays which alone
provide approximately a fractiok/(k + 1) of the capacity Where the maximization is over the joint probability distri
of the whole network. On the other hand, there are algen of the random variableX’s and X1,..., Xy satisfying
configurations, where eadhrelay sub-network alone can atthe power constrain®. For a setS C [N], X denotes the cor-
most provide this fraction of the capacity. The approximasi responding collection of random variables, Xg={X; };cs.
are within the beamforming gain, which we upper bound

by max (3 lqu —log %’ 2log N). for the N-relay d_lamor.ld A. An Upper Bound on the Cut-Set Upper Bound
network uniformly over all possible channel configurations
The beamforming gain is relatively small when the capaaity i The cut-set upper bound i](7) can be upper bounded by
large, and indeed is much smaller than this upper bound whexchanging the order of maximization and minimization in
channel gains are significantly different. On the other han@). For each cuf\, the resulting maximization of the mutual
the term1.3% in the gap is not fundamental and reflects thimformation can be upper bounded by the capacities of the
gap between the rate achieved by the state-of-the art ngaySIMO (single input multiple output) channel betweerand
strategies [T4], [[5], [[6] and the cutset upper bound on thwdes inA and the MISO (multiple input single output)

capacity of the diamond network with relay] channel between nodes i andd. We have,

A key ingredient in the above results is the fact that ¢ < min  sup I(Xs, Xp; Y, Y5 | X5)
compress-and-forward type of strategies [ih [4], [5], [6hca ACIN] X, X, X5
achlevg the cut-set upper bou_nd_ on the capa<_:|ty_ of any arbi- _— i sup I(X4; Yx) + SUPI(XA§ZhidXi +2),
trary diamond relay network within a gap that is linear in the ACIN] X, Xa ieh
num_ber of_ relay nodes ut|I|zed_, and independent of the oblann < min Csimo(s:A) + Crrrso(A; d).
configurations and the operating SNR. We next show that an AC[N]

amplify-and-forward strategy fails to provide su(?h aur et The capacities of the corresponding SIMO and MISO channels
performance guarantee over the channel configurations, an : . . .

: . : - are well-known [[22]. Plugging these expressions yields

its performance is approximately bounded by the capacity of

the best relay alone. _ _ C < min log (1 + SNRZ IhiSIQ)
Theorem 2:In any GaussiaV-relay diamond network, the AC[N] —
rate C' 4 achieved by amplify-and-forward at thé relays is ieh )
bounded by +log (1+SNR(Y Ihial)”)  (®)
CAF§01+210gN, €A

P . .
1For example, using improved relaying strategies from recesults in where SNR:. NoW * We_W"I further Qevelop a S'mP|e upper
[20], [20], it can be readily sharpened from3k to 2 log k. bound on this expression by bounding each term in the above



summations by the maximum of the terms that are summedAmong allT" C [N] with [I'| = k, consider the one that

This gives us the upper bound, has the largest cut-set upper bouf@. Let C} denote the
o cut-set upper bound on the capacity of this this sub-network
C < min (max R;q + max RZ-S) + G, (9) Formally, we define
AC[N] \ i€A i€A _ _
where R,; = log(1+SNR|hi4?) and R;; = Cr = reiag Cr. (13)
log (1 + SNR|h;s|?) are the capacities of the corresponding ITl=k
point-to-point channels ald Combining [I0) and[{13), we have
2 _
G=max <3 log N — log 17, 2log N) . Cy > 1%?])& f\ngnlg (Ilnezkx Riq + zlenfa\)j\ Ris) . (14)

I'l=k
A detailed derivation of the upper bound in this section can 5 )
be found in AppendiXA. Let C be the capacity of the bektrelay sub-network. In the

sequel, we will be interested in lower boundiag in terms
of C, the cutset upper bound on the capacity of the network.

- For this, we will first relateC;, to C, and then make use of
The cut-set upper bound above can be lower boundedihe above lower bound fofs..

by choosing X, {X;}icn] to be independent circularly-

B. A Lower Bound on the Cut-Set Upper Bound

symmetric Gaussian random variables with variad¢ein  VI. k RELAYS APPROXIMATELY ACHIEVE kiﬂ FRACTION
which case OF THE CAPACITY
I(X,, XA Y, Vi | X5) In this section, we prove Theordrh 1. However, before going

into the formal proof, let us illustrate the main idea foe 1.
= log (1 +SNRY |hz‘d|2) + log (1 +SNRY |hi5|2). Assume the capacit§ of the N-relay diamond network were
i€A i€k given exactly by[(Il1), while the capacity obtained by using
Retaining only the maximum terms in the summations, wé&layi € [N] alone is given by

C > min | maxR;q + max R (20)

obtain C; = min(R;s, Riq).
AC[N] (ieA ieh >

Note that this is the capacity approximationlinl(11) evaidat

Note that this lower bound fat’ differs from the upper bound for a single relay & = 1), butin th.'s part|cul_ar case it indeed
corresponds to the exact capacity of a single relay (2-hop)

in (@) only by the gap ternd=. This implies that within a gap : _
of GG bits/s/Hz, the cut-set upper bound on the capacity of tr?r(?twork. Can we argue that there exists a relay[N] such

‘ o Thia . )
N-relay diamond network behaves like the lower bound in atC; > /27 This is easy. If this were not the case, it would

(I0). Since recent results![4].1[5].1[6]. [10[, [20] show thhe imply that
actual capacity of the network is within a constant gap to the ; [N], either  R,, < ¢ or Rig < Q
cutset upper bound, this also provides an approximatioheo t 2
capacity of theN-relay diamond network, i.e., This would allow us to construct a cut of the netwarkvhich
crosses only links with capacities strictly smaller th@p2,
C =~ Anclhl\l[] (me%\x Rig + maKX Ri5> (11) both on the source side and the destination side, Rg;.,<
@ i i€

C/2 Vi € A and R;; < C/2 Vi € A. Hence the value of

This reveals a peculiar combinatorial structure for theac#ty  this cut is strictly smaller that’ and this contradicts with our

of the diamond network in terms of the point-to-point capagnitial assumption that the capacity of thé-relay diamond

ities of the individual channels. Our main result is based atetwork is C. Therefore, there exists at least one relag

exploiting this combinatorial structure. [N] such thatC; > C/2. To prove the converse statement in

Theorentl, we need to create examples where each relay alone

C. The Cut-Set Upper Bound for/aRelay Sub-network only provides half the capacity of whole network: consider a
Consider a subsef C [N] of the relay nodes such thatconfiguration where?;; = C'/2 andR2;4 = C for some of the

IT| = k. Let Cr be the capacity of thé-relay diamond sub- r€lays andR;; = C'and Riq = C/2 for the rest. The capacity

network where the source nodewants to communicate to ©f the whole network i€ by (11), while each relay alone can

the destination nodé by using only thesé relay nodes. The Only provide capacityC'/2. _ _
rest N — k relays are not used. The cut-set upper bound on 1he formal proof of Theoreml1 is based on the following

the capacity of thig-relay network yields two technical lemmas. _ .
Lemma 1:Let R;; and R, be arbitrary positive real num-

Cr < Cr= sup minI(X, Xx;Y,Yr\a | Xra).  (12) bers fori=1,2,---,N. Fork € [N], let

X, Xp ACT
Note that [9) and[{10) can be applied ffoto obtain corre- max min | max R;q + max Ry
. = TC[N]ACT \ €A 1€\ A
spondingly upper and lower bounds 6kh-. D=k
Tki (15)
2Note that theN-relay diamond network can be equivalently characterized min | max R;q + max R;
in terms of these point-to-point channel capacities. AC[N] \ i€A ! ieh "



Fig. 3. A (k + 1)-relay diamond network where every subsetkofelays

achieve approximatel);ci—'1 of the capacity. The labels indicate the capacity

of the corresponding links.

Then,
k

> —.
e ET
Lemma 2:Let R;s = iR and Ry (k+2—14)R for
i € [k+ 1] whereR is an arbitrary positive number. Le}, be
defined as in[(I5) withV = k& + 1. Then,

k
Ck+ 1
The configuration in Lemmia 2 is depicted in Hig. 3.

Proof of Theorenil1From [9) and[(14), we have

Tk

= 2 Tk-
c-aG
Combining this with the result of Lemnid 1, we obtain
— k — k
>_" (- _"
Oz 1 T T (16)

This proves that in everyNV relay diamond network, there
exists a subset of relays, such that the cut-set upper bound

on the capacity of the correspondikgrelay subnetwork is
lower bounded by approximately a fractiekéﬁ—1 of the cut-

set upper bound on the capacity of the whole network. Let

I'* C [N] be the maximizing term in(13), i.eGr- = Cy,

and letCr- be the actual capacity of this network. From [6]
Cr« > Cr~—1.3k, for any k-relay network, which is achieved g5, =

On the other hand, applyingl(9) for abyC [k+1] s.t|T| = &,
we obtain

Cr <min | max R;q + max R;s | + G,
ACT i€EA i€

whereG=max (3logk — log 2, 2log k) . Therefore,

Cr < max min <max R;q + max Ris) + G.. (18)
PC[k+1] ACT \ ieA ieA
IT|=k

Combining [1¥) and[{18), we obtain

—ak_Gk <r
C+13(k+1) — ™

Lemmal2 demonstrates a configuration wheye=
such configurations, the above inequality yields

K

T For

— k
Cr < —C+1.3k+ Gg..
k_k+1 + + G

Since C;, < C}, this proves that there exist + 1-relay
diamond networks such that the capacity of edchelay
subnetwork satisfies the bourid (6) in Theorem 1. However,
Theorent claims the existence Bfrelay diamond networks
where eachk-relay subnetwork satisfie§](6). To extend the
proof to any N > k, simply consider augmenting the+ 1
relay diamond network of Fid.] 3 by adding relay nodes with
zero capacities. Whatever holds for thet 1-relay network
also holds for this trivially augmentedy-relay network. This
completes the proof of Theorem 1. O

We will next prove Lemmall for the cage= 1 andk = 2.
The proof of Lemmall fok > 2 and the proof of Lemma] 2
are provided in AppendixB.

Proof of LemmallWe introduce the following notation. Let

w()= f\ngnll <111_1€zkx R;q + I?GaKX Ris) (29)
w= min (max R;q + max Ris) , (20)
AC[N] \ i€A N

andwy, = maxpcy) w(T'). Note thatr), in Lemmal is defined

IT|=k
Wi

by a noisy network coding strategy generalizing the quantiz The first thing we note is that, < 1. This follows from the

map-and-forward strategy ofl[4]. L&t be the capacity of
the bestk-relay subnetwork. Sinc€), > Cr- by definition,
we have

Ci > Cr — 1.3E.

Together with [(Ib) this yields the resul (5) in Theorem 1.

Next, we prove the existence of (& + 1)-relay diamond
network where the capacity of eacdhrelay sub-network
satisfies [(B), i.e., for now we assumé = k + 1. To prove
this, we require an upper bound @}, and a lower bound

on C. The lower bound orC' can be obtained by combining

(10) with the fact thatC > C — 1.3(k + 1) from [6] (since
N =k + 1), which yields

C > min (maXRid + maXRZ-S> —13(k+1). a7
AC[NT \ €A ieh

fact that every subset df is necessarily a subset g¥],i.e.,

if ACT thenA C [N]andl'\ A C [N]\ A. Therefore, the
value of each cut\ C I'" in T" is smaller than or equal to the
value of the same cut ifiV]. The same reasoning also implies
that for k&; > ko we havery, > r,. Both properties are to
be naturally satisfied by a capacity function: by using more
relays we can only increase the capacity.

e For k =1, the lemma claims that; > %w. Since

w1 = max IniIl (Rid, st) )
i€[N]

this is equivalent to saying thati € [N] s.t. Riq > jw and
Ris > %w. We will prove this by contradiction. Assume

1 1
Vi € [N], Ria < v or R, < Fw- (21)



Let Ag = {i € [N]: Rig < 3w}. The assumption in(21)
implies thatR;, < jw, Vi € Ag. Note thatw in (20) can
be upper bounded by considering only the dyt among
all possible cuts\ C [N]. We obtain

w < max Rjg + max R;s < w
i€Ao i€No

since each of the two terms are strictly smaller th@m

This contradiction proves the lemma for=1

o Fork = 2, the lemma claims that, > %w. We can prove
this by establishing a number of properties for a network
with w.

Property: 3p € [N] s.t. Ry > 2w and Rpq > 1w.
We prove this by contradiction. Assume
Vi € [N], Ris < gw or Ry < %w.
Consider the cuf\g = {i € [N] : Rig < sw}. ThenR;, <
2w, Vi € Ay. Considering only the cuh, we obtain
w < max R;jg + max R;s < w,
i€AMo i€Ag

which is a contradiction.

We next proceed by investigating two separate cases:

o Case 1:Ryq > w Then, the proof of the lemma is
complete since we have, > w; > 2 Fw.

Case 2:Ryq <

property:

Property: 3m € [N], m # p s.t. Rys >

Roa > %w.

Again, we can prove this property by contradic-

tion. Assume the contrary and considéy;

{z €| Rig < w} Note thatp € A; since we are

in Case2 andeS < w Vi € A;. The value of the cut

A is strictly smaller tham, which is a contradiction.

Finally, consider the-relay sub-network composed of
m andp. It can be easily verified that({m, p}) > 2w,
completing the proof of the lemma fdr= 2.
The proof of the lemma for the general case follows similar
lines. The main idea is to show that given any arbitrary real
numbersR;; and R;; fori = 1,2,--- , N, we can gradually

discover ak-relay subnetwork™* such thatCr. > kiﬂw. O

gw. Then we establlsh the following

1
W and

VIl. ALGORITHMIC COMPLEXITY

Given an arbitraryN-relay diamond network, character-
ized by the point-to-point capacities of the individualkién
Ris,Ria, ¢ € [N], can we efficiently discover &-relay
subnetwork whose capacity satisfié$ (5)? In this section, we
prove Theorem]3.

Note that from the proof of Theoreh 1, therelay subnet-
work I'* C [N] whose capacit)CF* satisfies [(b) is the one
for which w(F*)/w > k+1’ wherew(I'*) andw are defined
in (20). The proof of Lemma&ll suggests a natural algorithm
to discover this network.

e For k =1, the lemma proves that

1 1
3i € [N], Rig > v and R;; > Fu-

This nodei can be discovered by makir@yN compar-
isons in the worst case.
o For k = 2, the lemma first proves that

2 1
Ep € [N]a de 2 gw a.nd Rps 2 gw

Then eitherR,, > 2w or

Im e [N],m#p and Rpq> %w and R,,s > gw.
We can follow this flow to discover relays and m for
which we havew({m,p}) > 2w. p can be discovered
in at most2N comparisons. An extra comparison deter-
mines whetherR,; > 2w or tw < R, < Zw. In the
first case, the algorithm terminates. Otherwise, we need
at most2(N — 1) additional comparisons to discover.
This yields4N — 1 comparisons in the worst case.
e For2 < k < N, the proof of the lemma in Appendixl B
shows that any positive real numbeRs;, R;4, i € [N]

can be either arranged as

- RNS 2 kiﬂw and RNd 2 k_Hw
or
— Rns > k—_lf_lw and k;ile > Ryg >
somea € N such thatl <a <k -1,
a7+1 Ar
- and for1 <r <l EFw > Ry > Rw and
Ry > k‘:jl Lw for somel € N such thatl <[ <
k —2, andag,a1,...,a; € N such thatag = 0 <
a < - < a1 <a <a,
—andRjy1,4 > W and Ryq >
For these + 2 < k nodesI'™ =
(F*) = k+1w

The flow in the proof of the lemma suggests a natural
algorithm to make this arrangement.

(a) Find the node € [N] such that

)

k—
k1

2. for

k— ay
1 W

[+ 1] U{N}, we have

k
Rys > —— and Rpyg >
N_k—l—lw Nd Z

and label it nodeV.
(b) Determinea such thatl <a <k —1 and

k—a+1 k—a

“ k4 kE+1 k+

(c) If a =1, terminate the algorithm and declaré =
{N}. Otherwise, set = 0.

(d) For1 <r<k-2,

(d-1) Find the node € [r, N — 1] such that

ar—1+1
k+1
and label it node-.

(d-2) Determinea, such thata, | < a, < a, and

a, +1 k—ar_1
R, > ——wandR,4 >
k+1 _k 1 4=k

(d-3) If a, = a, terminate the algorithm and declare
I'* = [r] U{N}. Otherwise set «+ r + 1.

The total number of comparisons to be made by the

algorithm can be upper bounded as follows:

W,

1
kE+1

d

Rys > o.) an w > Ryg > o.)

Ay —
wand Ry > 1

Risz
k+1

w,

w >



Step (a): at mosEN comparisons

Step (b): at mosk — 1 comparisons

Step (d-1): at mos2(N — r) comparisons

Step (d-1): at mosk — 1 — » comparisons

Assuming that step (d) makes the maximum number of
iterationsk — 1, the total number of comparisons to be
made by the algorithm is upper bounded by

k—1
ON+(k—1)+Y 2(N—r)+(k—1-r) = 2Nk—

r=1

(k— 1)k
.

However, the above discussion assumes thas given.
Given the set of real numberB;;,R;q, i+ = 1,...,N, a
straightforward approach to computingin (20) requires the
evaluation of2" cuts, while computing the value of each
cut requiresN' comparisons. Instead, the following algorithm  V!!l- A MPLIFY-AND-FORWARD WITH N RELAYS VS.
allows to computev in N log N running time. ROUTING OVER THEBEST RELAY

First, sort (rearrange) the nodes in the order of increasingln this section, we derive an upper bound on the rate
Ris, i.6., Ris < --- < Rns. For this sorted Conﬁguraﬁon,achieved by amplify-forward over the Gaussian N-relay dia-

observe that the cut with the minimum value [@](20), i.e., th@ond network in terms of the capacity of the best relay. With

Fig. 4. The minimum cut on a configuration such thagts < --- < Rys.

cut A* for which amplify-forward, the transmitted signals from the relaydas
are nothing but the scaled versions of the received signais f
w = max Riq + max Ry, the source X;[t] = 5,Y;[t]. This indupes a poi_nt-to-point link
1A ieh” between the source node and destination given by,

A 2 [m+1,N] andA™ = [m] for somel < m < N. This
is easy to see: consider any chtC [N] not necessarily of
the form in Figuré 4. Lein be the node im\ with the largest
index, i.e.,m = max{i € A} and letA,, = {m+1,...,N}.

. . . . . N N
is necessarily of the form in Figufé 4. More precisely, = Yyl = (Z hidhisﬂi> X[+ (Z[t] n Zhidﬂizi[t]> .
=1 =1

Using the familiar capacity expression for a point-to-poin
AWGN channel, we get

2
We have . ‘zj.V: L hiahisBi| SNR o2
AF = log +
max R;q + max R;s < max R;q + max Rs. 1+ vazl |hia)?|Bil?
€A, i€Am S i€l

o The $;'s in the above expression can be optimized to get the
The second terms are equal becaftseare sorted in INCreas- |argest communication rate subject to the power consteint
ing order and the first term can be on_Iy smaller foy, since ihe relays. Sinc&[|X;|?] < P, we can write
it is a subset ofA by construction. This reduces the number SNR
of candidate cuts for the min cut frog?¥ to N. 1Bi|? = Wmiﬁ,

In other words, the mincut can be calculated by making + s _

N Comparisons of two numbers: the maximum ValB%, Where|0¢i| <1 for eachs. Next, we first upper bound the rate
i e A,,, with the maximumR;;, with i € A,,, for in @2) and then express it in terms of the new variahles
Am = [m + 1,N], m = 0,...,N. Assume that ther;, Applying the Cauchy-Schwarz inequality on the numerator of
values are sorted as previously described - this can be dén@ fractional term inside the logarithm, we get
usmgNlogN comparisons, for example with the heap sprt NZij\Ll |hial?|his|?] 812 SNR
algorithm. Thus for the sed,,, the value we would use is Car <log |1+ N g0
R,,s- But we can also keep a sorted heap of fhg values, L4320 [hial®|Bi]
that again can be created usinglog N operations. Then for <log (14 N?max;en |hial*|his|* Bi]* SNR
Ay we would use the max value, far, the max value after = max (1, maxe [y |hial?|Gi?)
removingR14, etc. That is, we can take advantage of the fact ) o ] )
that each subset oR,,’s would also be ordered, to extract! "€ second inequality is obtained by upper bounding each

the max value of the subset. Thus in total Bf+ 2log N term of_the sum in the _numerator by the maximum_ term

comparisons, we can compute and tal_<|ng only the maximum element for the sum in the
This implies that with at mos{2k + 1)N + 2N log N denominator. In terms ofy;, this last upper bound can be

comparisons we can computg a constant gap approximationeXpressed as

to the capacity of theéV-relay diamond network, and identify N2 max;en] \hid‘ﬂrhli}ﬂz"zasil‘jsNRz

a k-relay subnetwork that approximately achieves a fraction Car <log | 1+ T 1|;|a»\2SNR

k/(k + 1) of w. This completes the proof of Theorémh 3. max (L max;e[N] W)




In Lemma[3 below, we show that for any arbitrary positive[s]

real numbersu;q, u;s and0 < b; < 1,7 =1,2,---,N, we -

have
U;ab; . biuiquis
max | 1, max ———— | max (min(uq, u;s)) > max ————  [g]
i€[N] 1+ w;s ) i€[N)] i€[N] 1+ s
(23) [9]

Plugginguiq = |hia|*SNR, u;s = |his|?SNR andb; = |a;|?
in this relation, we get

10
Car < log (1 + N? max min(|h:q|?SNR |his|28NR)) (o]
1€
< max min(R;s, Riq) + 2log N [11]
€[N
= (1 +2log N. (2]

This proves Theoreri 2. Lastly, we prove the inequality in
(23).

Lemma 3:Let u;q, u;s be arbitrary positive real numbers[13]
and b; be a real number in the intervdD,1] for 4
1,2,---,N. Then,

[14]
U;qb; . biuiquis
max | 1, max ———— | max (min(u;q, tis)) > max ———.
i€[N] 1+ ws ) i€[N)] i€[N] 1+ s
(24) 15

Proof of Lemmdl3:The expression on the left-hand side of

(24) can be rewritten as [16]

, Uiab;
~ = max max{ min(u;q, t;s), ———

min(usq, Uss),
i€[N] 14 us (tia )

[17]
b
ma 45d0j

min(u;q, u; x ——1
(1ia ”)je[NLj;éilJrujs

wiabi UidUisbi (18]

If wis < wia, 79475 min(uia, uis) = 444 is among the
terms to be maximized . If w;s > wiq, min(uq, uis) =
u;q 1S among the terms to be maximized+nand it satisfies

Uig > “11+b Therefore, we can immediately conclude thal!

Tae[N] 14w [20]

IX. CONCLUSIONS (21]

We showed that in anV-relay diamond network we can
use k of the N relays and approximately maintain ke%
fraction of the total capacity. In particular, we can use a
single relay and approximately achieve half the capacity. O
proof was based on reducing the network simplification to a
combinatorial problem.
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APPENDIXA

AN UPPERBOUND ON THE CUT-SETUPPERBOUND

(detailed derivation of Sectidn M-A)

The cut-set upper bound inl (7) can be further upper bounded

C < min  su I( X, X Yy, Y5 | X+ 25
_AQ[N]XS,XF,XX( As Xd A| A) (25)
< min sup I(Xs, Xjy; hiaX; + Z, Y+ 26

ACIN] X, %n ( A ; ! 2 (6)
< min sup [(Xg; Yr) +sup 1(Xy; hiaX; + Z),
iy S T V) + 50 T (X33 hiaXs +2)
(27)


http://arxiv.org/abs/1012.0416
http://arxiv.org/abs/1111.4244
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where [2b) follows by changing the order of maximization ansummed. For example, using also the fact floatis strictly
minimization in [7); [Z6) follows because increasing we can write,

I(Xg, Xp: Ya, Yy | Xg) = I(Xo, Xa3 Yo — Y hia X, Yi | X5) log (1 + (Ztid)Q) <log (JA]* + |A|2m€ant§d) if |A| > 0.

i

i€ €A

=h(Yy— Z hiaXi, Yx | X5) Using similar arguments we get the following inequality,

i€A

- h(Yd - Z hidXi7 YK | X87 XAa XK) 6 < min { 1Og (1 + znel[a],\)/(] t?s) + 1OgNa
ieA
2

= h(Ya =) hiaXe, Y| X5) = MZ, Zy) tog (1+ max %) +2log N,

i€EA ] ) ) 2
< h(Ya— Y hiaXi, Y) - h(Z, Z5) ACIN] (1o (1 + lien L)

i€EA |A[#0,N
= I(X, Xp; ZhidXi + Z,Yz). + log (1 + meali(tfd) + log (|A|2|K|)) }

€A o

Note that this last expression maximized over all randopt ys first focus on théog (|A[[A]) term. We havelA| +
variablesX';, X, is the capacity of the point to point channe|x| — N and hence

between{s, A} and {A,d}. The capacity of this channel can
be further upper bounded by the sum of the capacities of the log (JA*[A]) = log (N|A]” — [A]%).
SIMO channel betwees and {A} and the MISO channel _ ) . oN
between{ A} andd which is the result stated ii{27). Formally,] NS term is maximized whef\| = =. Hence,
this follows because _ 27
log (JAI*[A]) < 3log N — log R
I(X,s, Xa; Z hiaX; + Z,Y5)

ieA Noting that
< h(z hiaXi + Z) + h(Yz) — h(Z) — h(Z5) log (1 + max ) = max log (1+t7,),
i€EA 1€ S
= I(Xs; Yg) + I(Xp; Z hiaXs + Z). we obtain the following upper bound,

en C < min maxlog (1 +t3;) + maxlog (1+t3,) + G, (29)
The solutions to the maximization of these mutual informa- ~ ASIV] €A i€
tions over the imput distributions are well-know and yiehé t \where
capacities of the corresponding SIMO and MISO channels

. 27
[22]. Therefore,[(2I7) can be further upper bounded as G=max <3 log N — log 4 2log N) '

C < min | log (1 +SNRY |his|2) APPENDIXB
ACIN] en A COMBINATORIAL PROBLEM
(proofs of Lemmals]1 ard 2)
2
+ log (1 +SNR(D _ [hial) )) (28)  In addition tow(I), w, wy, defined in Sectio VI, in the
€A

due analysis we also use the notatiana + b] = {a,a +
where SNR- 5. We will further develop a trivial upper L, a+b}fora>1andb=>0.

bound on this expression. For simplicity of notation, let us .

introducet;,=v/SNR h;,| andt;u=vSNR;4|. Separating the  Proof of Lemme[]1:Given any set of real numberB;,,
cases\ = () andA = [N], which correspond to the pure SIMOfia, i € [N] giving w in (20), we will prove the lemma by
and pure MISO cuts respectively i {28), we have, establishing a number of properties for the these numbers in

terms ofw. These properties naturally suggest an algorithm
— i 9 2 to discover a subsdt € [N] such thatl'| < k andw(T") >
C < min { log (1 + _g\[] tis) ,log (1 + ( .g\]] tid) ),

k
mw.
Given any set of real number;;, R4, ¢ € [N], we have

) the following property
log (1 £2.) +log (1 tia)’)) V.
ACIN] ( Og( * Z “) + Og( + (Z ) ))} « Property (1)3p € [N] such thatR,; > £-w andR,; >

A i€A — k+l1 .
IAIZON ' k%rlw. If not, we would have the following contradictory
Note that the variables,, andt;; are real and positive. The argument: Assume for all € [NV], we either haveR;; <
sums over the variablegs; andt;, can be increased by setting kiﬂw or Ry < k—}rlw. LetS = {i: Ris > kiﬂw}- By

each summand to the maximum of the variables that are the assumption, this means théate S, R,q < k—}rlw.
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Therefore considering the subseiC [N], we can upper o Ry, > k—fq‘“ and ’“%}jlw > Rng > k_+1‘*’ for some
boundw as, ae Nsuchthatl <a<k-1.
o Foranyr such thatl <r <1, %tlw > R, > 24w

w < max R;q + max R; _
ieg AT g s and R,q > kk‘_‘;llwfor somel e N, 1 << k-2,

1 k andag,a1,...,a; € Nsuchthatag =0 < a1 < --- <
<k+1w+k+1w_w' a—1 < a <a.
_ a +1
which is a contradlctlon Then, therekei::stsyle [l +1,N —1] such that?,s > 955w
o Case 1:R,s > 5w In this case, the lemma is proved®Nd Bya > 55w

Before | proving the proposition, we first use it to complete
Tk the proof of Lemmdll. Note that we have currently proven
=S that for any positive real numbei®;;, R;4, i € [N], either

Note the proof is complete fok = 1 at this point, since , 7=, or the assumptions of the proposition are satisfied
Rpq > k_Hw is necessarily the case. We assume fhat 1

forl =1.
in the remaining discussion. Assume that the assumptions of the proposition are satisfied

o« Case 2:R,q < k+1w Then we have the following for somel < | < k — 2. Then the proposition asserts the
property. existence ofy € [+ 1, N — 1] such thatR,; > ‘};j_rllw and
Property (2):3m € [N], m # p such thatR,,s > =Hw R ya > 5=%w for somea; 1 € N such thata; < a1 < a.

and Ryq > k—:ﬁlaﬁ Otherwise, we would have theTh|s leads to two possible cases for the newly discovered

sincew({p}) = min (Rps, Rpa) >
Wi > wy 2

k+1w and therefore

following contradiction: Assume for al € [N], i # p, [+ 1,N —1]:
we either haveR;, < rjw or Rig < phw. Let  , Case1R,, > ;%;w. Inthis case, the proof of the lemma
S ={i € [N]: Ris > 7qw}. By Property (1) above, is completed, because

p € S.Moreoveryi € S, Rig < k+1w‘ Forp this follows
since we are in Case 2 and for otheg S it follows by
the assumption. Therefore we can upper bownialy

w < max R;q + max R,
ieS ies

< -
k+ 1
which is a contradiction.

Without loss of generality we can rearrang@ [N] and
assume thap = N, i.e., Rys > k+1“ and —“=w > Ryg >
1“ Equivalently,

k+1
k+
k—a+1 k—a

> ————w>RNg > ——
“k+1 P e L T Rl
for an integera such thatl < a < k — 1. Similarly, we can

also assume that = 1, i.e., R, > k+1w and Riq > 15
We proceed by investigating two possible case}ﬁyg

o« Case 1.Rs > le In this case, the lemma is proved
since we would have
k
LN} > —uw,
W({LNY) > o
which meansw;, > wy > kiﬂw
Note that the proof is complete far= 2 at this point, since

1<a<k-—1yieldsa =1 andR;s > k+1 w is necessarily
the case. We assume that> 2 in the remaining discussion.

. Case2k+1w>R15_ =7w. Equivalently,
a1 +1 ai k—ao
Ris > —— and R4 > ,
Er1d T e Y =77

for integersa; andag such thatl < a; < a andag = 0.
We investigate this case, by proving the following propo-
sition.

Proposition 1: Given positive real numberg;s, R;q, i €

[N], assume that we can arrange them in the following form.

(U5 VD 2 o

and| [7] U {y, N}| < k. This can be observed as follows:
AssumeR,, > “5w and Ryq > k+‘”w for somey €

[+ 1,N —1]. Note that ifw([[|U{y, N}) < k+1w there
exists at least one sét C [/] U {y, N} such that

Rz’ Ris — 30
(qleas%{ d+ie[l]$3§\f}\5 > < k+1w (30)
We argue below that such a s€tdoes not exist. Since
Rys > kiﬂw we should haveV € S. Then alsoy € S,

since otherwise we get the contradiction,

max R;q + max Ris > Rng + Rys
€S ie[JU{y,N}\S
sk—a o |
k41 E+1
k
= —Ww
E+1

Then by the same reasoning, we also hdves S.
Otherwise,

max Rig + Ze[l]u{ﬁf}\ Ris > Ryq + Rys
>k_alw+ 4 w
T k+1 k+1
kK
Thr1”

Similarly for everyr € [l — 1], we should also have €
S. This is because if +1 € S andr € [JU{y,N}\ S
we have the following contradiction,

max ;g +  max Ris > Rrj1,da+ Ry
ies ie[Ju{y, N}\S
S k — aTw n a, "
~ k+1 kE+1
k41
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ThereforeS = [I] U {y, N}. However, then we have the subsetS U { N} C [N], we can upper bound as,

k—a w< max Rig+  max R
max Rjg > Ow, i€ESU{N} i€[NJ\S\{N}
i€s k+1 = max Rjq+ max is
i€SU{N} i€[U([I+1,N—1]\ S)
which contradicts[{30) since, = 0. < max k — a k—a+ 1w 4 max & + 1w
« Case Z:ﬁw > Rys > ‘};jllw. Without loss of gen- E+177 k41 1<r<t k+1
erality we can rearrangg € [l + 1, N — 1] and assume k- a+1l
that.kLHw > Riy1,6 2 lzzirllw and Rij1,q0 > ]erallw. T k41 w kE+1 w=uw,
Equivalently, which is a contradiction. O
1+ 1w > Rip1s > t+1 and Rii14> k— alw, Proof of Lemm&J]2We will prove that for the configuration
k+1 k+1 k+1 Ris=itRandR;; = (k+2—4iRfor1 <i<k+1, we

havew; = kiﬂw.
for somea;; € N such thata; < a;1 < a. Therefore,  \yg first show that for this particular configuration =
we have proven that the assumptions of the proposm?;g 4 1)R. Let A be any subset oft + 1] and lety(A) =

should indeed be satisfied witht- 1 in this case. max,; Ris. Then,maxies Rig > (k + 2)R — (y(A) + R).

This implies that starting with = 1, we can apply the Note that the last inequality holds evenyifA) = (k + 1)R.
proposition recursively as long &s< k—2. At each step of the Therefore, we have

recursion, either we prove that > kiﬂw and the proof of the )

lemma is complete dris increased by. Assume that = k—2 W= Ag[l,ﬁl] (T&X Ria + rfleaxx RiS)

and applying the proposition still does not prove the lemma .

: : . > kE+1—y(A M]=(k+1)R.
(i.e., the k-relays discovered do not satisfy(I') > £;w). = ACHt] [+ 1= y(A) +y(A)] = (k+ DR

Tpen t_h_e propobsition establishes the exis;[]enhce of a SeQUERG the other handy < (k + 1)R. Thereforew = (k + 1)R.
of positive nUmbersi, ai, az, -+ -, ax—1 such that We now prove that for any’ C [k + 1] with |T'| = k, we
havew (I') = kR. Let A be any subset of and lety(A) =
a=0<a < - <ap2<ap—1<a<k—-1, max;er\a Ris. Thenmaxiea Rig > (k+2)R— (y(A) + 2R).
Note that this inequality holds evengfA) = (k + 1)R. The
which is a contradiction. This implies that Case 1 shoulcehaveason that we have usgdA) + 2R this time is because of
been true in one of the earlier iterations of the proposjtiothe possibility thatirg max;cr\a Ris + 1 ¢ I'. Therefore, we

which proves the lemma. have,

To summarize the conclusions from Case 1 in the above )
discussion, we have shown that given any positive real num- w(l) = Aer <I}1§\X Ria + ieron RiS)
bersR;s, R4, i € [N] and1 < k < N, they can be either > min [(kR — y(A)) + y(A)] = kR.
arranged as ACT

Now, for anyT" C [k + 1] with |T'| = k there exists g (T") €

Ry, > Lw and Ryg > k w, [k + 1] such thatl' = [k + 1] \ {j (T")}. Then, we have

T k+1 “k+1
w (T') = min (max Riq + max Ris)
or ACT €A iEP\A
—a —a < 1S
e Rye > 25w and 5948w > Ryg > $=%w for some = ie&?f,”R +i€[j(§)1§fk+1]R

acNsuchthatl <a<k-1,

=T —-1R k+2—(5(I 1)) R =kR.
e and forl <r <, &Hw > Ry > 25w and Ryg > GO =D R+ (k+2-(GT)+1)

kszz:{lw for somel € N such thatl < [ < k — 2, Note that this reasoning holds evenjifl') = 1 or j(I') =

andag,aq,...,a; € Nsuchthatag =0 < a1 < -+ < k+1.
a1 < ay < a, Therefore, we have proved that

e and Ry > k;:-lw and Ryq > lic:tallw' wr = max w (') =kR.
For thesel + 2 < k nodesT = [l + 1] U {N}, we have F%]:;l]
w(T) > kiﬂw. O

Proof of PropositiofLif the proposition were not true, then
we would have the following contradictory argument: Assume
for all i € [I+1,N—1], we either haveR;, < 4%tly

s
of Rig < %2%w. Let S = {i € I+1,N—1] : R, >
atly}. This means thati € S, Ry < %-%w and

Vie[l+1,N—-1]\S, Ris < ‘};jllw. Therefore considering
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