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Wireless Network Simplification:
the GaussianN -Relay Diamond Network
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Abstract—We consider the GaussianN -relay diamond net-
work, where a source wants to communicate to a destination node
through a layer of N -relay nodes. We investigate the following
question: what fraction of the capacity can we maintain by using
only k out of the N available relays? We show that independent
of the channel configurations and the operating SNR, we can
always find a subset ofk relays which alone provide a rate
k

k+1
C̄ − G, where C̄ is the information theoretic cutset upper

bound on the capacity of the whole network andG is a constant
that depends only onN and k (logarithmic in N and linear in
k). In particular, for k = 1, this means that half of the capacity
of any N -relay diamond network can be approximately achieved
by routing information over a single relay. We also show that
this fraction is tight: there are configurations of the N -relay
diamond network where every subset ofk relays alone can at
most provide approximately a fraction k

k+1
of the total capacity.

These high-capacityk-relay subnetworks can be also discovered
efficiently. We propose an algorithm that computes a constant
gap approximation to the capacity of the GaussianN -relay
diamond network in O(N logN) running time and discovers a
high-capacity k-relay subnetwork in O(kN) running time.

This result also provides a new approximation to the capacity
of the GaussianN -relay diamond network which is hybrid in
nature: it has both multiplicative and additive gaps. In the inter-
mediate SNR regime, this hybrid approximation is tighter than
existing purely additive or purely multiplicative approxi mations
to the capacity of this network.

I. I NTRODUCTION

Consider a source connected to a destination through a
network of wireless relays arranged in an arbitrary topology.
There are several ways to use this network. For example,
we can route the information from the source to the desti-
nation over a single path, using point-to-point connections.
Or, following an information theoretic approach, we can seek
to optimally utilize all the available relays to achieve the
network capacity, the largest end-to-end communication rate
this network can support. Clearly the first approach has lower
complexity and uses fewer resources of the network, while
the second can potentially achieve much higher throughput.
In this paper, we aim to understand the fundamental trade-
off between using fewer relays and achieving larger rates, and
perhaps the possibility of having both at the same time. We
ask the following question: can we achieve (a good part of)
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Communications, Building BC, Station 14, CH - 1015 Lausanne, Switzerland
(e-mail: christina.fragouli@epfl.ch). This paper was presented in part at the
IEEE Int. Symposium on Information Theory (ISIT), St Petersburg, July 2011.

s

1

2

...

N

d

h1s

h2s

hNs

h1d

h2d

hNd

Fig. 1. The GaussianN -relay diamond network. The source is connected
to the relays through a broadcast channel, while the relays are connected to
the destination through a multiple-access channel.

the capacity of a wireless network by using only a (small)
subset of (perhaps a large number of) available relay nodes?

Traditionally, network information theory aims to charac-
terize the best end-to-end communication rate we can achieve
in a network, without providing any understanding of the
importance of each relay for achieving this rate [1], [3], [2],
[4], [6]. However, in order to design simple and efficient
communication architectures for wireless networks, apartfrom
knowing the capacity of a large network, it may be even more
useful to know what is the largest rate we can achieve by using
only a given number of the relays. We may want to know how
this rate increases if we allow for more relays; how it compares
to the capacity of the network; and how to efficiently discover
the subset of relays providing the largest capacity.

Such an understanding can help with the design of more
energy efficient communication protocols, that better utilize
the limited wireless resources. For example, relay nodes that
contribute marginally to capacity can be shut down to save
battery life. Alternatively, different parts of the network, can
be activated one at a time for maximal power efficiency. In a
network with multiple information flows, knowing how much
different relay groups contribute to the throughput of each
flow, can allow for an informed allocation of the relays across
different flows.

As a first step in this direction, in this paper, we consider a
source that communicates to a destination over the Gaussian
N-relay diamond network depicted in Fig. 1. This is a two-
stage network, where the source node is connected toN relays
through a broadcast channel and the relays are connected to the
destination through a multiple-access channel. We ask, what
fraction of the capacity we can achieve by using onlyk out of
theN relays (for example, if we route the information between
the source node and the destination over a single relay).

http://arxiv.org/abs/1103.2046v2
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Fig. 2. Two instantiations of a diamond relay network.

The fraction of the capacity we can get withk relays
naturally depends on the channel gains. Indeed, consider for
example the case whereN = 2, the diamond network, and the
example in Fig. 2. For the identical channel gains in Fig. 2(a)
we can show that the communication rate achieved using only
one of the relays is only1 bit/s/Hz away from the cut-set
upper bound on the capacity of the network; while for the
anti-symmetrical channel gains as in Fig. 2(b) using only one
of the relays achieves (within 1 bit/s/Hz) onlyhalf of the cutset
upper bound on the capacity of the network.

To avoid channel-specific results, we can try to provide
worst-case guarantees that hold universally for all possible
channel gains. For example, is it possible that in2-relay
networks, we can always find a single relay to use and still
achievehalf of the capacity of the diamond network within
1 bit/s/Hz (as was the case for the two examples in Fig. 2).
We prove in this paper that this is indeed always the case. In
fact, we show that even if we have an arbitrary numberN of
relays, we can remove all but one of them and still achieve
approximately half of the capacity of the whole network.

Our main result is to show that in every GaussianN -relay
diamond network, there exist ak-relay sub-network whose
capacityCk satisfies

Ck ≥
k

k + 1
C − 1.3k −G (1)

where C is the cut-set upper bound on the
capacity of the N -relay diamond network and
G = max

(

3 logN − log 27
4 , 2 logN

)

is a universal constant
independent of the channel gains and the operating SNR.
Intuitively, this holds because if allk-relay subnetworks have
small capacity, the capacity of the whole network cannot
be too large. Ask increases, the difference between the
capacity of the bestk-relay subnetwork and that of the whole
network naturally decreases. The surprising outcome here is
that the fraction of the capacity we can get withk relays
is independent of the number of available relay nodesN .
Moreover, it increases quite quickly withk: in the high-
capacity regime, we can get at least half-the capacity of every
N -relay diamond network by simply routing information over
the best relay, using2 relays we achieve a fraction of2/3,
etc.

We also show that the lower bound in (1) is tight in
the multiplicative fraction, i.e., it is possible to findN -relay

diamond networks where the capacity ofeveryk-relay sub-
diamond network is at most

Ck ≤
k

k + 1
C +G′, (2)

whereC is the capacity of the whole network andG′ is a
constant linear ink and independent of everything else. For
the casek = 1 andN = 2, one such example is case (b) in
Fig. 2.

We prove the result (1) in two steps. We first show that
in every GaussianN -Relay diamond network, there exists a
subset ofk-relay nodes such that the information-theoretic cut-
set upper bound on the capacity of thisk-relay sub-network is
larger than k

k+1C −G; i.e., this step only involves the cut-set
upper bounds on the capacities of the corresponding networks.
We then use the compress-and-forward type of strategies in
[4], [5], [6], over thisk-relay sub-network. These strategies are
known to achieve the cut-set upper bound on the capacity of
any arbitrary Gaussian relay network within a gap that is linear
in the number of relay nodes utilized. In particular, the result
of [6] implies that we can achieve the cut-set upper bound
on the capacity of thek-relay network within1.3k bits/s/Hz.
Combining these two steps yields (1).

An alternative relaying strategy that is often considered for
theN -relay diamond network in the literature is amplify-and-
forward [7], [8], [11]. For example, [11] shows that amplify-
and-forward at the relays can achieve the cutset upper bound
on the capacity of theN -relay diamond network within3.6
bits/s/Hz when all channel gains in the first and the second
stages are equal. To show that this approximate optimality of
amplify-and-forward is only limited to the the case of equal
channel gains, we show that the rate achieved by this strategy
is approximately equal to the capacity of the best relay alone
in any arbitraryN -relay diamond network. More precisely, we
show that

CAF ≤ C1 + 2 logN

where CAF is the best rate achievable with amplify-and-
forward at theN relays, andC1 is the rate achieved by
using only the best relay (say, with a decode-and-forward
strategy) while keeping the rest of the relays silent. This
result says that amplify-and-forward with theN relays can
at most provide a beamforming gain, bounded by2 logN ,
over the best relay. Since our result in (2) shows that there
are configurations ofN -relay diamond networks where the
best relay alone can at most provide approximately half the
capacity of the whole network, the two results together imply
that amplify-and-forward can be limited to approximately half
the capacity of the network in certain configurations. This
implies that amplify-and-forward fails to provide constant
gap approximations for the capacity of theN -relay diamond
network, such as those provide by the compress-and-forward
type of strategies in [4], [5], [6], [9] or partial-decode-and-
forward in [10].

Finally, a natural question given our existence result in (1)
is whether such high-capacityk-relay subnetworks can be
discovered efficiently. Our existence proof naturally suggests
an algorithm for discovering such networks inO(kN) running
time given the cutset upper bound̄C and the configuration
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of the N -relay diamond network. However, a direct compu-
tation of C̄ itself requires evaluating the cut capacity over
exponentially many cuts. [12] shows that the problem of
computing a constant gap approximation toC̄ can be casted
as a minimization of a submodular function and solved in
O(N5α+N6) running time using state-of-the-art algorithms
for submodular function minimization, whereα is the time it
takes to compute the value of a single cut which is typically
polynomial in N . Our work reveals that information flow
in wireless networks has much more structure than mere
submodularity. We show that the combinatorial structure that
allows us to obtain the simplification result in (1) can be
also used to devise an algorithm to compute a constant gap
approximation to the cutset upper bound on the capacity of the
N -relay diamond network inO(N logN) time. The properties
of wireless information flow beyond submodularity are further
exploited in [13] where Non-Shannon properties of Gaussian
random variables are used to obtain simplification results for
theN -relay diamond network with multiple antennas.

II. RELATED WORK AND POSITIONING

Two lines of work have previously looked at a form of net-
work simplification for wireless networks. First, relay selection
techniques in [14], [15], [16], design practical algorithms that
allow to select the best single relay in an N-relay diamond
network, and show that such algorithms provide cooperative
diversity. These works look only at maintaining diversity and
not capacity. Second, work in [11], [17], [18], [19] looks at
selecting a subset of the best relays when restricted to utilize
an amplify and forward strategy. Our work differs in that
we do not restrict our attention to specific strategies (or a
single relay) but instead provide universal capacity results for
arbitrary strategies.

Our result can also be regarded as a new approximation to
the capacityC of the GaussianN -Relay diamond network.
We show that

k

k + 1
C − 1.3k − k

k + 1
G ≤ C ≤ C ∀k, 1 ≤ k ≤ N − 1,

(3)
whereC denotes the cut-set upper bound. The best of the
earlier approximation results in [4], [5], [6] yield

C − 1.3N ≤ C ≤ C. (4)

for theN -Relay diamond network.
The lower bound we provide in (3) is tighter than (4) in the

intermediate SNR regime and whenN is large. The auxiliary
parameterk in (3) allows to optimize this lower bound as a
function of C andN . WhenN is large, choosing a smallk
reduces the additive gap fromO(N) in (4) to O(logN). This
improvement in the additive gap can be more important than
the 1

k+1 C̄ loss due to the multiplicative gap when̄C (and
thereforeC) is not too large, overall yielding a tighter lower
bound than (4). WhenC is large andN is small increasing
k to N reduces (3) to (4). This approach suggests a new
approximation philosophy to the capacity of wireless networks
where multiplicative and additive gaps to the cutset upper
bound are allowed simultaneously and are traded through

an auxiliary parameter (in our casek). Earlier works in the
literature have either aimed to characterize the capacity within
an additive gap by allowing no multiplicative gap [4], [5],
or vice-a-versa [11]. These purely additive or multiplicative
capacity approximations are relevant in the high or the low
SNR regimes respectively, while a hybrid approximation can
be also useful at intermediate SNR’s.

The fact that (3) can be tighter than (4) also implies that
employing an unnecessarily large number of relays with the
compress-and-forward type of strategies in [4], [5], [6] can
indeed deteriorate rather than improve the communication rate.
Recall that the result in (3) is obtained by applying these
strategies with a carefully chosen subset ofk relays, while
(4) is obtained by using the same strategy with all theN
relays. Motivated by this observation, recent work [10], [20]
has demonstrated the need to optimize the quantization levels
in these strategies which allows to achieve the information-
theoretic cutset upper bound on the capacity of theN -relay
diamond network withinO(logN) bits/s/Hz. More precisely,
these works show that (4), valid for any wireless network with
N relays, can be refined to

C − log(N + 1)− logN − 1 ≤ C ≤ C

for the N -relay diamond network. This new result can be
readily used to tighten our simplification result in (1) to

Ck ≥
k

k + 1
C − log(k + 1)− log k − 1−G,

by simply using the optimized quantization levels for thek-
relay subnetwork.

III. M ODEL

We consider the GaussianN -relay diamond network de-
picted in Fig. 1 where the source nodes wants to communicate
to the destination noded with the help ofN relay nodes. Let
Xs[t] andXi[t] denote the signals transmitted by the source
nodes and the relay nodei ∈ {1, . . . , N} respectively at time
instantt ∈ N. Let Yd[t] andYi[t] denote the signals received
by the destination noded and the relay nodei ∈ {1, . . . , N}
respectively at time instantt. The transmitted signalXi[t] by
relay i is a causal function of the its corresponding received
signal Yi[t]. The received signals relate to the transmitted
signals as

Yi[t] = hisXs[t] + Zi[t],

Yd[t] =

N
∑

i=1

hidXi[t] + Z[t],

wherehis denotes the complex channel coefficient between
the source node and the relay nodei and hid denotes the
complex channel coefficient between the relay nodei and the
destination node.Zi[t], i = 1, . . . , N andZ[t] are independent
and identically distributed white Gaussian random processes
of power spectral density ofN0/2 Watts/Hz. All nodes are
subject to an average power constraintP and the narrow-band
system is allocated a bandwidth ofW . We assume that the
channel coefficients are known at all the nodes.
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IV. M AIN RESULTS

The main result of this paper is summarized in the following
theorems.

Theorem 1:Consider an arbitrary GaussianN -relay dia-
mond network. LetCk be the largest rate at which we can
communicate from the source node to the destination using
only k out of theN relays while the remainingN − k relays
are kept silent. Then

Ck ≥
k

k + 1
C (5)

− 1.3k − k

k + 1
max

(

3 logN − log
27

4
, 2 logN

)

,

whereC denotes the cut-set upper bound on the capacity of
the N -relay network. Moreover, there exist configurations of
the GaussianN -relay diamond network such that

Ck ≤
k

k + 1
C+1.3k+max

(

3 log k − log
27

4
, 2 log k

)

, (6)

whereC is the capacity of theN -relay network.
Remark 1:For the casek = 1, we have the following

tighter bound,

C1 ≥
1

2
C − 1

2
max

(

3 logN − log
27

4
, 2 logN

)

.

The theorem states that in every GaussianN -relay dia-
mond network, there exists a subset ofk relays which alone
provide approximately a fractionk/(k + 1) of the capacity
of the whole network. On the other hand, there are also
configurations, where eachk-relay sub-network alone can at
most provide this fraction of the capacity. The approximations
are within the beamforming gain, which we upper bound
by max

(

3 logN − log 27
4 , 2 logN

)

for the N -relay diamond
network uniformly over all possible channel configurations.
The beamforming gain is relatively small when the capacity is
large, and indeed is much smaller than this upper bound when
channel gains are significantly different. On the other hand,
the term1.3k in the gap is not fundamental and reflects the
gap between the rate achieved by the state-of-the art relaying
strategies [4], [5], [6] and the cutset upper bound on the
capacity of the diamond network withk relays.1

A key ingredient in the above results is the fact that
compress-and-forward type of strategies in [4], [5], [6] can
achieve the cut-set upper bound on the capacity of any arbi-
trary diamond relay network within a gap that is linear in the
number of relay nodes utilized, and independent of the channel
configurations and the operating SNR. We next show that an
amplify-and-forward strategy fails to provide such a universal
performance guarantee over the channel configurations, and
its performance is approximately bounded by the capacity of
the best relay alone.

Theorem 2:In any GaussianN -relay diamond network, the
rateCAF achieved by amplify-and-forward at theN relays is
bounded by

CAF ≤ C1 + 2 logN,

1For example, using improved relaying strategies from recent results in
[10], [20], it can be readily sharpened from1.3k to 2 log k.

whereC1 is the capacity provided by routing over the best
relay.

Finally, we address the algorithmic complexity of discover-
ing a high-capacityk-relay subnetwork in Theorem 1.

Theorem 3:A constant gap approximation to the capacity
of the GaussianN -relay diamond network can be computed in
O(N logN) running time. Thek-relay subnetwork satisfying
(5) can be discovered inO(kN) running time, given the
configuration of the network and the approximation to the
cutset upper bound.

Theorem 1 is proven in VI, Theorem 2 is proven in
Section VIII, and Theorem 3 is proven in Section VII. The
following section derives a simple approximation to the cutset
upper bound on the capacity of theN -relay diamond network,
which forms the basis for all these results.

V. A PPROXIMATING THE CUT-SET UPPERBOUND

In this section we derive upper and lower bounds on the cut-
set upper bound, that essentially reduce calculating its value
to a purely combinatorial problem.

Let [N ] =̇{1, 2, · · · , N} and for a subsetΛ ⊆ [N ], Λ=̇ [N ]\
Λ. By the cut-set upper bound [21, Theorem 14.10.1], the
capacityC of the network is upper bounded by,

C ≤ C=̇ max
Xs,X1,...,XN

min
Λ⊆[N ]

I(Xs, XΛ;Yd, YΛ |XΛ) (7)

where the maximization is over the joint probability distribu-
tion of the random variablesXs andX1, . . . , XN satisfying
the power constraintP . For a setS ⊆ [N ], XS denotes the cor-
responding collection of random variables, i.eXS=̇{Xi}i∈S .

A. An Upper Bound on the Cut-Set Upper Bound

The cut-set upper bound in (7) can be upper bounded by
exchanging the order of maximization and minimization in
(7). For each cutΛ, the resulting maximization of the mutual
information can be upper bounded by the capacities of the
SIMO (single input multiple output) channel betweens and
nodes inΛ and the MISO (multiple input single output)
channel between nodes inΛ andd. We have,

C ≤ min
Λ⊆[N ]

sup
Xs,XΛ,X

Λ

I(Xs, XΛ;Y, YΛ |XΛ)

= min
Λ⊆[N ]

sup
Xs

I(Xs;YΛ) + sup
XΛ

I(XΛ;
∑

i∈Λ

hidXi + Z),

≤ min
Λ⊆[N ]

CSIMO(s; Λ) + CMISO(Λ; d).

The capacities of the corresponding SIMO and MISO channels
are well-known [22]. Plugging these expressions yields

C ≤ min
Λ⊆[N ]

log
(

1 + SNR
∑

i∈Λ

|his|2
)

+ log
(

1 + SNR
(

∑

i∈Λ

|hid|
)2
)

(8)

where SNṘ= P
N0W

. We will further develop a simple upper
bound on this expression by bounding each term in the above
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summations by the maximum of the terms that are summed.
This gives us the upper bound,

C ≤ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

+G, (9)

where Rid = log
(

1 + SNR|hid|2
)

and Ris =
log
(

1 + SNR|his|2
)

are the capacities of the corresponding
point-to-point channels and2

G=̇max

(

3 logN − log
27

4
, 2 logN

)

.

A detailed derivation of the upper bound in this section can
be found in Appendix A.

B. A Lower Bound on the Cut-Set Upper Bound

The cut-set upper boundC above can be lower bounded
by choosingXs, {Xi}i∈[N ] to be independent circularly-
symmetric Gaussian random variables with varianceP , in
which case

I(Xs, XΛ;Y, YΛ |XΛ)

= log
(

1 + SNR
∑

i∈Λ

|hid|2
)

+ log
(

1 + SNR
∑

i∈Λ

|his|2
)

.

Retaining only the maximum terms in the summations, we
obtain

C ≥ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

. (10)

Note that this lower bound forC differs from the upper bound
in (9) only by the gap termG. This implies that within a gap
of G bits/s/Hz, the cut-set upper bound on the capacity of the
N -relay diamond network behaves like the lower bound in
(10). Since recent results [4], [5], [6], [10], [20] show that the
actual capacity of the network is within a constant gap to the
cutset upper bound, this also provides an approximation to the
capacity of theN -relay diamond network, i.e.,

C ≈ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

. (11)

This reveals a peculiar combinatorial structure for the capacity
of the diamond network in terms of the point-to-point capac-
ities of the individual channels. Our main result is based on
exploiting this combinatorial structure.

C. The Cut-Set Upper Bound for ak-Relay Sub-network

Consider a subsetΓ ⊆ [N ] of the relay nodes such that
|Γ| = k. Let CΓ be the capacity of thek-relay diamond sub-
network where the source nodes wants to communicate to
the destination noded by using only thesek relay nodes. The
restN − k relays are not used. The cut-set upper bound on
the capacity of thisk-relay network yields

CΓ ≤ CΓ =̇ sup
X,XΓ

min
Λ⊆Γ

I(X,XΛ;Y, YΓ\Λ |XΓ\Λ). (12)

Note that (9) and (10) can be applied toΓ to obtain corre-
spondingly upper and lower bounds onCΓ.

2Note that theN -relay diamond network can be equivalently characterized
in terms of these point-to-point channel capacities.

Among all Γ ⊆ [N ] with |Γ| = k, consider the one that
has the largest cut-set upper boundCΓ. Let Ck denote the
cut-set upper bound on the capacity of this this sub-network.
Formally, we define

Ck = max
Γ⊆[N ]
|Γ|=k

CΓ. (13)

Combining (10) and (13), we have

Ck ≥ max
Γ⊆[N ]
|Γ|=k

min
Λ⊆Γ

(

max
i∈Λ

Rid + max
i∈Γ\Λ

Ris

)

. (14)

Let Ck be the capacity of the bestk-relay sub-network. In the
sequel, we will be interested in lower boundingCk in terms
of C̄, the cutset upper bound on the capacity of the network.
For this, we will first relateCk to Ck and then make use of
the above lower bound forCk.

VI. k RELAYS APPROXIMATELY ACHIEVE k
k+1 FRACTION

OF THE CAPACITY

In this section, we prove Theorem 1. However, before going
into the formal proof, let us illustrate the main idea fork = 1.
Assume the capacityC of theN -relay diamond network were
given exactly by (11), while the capacity obtained by using
relay i ∈ [N ] alone is given by

Ci = min(Ris, Rid).

Note that this is the capacity approximation in (11) evaluated
for a single relay (N = 1), but in this particular case it indeed
corresponds to the exact capacity of a single relay (2-hop)
network. Can we argue that there exists a relayi ∈ [N ] such
thatCi ≥ C/2? This is easy. If this were not the case, it would
imply that

∀i ∈ [N ], either Ris <
C

2
or Rid <

C

2
.

This would allow us to construct a cut of the networkΛ which
crosses only links with capacities strictly smaller thanC/2,
both on the source side and the destination side, i.e.,Rid <
C/2 ∀i ∈ Λ and Ris < C/2 ∀i ∈ Λ. Hence the value of
this cut is strictly smaller thanC and this contradicts with our
initial assumption that the capacity of theN -relay diamond
network isC. Therefore, there exists at least one relayi ∈
[N ] such thatCi ≥ C/2. To prove the converse statement in
Theorem 1, we need to create examples where each relay alone
only provides half the capacity of whole network: consider a
configuration whereRis = C/2 andRid = C for some of the
relays andRis = C andRid = C/2 for the rest. The capacity
of the whole network isC by (11), while each relay alone can
only provide capacityC/2.

The formal proof of Theorem 1 is based on the following
two technical lemmas.

Lemma 1:Let Rid andRis be arbitrary positive real num-
bers fori = 1, 2, · · · , N . For k ∈ [N ], let

rk=̇

max
Γ⊆[N ]
|Γ|=k

min
Λ⊆Γ

(

max
i∈Λ

Rid + max
i∈Γ\Λ

Ris

)

min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

) . (15)
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Fig. 3. A (k + 1)-relay diamond network where every subset ofk relays
achieve approximately k

k+1
of the capacity. The labels indicate the capacity

of the corresponding links.

Then,

rk ≥
k

k + 1
.

Lemma 2:Let Ris = i R and Rid = (k + 2 − i)R for
i ∈ [k+1] whereR is an arbitrary positive number. Letrk be
defined as in (15) withN = k + 1. Then,

rk =
k

k + 1
.

The configuration in Lemma 2 is depicted in Fig. 3.

Proof of Theorem 1:From (9) and (14), we have

Ck

C −G
≥ rk.

Combining this with the result of Lemma 1, we obtain

Ck ≥
k

k + 1
C − k

k + 1
G. (16)

This proves that in everyN relay diamond network, there
exists a subset ofk relays, such that the cut-set upper bound
on the capacity of the correspondingk relay subnetwork is
lower bounded by approximately a fractionk

k+1 of the cut-
set upper bound on the capacity of the whole network. Let
Γ∗ ⊂ [N ] be the maximizing term in (13), i.e.,CΓ∗ = Ck,
and letCΓ∗ be the actual capacity of this network. From [6],
CΓ∗ ≥ CΓ∗−1.3k, for anyk-relay network, which is achieved
by a noisy network coding strategy generalizing the quantize-
map-and-forward strategy of [4]. LetCk be the capacity of
the bestk-relay subnetwork. SinceCk ≥ CΓ∗ by definition,
we have

Ck ≥ Ck − 1.3k.

Together with (16) this yields the result (5) in Theorem 1.

Next, we prove the existence of a(k + 1)-relay diamond
network where the capacity of eachk-relay sub-network
satisfies (6), i.e., for now we assumeN = k + 1. To prove
this, we require an upper bound onCk and a lower bound
on C. The lower bound onC can be obtained by combining
(10) with the fact thatC ≥ C − 1.3(k + 1) from [6] (since
N = k + 1), which yields

C ≥ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

− 1.3(k + 1). (17)

On the other hand, applying (9) for anyΓ ⊆ [k+1] s.t |Γ| = k,
we obtain

CΓ ≤ min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

+Gk,

whereGk=̇max
(

3 log k − log 27
4 , 2 log k

)

. Therefore,

Ck ≤ max
Γ⊆[k+1]
|Γ|=k

min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

+Gk. (18)

Combining (17) and (18), we obtain

Ck −Gk

C + 1.3(k + 1)
≤ rk.

Lemma 2 demonstrates a configuration whererk = k
k+1 . For

such configurations, the above inequality yields

Ck ≤
k

k + 1
C + 1.3k +Gk.

Since Ck ≤ Ck, this proves that there existk + 1-relay
diamond networks such that the capacity of eachk-relay
subnetwork satisfies the bound (6) in Theorem 1. However,
Theorem 1 claims the existence ofN -relay diamond networks
where eachk-relay subnetwork satisfies (6). To extend the
proof to anyN > k, simply consider augmenting thek + 1
relay diamond network of Fig. 3 by adding relay nodes with
zero capacities. Whatever holds for thek + 1-relay network
also holds for this trivially augmentedN -relay network. This
completes the proof of Theorem 1. �

We will next prove Lemma 1 for the casek = 1 andk = 2.
The proof of Lemma 1 fork > 2 and the proof of Lemma 2
are provided in Appendix B.

Proof of Lemma 1:We introduce the following notation. Let

ω(Γ)=̇min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

(19)

ω=̇ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

, (20)

andωk=̇maxΓ⊆[N ]
|Γ|=k

ω(Γ). Note thatrk in Lemma 1 is defined

asrk = wk

ω
.

The first thing we note is thatrk ≤ 1. This follows from the
fact that every subset ofΓ is necessarily a subset of[N ],i.e.,
if Λ ⊆ Γ thenΛ ⊆ [N ] andΓ \ Λ ⊆ [N ] \ Λ. Therefore, the
value of each cutΛ ⊆ Γ in Γ is smaller than or equal to the
value of the same cut in[N ]. The same reasoning also implies
that for k1 ≥ k2 we haverk1

≥ rk2
. Both properties are to

be naturally satisfied by a capacity function: by using more
relays we can only increase the capacity.
• For k = 1, the lemma claims thatw1 ≥ 1

2ω. Since

w1 = max
i∈[N ]

min (Rid, Ris) ,

this is equivalent to saying that∃ i ∈ [N ] s.t.Rid ≥ 1
2ω and

Ris ≥ 1
2ω. We will prove this by contradiction. Assume

∀i ∈ [N ] , Rid <
1

2
ω or Ris <

1

2
ω. (21)
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Let Λ0 =
{

i ∈ [N ] : Rid < 1
2ω
}

. The assumption in (21)
implies thatRis < 1

2ω, ∀i ∈ Λ0. Note thatω in (20) can
be upper bounded by considering only the cutΛ0 among
all possible cutsΛ ⊆ [N ]. We obtain

ω ≤ max
i∈Λ0

Rid +max
i∈Λ0

Ris < ω

since each of the two terms are strictly smaller than1
2ω.

This contradiction proves the lemma fork = 1.

• For k = 2, the lemma claims thatw2 ≥ 2
3ω. We can prove

this by establishing a number of properties for a network
with ω.

Property: ∃ p ∈ [N ] s.t.Rps ≥ 2
3ω andRpd ≥ 1

3ω.

We prove this by contradiction. Assume

∀i ∈ [N ] , Ris <
2

3
ω or Rid <

1

3
ω.

Consider the cutΛ0 =
{

i ∈ [N ] : Rid < 1
3ω
}

. ThenRis <
2
3ω, ∀i ∈ Λ0. Considering only the cutΛ0 we obtain

ω ≤ max
i∈Λ0

Rid +max
i∈Λ0

Ris < ω,

which is a contradiction.
We next proceed by investigating two separate cases:

• Case 1:Rpd ≥ 2
3ω. Then, the proof of the lemma is

complete since we havew2 ≥ w1 ≥ 2
3ω.

• Case 2:Rpd < 2
3ω. Then we establish the following

property:

Property: ∃m ∈ [N ], m 6= p s.t. Rms ≥ 1
3ω and

Rmd ≥ 2
3ω.

Again, we can prove this property by contradic-
tion. Assume the contrary and considerΛ1 =
{

i ∈ [N ] : Rid < 2
3ω
}

. Note thatp ∈ Λ1 since we are
in Case2 andRis <

1
3ω, ∀i ∈ Λ1. The value of the cut

Λ1 is strictly smaller thanω, which is a contradiction.

Finally, consider the2-relay sub-network composed of
m andp. It can be easily verified thatω({m, p}) ≥ 2

3ω,
completing the proof of the lemma fork = 2.

The proof of the lemma for the general case follows similar
lines. The main idea is to show that given any arbitrary real
numbersRid andRis for i = 1, 2, · · · , N , we can gradually
discover ak-relay subnetworkΓ∗ such thatCΓ∗ ≥ k

k+1ω. �

VII. A LGORITHMIC COMPLEXITY

Given an arbitraryN -relay diamond network, character-
ized by the point-to-point capacities of the individual links
Ris, Rid, i ∈ [N ], can we efficiently discover ak-relay
subnetwork whose capacity satisfies (5)? In this section, we
prove Theorem 3.

Note that from the proof of Theorem 1, thek-relay subnet-
work Γ∗ ⊆ [N ] whose capacityCΓ∗ satisfies (5) is the one
for which w(Γ∗)/ω ≥ k

k+1 , wherew(Γ∗) andω are defined
in (20). The proof of Lemma 1 suggests a natural algorithm
to discover this network.

• For k = 1, the lemma proves that

∃i ∈ [N ] , Rid ≥
1

2
ω and Ris ≥

1

2
ω.

This nodei can be discovered by making2N compar-
isons in the worst case.

• For k = 2, the lemma first proves that

∃p ∈ [N ] , Rpd ≥
2

3
ω and Rps ≥

1

3
ω.

Then eitherRps ≥ 2
3ω or

∃m ∈ [N ] , m 6= p and Rmd ≥
1

3
ω and Rms ≥

2

3
ω.

We can follow this flow to discover relaysp andm for
which we haveω({m, p}) ≥ 2

3ω. p can be discovered
in at most2N comparisons. An extra comparison deter-
mines whetherRps ≥ 2

3ω or 1
3ω ≤ Rps < 2

3ω. In the
first case, the algorithm terminates. Otherwise, we need
at most2(N − 1) additional comparisons to discoverm.
This yields4N − 1 comparisons in the worst case.

• For 2 < k < N , the proof of the lemma in Appendix B
shows that any positive real numbersRis, Rid, i ∈ [N ]
can be either arranged as

– RNs ≥ k
k+1ω and RNd ≥ k

k+1ω,

or

– RNs ≥ k
k+1ω and k−a+1

k+1 ω > RNd ≥ k−a
k+1ω for

somea ∈ N such that1 ≤ a ≤ k − 1,
– and for 1 ≤ r ≤ l, ar+1

k+1 ω > Rrs ≥ ar

k+1ω and

Rrd ≥ k−ar−1

k+1 ω for somel ∈ N such that1 ≤ l ≤
k − 2, and a0, a1, . . . , al ∈ N such thata0 = 0 <
a1 < · · · < al−1 < al < a,

– andRl+1,d ≥ a
k+1ω andRyd ≥ k−al

k+1 ω.

For thesel + 2 ≤ k nodesΓ∗ = [l + 1] ∪ {N}, we have
w(Γ∗) ≥ k

k+1ω.

The flow in the proof of the lemma suggests a natural
algorithm to make this arrangement.

(a) Find the nodei ∈ [N ] such that

RNs ≥
k

k + 1
ω and RNd ≥

1

k + 1
ω,

and label it nodeN .
(b) Determinea such that1 ≤ a ≤ k − 1 and

RNs ≥
k

k + 1
ω and

k − a+ 1

k + 1
ω > RNd ≥

k − a

k + 1
ω.

(c) If a = 1, terminate the algorithm and declareΓ∗ =
{N}. Otherwise, seta0 = 0.

(d) For 1 ≤ r ≤ k − 2,

(d-1) Find the nodei ∈ [r,N − 1] such that

Ris ≥
ar−1 + 1

k + 1
ω andRid ≥

ar−1

k + 1
ω,

and label it noder.
(d-2) Determinear such thatar−1 < ar ≤ a, and

ar + 1

k + 1
ω > Rrs ≥

ar
k + 1

ω andRrd ≥
k − ar−1

k + 1
ω.

(d-3) If ar = a, terminate the algorithm and declare
Γ∗ = [r] ∪ {N}. Otherwise setr← r + 1.

The total number of comparisons to be made by the
algorithm can be upper bounded as follows:
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– Step (a): at most2N comparisons
– Step (b): at mostk − 1 comparisons
– Step (d-1): at most2(N − r) comparisons
– Step (d-1): at mostk − 1− r comparisons

Assuming that step (d) makes the maximum number of
iterationsk − 1, the total number of comparisons to be
made by the algorithm is upper bounded by

2N+(k−1)+
k−1
∑

r=1

2(N−r)+(k−1−r) = 2Nk− (k − 1)k

2
.

However, the above discussion assumes thatω is given.
Given the set of real numbersRis, Rid, i = 1, . . . , N , a
straightforward approach to computingω in (20) requires the
evaluation of2N cuts, while computing the value of each
cut requiresN comparisons. Instead, the following algorithm
allows to computeω in N logN running time.

First, sort (rearrange) the nodes in the order of increasing
Ris, i.e., R1s ≤ · · · ≤ RNs. For this sorted configuration,
observe that the cut with the minimum value in (20), i.e., the
cut Λ∗ for which

ω = max
i∈Λ∗

Rid +max
i∈Λ

∗

Ris,

is necessarily of the form in Figure 4. More precisely,Λ∗ =
Λm , [m+ 1, N ] andΛ

∗
= [m] for some1 ≤ m ≤ N . This

is easy to see: consider any cutΛ ⊆ [N ] not necessarily of
the form in Figure 4. Letm be the node inΛ with the largest
index, i.e.,m = max{i ∈ Λ} and letΛm = {m+ 1, . . . , N}.
We have

max
i∈Λm

Rid + max
i∈Λm

Ris ≤ max
i∈Λ

Rid +max
i∈Λ

Ris.

The second terms are equal becauseRis are sorted in increas-
ing order and the first term can be only smaller forΛm since
it is a subset ofΛ by construction. This reduces the number
of candidate cuts for the min cut from2N to N .

In other words, the mincut can be calculated by making
N comparisons of two numbers: the maximum valueRis,
i ∈ Λm, with the maximumRid, with i ∈ Λm, for
Λm = [m + 1, N ], m = 0, . . . , N . Assume that theRis

values are sorted as previously described - this can be done
usingN logN comparisons, for example with the heap sort
algorithm. Thus for the setΛm, the value we would use is
Rms. But we can also keep a sorted heap of theRid values,
that again can be created usingN logN operations. Then for
Λ1 we would use the max value, forΛ2 the max value after
removingR1d, etc. That is, we can take advantage of the fact
that each subset ofRid’s would also be ordered, to extract
the max value of the subset. Thus in total ofN + 2 logN
comparisons, we can computeω.

This implies that with at most(2k + 1)N + 2N logN
comparisons we can computeω, a constant gap approximation
to the capacity of theN -relay diamond network, and identify
a k-relay subnetwork that approximately achieves a fraction
k/(k + 1) of ω. This completes the proof of Theorem 3.

Fig. 4. The minimum cut on a configuration such thatR1s ≤ · · · ≤ RNs.

VIII. A MPLIFY-AND-FORWARD WITH N RELAYS VS.
ROUTING OVER THEBEST RELAY

In this section, we derive an upper bound on the rate
achieved by amplify-forward over the Gaussian N-relay dia-
mond network in terms of the capacity of the best relay. With
amplify-forward, the transmitted signals from the relay nodes
are nothing but the scaled versions of the received signals from
the source,Xi[t] = βiYi[t]. This induces a point-to-point link
between the source node and destination given by,

Yd[t] =

(

N
∑

i=1

hidhisβi

)

Xs[t] +

(

Z[t] +

N
∑

i=1

hidβiZi[t]

)

.

Using the familiar capacity expression for a point-to-point
AWGN channel, we get

CAF = log






1 +

∣

∣

∣

∑N
i=1 hidhisβi

∣

∣

∣

2

SNR

1 +
∑N

i=1 |hid|2|βi|2






. (22)

The βi’s in the above expression can be optimized to get the
largest communication rate subject to the power constraintat
the relays. SinceE[|Xi|2] ≤ P , we can write

|βi|2 =
SNR

1 + |his|2SNR
|αi|2,

where|αi| ≤ 1 for eachi. Next, we first upper bound the rate
in (22) and then express it in terms of the new variablesαi.
Applying the Cauchy-Schwarz inequality on the numerator of
the fractional term inside the logarithm, we get

CAF ≤ log

(

1 +
N
∑N

i=1 |hid|2|his|2|βi|2 SNR

1 +
∑N

i=1 |hid|2|βi|2

)

≤ log

(

1 +
N2maxi∈[N ] |hid|2|his|2|βi|2 SNR

max
(

1,maxi∈[N ] |hid|2|βi|2
)

)

.

The second inequality is obtained by upper bounding each
term of the sum in the numerator by the maximum term
and taking only the maximum element for the sum in the
denominator. In terms ofαi, this last upper bound can be
expressed as

CAF ≤ log



1 +
N2 maxi∈[N ]

|hid|
2|his|

2|αi|
2SNR2

1+|his|2SNR

max
(

1,maxi∈[N ]
|hid|2|αi|2SNR
1+|his|2SNR

)



 .
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In Lemma 3 below, we show that for any arbitrary positive
real numbersuid, uis and 0 ≤ bi ≤ 1, i = 1, 2, · · · , N , we
have

max

(

1,max
i∈[N ]

uidbi
1 + uis

)

max
i∈[N ]

(min(uid, uis)) ≥ max
i∈[N ]

biuiduis

1 + uis

(23)
Plugginguid = |hid|2SNR, uis = |his|2SNR andbi = |αi|2
in this relation, we get

CAF ≤ log

(

1 +N2 max
i∈[N ]

min(|hid|2SNR, |his|2SNR)

)

≤ max
i∈[N ]

min(Ris, Rid) + 2 logN

= C1 + 2 logN.

This proves Theorem 2. Lastly, we prove the inequality in
(23).

Lemma 3:Let uid, uis be arbitrary positive real numbers
and bi be a real number in the interval[0, 1] for i =
1, 2, · · · , N . Then,

max

(

1,max
i∈[N ]

uidbi
1 + uis

)

max
i∈[N ]

(min(uid, uis)) ≥ max
i∈[N ]

biuiduis

1 + uis

.

(24)
Proof of Lemma 3:The expression on the left-hand side of
(24) can be rewritten as

γ = max
i∈[N ]

max{min(uid, uis),
uidbi
1 + uis

min(uid, uis),

min(uid, uis) max
j∈[N ],j 6=i

ujdbj
1 + ujs

}.

If uis < uid, uidbi
1+uis

min(uid, uis) = uiduisbi
1+uis

is among the
terms to be maximized inγ. If uis ≥ uid, min(uid, uis) =
uid is among the terms to be maximized inγ and it satisfies
uid > uiduisbi

1+uis

. Therefore, we can immediately conclude that

γ ≥ max
i∈[N ]

biuiduis

1 + uis

.

IX. CONCLUSIONS

We showed that in anN -relay diamond network we can
use k of the N relays and approximately maintain ak

k+1
fraction of the total capacity. In particular, we can use a
single relay and approximately achieve half the capacity. Our
proof was based on reducing the network simplification to a
combinatorial problem.
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APPENDIX A
AN UPPERBOUND ON THE CUT-SET UPPERBOUND

(detailed derivation of Section V-A)

The cut-set upper bound in (7) can be further upper bounded
by

C ≤ min
Λ⊆[N ]

sup
Xs,XΛ,X

Λ

I(Xs, XΛ;Yd, YΛ |XΛ) (25)

≤ min
Λ⊆[N ]

sup
Xs,XΛ

I(Xs, XΛ;
∑

i∈Λ

hidXi + Z, YΛ) (26)

≤ min
Λ⊆[N ]

sup
X

I(Xs;YΛ) + sup
XΛ

I(XΛ;
∑

i∈Λ

hidXi + Z),

(27)

http://arxiv.org/abs/1012.0416
http://arxiv.org/abs/1111.4244
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where (25) follows by changing the order of maximization and
minimization in (7); (26) follows because

I(Xs, XΛ;Yd, YΛ |XΛ) = I(Xs, XΛ;Yd −
∑

i∈Λ

hidXi, YΛ |XΛ)

= h(Yd −
∑

i∈Λ

hidXi, YΛ |XΛ)

− h(Yd −
∑

i∈Λ

hidXi, YΛ |Xs, XΛ, XΛ)

= h(Yd −
∑

i∈Λ

hidXi, YΛ |XΛ)− h(Z,ZΛ)

≤ h(Yd −
∑

i∈Λ

hidXi, YΛ)− h(Z,ZΛ)

= I(Xs, XΛ;
∑

i∈Λ

hidXi + Z, YΛ).

Note that this last expression maximized over all random
variablesXs, XΛ is the capacity of the point to point channel
between{s,Λ} and{Λ, d}. The capacity of this channel can
be further upper bounded by the sum of the capacities of the
SIMO channel betweens and {Λ} and the MISO channel
between{Λ} andd which is the result stated in (27). Formally,
this follows because

I(Xs, XΛ;
∑

i∈Λ

hidXi + Z, YΛ)

≤ h(
∑

i∈Λ

hidXi + Z) + h(YΛ)− h(Z)− h(ZΛ)

= I(Xs;YΛ) + I(XΛ;
∑

i∈Λ

hidXi + Z).

The solutions to the maximization of these mutual informa-
tions over the imput distributions are well-know and yield the
capacities of the corresponding SIMO and MISO channels
[22]. Therefore, (27) can be further upper bounded as

C ≤ min
Λ⊆[N ]

(

log
(

1 + SNR
∑

i∈Λ

|his|2
)

+ log
(

1 + SNR
(

∑

i∈Λ

|hid|
)2
)

)

(28)

where SNṘ= P
N0W

. We will further develop a trivial upper
bound on this expression. For simplicity of notation, let us
introducetis=̇

√
SNR|his| andtid=̇

√
SNR|hid|. Separating the

casesΛ = ∅ andΛ = [N ], which correspond to the pure SIMO
and pure MISO cuts respectively in (28), we have,

C ≤ min

{

log
(

1 +
∑

i∈[N ]

t2is

)

, log
(

1 +
(

∑

i∈[N ]

tid
)2
)

,

min
Λ⊆[N ]
|Λ|6=0,N

(

log
(

1 +
∑

i∈Λ

t2is

)

+ log
(

1 +
(

∑

i∈Λ

tid
)2
))

}

.

Note that the variablestis and tid are real and positive. The
sums over the variablestid andtis can be increased by setting
each summand to the maximum of the variables that are

summed. For example, using also the fact thatlog is strictly
increasing we can write,

log
(

1 +
(

∑

i∈Λ

tid
)2
)

≤ log
(

|Λ|2 + |Λ|2max
i∈Λ

t2id
)

if |Λ| > 0.

Using similar arguments we get the following inequality,

C ≤ min

{

log
(

1 + max
i∈[N ]

t2is

)

+ logN,

log
(

1 + max
i∈[N ]

t2id

)

+ 2 logN,

min
Λ⊆[N ]
|Λ|6=0,N

(

log
(

1 + max
i∈Λ

t2is

)

+ log
(

1 + max
i∈Λ

t2id

)

+ log
(

|Λ|2|Λ|
)

)

}

.

Let us first focus on thelog
(

|Λ|2|Λ|
)

term. We have|Λ| +
|Λ| = N and hence

log
(

|Λ|2|Λ|
)

= log
(

N |Λ|2 − |Λ|3
)

.

This term is maximized when|Λ| = 2N
3 . Hence,

log
(

|Λ|2|Λ|
)

≤ 3 logN − log
27

4
.

Noting that

log
(

1 + max
i∈Λ

t2id
)

= max
i∈Λ

log
(

1 + t2id
)

,

we obtain the following upper bound,

C ≤ min
Λ⊆[N ]

max
i∈Λ

log
(

1 + t2id
)

+max
i∈Λ

log
(

1 + t2is
)

+G, (29)

where

G=̇max

(

3 logN − log
27

4
, 2 logN

)

.

APPENDIX B
A COMBINATORIAL PROBLEM

(proofs of Lemmas 1 and 2)

In addition toω(Γ), ω, ωk defined in Section VI, in the
due analysis we also use the notation[a, a+ b] = {a, a +
1, · · · , a+ b} for a ≥ 1 andb ≥ 0.

Proof of Lemma 1:Given any set of real numbersRis,
Rid, i ∈ [N ] giving ω in (20), we will prove the lemma by
establishing a number of properties for the these numbers in
terms ofω. These properties naturally suggest an algorithm
to discover a subsetΓ ∈ [N ] such that|Γ| ≤ k andω(Γ) ≥
k

k+1ω.
Given any set of real numbersRis, Rid, i ∈ [N ], we have

the following property

• Property (1):∃p ∈ [N ] such thatRps ≥ k
k+1ω andRpd ≥

1
k+1ω. If not, we would have the following contradictory
argument: Assume for alli ∈ [N ], we either haveRis <
k

k+1ω or Rid < 1
k+1ω. Let S = {i : Ris ≥ k

k+1ω}. By
the assumption, this means that∀i ∈ S, Ryd < 1

k+1ω.
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Therefore considering the subsetS ⊆ [N ], we can upper
boundω as,

ω ≤ max
i∈S

Rid +max
i∈S

Ris

<
1

k + 1
ω +

k

k + 1
ω = ω.

which is a contradiction.
• Case 1:Rpd ≥ k

k+1ω. In this case, the lemma is proved
sinceω({p}) = min (Rps, Rpd) ≥ k

k+1ω, and therefore
ωk ≥ ω1 ≥ k

k+1ω.

Note the proof is complete fork = 1 at this point, since
Rpd ≥ k

k+1ω is necessarily the case. We assume thatk > 1
in the remaining discussion.

• Case 2:Rpd < k
k+1ω. Then we have the following

property.
Property (2):∃m ∈ [N ], m 6= p such thatRms ≥ 1

k+1ω

and Rmd ≥ k
k+1ω. Otherwise, we would have the

following contradiction: Assume for alli ∈ [N ], i 6= p,
we either haveRis < 1

k+1ω or Rid < k
k+1ω. Let

S = {i ∈ [N ] : Ris ≥ 1
k+1ω}. By Property (1) above,

p ∈ S. Moreover,∀i ∈ S, Rid < k
k+1ω. Forp this follows

since we are in Case 2 and for otheri ∈ S it follows by
the assumption. Therefore we can upper boundω by

ω ≤ max
i∈S

Rid +max
i∈S̄

Ris

<
k

k + 1
ω +

1

k + 1
ω = ω

which is a contradiction.

Without loss of generality we can rearrangei ∈ [N ] and
assume thatp = N , i.e., RNs ≥ k

k+1ω and k
k+1ω > RNd ≥

1
k+1ω. Equivalently,

RNs ≥
k

k + 1
ω and

k − a+ 1

k + 1
ω > RNd ≥

k − a

k + 1
ω,

for an integera such that1 ≤ a ≤ k − 1. Similarly, we can
also assume thatm = 1, i.e.,R1s ≥ 1

k+1ω andR1d ≥ k
k+1ω.

We proceed by investigating two possible case forR1s.

• Case 1:R1s ≥ a
k+1ω. In this case, the lemma is proved

since we would have

ω({1, N}) > k

k + 1
ω,

which meanswk ≥ w1 ≥ k
k+1ω.

Note that the proof is complete fork = 2 at this point, since
1 ≤ a ≤ k − 1 yields a = 1 andR1s ≥ a

k+1ω is necessarily
the case. We assume thatk > 2 in the remaining discussion.

• Case 2: a
k+1ω > R1s ≥ 1

k+1ω. Equivalently,

a1 + 1

k + 1
ω > R1s ≥

a1
k + 1

ω and R1d ≥
k − a0
k + 1

ω,

for integersa1 anda0 such that1 ≤ a1 < a anda0 = 0.
We investigate this case, by proving the following propo-
sition.

Proposition 1: Given positive real numbersRis, Rid, i ∈
[N ], assume that we can arrange them in the following form.

• RNs ≥ k
k+1ω and k−a+1

k+1 ω > RNd ≥ k−a
k+1ω for some

a ∈ N such that1 ≤ a ≤ k − 1.
• For anyr such that1 ≤ r ≤ l, ar+1

k+1 ω > Rrs ≥ ar

k+1ω

andRrd ≥ k−ar−1

k+1 ω for somel ∈ N, 1 ≤ l ≤ k − 2,
anda0, a1, . . . , al ∈ N such thata0 = 0 < a1 < · · · <
al−1 < al < a.

Then, there exists ay ∈ [l + 1, N − 1] such thatRys ≥ al+1
k+1 ω

andRyd ≥ k−al

k+1 ω.
Before proving the proposition, we first use it to complete

the proof of Lemma 1. Note that we have currently proven
that for any positive real numbersRis, Rid, i ∈ [N ], either
rk ≥ k

k+1 , or the assumptions of the proposition are satisfied
for l = 1.

Assume that the assumptions of the proposition are satisfied
for some1 ≤ l ≤ k − 2. Then the proposition asserts the
existence ofy ∈ [l + 1, N − 1] such thatRys ≥ al+1

k+1 ω and
Ryd ≥ k−al

k+1 ω for someal+1 ∈ N such thatal < al+1 < a.
This leads to two possible cases for the newly discoveredy ∈
[l + 1, N − 1]:

• Case 1:Rys ≥ a
k+1ω. In this case, the proof of the lemma

is completed, because

ω([l] ∪ {y,N}) ≥ k

k + 1
ω,

and | [l]∪ {y,N}| ≤ k. This can be observed as follows:
AssumeRys ≥ a

k+1ω andRyd ≥ k−al

k+1 ω for somey ∈
[l + 1, N − 1]. Note that ifω([l]∪{y,N}) < k

k+1ω, there
exists at least one setS ⊆ [l] ∪ {y,N} such that

(

max
i∈S

Rid + max
i∈[l]∪{y,N}\S

Ris

)

<
k

k + 1
ω. (30)

We argue below that such a setS does not exist. Since
RNs ≥ k

k+1ω we should haveN ∈ S. Then alsoy ∈ S,
since otherwise we get the contradiction,

max
i∈S

Rid + max
i∈[l]∪{y,N}\S

Ris ≥ RNd +Rys

≥ k − a

k + 1
ω +

a

k + 1
ω

=
k

k + 1
ω.

Then by the same reasoning, we also havel ∈ S.
Otherwise,

max
i∈S

Rid + max
i∈[l]∪{y,N}\S

Ris ≥ Ryd +Rls

≥ k − al
k + 1

ω +
al

k + 1
ω

=
k

k + 1
ω.

Similarly for everyr ∈ [l − 1], we should also haver ∈
S. This is because ifr + 1 ∈ S andr ∈ [l] ∪ {y,N} \ S
we have the following contradiction,

max
i∈S

Rid + max
i∈[l]∪{y,N}\S

Ris ≥ Rr+1,d +Rrs

≥ k − ar
k + 1

ω +
ar

k + 1
ω

=
k

k + 1
ω.
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ThereforeS = [l] ∪ {y,N}. However, then we have

max
i∈S

Rid ≥
k − a0
k + 1

ω,

which contradicts (30) sincea0 = 0.
• Case 2: a

k+1ω > Rys ≥ al+1
k+1 ω. Without loss of gen-

erality we can rearrangey ∈ [l + 1, N − 1] and assume
that a

k+1ω > Rl+1,s ≥ al+1
k+1 ω and Rl+1,d ≥ k−al

k+1 ω.
Equivalently,

al+1 + 1

k + 1
ω > Rl+1,s ≥

al+1

k + 1
ω and Rl+1,d ≥

k − al
k + 1

ω,

for someal+1 ∈ N such thatal < al+1 < a. Therefore,
we have proven that the assumptions of the proposition
should indeed be satisfied withl + 1 in this case.

This implies that starting withl = 1, we can apply the
proposition recursively as long asl ≤ k−2. At each step of the
recursion, either we prove thatrk ≥ k

k+1ω and the proof of the
lemma is complete orl is increased by1. Assume thatl = k−2
and applying the proposition still does not prove the lemma
(i.e., thek-relays discovered do not satisfyw(Γ) ≥ k

k+1ω).
Then the proposition establishes the existence of a sequence
of positive numbersa0, a1, a2, · · · , ak−1 such that

a0 = 0 < a1 < · · · < ak−2 < ak−1 < a ≤ k − 1,

which is a contradiction. This implies that Case 1 should have
been true in one of the earlier iterations of the proposition,
which proves the lemma.

To summarize the conclusions from Case 1 in the above
discussion, we have shown that given any positive real num-
bersRis, Rid, i ∈ [N ] and 1 ≤ k < N , they can be either
arranged as

RNs ≥
k

k + 1
ω and RNd ≥

k

k + 1
ω,

or

• RNs ≥ k
k+1ω and k−a+1

k+1 ω > RNd ≥ k−a
k+1ω for some

a ∈ N such that1 ≤ a ≤ k − 1,
• and for 1 ≤ r ≤ l, ar+1

k+1 ω > Rrs ≥ ar

k+1ω andRrd ≥
k−ar−1

k+1 ω for some l ∈ N such that1 ≤ l ≤ k − 2,
and a0, a1, . . . , al ∈ N such thata0 = 0 < a1 < · · · <
al−1 < al < a,

• andRl+1,d ≥ a
k+1ω andRyd ≥ k−al

k+1 ω.

For thesel + 2 ≤ k nodesΓ = [l + 1] ∪ {N}, we have
w(Γ) ≥ k

k+1ω. �

Proof of Proposition 1:If the proposition were not true, then
we would have the following contradictory argument: Assume
for all i ∈ [l + 1, N − 1], we either haveRis < al+1

k+1 ω

or Rid < k−al

k+1 ω. Let S = {i ∈ [l+ 1, N − 1] : Ris ≥
al+1
k+1 ω}. This means that∀i ∈ S, Rid < k−al

k+1 ω and
∀i ∈ [l + 1, N − 1] \ S, Ris < al+1

k+1 ω. Therefore considering

the subsetS ∪ {N} ⊆ [N ], we can upper boundω as,

ω ≤ max
i∈S∪{N}

Rid + max
i∈[N ]\S\{N}

Ris

= max
i∈S∪{N}

Rid + max
i∈[l]∪([l+1,N−1]\S)

Ris

< max

(

k − al
k + 1

ω,
k − a+ 1

k + 1
ω

)

+ max
1≤r≤l

ar + 1

k + 1
ω

=
k − al
k + 1

ω +
al + 1

k + 1
ω = ω,

which is a contradiction. �

Proof of Lemma 2:We will prove that for the configuration
Ris = i R andRid = (k + 2 − i)R for 1 ≤ i ≤ k + 1, we
haveωk = k

k+1ω.
We first show that for this particular configurationω =

(k + 1)R. Let Λ be any subset of[k + 1] and let y(Λ) =
maxi∈Λ̄ Ris. Then,maxi∈ΛRid ≥ (k + 2)R − (y(Λ) +R).
Note that the last inequality holds even ify(Λ) = (k + 1)R.
Therefore, we have

ω = min
Λ⊆[k+1]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

≥ min
Λ⊆[k+1]

[(k + 1− y(Λ)) + y(Λ)] = (k + 1)R.

On the other hand,ω ≤ (k + 1)R. Therefore,ω = (k + 1)R.
We now prove that for anyΓ ⊂ [k + 1] with |Γ| = k, we

haveω (Γ) = kR. Let Λ be any subset ofΓ and lety(Λ) =
maxi∈Γ\Λ Ris. Thenmaxi∈ΛRid ≥ (k+2)R− (y(Λ) + 2R).
Note that this inequality holds even ify(Λ) = (k + 1)R. The
reason that we have usedy(Λ) + 2R this time is because of
the possibility thatargmaxi∈Γ\ΛRis + 1 6∈ Γ. Therefore, we
have,

ω (Γ) = min
Λ⊆Γ

(

max
i∈Λ

Rid + max
i∈Γ\Λ

Ris

)

≥ min
Λ⊆Γ

[(kR− y(Λ)) + y(Λ)] = kR.

Now, for anyΓ ⊆ [k + 1] with |Γ| = k there exists aj (Γ) ∈
[k + 1] such thatΓ = [k + 1] \ {j (Γ)}. Then, we have

ω (Γ) = min
Λ⊆Γ

(

max
i∈Λ

Rid + max
i∈Γ\Λ

Ris

)

≤ max
i∈[j(Γ)−1]

Ris + max
i∈[j(Γ)+1,k+1]

Rid

= (j (Γ)− 1)R+ (k + 2− (j (Γ) + 1))R = kR.

Note that this reasoning holds even ifj (Γ) = 1 or j (Γ) =
k + 1.

Therefore, we have proved that

ωk = max
Γ⊆[k+1]
|Γ|=k

ω (Γ) = kR.
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