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Abstract—In this paper, we show that the code-trellis and the to think that the two trellises can be reduced simultangpusl
error-trellis for a convolutional code can be reduced simula- f reduction is possible. Here, consider the situation that
neously, if reduction is possible. Assume that the error-tllis identical shifts occur both in the componentsgf and in

can be reduced using shifted error-subsequences. In this se, . . o
if the identical shifts occur in the subsequences of each ced those ofey,. In this case, if one trellis is reduced, then the other

path, then the code-trellis can also be reduced. First, we ¢ain  trellis should be equally reduced. In this paper, based tn th

pairs of transformations which generate the identical shifs both idea, we discuss the simultaneous reduction of a codéstrell

in the subsequences of the code-path and in those of the erfor and the corresponding error-trellis. First, we obtain theegal

path. Next, by applying these transformations to the genemdr  y.ansformations which generate the identical shifts botthe

matrix and the parity-check matrix, we show that reduction of .

these matrices is accomplished simultaneously, if it is petble. subsequenc_:es @fand in those ot. Next, we ShOW that these

Moreover, it is shown that the two associated trellises arelso transformations preserve the relation tiae is a generator

reduced simultaneously. matrix and the other is the corresponding parity-check matrix.

(In this paper, we call this relation theGH Relation” and

if G(D) and H(D) have this relation, then it is denoted as
In this paper, we always assume that the underlying field@(p) & H(D)). Using this property, it is shown tha&t(D)

F = GF(2). LetG(D) and H(D) be the generator matrix andand /(D) are reduced simultaneously, if reduction is possible.

the parity-check matrix of ain, » —m) convolutional code Moreover, it is shown that the corresponding two trellises

C, respectively. Ariel and Snyders [1] presented a constmct are also reduced simultaneously. These results again imply

of error-trellises based on the scalar check matrix deriv@gat a code/error-trellis construction using shifted deder-

from H(D). They showed that when somgtl) “column” subsequences is very effective.

of H(D) has a factorD'!, there is a possibility that state-

I. INTRODUCTION

space reduction can be realized. Being motivated by their ~ |l. TRELLIS CONSTRUCTION USING SHIFTED
work, we also examined the same case. The timeror PATH-SUBSEQUENCES
e, = (e,(gl),---,e,(c”)) and syndrome(, = (<,§1>,---,c,§m>) A. Error-trellis construction using shifted error-subsequences

are connected with .the reI.atioq’\k = e;?HT(D) (T means | 4 H(D) be the parity-check matrix for atn,n — m)
transppse).(jl):rom tlh|8)relat(|;_))n,.we ng‘uced 9 th"’}t ,thes{anconvolutional code”. Consider the error-trellis based on the
formatione;” — D'ey” = e;”, is equivalent to dividing the ¢yngrome formerfI” (D). In this case, the adjoint-obvious
jth column of (D) by D'. That is, reduction can be realizedeqjization of HT (D) is assumed unless otherwise specified.

by shifting the “subsequencd®{’’} of the original error-path Assume that thgth column of H(D) has the form
e. It is stated [1] that their construction can be used also to

obtain code-trellises. However, it is not described in thpeg. ( D'5hi;(D) D%hy;(D) ... Dbhj, (D) )T, 1)

On the other hand, our construction is based on an equivalent , e .
modification of the relation¢,, = e, HT (D). Hence, our wherel; > 1. Let H'(D) be the modified version off (D)

method can be directly extended to code-trellises. That \|'¥',th the jth column being replaced by

in thg case of code—trellisgs, the_ constructic_)n is.basedwen t ( hy;(D) hy(D) ... (D) )T. 2
relationy,, = u;G(D) and its equivalent modifications, where ‘
uy, andy,, are the timek information and code symbols, re-Also, let e 2 (e]gl), . .7620')7 . -,e,(g")), where e;(j)

spectively. Note that there exists a one-to-one correspurel Dlje](cj) — e](cj)l__ Then we have
between the code-paths in a code-trellis and the erroispath Y
the corresponding error-trellis. Accordingly, it is remable ¢, = e, HT(D). (3)
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Hence, in the case where thigh column of H(D) has a by dividing the first “row” by D2. Hence, the dimensiod,;
factor D!, there is a possibility that an error-trellis withcan be reduced to.

reduced number of states can be constructed by shifting the _ _ _ _

jth error-subsequence Hy time units [9]. Assume that the C. Code-trellis construction using shifted code-subsequences

corresponding code trellis is terminated in the all-zdatesat Note that the relationy, = u;G(D) holds with respect to

t=N. Thene! = el(cj)l' is modified ase;’”’ = ¥} ,,>» a generator matrbxG(D), wherew;, = (ul - u{""™)
where< t > denoteg mod(N+l ) (i.e., “cyclic shift”). andy, = (yl(c ) 7yl(€n)) are the timek information and

code symbols, respectively. In the same way asiHdD), b
dividing the jth column of G(D) by D% or by multiplying
the jth column of G(D) by D%, reduction ofG(D) can be

The construction using shifted error-subsequences is fyt,jized. We see that the former corresponds to the backward
ther extended [9], [10]. That is, a reduced error-trellig, hift y (a) ©)

— Yy, Whereas the latter corresponds to the
can be equally constructed using “backward-shifted” error ) )
subsequences. Consider the transform&tjﬁnﬁ DL (3) forward -shifty,” — yk L . Note that the shift directions are
reversed compared tH (D).

B. Error-trellis construction using backward-shifted error-
subsequences

egﬁ_l We see that this is equivalent to “multiplying” ttjeh
column of H(D) by Ds. Let H'(D) be the parity-check || T RANSFORMATIONS GENERATING THE IDENTICAL
matrix after modification. I’ (D) is reduced to an equivalent SHIFTS BOTH INy AND IN e

H" (D) with overall constraint length less than thati#f D),
then reduction can be realized. We remark that the péwef
D has to be determined properly for eaghFor the purpose, Consider the transformations which generate the identical
we can use theeciprocal dual encoder [6] H (D) associated shifts both in the components gf, and in those ok;. Now,

A. General case

with H (D). assume that the relatio (D) < H(D) holds. Consider a
Example 1 ([9]): Consider the canonical parity-check matriypair of transformations:
D D2 D2 1 5 1 dide thejth column of G(D) by D4 and multiply
= )
1(D) 1 1+D+D?> 0 ) the same column bﬁl( ,

+(d) .
Since all the columns off; (D) are delay free, any further 2) divide thejth column OfH( ) by Db and multiply
reduction seems to be impossible. In fact, it follows from the same column by)J
Theorem 1 of [1] that the dimensieh of the state space of theThen
error-trellis based oil{ (D) is 4. However, a corresponding
generator matrix is given bg#; (D) = (1+ D + D? 1, D3 +
D*). Observe that the third “column” af/; (D) has a factor y =y (8)
D2?. (Remark: It suffices to divide the third column b? in bl =
order to obtain a reduced code-trellis.) This fact impliest & 2) thejth component ok, becomes
reduced error-trellis can be constructed [1], [9]. Thensider

1) thejth component ofy, becomes

the reciprocal dual encoder eEg') — egji(dwﬂ.m)' (9)
mm) =, | D (5)  After shif by ! depend
D2 1+D+D2 0 ) ter shifting el jd)HN(m) y [ time units ( is independent

- ()
Note that the third column offl;(D) has a factorD?2. of j), compare the time-index of ' D 4o and that of

Accordingly, dividing the th!rd c.olumn oHl_(D)~by D?, we y(J) & om- If the two time-indices coincide, thegm and
can construct an error-trellis with states (i.e.d; = 2) [1], “**+L 4

[9]. Here, notice that each error-path in the error-tréiised e,i) have “relatively” the identical shift. This condition is
on HI (D) can be represented in time-reversed order usitgitten as

the error-trellis based o#f] (D). Hence, a facto? in the @ () (m) . =(m) .

column of H;(D) corresponds to backward-shifting by two L= (77 +17) = (7 +17) (L= j <n), (10)
time_units (i.e._,D—Q) in terms of the 02riginalH1(D). Hence, \where! is a constant independent ¢f(1 < j < n). (In the
multiply the third columnH,(D) by D*. Then we have following, this condition is denoted ag™z".)

Dp* D* p* ) (6) B. Special cases

/ —
(D) = ( 1 1+D+D* 0
We see that this matrix can be reduced to an eqU|vaIe(9EcaSZ:d gn:%ozgligz IS; applied both to the columns of

canonical parity-check matrix From the assumptioni§.m) = fj(.m) = 0. Hence, we have

7 o 1 1 1 )
Hy(D) = ( 1 1+D+D? 0 ) 0 1= 1Y 4 189, (11)



Here, assume that eith(‘-;grd) or Zg.d) is 0. Define the setd.¢
and Ly as

1>

Le = {(j:17=1}={:1{" =0}

(1" =1y=1: 1Y =0}.
In words, L is the set of columns of:(D) from which D!
is factoring out, wherea& y is the set of columns off (D)

from which D! is factoring out. Note thaf.; and Ly are
disjoint and the relation

(12)

2 (13)

Ly

LGULH:{lvza"'an} (14)

holds. In the following, we call this kind of transformat®n
“type-1".
Example 2: Consider the relation

GQ(D) (D+D21D211+D)

o HQ(D):(; 1—1(—)D ﬁ) (15)

Choosingl =1, Lg = {1,2}, and Ly = {3}, we have

GyD) = (1+D,D,1+D)
o Hé(D)z(é 1+OD (1)) (16)

Case 2: Division and multiplication are separately applied

either to the columns of?(D) or to the columns off (D).

Without loss of generality, assume that division is applied

to the columns of7(D), whereas multiplication is ~applied to
the columns off (D). From the assumptiom;m) = l;.d) =0.

Hence, we have o
.

J

_ @
1=1{" - (17)

In particular, set = 0. Then we have

~(m A
W =1 (= 1), (18)

This is equivalent to dividing theth column of G(D) by

D! and multiplying thejth column of H(D) by D'. In the

following, we call this kind of transformations “type-2".
Example 3: Consider the relation

G3(D) = (1+D,1,D+ D?
D 0 1
Choosingl{" = I{" = 1, we have
Gy(D) = (1+D,1,1+D)
,w_ (D 0 D
& H3(D)_( 1 14D 0 > (20)
Note thatH(D) can be reduced to
o (10 1
H3(D)_(1 14+D 0)' (1)

C. Property of transformations

Observe that in Example 2 and Example 3, the GH Relation
is preserved after type-1 and type-2 transformations. It is
shown that this property holds in general. Assume that the
relation G(D) < H(D) holds. Also, assume that a pair of
transformations which satisfies the conditiélaz is applied
to G(D) and H(D). Let G'(D) and H'(D) be the resulting
matrices, respectively. Then we have the following.

Proposition 1. The relationG’(D) < H'(D) holds.

Proof: Fix p, ¢ (1 <p<n-—m, 1 <q<m) arbitrarily.
Let

(gpl(D)v"'ngj(D)v"'vgpn(D)) (22)

be thepth row of G(D). Then the(p, j) element ofG’(D) is
given by

(m)
Db
gpj(D)W- (23)
Similarly, defining thegth row of H(D) as
(hql(D)7"'7hqj(D)a"'ahqn(D))a (24)
the (¢, j) element of H'(D) is given by
o
h‘lj (D) @ (25)

Then the(p, ¢) elementh,  of G'(D)H'" (D) is given by

l~(‘7n)
/ J

pq

hqj (D)

()
j= g

Zn: gm'(D)hqj(D)DUi-’")+f§-m)>—<z;d>+z;d>>
J=1

% ngj (D)hg; (D). (26)
=1

SinceG(D) < H(D), Y_7_, gpj(D)he; (D) = 0. Hence, we
haveh;,, = 0. [

IV. SIMULTANEOUS REDUCTION OFG(D) AND H (D)

The discussion in the previous section implies t64D)
and H(D) can be reduced simultaneously, if reduction is
possible. Assume that the relatiéf(D) < H (D) holds. Let
v andv be the overall constraint lengths @{ D) and H (D),
respectively. If bothG(D) and H(D) are canonical [4], [5],
then we haver = v*. Here, apply a pair of transformations
which satisfies the conditiofisr to G(D) andH (D). Denote
by +/ and v/t the overall constraint lengths of the modified
matrices’ (D) andH' (D), respectively. Note that the relation
G'(D) < H'(D) still holds from Proposition 1. Hence, if
necessary, by modifying equivalently, we have = »/*.
Therefore, if the strict inequality’ < v (v'+ < v1) holds,
thenG(D) and H(D) are reduced simultaneously. That is, we

Type-1 and type-2 transformations form a subclass of gemave the following.

eral transformations defined in Section IlI-A. However,she
transformations are quite effective.

Proposition 2: Assume that the relatio&/(D) < H(D)
holds. Also, assume that a pair of transformations which



satisfies the conditiof'sy is applied toG(D) and H(D). In
this case, ifG(D) is reduced, therH (D) is equally reduced,
and vice versa.

Example 4: Assume that

G4(D) = (1+D+ D?* D,D*+ D)
D3 D? 1
& Hy(D) = (D 1+ D + D? 0>' (27)

Note that bothG4(D) and Hy(D) are canonical and the
equality v = v+ = 5 holds. Choosing = 1, Lg = {2,3},
and Ly = {1}, let us apply a type-1 transformation. Then we
have

Fig. 1. Example code-trellis associated wity (D).
G (D) (1+ D+ D?*1,D?* + D*)

D? D? 1
& Hy(D) = ( 1 14D+ D> o>' (28)

Also, let us apply a type-2 transformation WH&‘P = Zz(,,m) =
2. Then we have

GJ(D) = (1+D+ D?*1,D+ D?%)
D? D? D?
" o
& H{(D) = < 1 1+D+D? 0 > (29)
Since H} (D) is reduced to
1 1 1
/o) = ( ). o
I . 0 @m0 @l P-or 10 e
we finally have
GZ(D) _ (1 +D+ D27 1,D+ D2) Fig. 2. Example error-trellis based diil (D).
" B 1 1 1
& Hi (D) = ( 1 1+D+D? 0 ) (31)

) ] Proposition 2, it is reasonable to think that and T, are

v=uvt :_5 to v = V/l_ =2 ) _ Proposition 3: Assume that a pair of transformations which
Remark: The reduction process is not unique. In the abo\gyjisfies the conditiof's  is applied toG (D) and H(D). In

example, if a type-2 transformation is applied@ (D) and  thjs case, if the code-trellis associated witiD) is reduced,

Hy(D) with 1§ = I§"™ = 3, then we have then the error-trellis based at” (D) is equally reduced, and
GZ(D) _ (1 +D+ DQ,D,D + DQ) Vice versa. - -
D3 D2 D3 Proof: Denote bye’ the shifted version ok. Assume
< Hy(D) = ( D 1+D+D? 0 ) that the set of shifted error-pati®’} is represented using
the reduced error-trellig’ based ond’? (D). Note that there
~ H*(D) = ( D ! ) D )7 (32) exists a one-to-one correspondence between the code-paths
D 1+D+D 0 {y} and the error-pathge}. Also, from the assumption of
where “~" means equivalent. Here, choositg= 1, L = the transformations, the identical shifts are generateith bo
{2}, and Ly = {1,3}, let us apply a type-1 transformationin the subsequences of a code-pgthand in those of the
Then we havew’] (D) < HY' (D). corresponding error-path. Hence, the set of shifted code-

paths{y’} is also represented using the reduced code-trellis

T! associated withG’(D). That is, if one trellis is reduced,
Assume that the relatiods(D) < H(D) holds. LetT. then the other trellis is equally reduced. [

be the code-trellis associated with(D). It is assumed that Example 5: Consider the relatios (D) < Hy(D). Fig.1

T. is terminated in the all-zero state at= N. Denote by shows the code-trellis associated with (D). Note that the

T. the corresponding error-trellis. Note that each code-pathrellis is terminated in the all-zero staf@0) at t = 4. The

in T, corresponds to the unique error-pathin 7. by way corresponding error-trellis based &f (D) is shown in Fig.2.
of the received data. Here, apply a pair of transformationsa received dataz is assumed to be

which satisfies the conditiof’sr to G(D) and H(D). (Let
G'(D) and H'(D) be the resulting matrices.) Then from z =21 29 23 z4 z5 = 001 000 011 010 000, (33)

V. SIMULTANEOUS CODE/ERRORTRELLIS REDUCTION



(0)-

(1)~

7010 010 010 010

Reduced code-trellis associated with (D).

¢§¢p=o0

=10 W01 =10 =0

Fig. 4. Reduced error-trellis based & (D).

where z; = 000 is the “imaginary” received data at= 5.
The syndrome sequence is given as

¢=¢;¢3¢5¢4 ¢ =00 1001 10 01. (34)

00. Similarly, the third code-bit of the branch frotn= —1 to
t = 0 must be0. Here, to each of admissible error-paths in
Fig.4, we add the modified received data Then we have

y;n 000 000 000 000 000
y;m = 000 000 101 111 000
yz’o3 = 000 101 111 000 000
y;M 000 101 010 111 000.

We observe that the obtained paths completely coincide with
those in Fig.3. That is, the two trellises associated (D)
and H] (D) have been reduced simultaneously.

VI. CONCLUSION

We have shown that the code-trellis and the error-trellis
for a convolutional code can be reduced simultaneously. The
proposed method is based on the fact that if the identicftbshi
occur both in the components gf, and in the components of
ex, then the two trellises are reduced simultaneously, if cedu
tion is possible. We have obtained the general transfoomsti
which generate the identical shifts both in the subsequseote
y and in those o&. We have shown that these transformations
preserve the GH Relation. Using this property, we have shown
that reduction ofG(D) and H(D) is accomplished simulta-

As we have already seen in Example 2, if the first angeously, if it is possible. Moreover, we have shown that the

second components @f, are shifted left by the unit time corresponding two trellises are also reduced simultarigous
and if the third component of;, is shifted right by the unit These results again imply that a code/error-trellis cormsion
time, thenG»(D) and Hy(D) are reduced simultaneously.ysing shifted code/error-subsequences is very effectve.
Denote by G5 (D) and H;(D) the modified generator andremark that a parity-check matrix with the form described in
parity-check matrices after transformation, respecfivéhe the paper appears in [11] in connection with a class of LDPC
corresponding code and error-trellises are shown in Figd3 aconvolutional codes. We think [10] that the proposed method
Fig.4, respectively. is useful for reducing the state complexity of the codeferro
First, consider the reduced error-trellis in Fig.4. In thigellis for such an LDPC convolutional code.

example, it is defined aéc@) = e(<3,)€_1>, where< t > denotes
¢t mod5. Sincees = 000, we havee,” = %) = el¥ — 0

using the relatiore;f?’) = e(<31)c—1>- That is, the third error-bit
of the branch from = 0 to ¢ = 1 must be0. Similarly, the
first two error-bits of the branch from= 4 to ¢t = 5 must be

00. Then we have four admissible error-paths:
;1 = (000 001 010 011 000
000 001 111 100 000
s 000 100 101 011 000
»s = 000 100 000 100 000.
Here, noting the relatiore;f?’) = e(<3,)€_1>, we cyclically shift
the third bit of eachz;, to the right by the unit time and make
the modified received datel for H4' (D). 2’ is given by

(1]

(2]
(31
(4]
(5]

~

P2

~

o 0. 0.0

(6]
(7]

(8]
!

z P

000 001 010 011 000.

(35)

Note that ifz’ is inputted toH;"' (D), then the same syndrome
sequence& = 00 10 01 10 01 as for HY (D) is obtained. [10]
Next, consider the reduced code-trellis in Fig.3. Sipge=
000, we havey,” = y)_ = y{? =0 (i =1,2). That is, the
first two code-bits of the branch from= 3 to ¢ = 4 must be

El

[11]

REFERENCES

M. Ariel and J. Snyders, “Error-trellises for convoloial codes—Part I
Construction,”|EEE Trans. Commun., vol. 46, no. 12, pp. 1592-1601,
Dec. 1998.

G. D. Forney, Jr., “Convolutional codes I: Algebraic wstture,” |IEEE
Trans. Inform. Theory, vol. IT-16, no. 6, pp. 720-738, Nov. 1970.

, “Structural analysis of convolutional codes via dual tle
|EEE Trans. Inform. Theory, vol. IT-19, no. 4, pp. 512-518, July 1973.
R. Johannesson and K. S. Zigangiréwndamentals of Convolutional
Coding. New York: IEEE Press, 1999.

R. J. McEliece and W. Lin, “The trellis complexity of coolational
codes,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1855-1864,
Nov. 1996.

S. Riedel, “MAP decoding of convolutional codes usingipeocal dual
codes,”|EEE Trans. Inform. Theory, vol. 44, no. 3, pp. 1176-1187, May
1998.

V. Sidorenko and V. Zyablov, “Decoding of convolutionabdes using a
syndrome trellis,"EEE Trans. Inform. Theory, vol. 40, no. 5, pp. 1663—
1666, Sept. 1994.

M. Tajima, K. Okino, and T. Miyagoshi, “State-complexitreduction
for convolutional codes using trellis-module integratiolEICE Trans.
Fundamentals, vol. E89-A, no. 10, pp. 2466-2474, Oct. 2006.
__, “Error-trellis construction for convolutional codes ngishifted
error/syndrome-subsequencd£1CE Trans. Fundamentals, vol. E92-A,
no. 8, pp. 2086—2096, Aug. 2009.

, “Error-trellis state complexity of LDPC convolutional des
based on circulant matrices,” Proc. ISTA2010, pp. 19-24, Oct. 2010.
R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, andJDCostello,
Jr., “LDPC block and convolutional codes based on circutaatrices,”
|EEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2966—-2984, Dec. 2004.




	I Introduction
	II Trellis construction using shifted path-subsequences
	II-A Error-trellis construction using shifted error-subsequences
	II-B Error-trellis construction using backward-shifted error-subsequences
	II-C Code-trellis construction using shifted code-subsequences

	III Transformations generating the identical shifts both in y and in e
	III-A General case
	III-B Special cases
	III-C Property of transformations

	IV Simultaneous reduction of G(D) and H(D)
	V Simultaneous code/error-trellis reduction
	VI Conclusion
	References

