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Abstract— We consider spatially coupled code ensembles. A system being equal to the static or condensation thresbbld)
particular instance are convolutional LDPC ensembles. It vas  coupled graphical models has recently been shown to occur
recently shown that, for transmission over the memorylessibary for compressed sensing [5], and a variety of graphical meodel

erasure channel, this coupling increases the belief propation . L . . :
threshold of the ensemble to the maximum a-posteriori threlsold '™ statistical physics and computer science like the stedal

of the underlying component ensemble. This paved the way for K -SAT problem, random graph coloring, or the Curie-Weiss
a new class of capacity achieving low-density parity checkocles. model [6]. Other communication scenarios where the spatial

It was also shown empirically that the same threshold saturon  coupled codes have found immediate application is to aehiev

occurs when we consider transmission over general binary ut the whole rate-equivocation region of the BEC wiretap clenn
memoryless channels.

In this work, we report on empirical evidence which suggests [7]- . . .
that the same phenomenon also occurs when transmission take It IS tempting to conjecture that the same phenomenon
place over a class of channels with memory. This is confirmed occurs for transmission over general channels with memory.

both by simulations as well as by computing EXIT curves. We provide some empirical evidence that this is indeed the
case. In particular, we compute EXIT curves for transmissio
over a class of channels with memory known as the Dicode
Erasure Channel (DEC). We show that these curves behave
It has long been known that convolutional LDPC (or span an identical fashion to the ones when transmission takes
tially coupled) ensembles, introduced by Felstrom andi#ig place over the memoryless BEC. We also compute fixed points
girov [1], have excellent thresholds when transmitting rov€FPs) of the spatial configuration and we demonstrate again
general binary-input memoryless symmetric-output (BMSmpirically that these FPs have properties identical taothes
channels. The fundamental reason underlying this good perthe BEC case.
formance was recently discussed in detail in [2] for the caseFor a review on the literature on convolutional LDPC
when transmission takes place over the binary erasure eharensembles we refer the reader to [2] and the references
(BEC). therein. As discussed in [2], there are many basic variants
In particular, it was shown in [2] that the BP threshol@f coupled ensembles. For the sake of convenience of the
of the spatially coupled ensemble (see the last paragraphredider, we quickly review the ensemijtg, d,, L, w). This is
this section for a definition) is essentially equal to the MAkhe ensemble we use throughout the paper as it is the simplest
threshold of the underlying component ensemble. It was algpanalyze.
shown that for long chains the MAP performance of the chain
cannot be substantially larger than the MAP threshold of the
component ensemble. In this sense, the BP threshold of lg&h'e(dl’d“L’w) Ensemble [2]
chain is increased to its maximal possible value. This is theWe assume that the variable nodes are at sectiefis L],
reason why they call this phenomethaeshold saturation via L € N. At each section there arg/ variable nodes)M &
spatial coupling In a recent paper [3], Lentmaier and Fettwei8. Conceptually we think of the check nodes to be located
independently formulated the same statement as conject@eall integer positions fronj—oc, oc]. Only some of these
They attribute the observation of the equality of the twBositions actually interact with the variable nodes. Attreac
thresholds to G. Liva. The phenomena of threshold saturatiposition there aref- M check nodes. It remains to describe
seems not to be restricted to the BEC. It was also sholl@W the connections are chosen. We assume that each of the
recently in [4] that the same phenomena manifests itselifwhé connections of a variable node at positias uniformly and
we consider transmission over more general BMS channeldidependently chosen from the range .., i +w — 1], where
The principle which underlies the good performance ¢f iS @ “smoothing” parameter. In the same way, we assume
spatially coupled ensembles is very broad. It has been shothat each of thel. connections of a check node at position
to apply to many other problems in communications, ari@l independently chosen from the range- w +1,...,1].
more generally computer science. To mention just a few,A discussion on the above ensemble and a proof of the
the threshold saturation effect (dynamical threshold & tfiollowing lemma can be found in [2].

I. INTRODUCTION
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Lemma 1 (Design Rate)The design rate of the ensemble Example 2:Consider JIT decoding of the DEC with

(d1,dy, L,w), with w < 2L, is given by (5,15)-regular LDPC ensemble. The design rate of this code is
w [ inds 2/3. Using the SIR formula£ 1—2¢2/(1+¢)) from [9] we get
Rldy, dv, I, w) = (1 — ﬂ) Cdwt+1-230 () ~that the Shannon threshold at rate=2/3 is giverey = 0.5.
. _ dy”  dy 2L 41 Figure[1 shows the performance of the JIT decoder. We see
In the next section we provide the channel model and t

S . R that the threshold is given bl (5, 15) ~ 0.363471, which is
Jomtl |tgrat|\;etr(11| ec_oqletr. _\tNe ?Iso gresznt thehden3|ty e“m‘{'; far away from the capacity. Throughout the paper we will use
analysis of the Joimt fterative decoder when we const %ﬁgc(dl,dr) to denote the threshold of the JIT decoder when

(ch, dv)-regular LDPC ensembles. In the sec_tlon on may. use(d,, d;)-regular LDPC ensemble and transmit over the
results, we demonstrate the threshold saturation phermmgkc

by using spatially coupled codes.
II. CHANNELS WITH MEMORY: THE DICODE ERASURE 10
CHANNEL

The particular class of channel with memory that we 0.8
consider is the Dicode Erasure Channel (DEC). The DEC is
a binary-input channel defined as follows. The output of a
binary-input linear filter(1 — D) (D is the delay element)
is erased with probabilit and transmitted perfectly with
probability 1 — e. For this channel we will be interested in the
symmetric information rate (SIR), i.e., the capacity assigm
i.i.d Bern(1/2) signalling. In this case, the Shannon thods
for a given rater is given by 5= + 11/(1 — )2 +8(1 —r). 0.2
The details on the definition of the channel and the analytica
formula for the SIR can be found in the thesis of Pfister [8]
and in [9]. 0.0 0.2
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A. Joint Iterative Decoder, Density Evolution and the EXsg 1 The 8P curve for théd, = 5,d: — 15)-regular ensemble and

tended BP Fixed Points transmission over the DEC. The threshold of the JIT decoslegivien by

We use the joint iterative decoder (JIT) of Pfister and SiegﬁégFC(& 1) ~ 0.363471.

[9]. More precisely, we consider a turbo equalization gyste h Th | Il the fixed-boi
which performs one channel iteration (BCJR step) for each it The EXIT C“rYe-T e EXIT curve p ots all the fixe -pqnts
eration over the LDPC code. As a result, in every iteratiost fi of the DE eqt:latl?rzl. The curve is given by the parametric curve
the channel detector uses the extrinsic information piexvialy '{(lh_ %E_ 2)%7")%, e(z)}. We obtaine(z) by solving fore

the LDPC code to compute its extrinsic erasure fractionsTHI" the equation.

is then fed to the LDPC decoder which then again compute slanLer;lcr:nple, Web?k)t the EXIT _culr:\_/e for \Zla_rljﬁwz’lff_r);] h
the usual variable node and check node erasure message§egu ar ensembles as shown in Fiddre 2. The thresh-

The simplicity of the DEC gives an analytical formula fo2d is got by dropping a vertical line from the |eftmost point

I JIT
the erasure fraction of the message which is passed from%%any given curve. We note that for every exic(di, ),

channel detector to the LDPC code (see [9] for a derivatior). re are (_axactly_ 3“fi>’<,ed—points. One of them be_ing the trivia
This is given by fixed-point. This “C” shape of the EXIT curve is also what

we observe when we transmit through a memoryless BEC
flz) = 4¢ using (d, d,)-regular LDPC ensemble. Also we remark that
(2 — (1 —¢)?’ as the degrees increase, keeping the design rate fixed, the

wherez represents the fraction of erasures entering the chandlli threshold keeps on decreasing. This is also the case for
detector from the LDPC codef(.) represents the extrinsic transmission over memoryless BEC. In fact, for memoryless

erasure information provided by the channel detector. BEC case, the BP threshold goes to zero as we increase the
To summarize: the density evolutﬂ)fDE) equation for the degr_ees. We can also show the same result for the DEC. More
case of(d), d,)-regular LDPC ensemble is given by precisely, we have

Lemma 3 (JIT Threshold Goes to Zerdjor any (di, d;)-
regular ensemble we have

xr = f((l - (1 — x)dr_l)dl)(l _ (1 _ x)dr—1>d1—1_ :

. . JIT d 7dr S .
Note th_a_lt the term |r_15|de the br_ac_ketsﬁ('n.) represents the €oec(dh, dr) \/\/ﬁ(l ~ (= De V&)
probability that a variable node is in erasure as given by the

LDPC code. Also it is not hard to see thﬁ@) <1 for any 270 be very precise, we should call the curves we plot as EXEdurves.

xX. The reason being that we do not provide any operation irgtfion of these
curves, like the Area theorem [10] in this work. The curves/aseonly to
1See [9] for a rigorous justification of the density evolutianalysis. illustrate the capacity achieving nature of coupled-codes




for this rate is given byS" = 0.5. For other rates similar

. DEC
o results can be observed. From the preceding section we see
that standardd,, d,)-regular LDPC ensembles do not saturate
0.8 the JIT threshold (to the Shannon threshold).
g We begin by writing down the DE equation for the coupled-
I codes.
< 06
T A. Density Evolution
\T“ 0.4 Consider the(dy, d,, L, w) ensemble. Recall that there are
= 2L + 1 sections of variable nodes. Each section hds
variable nodes. We transmit variable nodes sectionwise ove
0.2 the DEC. More precisely, the variable nodes in sectidnare
transmitted first, followed by variable nodes in sectioh + 1
and so on so forth till we finally transmit all the variable eod
0.0 0.2 0.4 0.6 0.8 1.0 in sectionL. As a consequence we have a channel detected

€ factor graph sitting on top of each section of the coupledeco
Fig. 2. The EXIT curve for regular LDPC ensembles w(th, d.) given by To perform the DE ‘rfmallyslls’ we alreac_jy take the linit—
(3,9), (5,15), (7,21), (10,30), (30, 90), and transmission over the DEC.o0. As a result of this limit, one can ignore the boundary
We observe that the JIT threshold moves to the left and estiytwill go to  effects of the channel detector and treat the channel detect
zero as degrees go to infinity. as disconnectd
Let z;, i € Z, denote the average erasure probability which
Jls emitted by variable nodes at positionFori ¢ [—L, L] we

Proof: We claim that the necessary condition for the Jlset:z:i 0. Fori € [-L, ] the DE is given by

decoder to succeed is given by

w—

1 w—1
2 de—1ydi—1 1 1 d—1\ -1
6(1—(1—17) )1 <z, Ii:q(l——Z(l—EZIiJrj,k) ) 5 (1)

w L —
for all x € (0,1]. Indeed, suppose on the contrary that there o =0 F=0
exists ac € (0, 1] such that the above inequality is violatedWheree; is given by
Thus we have?(1 — (1 — ¢)%»~1)4=1 > ¢ Since f(x) > €2

w—1 w—1
for all z € [0, 1] we get € = f((l . Z(l - % Z xi-ﬁ-j—k)dr_l)dl), (2)
0 k=0

w 4
de—1ydy—1 7=
fe)d=(1=¢) T ze where recall thatf(-) is the channel extrinsic transfer
This implies that there exists a FP of DE for the DEC fofunction. We will use the notatior)!.(d), d., L,w) to de-
some value irle, 1]. It is not hard to see that this implies thenote the threshold of the JIT decoder when we use the
JIT decoder will get stuck at this FP, resulting in unsucitéss (di, d., L, w) ensemble for transmission. As a shorthand we
decoding. use g(Zi—wi1,--.,Titw_1) to denote (1 - %Z;‘:Ol(l -

Thus we must have that for all € (0, 1] g\ di—1
1 w—1 =1
2 de—1yd)—1 w 2k=o Litjh) ) '
c(l-(1-2)" )" <= Definition 4 (FPs of Density Evolution)Consider DE for
For the choice ofr = \/dl——l we get the statement of thethe (dl,dr,L,w).ensemble. Let = (z_r,...,21). We ca}ll
lemma. To see this comf:)utation first write — z)% ! as z the constellation We say thatz forms a FP of DE with
(de—1) log(1—2) 1 channele if z fulfills (L) for i € [-L, L]. As a shorthand we
eldr—logl=2) "Then usdog(l — z) < —x andz = . X L
b R i 4.—1  then say thate, z) is a FP. We say thak, z) is anon-trivial
to get(l — )%~ < eV, After this use FP if z is not identically equal t0 Y i. Again, fori ¢ [—L, L],
(1— e—\/m)dl—l =1-(1—-(1- e—\/dr—l)dl—l) x; = 0. n

Definition 5 (Forward DE and Admissible Schedules):
Considerforward DE for the (d,d,, L,w) ensemble. More
precisely, pick a channel. Initialize z(©) = (1,...,1). Let

at?cga be the result o rounds of DE. More precisely;(‘+1)
is generated fromz(©) by applying the DE equatiori](1) to
each section € [-L, L],

1. M AIN RESULTS %@H) = eig(ajz('é—)w-ﬁ-l? e 7xz(’ﬁ—)w—1)'

In this S(?Ct'on we show, emplrlcal!y, that spatially couple SAnother way to think about this is to imagine that we transanknown
codes achieve the Shannon capacity of the DEC. We recaluence of bits of length equal to the memory of the charitezlae transmit

that we are consider SIR which is give by the formula SIR all the variable nodes in each section. Since the channelameisifinite, this
induces a rate loss going to zero &6 — oco. Now the known sequence is

9 L.
1 —2e /(1 + E)' For the sake of exposition, we demonStrat@ne initial state for each of the channel detectors and hercean consider
our results only for rate equals/3. The Shannon thresholdthem disconnected.

>1-— (d] — 1)87 dril,

to complete the argument.
As a consequence of Lemnhd 3 we get that, with the r
dy/d, kept fixed,limg, o0 €31.(d1, dy) = 0.

DEC



We call this theparallel schedule. The important difference
with the memoryless BEC case is that the chanrnds not 1.0

fixed for the DEC and decreases with increasing iterations f
according to[(R).

More generally, consider a schedule in which in each step
¢ an arbitrary subset of the sections is updated, constrained
only by the fact that every section is updated in infinitely 0.6
many steps. We call such a schedal#missible Again, we
call z(¥ the resulting sequence of constellations. [ ]

One can show that if we perform forward DE under any 0.4
admissible schedule, then the constellatif converges to

a FP of DE and this FP is independent of schedule. This
statement can be proved similar to the one in [2].

0.8

EXIT

0.2

B. Forward DE — Simulation Results 0.2 0.4 0.6 0.8 1.0

We consider forward DE for théd,d,, L, w) ensemble. rig- 3. The EXITthCUB/EéOfr Oéhddlzj g,cll% - 1654 L1’2 2) ;;;%TgleTﬁnd
; . . ransmission over the = 2,4,8,16, 32, 64,128, 256, 512. The
More precisely, we fix am a”q initialize a”"_Ei foric[-L, L] curves keep moving to the left a increases similar to the curves when
to 1. Then we run the DE given bfzl(1) till we reach a fixedtransmitting over BMS. The “vertical’ drop in the EXIT cuiweoccurs at
point. We fix L = 250. Ford, = 3 andd, = 9, we have =~ 0.5 for L > 32. Also shown in light gray is the BP exit curve for the
that €7 (3,9,300,3) ~ 0.49815. If we increase the degrees "cCUPIed(s; 15)-regular ensemble.
we get €)7.(5,15,300,5) ~ 0.49995, €2I.(7,21,300,7) =~
0.499989 and €)..(9,27,300,9) ~ 0.499996. We observe
that for increasing the degrees the threshold approaclees
Shannon threshold df.5.

transmitting over the BEC. Let us describe the (empirically
6Bserved) crucial properties of this constellation.
(i) The constellation is symmetric around = 0 and is
unimodal. The constellation hasx 0.49995.
C. The EXIT Curve for Coupled Ensembles (i) Let z5(e) denote a stable FP of DE. The value in the flat
We now come to the key point of the paper, the computation part in the middle is< 0.4434 which is very close to the
of the EXIT curve. Before we do this, we define the entropy stable FP of DE for the underlying uncouplés, 15)-

of a constellation = (z_p,,...,z) as regular ensemble.
. (iii) The transition from close to zero to close 4g(¢) is very
1 quick.
X o+ ; o
To plot the EXIT curve we first fixy € [0, 1] and then run R EREEEE

DE such that the resulting FP constellation has entropylequa
to x. This is the reverse DE procedure as described in [11].
We remark thatf(x) is an increasing function of, hence in
the reverse DE procedure one can easily find an appropriate’
by the bisection method.

Figure [3 shows the plot of the EXIT curveFig. 4. The constellation representing FP of DE for1s, 33,5) ensemble

- ~and entropy fixed toy = 0.2. This is an unstable FP constellation. The
for the (5’ 15, L, 5) ensemble with L ~  constellation is very similar to any unstable FP consieltatvhen transmitting
2,4,8,16,32,64,128,256,512. We see that the curvesover memoryless BEC. The constellation is unimodal. There long tail of

look very similar to the curves when transmitting over aeros followed by a sharp transition and then a long flat pift values close
BMS channel. For very small values &, the curves are far © #s(<)- The constellation has ~ 0.49995.

to the right due to significant rate loss that is incurred at th

boundary. AsL increases the rate loss diminishes and the

JIT threshold is very close to the Shannon threshold. This IV. A POSSIBLEPROOFAPPROACH

picture strongly suggests that the same threshold saiorati Till now we gave empirical evidence of the threshold
effect €.(d1,d:, L,w) ~ eyee(di,dy, L,w)) also occurs for saturation phenomena when transmitting over the DEC using
the DEC as it was shown analytically in [2]. coupled-codes. Before we proceed to give the proof idea for
the threshold saturation, we first show that coupling indeed
helps. More precisely we have the following lemma,

) ) Lemma 6 (Spatial Coupling Helpsfor d;,d, — oo with
We plot the constellation representing the unstable FP gf, ratiod; /d, kept fixed, we have

DE. This FP cannot be reached via forward DE and is obtained
via reverse DE. procedure. We recall that this FP played a & (dy, dy, L, w) > ﬂ
key role in proving the threshold saturation phenomena when dy

16 -14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

D. Shape of Fixed Point of Density Evolution



Proof: Since ¢ is an I
Ti—wt1ye > Titw—1, WE haveei < f(l) < é%)z < e
Combining this with the DE equation for the coupled-codesyj)
we get

x; < eg(I’ifﬂH’lv s 7xi+w*1)7

for all i € [-L,L]. But we know from Theorem 10 in [2] .
that limg, 0 €3c(di, dy, L, w) — j—x{. Thus fore < j—l the ()
right-hand-side of the above inequality goes to zero. Hence
the lemma. [ |
As an example, consider th€, d,)-regular ensemble with
dy/d, = 1/3 (rate equal t02/3) . For L — oo, the rate ..
of the (d),d,, L,w) goes to2/3. From LemmaB we have (i)
that ¢I.(d;,d,) — 0 and from Lemmal6 we have that
exc(di, dv, Liw) > % = i. Thus spatial coupling indeed .
boosts the JIT threshold. However the empirical evidengé/)
suggests that the boost is all the way up to the Shannon
threshold (which is0.5 in this case). Since there is ample
similarity between the DEC and the BEC, the guideline for a
proof is similar to when we are transmitting over the BEC.
(i) Existence of FPA key ingredient in proving the result for
the BEC was to show the existence of a special FP of DE

increasing function of transfer function we consider the case when there is no
precoding. We list below some comments and open questions.

An obvious future direction is to complete the proof of
threshold saturation. The guidelines provided above serve
as a starting point. Following this route, in principle, it
should be possible to prove the capacity achieving nature
of these codes on the DEC.

Another interesting question is that whether the thrdd
saturation phenomena can be shown to be true for all
channel extrinsic transfer function.) which are non-
decreasing both ik and x (threshold saturation holds
when f(.) represents precoding).

A proof of the threshold saturation phenomena should
also pave the way for the justification of the Maxwell
construction to determinét?(dy, d,) for the DEC.
Recently, it was observed that coupled MacKay-Neal
(MN) codes with bounded degree exhibit the BP thresh-
old very close to the Shannon threshold over the BEC
[12]. It is interesting to see if the coupled MN codes
have the JIT threshold close to the SIR over the DEC.

VI. ACKNOWLEDGMENTS

(z,€*). In principle, the BEC proof should extend. The only SK acknowledges support of NMC via the NSF collabo-
difference is that instead of a constant channheke have a rative grant CCF-0829945 on “Harnessing Statistical Rigysi
channel value which depends on the FP constellation itsdfy Computing and Communications.” SK would also like to

However, since the functions involved are rational, thisudt
not be a big hurdle.

(i) Shape of the constellation and the transition lengtiie
next task is to show that the FP guaranteed by the above
theorem has the properties as given in Sedfion]Il-D. Pgvin
this would first involve showing that the underlying regular
ensemble has a “C” shaped EXIT curve. Intuitively, this
means that the FP constellation (of the coupled-code) chn o
hover around the stable FPs of DE (of the underlying regular
ensemble), implying that it has either a large tail of zeros of3l
a large flat part with values close tq(¢*).

(iii) Construction of the EXIT curve and the Area Theorem:
Another key part of the BEC proof was to construct a familyt4l
of FPs (not necessarily stable FPs) using the special FP
guaranteed by the Existence theorem. The EXIT curve plys]
the fast transition would allow us to show that this specRl F
must have an associated channel parametewnery close to
the Shannon threshold (for large degr&s.)

Operational interpretationThe proof would be completed by
providing an operation meaning to the EXIT curve. Loosel)m
speaking, the EXIT constructed above would have a vertical
drop ate ~ ¢5'(d), d,) (cf. Figure[3). This would help to show [&]
that for anye < €5"(dy, d,), the JIT decoder will go to the
trivial FP.

(6]

El

V. CONCLUSIONS (10]
In this paper we show that empirically coupled-codes satitd]
rate the JIT threshold on the DEC. For the channel extrinsic
[12]

“4For finite degrees¢* should be very close to the MAP threshold of the

(dy, dr)-regular ensemble. One should be able to prove this by fatingl
an appropriate Area theorem (see Section 3.20 in [10]).
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