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Abstract—We study the behavior of channel capacity when
a one-bit quantizer is employed at the output of the discrete-
time average-power-limited Gaussian channel. We focus on the
low signal-to-noise ratio regime, where communication at very
low spectral efficiencies takes place, as in Spread-Spectrum
and Ultra-Wideband communications. It is well known that,
in this regime, a symmetric one-bit quantizer reduces capacity
by 2/π, which translates to a power loss of approximately two
decibels. Here we show that if an asymmetric one-bit quantizer
is employed, and if asymmetric signal constellations are used,
then these two decibels can be recovered in full.

I. I NTRODUCTION

We study the effect on channel capacity of quantizing the
output of the discrete-time average-power-limited Gaussian
channel using a one-bit quantizer. We focus on the low
signal-to-noise ratio regime, where communication at verylow
spectral efficiencies takes place (as in Spread-Spectrum and
Ultra-Wideband communications). In this regime, a symmetric
one-bit quantizer reduces the capacity by a factor of2/π,
corresponding to a 2dB power loss [1]. Hence the rule of
thumb that “hard decisions cause a 2dB power loss.” Here we
demonstrate that if we allow forasymmetric one-bit quantizers
with correspondingasymmetric signal constellations, these
two decibels can be fully recovered. We further demonstrate
that the capacity per unit-energy can be achieved by a simple
pulse-position modulation (PPM) scheme.

The problem of output quantization is relevant for communi-
cation systems where the receiver uses digital signal process-
ing techniques, which require the conversion of the analog
received signal to a digital signal by means of an analog-
to-digital converter (ADC). For ADCs with high resolution,
the effects of quantization are negligible. However, usinga
high-resolution ADC may not be practical, especially when
the bandwidth of the communication system is large and the
ADC therefore needs to operate at a high sampling rate [2].
In this case a low-resolution ADC has to be employed. The
capacity of the discrete-time Gaussian channel with one-bit
output quantization indicates what communication rates can
be achieved when the receiver employs a low-resolution ADC.

For a symmetric one-bit quantizer (which produces1 if the
quantizer input is nonnegative and−1 otherwise), the capacity
Csym(P) under the average-power constraintP on the channel
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inputs is given by [1, (3.4.18)], [3, Th. 2]

Csym(P) = log 2−Hb

(

Q
(

√

P/σ2
)

)

(1)

where log(·) denotes the natural logarithm function;σ2 the
variance of the additive Gaussian noise;

Hb(p) , −p log p− (1− p) log(1 − p), 0 ≤ p ≤ 1

(with 0 log 0 , 0) the binary entropy function; and

Q(x) ,
1√
2π

∫ ∞

x

exp
(

−ξ2/2
)

dξ, x ∈ R

theQ-function. (HereR denotes the set of real numbers.) This
capacity can be achieved by transmitting±

√
P equiprobably.

From (1), the capacity per unit-energẏCsym(0) for a sym-
metric one-bit quantizer can be computed as [1, (3.4.20)]

Ċsym(0) = lim
P↓0

Csym(P)

P
=

1

πσ2
. (2)

This is a factor of2π smaller than the capacity per-unit energy
1

2σ2 of the Gaussian channel without output quantization [4].
Thus, quantizing the channel output by a symmetric one-bit
quantizer causes a loss of roughly 2dB.

It is tempting to attribute this loss to the fact that the
quantizer discards information on the received signal’s mag-
nitude and allows the decoder to perform only hard-decision
decoding. However, we demonstrate that the loss of 2dB is
not a consequence of the hard-decision decoder but of the
suboptimal quantizer. In fact, with an asymmetric quantizer
the loss vanishes.

The rest of the paper is organized as follows. Section II
describes the considered channel model, defines the capacity
per unit-energy, and presents our main result. Section III
provides the proof of this result. Section IV shows that
the capacity per unit-energy can be achieved by a simple
PPM scheme. Section V briefly discusses the capacity of the
considered channel. And Section VI concludes the paper with
a summary and discussion of our results.

II. CHANNEL MODEL AND CAPACITY PER UNIT-ENERGY

We consider the discrete-time communication system de-
picted in Figure 1. It is assumed that the messageM is
uniformly distributed over the set{1, 2, . . . ,M}. The encoder
mapsM to the length-n sequenceX1, X2, . . . , Xn, which
is then corrupted by additive Gaussian noise and quantized.
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Figure 1. System model.

Thus, at every time instantk ∈ Z (whereZ denotes the set of
integers), the received signalỸk corresponding to the channel
input xk ∈ R is

Ỹk = xk + Zk, k ∈ Z (3)

where{Zk, k ∈ Z} is a sequence of independent and iden-
tically distributed (i.i.d.) Gaussian random variables ofzero
mean and varianceσ2. The quantizer produces1 if Ỹk is in the
quantization regionD and−1 otherwise, for some Borel set
D ⊂ R. For example, the quantization region of the symmetric
quantizer is given byD = {ỹ ∈ R : ỹ ≥ 0}. The decoder
observes the quantizer’s outputsY1, Y2, . . . , Yn and tries to
guess which message was transmitted.

We assume that the energy in the transmitted sequence does
not exceedE, i.e., that the encoder is such that, for every
realization ofM , the sequencex1, x2, . . . , xn satisfies

n
∑

k=1

x2
k ≤ E. (4)

We define the capacity per unit-energy along the lines of [5].
We say that arate per unit-energy Ṙ(0) (in nats per energy)
is achievable if for every ǫ > 0 there exists an encoder, a
quantizer, and a decoder such that

logM

E
> Ṙ(0)− ǫ

and such that the probability of error Pr(M̂ 6= M) tends to
zero asE tends to infinity. Thecapacity per unit-energy is the
supremum of all achievable rates per unit-energy.

It follows from [5, Ths. 2 & 3] that the capacity per unit-
energy is given by1

Ċ(0) = sup
P>0

C(P)

P
= sup

ξ 6=0,D⊂R

D
(

PY1|X1=ξ

∥

∥ PY1|X1=0

)

ξ2
(5)

whereD(·‖·) denotes the relative entropy, i.e.,

D(P‖Q) =







∫

log

(

dP
dQ

)

dP, if P ≪ Q

∞, otherwise

(whereP ≪ Q indicates thatP is absolutely continuous with
respect toQ); PY1|X1=x denotes the output distribution given
that the input isx; and C(P) is the capacity of the above
channel under the average-power constraintP on the channel
inputs, i.e., [6]

C(P) = sup I(X1;Y1) (6)

1It is straightforward to incorporate the additional maximization over all
possible quantizers into the proofs of [5, Ths. 2 & 3].

with the maximization being over all quantization regionsD
and over all distributions onX1 satisfyingE

[

X2
1

]

≤ P. Note
that the first supremum in (5) is approached whenP tends to
zero. Thus, the capacity per unit-energy is equal to the slope
of the capacity-vs-power curve at zero.

By the Data Processing Inequality [7, Th. 2.8.1], the capac-
ity per unit-energy of the above channel is upper-bounded by
the capacity per unit-energy of the Gaussian channel without
output quantization, i.e., [4]

Ċ(0) ≤ 1

2σ2
. (7)

In the following, we show that there exists a one-bit quantizer
that achieves this upper bound.

Theorem 1 (Main Result): The capacity per unit-energy of
the discrete-time Gaussian channel with one-bit output quan-
tization is

Ċ(0) =
1

2σ2
. (8)

Moreover, the capacity per unit-energy can be achieved by a
quantization region of the form

D = {ỹ ∈ R : ỹ ≥ Υ}, for someΥ ∈ R (9)

whereΥ depends on the distribution of the channel input.
Proof: See Section III.

We prove Theorem 1 in Section III. A simple PPM scheme
that achieves the capacity per unit-energy (8) is presentedin
Section IV.

III. PROOF OFTHEOREM 1

We show that a one-bit quantizer with quantization regionD
of the form (9) achieves the rate per unit-energy

Ṙ(0) ≥ 1

2σ2
. (10)

Together with (7), this proves Theorem 1.
To this end, we first note that, for the quantization region

(9), the conditional probability of the outputY1 given the input
x is

P
(

Y1 = 1
∣

∣ X1 = x) = Q

(

Υ− x

σ

)

, x ∈ R (11)

andP
(

Y1 = −1
∣

∣ X1 = x
)

= 1 − P
(

Y1 = 1
∣

∣ X1 = x).



Together with (5), this yields

Ṙ(0) = sup
ξ 6=0,Υ∈R











Q
(

Υ−ξ
σ

)

log
Q(Υ−ξ

σ )
Q(Υ

σ )

ξ2

+

[

1−Q
(

Υ−ξ
σ

)]

log
1−Q(Υ−ξ

σ )
1−Q(Υ

σ )

ξ2











= sup
ξ 6=0,Υ∈R











Q
(

Υ−ξ
σ

)

log 1

Q(Υ

σ )

ξ2

+

[

1−Q
(

Υ−ξ
σ

)]

log 1

1−Q(Υ

σ )

ξ2

−
Hb

(

Q
(

Υ−ξ
σ

))

ξ2











. (12)

We chooseΥ = ξ−µ for some fixedµ ∈ R and lower-bound
the right-hand side (RHS) of (12) by lettingξ tend to infinity.
This yields for the last two terms on the RHS of (12)

lim
ξ→∞

Hb

(

Q
(

−µ
σ

))

ξ2
= 0 (13)

and

lim
ξ→∞

[

1−Q
(

−µ
σ

)]

log 1

1−Q( ξ−µ
σ )

ξ2
= 0. (14)

We use the upper bound on theQ-function [8, Prop. 19.4.2]

Q(α) <
1√
2πα

e−α2/2, α > 0 (15)

to lower-bound the first term on the RHS of (12) as

lim
ξ→∞

Q
(

−µ
σ

)

log 1

Q( ξ−µ
σ )

ξ2

≥ Q
(

−µ

σ

)

lim
ξ→∞

1
2 log(2π) + log ξ−µ

σ + (ξ−µ)2

2σ2

ξ2

= Q
(

−µ

σ

) 1

2σ2
. (16)

Combining (13), (14), and (16) with (12) yields

Ṙ(0) ≥ Q
(

−µ

σ

) 1

2σ2
(17)

from which we obtain (10) by lettingµ tend to infinity. This
proves Theorem 1.

IV. PULSE-POSITION MODULATION

The capacity per unit-energy (8) can be achieved
by the following PPM scheme. For each message
m ∈ {1, 2, . . . ,M}, the encoder produces the sequence
x1(m), x2(m), . . . , xM(m), where

xk(m) =

{

ξ, k = m
0, k 6= m

(18)

and whereξ satisfies the energy constraint (4) with equality.
Thus, we haveξ2 = E, which for a fixed rate per unit-energy
Ṙ(0) = logM

E
is equal to

ξ2 =
logM

Ṙ(0)
. (19)

Note that, while therate per unit-energy is fixed, therate of
this scheme islogM

M
and tends to zero asM tends to infinity.

Nevertheless, by (5) the capacity per unit-energy is equal to the
slope of the capacity-vs-power curve at zero. It thus follows
from Theorem 1 that there also exists a transmission scheme
of nonzero rate that achieves (8).

We employ a quantizer with quantization region

D = {ỹ ∈ R : ỹ ≥ Υ}

i.e., at every time instantk the quantizer produces1 if Ỹk ≥ Υ
and−1 otherwise. We choose the thresholdΥ such that the
probability that the quantizer produces−1 given that the
transmitter sendsξ is equal to some arbitrary0 < ǫ < 1,
i.e.,

Υ = ξ − σQ−1(ǫ) (20)

which yields

P
(

Yk = −1
∣

∣ Xk = ξ
)

= Q

(

ξ −Υ

σ

)

= ǫ.

Here Q−1(·) denotes the inverseQ-function. Note that this
threshold is of the same form as the threshold we chose in
Section III to prove Theorem 1.

The decoder guesseŝM = m if Ym = 1 andYk = −1 for
k 6= m. If Yk = 1 for more than onek, or if Yk = −1 for all
k = 1, 2, . . . ,M, then the decoder declares an error.

Suppose that messageM = m was transmitted. The
probability of an error is given by

Pr
(

error
∣

∣ M = m
)

= Pr





⋃

k 6=m

(Yk = 1) ∪ (Ym = −1)

∣

∣

∣

∣

∣

∣

M = m





≤
∑

k 6=m

P
(

Yk = 1
∣

∣ Xk = 0
)

+ P
(

Ym = −1
∣

∣ Xm = ξ
)

=
∑

k 6=m

P
(

Yk = 1
∣

∣ Xk = 0
)

+ ǫ

= (M− 1)P
(

Y1 = 1
∣

∣ X1 = 0
)

+ ǫ (21)

where the second step follows from the union bound; the third
step follows from our choice ofΥ; and the fourth step follows
because the channel is memoryless which implies that the
probability Pr(Yk = 1|Xk = 0) does not depend onk. Since
the RHS of (21) does not depend onm, it follows that the
probability of error

Pr(M̂ 6= M) =
1

M

M
∑

m=1

Pr
(

error
∣

∣ M = m
)

is also upper-bounded by (21).



The first term on the RHS of (21) can be evaluated as

(M− 1)P
(

Y1 = 1
∣

∣ X1 = 0
)

= (M− 1)Q

(

ξ − σQ−1(ǫ)

σ

)

= (M− 1)Q





√
logM− σQ−1(ǫ)

√

Ṙ(0)

σ
√

Ṙ(0)



 (22)

where the second step follows from (19). We continue by
showing that if

Ṙ(0) <
1

2σ2

then, for every fixed0 < ǫ < 1, the RHS of (22) tends to zero
asM tends to infinity. Indeed, we have

lim
M→∞

(M− 1)Q





√
logM− σQ−1(ǫ)

√

Ṙ(0)

σ
√

Ṙ(0)





≤ lim
α→∞

exp
(

σ2Ṙ(0)
(

α+Q−1(ǫ)
)2
)

Q(α)

≤ lim
α→∞

1√
2πα

exp

(

σ2Ṙ(0)
(

α+Q−1(ǫ)
)2 − 1

2
α2

)

(23)

where the first step follows by upper-boundingM − 1 < M

and by substituting

α =

√
logM− σQ−1(ǫ)

√

Ṙ(0)

σ
√

Ṙ(0)
;

and the second step follows from (15). The limit on the RHS
of (23) vanishes forṘ(0) < 1

2σ2 .
Combining (23) with (21), we obtain that iḟR(0) < 1

2σ2 ,
then the probability of error tends toǫ asE—and hence also
M = exp

(

EṘ(0)
)

—tends to infinity. Sinceǫ is arbitrary, it
follows that the probability of error can be made arbitrarily
small by choosingΥ sufficiently large, thus proving that the
capacity per unit-energy (8) is achievable by the above PPM
scheme.

V. CHANNEL CAPACITY

The definition of channel capacity is analog to that of
capacity per unit-energy. A rateR(P) is said to be achievable
if for every ǫ > 0 there exists an encoder, a quantizer, and a
decoder satisfying

1

n

n
∑

k=1

x2
k ≤ P, for every realization ofM

such that
logM

n
> R(P)− ǫ

and such that the probability of error Pr
(

M̂ 6= M
)

tends to
zero asn tends to infinity. The capacityC(P) is the supremum
of all achievable rates. For the above channel, the capacityis
given by [6]

C(P) = sup I(X1;Y1) (24)

where the supremum is over all quantization regionsD ⊂ R

and over all distributions onX1 satisfyingE
[

X2
1

]

≤ P.
If we do not maximize over the quantization region but

assume a symmetric quantizer, i.e.,D = {ỹ ∈ R : ỹ ≥ 0},
then the capacity is given by [1, (3.4.18)], [3, Th. 2]

Csym(P) = log 2−Hb

(

Q
(

√

P/σ2
)

)

(25)

where Hb(·) denotes the binary entropy function andQ(·)
denotes theQ-function, see Section I. In this case the capacity-
achieving input distribution is binary with equiprobable mass
points at

√
P and−

√
P.

To the best of our knowledge, the capacity of the above
channel (maximized over the input distribution and the quan-
tization region) as well as the capacity-achieving input distri-
bution and the optimal quantization region are unknown. The
following two propositions present results on the latter two
problems.

Proposition 2: The capacity-achieving input distribution is
discrete with at most three mass pointsξℓ ∈ R, ℓ = 1, 2, 3
satisfying

3
∑

ℓ=1

pℓξℓ = 0 and
3

∑

ℓ=1

pℓξ
2
ℓ = P (26)

wherepℓ denotes the probability corresponding to mass point
ξℓ, i.e., 0 ≤ pℓ ≤ 1, ℓ = 1, 2, 3 andp1 + p2 + p3 = 1.

Proof: Omitted.
This result is consistent with [3, Th. 1], which shows that if
the quantization regions of aK-bit quantizer partition the real
line into 2K intervals, then a discrete input distribution with
not more that2K + 1 mass points achieves the capacity.

Proposition 3: A threshold quantizer is optimal, i.e., the
capacity-achieving quantizer is of the form

D = {ỹ ∈ R : ỹ ≥ Υ}, for someΥ ∈ R (27)

whereΥ is determined byP andσ2.
Proof: Omitted.

Propositions 2 and 3 demonstrate that the capacity of the
above channel is equal to the capacity of a discrete memory-
less channel with input alphabet{ξ1, ξ2, ξ3}, output alphabet
{1,−1}, and channel law

Pr
(

Y = 1
∣

∣ X = ξℓ
)

= Q

(

Υ− ξℓ
σ

)

, ℓ = 1, 2, 3. (28)

It can be further shown that the supremum on the RHS of (24)
is achieved, so

C(P) = max
(p,ξ)∈P(P),

Υ∈R

I
(

p,W (Υ, ξ)
)

(29)

whereI(p,W ) denotes the mutual information of a channel
with channel lawW when the channel input is distributed
according top; P(P) denotes the set of probability vectors
p ∈ [0, 1]3 and mass pointsξ ∈ R

3 satisfying

3
∑

ℓ=1

pℓ = 1,

3
∑

ℓ=1

pℓξℓ = 0, and
3

∑

ℓ=1

pℓξ
2
ℓ = P; (30)



and W (Υ, ξ) denotes the channel law given by (28). Thus,
instead of maximizing the mutual information over all Borel
sets D and all probability distributions onX1 satisfying
E
[

X2
1

]

≤ P (24), it suffices to maximize the mutual infor-
mation over the four real numbersξ1, ξ2, ξ3, andΥ and the
three-dimensional probability vectorp satisfying (30).

VI. SUMMARY AND CONCLUSION

It is well-known that quantizing the output of the discrete-
time average-power-limited Gaussian channel using a sym-
metric one-bit quantizer reduces the capacity per unit-energy
by a factor of 2/π. We have shown that this loss can be
fully recovered by allowing for asymmetric one-bit quantiz-
ers with corresponding asymmetric signal constellations.We
have further shown that the capacity per unit-energy can be
achieved by a simple PPM scheme. For this scheme, the error
probability can be analyzed directly using the union bound
and the upper bound (15) on theQ-function. We thus need not
resort to conventional methods used to prove coding theorems,
such as the method of types, information-spectrum methods,
or random coding exponents.

The above results demonstrate that the 2dB power loss in-
curred on the Gaussian channel with symmetric one-bit output
quantization is not due to the hard-decision decoder, but due to
the symmetric quantizer. In fact, if we employ an asymmetric
quantizer, and if we use asymmetric signal constellations,then
hard-decision decoding achieves the capacity per unit-energy
of the Gaussian channel.

The above results also demonstrate that a threshold quan-
tizer is asymptotically optimal as the signal-to-noise ratio
tends to zero. We have further shown that this is true not
only asymptotically: for a fixed signal-to-noise ratio, we have
shown that, among all one-bit output quantizers, a threshold
quantizer is optimal.
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