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Abstract—We study the behavior of channel capacity when inputs is given by [1, (3.4.18)], [3, Th. 2]
a one-bit quantizer is employed at the output of the discrete
time average-power-limited Gaussian channel. We focus orhé — _ ( / 2)
low signal-to-noise ratio regime, where communication at ery Coym(P) =log2 — H, <Q Plo ) (1)
low spectral efficiencies takes place, as in Spread-Spectru . )
and Ultra-Wideband communications. It is well known that, Wherelog(-) denotes the natural logarithm functiom? the
in this regime, a symmetric one-bit quantizer reduces capaty variance of the additive Gaussian noise;
by 2/7, which translates to a power loss of approximately two

decibels. Here we show that if an asymmetric one-bit quanter Hy(p) & —plogp— (1 —p)log(l —p), 0<p<1
is employed, and if asymmetric signal constellations are @sl, ) A ) .
then these two decibels can be recovered in full. (with 01log 0 = 0) the binary entropy function; and
1 oo
|. INTRODUCTION T é—/ exp (—€2/2) d¢, zeR
Qe) & 7= | exp (=€7/2) ¢

We study the_eﬁect on channel capacity O.f quantizing t.qﬁeQ—function. (HereR denotes the set of real numbers.) This
output of the discrete-time average-power-limited Gms'capacity can be achieved by transmittiag/P equiprobably
channel using a one-bit quantizer. We focus on the low From (1), the capacity per unit-energ'géym(o) for a sym-.

signal-to-noise ratio regime, where communication at Veny . . )
spectral efficiencies takes place (as in Spread-Spectrum gﬁetrlc one-bit quantizer can be computed as [1, (3.4.20)]

Ultra-Wideband communications). In this regime, a symioetr é (0) = I _ b @)
one-bit quantizer reduces the capacity by a factor2of, ymW =P8 T P 1o
corresponding to a 2dB power loss [1]. Hence the rule CF

thumb that “hard decisions cause a 2dB power loss.” Here w is s a factor Of.% smaller than_ the capacity per'“?‘“ energy
demonstrate that if we allow f@symmetric one-bit quantizers 272 of the Gaussian channel without output quantization [4].

with correspondin mmetric signal constellations, these Thus, quantizing the channel output by a symmetric one-bit

two decibels can be fully recovered. We further demonstrfﬂgan.tlzer causes a IOSS. of roug_hly 2dB.

. ; : . It is tempting to attribute this loss to the fact that the
that the capacity per unit-energy can be achieved by a sim Ilﬁ}antizer discards information on the received signal'g-ma
pulse-position modulation (PPM) scheme. gnaly

L nitude and allows the decoder to perform only hard-decision
The problem of outputquantlgatlon IS rel_eyant f(_)rcommungecoding' However, we demonstrate that the loss of 2dB is
cation systems where the receiver uses digital signal pecacenot a Consequence’ of the hard-decision decoder but of the
ing techniques, which require the conversion of the analogI : . . ) .

. ; - : stboptimal quantizer. In fact, with an asymmetric quamtize
received signal to a digital signal by means of an analogh-e loss vanishes

to-digital converter (ADC). For ADCs with high resolution, The rest of the paper is organized as follows. Section Il

th_e effects 9f quantization are neghglb]e. Howeve;r, USG o scribes the considered channel model, defines the capacit
high-resolution ADC may not be practical, especially Wherler unit-energy, and presents our main result. Section Il
the bandwidth of the communication system is large and tRE 9y, P '

ADC therefore needs to operate at a high sampling rate [ 'OVIdeS the proof of this result. Section IV shows that

In this case a low-resolution ADC has to be employed. T € capacity per “.““ energy can be achieved by a simple
. : . . . PM scheme. Section V briefly discusses the capacity of the
capacity of the discrete-time Gaussian channel with ohe-bi . : .
P o considered channel. And Section VI concludes the paper with
output quantization indicates what communication rates cd . :

. . : summary and discussion of our results.

be achieved when the receiver employs a low-resolution ADC.

For a symmetric one-bit quantizer (which produdgéthe ||. CHANNEL MODEL AND CAPACITY PER UNIT-ENERGY

guantllpzer |rc11put Ihs nonnegative and other\g;e), tr?e cspacn?/ We consider the discrete-time communication system de-
sym(P) under the average-power constraion the channe picted in Figure 1. It is assumed that the messddeis
_ _ _ uniformly distributed over the sdftl, 2,..., M}. The encoder
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Figure 1. System model.

Thus, at every time instarit € Z (whereZ denotes the set of with the maximization being over all quantization regidis
integers), the received sign&], corresponding to the channeland over all distributions ork; satisfyingE [Xf] < P. Note
inputz, € R is that the first supremum in (5) is approached wiRetends to

Vi —ap+Ze, keZ 3) zero. Thus, t.he capacity per unit-energy is equal to theeslop

of the capacity-vs-power curve at zero.
where {Z, k € Z} is a sequence of independent and iden- By the Data Processing Inequality [7, Th. 2.8.1], the capac-
tically distributed (i.i.d.) Gaussian random variableszefo ity per unit-energy of the above channel is upper-bounded by
mean and variance’. The quantizer producesif Y isin the the capacity per unit-energy of the Gaussian channel withou
quantization regiorD and —1 otherwise, for some Borel setoutput quantization, i.e., [4]
D C R. For example, the quantization region of the symmetric
quantizer is given byD = {§ € R: § > 0}. The decoder C(0) < L' @)
observes the quantizer's outplts, Ys,...,Y, and tries to ~ 202
guess which message was trqnsmltted. . n the following, we show that there exists a one-bit quaattiz
We assume that the energy in the transmitted sequence d{ es

not exceedk, i.e., that the encoder is such that, for every "fll_ achieves this upper bound.

heorem 1 (Main Result): The capacity per unit-energy of

realization of M, the sequence;, zo, ..., z, satisfies . N . . .
d Loz n the discrete-time Gaussian channel with one-bit outpuhgua
in <E 4) tization Is . .
— C(0) = . (8)
20

We define the capacity per unit-energy along the lines of [5].
We say that aate per unit-energy R(0) (in nats per energy) Moreover, the capacity per unit-energy can be achieved by a
is achievable if for every ¢ > 0 there exists an encoder, aquantization region of the form
guantizer, and a decoder such that
logM . D={geR:yg>7}, forsomeY eR 9)
> R(0) — ¢

whereY depends on the distribution of the channel input.
Proof: See Section lll. [ |

We prove Theorem 1 in Section Ill. A simple PPM scheme
that achieves the capacity per unit-energy (8) is presented
Section V.

and such that the probability of error(EW # M) tends to
zero ast tends to infinity. Thecapacity per unit-energy is the
supremum of all achievable rates per unit-energy.

It follows from [5, Ths. 2 & 3] that the capacity per unit-

energy is given by

C(0) = sup cP) _ sup D(Pyijx:=¢ 2“ Pyi|x,=0) (5) Ill. PROOF OFTHEOREM 1
pso P ¢+40,DCR §
We show that a one-bit quantizer with quantization redion

where D(:[|-) denotes the relative entropy, i.., of the form (9) achieves the rate per unit-energy

dar
log| — | dP, if P<Q
D(P||Q) = / (dQ> : 1
00, otherwise R(0) 2 5—- (10)

(where P < @ indicates that” is absolutely continuous with Together with (7), this proves Theorem 1.
respect taQ); Py, |x, =, denotes the output distribution given Tq this end, we first note that, for the quantization region

that the input isz; and C(P) is the capacity of the above (g), the conditional probability of the outplt given the input
channel under the average-power constr&inmn the channel . g

inputs, i.e., [6]
T —

g

C(P) =supl(X1;Y7) (6) P(Y1=1|X1=:v):Q( x), zeR (11)

1t is straightforward to incorporate the additional maxation over all
possible quantizers into the proofs of [5, Ths. 2 & 3]. and P(Yl = -1 ’ X = x) =1- P(Yl =1 ‘ X; = x).



Together with (5), this yields and wheref satisfies the energy constraint (4) with equality.
r Q(T=%) Thus, we have? = E, which for a fixed rate per unit-energy
Q (T_f) log IESn R(0) = &M s equal to

R(0) = su
) §#0 TPG]R &2 €2 = 1o.gM' (19)
16\ ] 1o 12QCE) k()
{1 -Q (T)} log Q(E) Note that, while theate per unit-energy is fixed, therate of
+ & this scheme is°%6™ and tends to zero asl tends to infinity.
Nevertheless, by (5) the capacity per unit-energy is equiile
0 (T;) log —— slope of the capacity-vs-power curve at zero. It thus fadow
- sup i Q(%) from Theorem 1 that there also exists a transmission scheme
€40, TER &2 of nonzero rate that achieves (8).
We employ a quantizer with quantization region
{1_6’2(%)}1%1—@1(1) D={jeR:§>T7T
n g 7 ={geR:y=>T}
¢ i.e., at every time instarit the quantizer producesif Y;, > Y
H, (Q (Tf)) and —1 otherwise. We choose the threshdldsuch that the
T e (- (12) probability that the quantizer producesl given that the
transmitter sendg is equal to some arbitrarg < ¢ < 1,
We chooséX = ¢ — i for some fixedu € R and lower-bound € T—¢—0Q (e (20)
the right-hand side (RHS) of (12) by lettirfgtend to infinity.
This yields for the last two terms on the RHS of (12) which yields
12
lim M:O (13) P(Yk:—lkazg)zQ(g):e.
£—o0 5 g
and Q- 1 Here Q—!(-) denotes the invers@-function. Note that this
lim [ (=5)]log 1-Q(&2) 0 (14) threshold is of the same form as the threshold we chose in
£—ro0 £2 o Section Ill to prove Theorem 1.

The decoder guessdéf =mif Y, =1andY, = —1 for

We use the upper bound on tiiefunction [8, Prop. 19.4.2] k% m. If Vi — 1 for more than onés, o if Y — —1 for all

Q(a) < 1 2 050 (15) k=1,2,..., M, then the decoder declares an error.
2ra ’ Suppose that messagk/l = m was transmitted. The
to lower-bound the first term on the RHS of (12) as probability of an error is given by
S Q (—£) log —Q(;%) Pr(error| M = m)
lim
e & Pri | M=Du )| M
= = m = — = m
i 2 Llog(27) + log =4 + (52 Dk ’
2 Q ( ) P £2 : o
1 <> PYr=1|Xp=0)+P(Y;n=-1|Xp =¢)
=Q(-7) 7= (16) iy
Combining (13), (14), and (16) with (12) yields =) P(Yi=1|X;=0)+¢
k#m
1
()>Q(__)F (17) =M-DPYi=1]X;=0)+e (21)
from which we obtain (10) by letting tend to infinity. This Where the second step follows from the union bound; the third
proves Theorem 1. step follows from our choice df'; and the fourth step follows
because the channel is memoryless which implies that the
IV. PULSE-POSITION MODULATION probability P(Y;, = 1|/X; = 0) does not depend oh. Since

The capacity per unit-energy (8) can be achievéde RHS of (21) does not depend am it follows that the
by the following PPM scheme. For each messaggobability of error
m € {1,2,...,M}, the encoder produces the sequence

z1(m), x2(m), ..., am(m), where Pr(M # M) = M Z Pr(error| M =m)

- 5’ kE=m m=1
T (m) = { (18) is also upper-bounded by (21).



The first term on the RHS of (21) can be evaluated as where the supremum is over all quantization regiéhs R
and over all distributions oX; satisfyingE [X?] < P.
(M~ 1)P(Y1 =1 ‘ Xy = O) If we do not maximize over the quantization region but
—M-1)Q (f - CTQl(E)) assume a symmetric quantizer, i.®,= {g§ € R: § > 0},
o then the capacity is given by [1, (3.4.18)], [3, Th. 2]

_M-1)0 (\/logM - aQ—l(E) R(0)> 22) Coym(P) = log 2 — H, (Q( /p/02)) (25)
where Hy(-

v/ R(0 . .
7 0) ) denotes the binary entropy function ady-)
where the second step follows from (19). We continue kdenotes th&)-function, see Section I. In this case the capacity-

showing that if achieving input distribution is binary with equiprobablass
B(0) < 1 points aty/P and —/P. _

202 To the best of our knowledge, the capacity of the above
then, for every fixed) < e < 1, the RHS of (22) tends to zerochannel (maximized over the input distribution and the guan
asM tends to infinity. Indeed, we have tization region) as well as the capacity-achieving inpstrii

: bution and the optimal quantization region are unknown. The
. ViogM — aQ~(e)1/ R(0) following two propositions present results on the lattep tw
d@w(M -1)Q - problems.
ay/ R(0) Proposition 2: The capacity-achieving input distribution is
. . _ 2 =
< (111—>Holo exp (O,QR(O) (a+Q 1(5)) )Q(a) g;;:srf(;tiigwnh at most three mass poigise R, / = 1,2,3
1 . 2 1
< lim exp [ 02R(0) (a L) —=a?) (23 3 3
T a0 /21 p( O)(a+Q79) 2 ) 23) Zpefe:() and Zpefzgzp (26)
where the first step follows by upper-boundiM— 1 < M =1 =1
and by substituting wherep, denotes the probability corresponding to mass point
: &,ie.,0<p,<1,0=1,23andp, + ps + ps = 1.
ViogM — cQ~1(e)1/ R(0) Proof: Omitted. n
o= : ; This result is consistent with [3, Th. 1], which shows that if
gy £(0) the quantization regions of l&-bit quantizer partition the real
and the second step follows from (15). The limit on the RHHNe into 2X intervals, then a _discrete_ input distributic_m with
of (23) vanishes fonf%(o) < ﬁ not more 'FhaQK + 1 mass points ac_hlev_es the_ capa_(:lty.
Combining (23) with (21), we obtain that iR(O) < 2% Propos'uon_ 3:_A threshold _quantlzer is optimal, i.e., the
then the probability of error tends toas E—and hence also C@Pacity-achieving quantizer is of the form
M = exp(ER(0))—tends to infinity. Since is arbitrary, it D={jeR:j>7T}, forsomeY eR (27)

follows that the probability of error can be made arbitsaril ) ) )
small by choosingr' sufficiently large, thus proving that theWhereT is determined by ando=.

capacity per unit-energy (8) is achievable by the above ppm_ Proof: Omitted. =
scheme. Propositions 2 and 3 demonstrate that the capacity of the
above channel is equal to the capacity of a discrete memory-
V. CHANNEL CAPACITY less channel with input alphabéf, &2, &5}, output alphabet

The definition of channel capacity is analog to that ofl,—1}, and channel law
capacity per unit-energy. A ratg(P) is said to be achievable
if for every e > 0 there exists an encoder, a quantizer, and a Pr(Y =1 ’ X = 513) = Q(
decoder satisfying

T_&), (=1,2,3. (28)
g

It can be further shown that the supremum on the RHS of (24)

is achieved, so

C(P) = I(p,W(T, 29
(P) <P’$§§<P>v (p,W(TY,8)) (29)

n

1 L
~ > ap <P, for every realization of\/
=1

such that
logM

n

> R(P) —¢ where I(p, W) denotes the mutual information of a channel
R with channel lawW when the channel input is distributed

and such that the probability of error (A # M) tends to according top; P(P) denotes the set of probability vectors

zero ase tends to infinity. The capacit§/(P) is the supremum p € [0, 1] and mass point§ € R? satisfying

of all achievable rates. For the above channel, the capicity

3 3
given by [6] pe=1 pe&e =0, and peé; =P;  (30)
’ 9 S/ ]
C(P) =sup I(X1; Y1) (24) ; ; ;



and W(7T, &) denotes the channel law given by (28). Thus, The above results also demonstrate that a threshold quan-
instead of maximizing the mutual information over all Borelizer is asymptotically optimal as the signal-to-noiseicrat
sets D and all probability distributions onX; satisfying tends to zero. We have further shown that this is true not
E[Xﬂ < P (24), it suffices to maximize the mutual infor-only asymptotically: for a fixed signal-to-noise ratio, wavi
mation over the four real numbegs, &, &3, andY and the shown that, among all one-bit output quantizers, a threshol
three-dimensional probability vecter satisfying (30). guantizer is optimal.
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