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Abstract—The InterFerence Channel with a Cognitive Relay
(IFC-CR) consists of a classical two-user interference channel
in which the two independent messages are also non-causally
known at a cognitive relay node. In this work a special class of
IFC-CRs in which the sources do not create interference at the
non-intended destinations is analyzed. This special model results
in a channel with two non-interfering point-to-point channels
whose transmission is aided by an in-band cognitive relay, which
is thus referred to as the Parallel Channel with a Cognitive Relay
(PC-CR). We determine the capacity of the PC-CR channel to
within 3 bits/s/Hz for all channel parameters. In particular, we
present several new outer bounds which we achieve to within a
constant gap by proper selection of Gaussian input distributions
in a simple rate-splitting and superposition coding-based inner
bound. The inner and outer bounds are numerically evaluated
to show that the actual gap can be far less than 3 bits/s/Hz.

Index Terms—Interference Channels with a Cognitive Relay;
Outer bound.

I. INTRODUCTION

The concepts of interference, cognition – or non-causal
message knowledge at a subset of network nodes – and
relaying have all been of great recent interest. While capacities
of the interference, cognitive and relay channels remain open
for the general discrete memoryless channel models, they
are known for certain classes of channels, and known to
within constant gaps for the Gaussian noise counterparts. In
this work we focus on a particular channel model which
illustrates the power of cognition and simultaneous relay-
ing which we term the Parallel Channel with a Cognitive
Relay (PC-CR), which encompasses several multi-user and
cognitive/cooperative channel models, such as the Broadcast
Channel (BC) and the Cognitive InterFerence Channel (CIFC).

The PC-CR is a sub-channel of the more general inter-
ference channel with a cognitive relay (IFC-CR). The IFC-
CR consists of a classical two-user interference channel in
which the two independent messages, each known at the
corresponding source node, are also non-causally known at
a third, in-band transmitter node, which we term the cognitive
relay. This five-node channel generalizes a number of known
channels including the BC, the IFC, and the CIFC. The PC-
CR consists of an IFC-CR in which the two sources do
not interfere at the non-intended destinations (see Fig. 1)
thus resulting into two parallel point-to-point channels whose
communication is aided by a single cognitive relay which
knows both messages non-causally. As such, the emphasis
is placed on the transmission strategy of the single cognitive
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Fig. 1. The GPC-CR channel with two messages W1 and W2 known non-
causally at the Cognitive Relay (CR).

relay: it may choose to help one source, the other, or both and
it is this tradeoff that the PC-CR seeks to characterize.

Past Work. The PC-CR has not been explicitly considered
aside from the authors’ previous work [1], where an outer
bound for the general discrete memoryless IFC-CR was pre-
sented and then tightened for certain deterministic channels.
We then demonstrated that this outer bound is capacity for the
high-SNR linear deterministic approximation of the Gaussian
PC-CR. In this work, we go beyond our previous work in [1]
by considering the Gaussian PC-CR model for finite SNR.

More generally, as the PC-CR is a subset of the IFC-CR,
the literature for the latter channel is of direct relevance. The
IFC with a relay was first introduced in [2] and [3], where the
message knowledge at the relay was obtained causally and
non-causally, respectively. Here we focus on the non-causal
version of the problem [3], also termed the “broadcast channel
with cognitive relays” [4], and thus we omit the body of work
related to the causal (i.e., non-cognitive) relay model. In [3],
dirty-paper coding, beamforming and interference reduction
techniques are combined in the derivation of an achievable
rate region for the Gaussian single-input single-output (SISO)
IFC-CR. In [5], the achievable region of [3] is further im-
proved upon and a sum-rate outer bound based on the MIMO
Gaussian C-IFC is proposed. In [4], an achievable rate region
that contains all previously known regions is proposed.

Contributions and Paper Organization. In this work we
study the Gaussian PC-CR (GPC-CR). We expand upon the
limited prior work on the PC-CR, never explicitly considered
in Gaussian noise, by:
• specializing the outer bound in [1] to the GPC-CR (Sec-
tion III-A) and deriving two new outer bounds (Section III-B),
• specializing the achievable scheme in [6] to the GPC-CR
(Section IV),
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• determining capacity to within 3 bits/s/Hz by selecting
Gaussian inputs in the achievable scheme that mimic the
capacity achieving scheme of the corresponding high-SNR
linear deterministic approximation channel [1] (Section V),
• numerically evaluating inner and outer bounds, which indi-
cate an even small than 3 bits/s/Hz gap (Section V).

Section VI concludes the paper.

II. CHANNEL MODEL

We use definitions and notation as in [7], and let C(x) ,
log2(1+x), and ᾱ , 1−α for α ∈ [0, 1]. A complex-valued
GPC-CR in standard form is a five-node network (see Fig. 1)
with inputs (X1, X2, Xc) and outputs (Y1, Y2) related through:

Y1 = |h11|X1 + |h1c|Xc + Z1, (1a)
Y2 = |h22|X2 + |h2c|Xc + Z2, (1b)

where Zi ∼ N (0, 1) and where the inputs are subject to
a power constraint E[|Xi|2] ≤ 1, i = {1, 2, c}. The channel
links hi, i ∈ {11, 22, 1c, 2c} can be taken to be real-valued
without loss of generality because receivers and transmitters
can compensate for the phase of the output signals. The
correlation among the noises is irrelevant because the capacity
of the channel without receiver cooperation only depends on
the noise marginal distributions [8].

A rate-pair (R1, R2) is achievable if there exist a sequence
of encoding functions over N channel uses XN

i = XN
i (Wi),

i ∈ {1, 2}, and XN
c = XN

c (W1,W2) (where we note the non-
causal message knowledge at the relay), for messages W1 and
W2 independent and uniformly distributed on [1 : 2NR1 ] and
[1 : 2NR2 ], respectively, and a sequence of decoding functions
Ŵi = Ŵi(Y

N
i ), i ∈ {1, 2}, such that Pr

[
Ŵi 6= Wi

]
→ 0 as

N → ∞ for i ∈ {1, 2}. The capacity region is the convex
closure of the set of achievable (R1, R2)-pairs.

III. OUTER BOUNDS

In this section we derive a series of outer bounds to the
capacity region of the GPC-CR. Our first outer bound is
obtained by evaluating the outer bound we derived in [1, Th.
III.1] for a general memoryless IFC-CR (which, as in Sato’s
outer bound for the BC [8], exploits the fact that the capacity
region only depends on the conditional marginal distributions
of the channel) for the GPC-CR model. The resulting outer
bound is the tightest known for the GPC-CR but it is expressed
as a function of four correlation parameters, which make
its analytical manipulation difficult. For this reason, we then
proceed to derive a simpler (expression-wise) piecewise linear
approximation of our first outer bound that will be used to
derive the constant gap result in the “large SNR” regime. Then,
by following the approach of [9, Th. III.7], we derive other
two outer bounds by transforming the GPC-CR into a channel
for which tight bounds are available. These two bounds will
be used in the derivation of the constant gap results in the
“small SNR” regime.

A. Tightest known outer bound

Theorem 1. The capacity of a GPC-CR is contained in the
region:

R1 ≤ C(|h11|2 + |h1c|2(1− |ρ2c|2) + 2Re{ρ1c}|h1c||h11|),

(2a)

R2 ≤ C(|h22|2 + |h2c|2(1− |ρ1c|2) + 2Re{ρ2c}|h2c||h22|),
(2b)

R1 +R2 ≤ C(|h22|2 + |h2c|2 + 2Re{ρ2c}|h2c||h22|) + min
ρz :|ρz |≤1

C

|h11|2 +
|h1c|2

|h2c|2
− 2

Re{ρz}|h1c|
|h2c|

−

∣∣∣ρ1c|h11||h2c|+ ρz − |h1c|
|h2c|

∣∣∣2
|h2c|2(1− |ρ2c|2) + 1


− log(1− |ρz|2) (2c)

R1 +R2 ≤ C(|h11|2 + |h1c|2 + 2Re{ρ1c}|h1c||h11|) + min
ρz :|ρz |≤1

C

|h22|2 +
|h2c|2

|h1c|2
− 2

Re{ρz}|h2c|
|h1c|

−

∣∣∣ρ2c|h22||h1c|+ ρz − |h2c|
|h1c|

∣∣∣2
|h1c|2(1− |ρ1c|2) + 1


− log(1− |ρz|2) (2d)

for all (|ρ1c|, |ρ2c|) ∈ [0, 1]2 such that |ρ1c|2 + |ρ2c|2 ≤ 1.

Proof: Consider the outer bound in [1, Th. III.1] for a
general IFC-CR, given by:

R1 ≤ I(Y1;X1, Xc|X2, Q),

R2 ≤ I(Y2;X2, Xc|X1, Q),

R1 +R2 ≤ I(Y2;X1, X2, Xc, Q) + I(Y1;X1, Xc|Y2, X2, Q)

R1 +R2 ≤ I(Y1;X1, X2, Xc, Q) + I(Y2;X2, Xc|Y1, X1, Q),

for some input distribution that factors as PQ,X1,X2,Xc =
PQPX1|QPX2|QPXc|X1,X2,Q. By specializing the above bound
to the GPC-CR, the “Gaussian maximizes entropy” theorem
[7] guarantees that the following Gaussian input:X1

X2

Xc

 ∼ N
0,

 1 0 ρ1c

0 1 ρ2c

ρ∗1c ρ∗2c 1

 (3)

exhausts the outer region (because every mutual information
term contains all the inputs). The covariance matrix in (3)
is positive semi-definite if and only if |ρ1c|2 + |ρ2c|2 ≤ 1.
Evaluating the outer bound region for the jointly Gaussian
input in (3) yields the region in (2). The minimization over
ρz = E[Z1Z

∗
2 ] in each of the sum-rate bounds is possible

because the joint conditional distribution can be chosen so as
to tighten the bound.

Given that our outer bound in Th. 1 is expressed as the union
over all feasible correlation coefficients that satisfy |ρ1c|2 +
|ρ2c|2 = 1, it is not immediately useful in the derivation of the
constant gap result. To address this, we loosen the outer bound
in Th. 1 and in doing so obtain a new, simpler piecewise linear
outer bound expression, which will be used in constant gap
result in Section V.



Theorem 2. Piecewise linear outer bound. The region in
Th. 1 is included into:

R1 ≤ C(max{|h11|2, |h1c|2}) + log(4), (4a)

R2 ≤ C(max{|h22|2, |h2c|2}) + log(4), (4b)

R1 +R2 ≤ C(max{|h22|2, |h2c|2})

+ C
(

max

{
|h11|2,

|h1c|2

|h2c|2

})
+ log(8), (4c)

R1 +R2 ≤ C(max{|h11|2, |h1c|2})

+ C
(

max

{
|h22|2,

|h2c|2

|h1c|2

})
+ log(8). (4d)

Proof: For the R1-bound (and similarly for R2-bound):

R1 ≤ C
(
|h11|2 + |h1c|2(1− |ρ2c|2) + 2Re{ρ1c}|h1c||h11|

)
≤ C

(
(|h11|+ |h1c|)2}

)
≤ C

(
4 max{|h11|2, |h1c|2}

)
≤ C(max{|h11|2, |h1c|2}) + log(4).

For the sum-rate bounds we let ρz = 0 and we proceed as
for the R1-bound. Note that our gap of 3 bits/s/Hz will come
form the term log(8) = 3 bits in (4c) and (4d) .

B. Outer bounds by transformation

We now present two additional outer bounds that are ob-
tained by transforming the GPC-CR in the spirit of [10, Th.
II.7]. In particular, we show that the capacity of the PC-CR is
contained into: 1) the capacity region of a cognitive IFC and
a point-to-point (P2P) channel in parallel, and 2) the capacity
region of two P2P channels and a BC channel all in parallel.
The proofs can be found in the Appendix and basically follows
by showing that independent coding across the transformed
parallel channels is optimal.

Theorem 3. CIFC+P2P outer bound. The capacity of the
GPC-CR is contained into the outer bound to the capacity
region of the channel in Fig. 2 given by:

R1 ≤ C
(
α|h1c|2
1−σ2

11

)
+ C

(
|h11|2
σ2
11

)
, (5a)

R1 +R2 ≤ C
(
ᾱ|h2c|2 + |h22|2 + 2

√
ᾱ|h2c||h22|

)
(5b)

+
[
C
(
α|h1c|2
1−σ2

11

)
− C

(
α|h2c|2

)]+
+ C

(
|h11|2
σ2
11

)
,(5c)

taken over the union of all α ∈ [0, 1], for any σ2
11 ≤ 1.

Theorem 4. Parallel P2P+BC outer bound. The capacity
of the GPC-CR is contained into the capacity region of the
channel in Fig. 3 given by:

R1 ≤ C
(
ᾱ|h1c|2
1−σ2

11

)
+ C

(
|h11|2
σ2
11

)
, (6a)

R2 ≤ C
(

α|h2c|2
ᾱ|h2c|2+1−σ2

22

)
+ C

(
|h22|2
σ2
22

)
, (6b)

union over all α ∈ [0, 1], for any σ2
1 , σ

2
2 ≤ 1 such that

|h1c|
1− σ2

11

≥ |h2c|
1− σ2

22

. (7)
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Fig. 2. The transformed channel for Th. 3.
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Fig. 3. The transformed channel for Th. 4.

IV. INNER BOUND

We now present a simple inner bound for the GPC-CR
based on rate splitting and superposition coding. Somewhat
surprisingly, we will show that this simple region achieves to
within 3 bits/s/Hz of the outer bounds derived in the previous
section. The two sources split their message into common and
private (sub)messages as in the classical Han and Kobayashi
scheme for the IFC [11], while the cognitive relay aids the
two sources by relaying each of the (sub)messages. Although
this inner bound may be cast as a special case of the inner
bound in [12], it may alternatively be directly derived from
the Han and Kobayashi region for the IFC [11] as follows.

Theorem 5. An achievable rate region for the GPC-CR is the
set of all non-negative (R1, R2)-pairs satisfying:

R1 ≤ I(Y1;X1, U1c|U2c, Q)

R2 ≤ I(Y2;X2, U2c|U1c, Q)

R1 +R2 ≤ I(Y1;X1, U1c, U2c|Q) + I(Y2;X2|U1c, U2c, Q)

R1 +R2 ≤ I(Y2;X2, U2c, U1c|Q) + I(Y1;X1|U1c, U2c, Q)

R1 +R2 ≤ I(Y1;X1, U2c|U1c, Q) + I(Y2;X2, U1c|U2c, Q)

2R1 +R2 ≤ I(Y1;X1, U2c, U1c|Q) + I(Y1;X1|U1c, U2c, Q)

+ I(Y2;X2, U1c|U2c, Q)

R1 + 2R2 ≤ I(Y2;X2, U1c, U2c|Q) + I(Y2;X2|U1c, U2c, Q)

+ I(Y1;X1, U2c|U1c, Q).

over the set of input distributions that factorize as
PQPU1c,X1|QPU2c,X1|QPXc|U1c,U2c,X1,X2,Q.

We will consider the following Gaussian input in Th. 5:

Ui ∼ N (0, 1) independent for all i ∈ {1p, 2p, 1c, 2c}
X1 =

√
α1U1p +

√
ᾱ1U1c, for α1 ∈ [0, 1],

X2 =
√
α2U2p +

√
ᾱ2U2c, for α2 ∈ [0, 1],

Xc =
√
β1pU1p +

√
β1cU1c +

√
β2pU2c +

√
β2cU2c,

for (β1p, β1c, β2p, β2c) ∈ [0, 1]4 : β1p + β1c + β2p + β2c = 1,



the resulting rate bounds are omitted for brevity, but can be
found in [13]. Note that with the above choice of inputs, the
channel is effectively equivalent to a classical Gaussian IFC.

V. CONSTANT GAP

In this section we show that the inner bound derived in
Section IV lies to within a constant gap of the outer bounds
derived in Section III. To prove this result we take inspiration
from the capacity achieving scheme for the high-SNR linear
deterministic approximation of the GPC-CR we derived in [1]
(which we do not repeat this here due to space constraints).
We do however note that in deriving the capacity result in [1],
different achievability schemes were needed for different pa-
rameter regimes. In deriving the constant gap result for the
Gaussian Pc-CR, we will directly mimic, or choose, the inputs
as the Gaussian analogy to the high-SNR capacity-achieving
scheme in [1]. In fact, the different subcases shown in Table I
directly parallel the regimes for the high-SNR deterministic
model, as further elaborated upon in [13].

Theorem 6. The inner bound of Th. 5 achieves capacity to
within 3 bit/sec/Hz.

Proof: To establish this constant gap result we take
inspiration from the proof of the capacity of the high-SNR
linear deterministic PC-CR in [1, Cor. IV.2] and we partition
the parameter space into three regions, each of which uses an
achievability scheme inspired by the deterministic counterpart
in the corresponding regime. The full and lengthy proof is
provided in [13], we outline some of the key ideas next. The
“piece-wise linear” outer bound region in (4) 1 has two Pareto
optimal corner points (see Fig. 4):

A =
(

(4a),min
{

(4c)− (4a), (4d)− (4a), (4b)
})
, (8a)

B =
(

min
{

(4c)− (4b), (4d)− (4b), (4a)
}
, (4b)

)
. (8b)

For each parameter regime we show the achievability of the
two corner points A and B; because of the min-expressions
in (8) we will have to consider different sub-cases. In the
following we assume without loss of generality that (4d)
dominates (4c). Table I summarizes the different schemes used
to achieve a constant gap from the corner points in (8) in
the right column When/why each of these schemes are useful
may be found in the Appendix and [13] in the following the
different sub-cases are briefly discussed.

a) Case W: “weak cognition at both decoders” regime:
When |h11|2 ≥ |h1c|2 and |h22|2 ≥ |h2c|2, that is, when
the power of the signal from the source to its destination is
stronger than the power of the signal from the relay to the
destination, the corner points A and B in (8) coincide. By
leaving the relay silent (i.e., β1p = β1c = β2p = β2c = 0)
and transmitting Xi = Uip (i.e., αi = 1) we can achieve
Ri ≤ C(|h11|2), i ∈ {1, 2}, which is to within two bits
the outer bound in Th. 2. In this regime there is no critical

1 For “large SNR” , i.e. mini∈{11,1c,2c,22}{|hi|2} ≥ 1, we compare the
inner bound with the outer bound in Th. 2. For “small SNR” the same proof
applies, but instead of the Th. 2 one must use Th. 3 and Th. 4 (see [13]).

advantage in using the cognitive relay to relay the message of
either source because the cognitive relay is received at small
power.

b) Case S: “strong cognition at both decoders” regime:
If |h11|2 < |h1c|2 and |h22|2 < |h2c|2, the gain of the link
from the cognitive relay to each destination is larger than
the direct link from the source to the destination. Consider
achieving corner point A in (8a) (point B may be achieved
in an similar way by reversing the role of the users): here the
cognitive relay cooperates with source 1 in sending a common
message and with source 2 in sending a private message. Since
|h22|2 < |h2c|2, the common message of source 1 can be
decoded at destination 2 without any rate penalty. The power
allocated to the private message of source 2 by the cognitive
relay is such that the interference it creates at destination 1 is
at or below the noise floor, as in [14] for the classical IFC.
This choice of transmit powers causes a gap of at most one bit
for the achievable rate R1 from point A on the outer bound,
but results in a gap of three bits for the achievable rate R2.

c) Case M: “mixed cognition” regime: When |h11|2 ≤
|h1c|2 and |h22|2 ≥ |h2c|2 the direct link between source 1
and destination 1 has a smaller gain than the link from the
cognitive relay to destination 1, while the opposite holds for
source 2. In trying to achieve corner point A in (8a), both
transmitters send a private message to the intended destination
while the cognitive relay relays sends a common message
for source 1. Decoding the common message of source 1
allows destination 2 to strip the interference from its channel
output. In trying to achieve corner B in (8b), the cognitive
relay employs a strategy similar to the “strong cognition at
both decoders” regime: it cooperates with the both sources
simultaneously and relays the private message of source 1 with
such amplitude as to cause an interference at destination 2
at or below the noise floor. This specific choice of power
levels causes a loss of performance of one bit for rate R2

but significantly boosts the achievable rate R1.
While we have analytically shown that the achievable rate

region of Th. 5 achieves to within 3 bits/s/Hz the outer bounds
in Th. 2, Fig. 4 shows, at least for certain channel parameters,
that the gap from the less analytically tractable outer bound
of Th. 1 is much less.

VI. CONCLUSION AND FUTURE WORK

While the exact capacity of the GPC-CR is still unknown,
we demonstrated inner and outer bounds which lie to within
3 bits/s/Hz from each other. This gap result was arrived at
through insights gained from the capacity achieving schemes
for the high-SNR linear deterministic approximation of the
GPC-CR. We view this channel as a building block toward
the more general IFC-CR in which interfering links between
the two non-cognitive users are present. The PC-CR has
allowed us to focus on the role of cognitive cooperation first,
before incorporating interference created by the non-intended
transmitter, which is the subject of ongoing work.



TABLE I
THE VARIOUS PC-CR CHANNEL PARAMETER REGIONS, EACH OF WHICH EMPLOYES DIFFERENT ACHIEVABILITY SCHEME.

Label Case Subcase Outer Bound Achievability scheme (absence implies zero rate)
Weak
(W)

|h11|2 ≥ |h1c|2,
|h22|2 ≥ |h2c|2,

R1 ≤ C(|h11|2) + 2,
R2 ≤ C(|h22|2) + 2,

X1 = U1p, X2 = U2p

Strong
(S)

|h11|2 < |h1c|2,
|h22|2 < |h2c|2,

|h11|2 ≥ |h1c|2
|h2c|2

R1 ≤ C(|h1c|2) + 2
R2 ≤ C(|h2c|2) + 2
R1 +R2 ≤ C(|h2c|2) + C

(
|h11|2

)
+ 3

S.1:
Point A:X1 = U1p, Xc = U1c, X2 = U2p

Point B: X1 = U1p, X2 = U2p

Xc = β2cU2c + β2pU2p

|h11|2 < |h1c|2
|h2c|2

R1 ≤ C(|h1c|2) + 2
R2 ≤ C(|h2c|2) + 2

R1 +R2 ≤ C(|h2c|2) + C
(
|h1c|2
|h2c|2

)
+ 3

S.2 : Point A:X1 = U1p, Xc = X1

Point B:Xc = β1cU1c + β2pU2p

Mixed
(M)

|h11|2 < |h1c|2,
|h22|2 ≥ |h2c|2,

|h11|2 ≥ |h1c|2
|h2c|2

R1 ≤ C(|h1c|2) + 2
R2 ≤ C(|h22|2) + 2
R1 +R2 ≤ C(|h22|2) + C(|h11|2) + 3

M.1: Point A:X1 = U1p, Xc = U1c

Point B:X1 = U1p, X2 = U2p

|h11|2 < |h1c|2
|h2c|2

R1 ≤ C(|h1c|2) + 2
R2 ≤ C(|h22|2) + 2

R1 +R2 ≤ C(|h22|2) + C
(
|h1c|2
|h2c|2

)
+ 3

M.2 : Point A:Xc = U1c, X2 = U2p

Point B:Xc = β1pU1p + β2cU2c, X2 = U2c

Fig. 4. A comparison of the outer bounds of Th. 1 and Th. 2 and the inner
bound of Th. 5 for the channel with h11 = 2h1c = h2c = h22/5 = 1.
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APPENDIX A
PROOF OF TH.3

The capacity of the PC-CR in Fig. 1 is contained into the
capacity of the transformed channel given in Fig. 2 where the
input output relationship is described by:[

Y11

Y1c

]
=

[
|h11|X1 + Z11

|h1c|Xc + Z1c

]
(9a)

Y2 = |h22|X2 + |h2c|Xc, (9b)

where Z11 ∼ N
(
0, σ2

11

)
, σ2

11 ∈ [0, 1], independent of Z1c ∼
N
(
0, 1− σ2

11

)
, where the inputs are subject to E[|Xi|2] ≤

1, i ∈ {1, c, 2}. Since Y1 ∼ Y11 + Y1c, the capacity of the
transformed channel is no smaller than the capacity of the
original channel. By Fano’s inequality:

N(R1 − εN ) ≤ I(Y N11 , Y
N
1c ;W1)

= I(Y N11 ;W1) + I(Y N1c ;W1|Y N11 )

≤ I(Y N11 ;W1) + I(Y N1c ;W1|Y N11 ,W2)

= h(Y N11 )− h(Y N11 |W1, X
N
1 )

+ h(Y N1c |Y N11 ,W2, X
N
2 )− h(Y N1c |Y N11 ,W2, X

N
2 ,W1, X

N
1 , X

N
c )

≤ h(Y N11 )− h(Y N11 |XN
1 )

+ h(Y N1c |XN
2 )− h(Y N1c |XN

2 , X
N
c ) (10a)

= I(Y N11 ;XN
1 ) + I(Y N1c ;XN

c |XN
2 )

≤ N
(
I(Y11;X1|Q) + I(Y1c;Xc|X2, Q)

)
,

where in (10a) we have used “conditioning reduces entropy”
to drop (Y N11 ,W2) in h(Y N1c |Y N11 ,W2, X

N
2 ) and the fact that

Y N1c is independent of everything else once conditioned on
XN
c .
For the sum-rate, by Fano’s inequality:

N(R1 +R2 − 2εN )

≤ I(Y N11 , Y
N
1c ;W1) + I(Y N2 ;W2)

≤ I(Y N11 , Y
N
1c , Y

N
2 ,W2;W1) + I(Y N2 ;W2)

= h(Y N2 )− h(Y N2 |W1,W2)

+ I(Y N11 ;W1|Y N2 ,W2) + I(Y N1c ;W1|Y N2 ,W2, Y
N
11 )

≤ I(Y N2 ;XN
2 , X

N
c )

+ I(Y N11 ;XN
1 ) + I(Y N1c ;XN

c |Y N2 , XN
2 ) (11a)

= N
(
I(Y2;X2, Xc|Q) + I(Y11;X1|Q) + I(Y1c;Xc|Y2, X2, Q)

)
where (11a) follows from steps similar to those used to

derive the R1-bound. The outer bound is obtained as the
union over all the distributions that factors PQ,X1,X2,Xc =
PQPX1|QPX2|QPXc|X1,X2,Q. Moreover, by the ”Gaussian
maximizes entropy property” [7], we have that zero-mean
complex Gaussian inputs maximize all the bounds in (5) and
thus we let X1

X2

Xc

 ∼ N
0,

1 0 0
0 1 ᾱ
0 ᾱ∗ 1

 . (12)

Note that we can fix Cov(X1, X2) = 0 wlg since none of
the rate bounds depends on the correlation of these two RVs.

The expression in (5) is finally obtained by maximizing the
sum rate bound of (11), with the inputs parametrization of
(12), over the joint distribution of PY1,Y2|X1,X2,Xc

for fixed
marginals PY1|X1,X2,Xc

and PY2,Y2|X1,X2,Xc
as in [9].

APPENDIX B
PROOF OF TH. 4

As in the proof of Th. 3, the capacity of the PC-CR in Fig. 1
is contained into the capacity of the transformed channel given
in Fig. 3 where the input output relationship is described by:[

Y11

Y1c

]
=

[
|h11|X1 + Z11

|h1c|Xc + Z1c

]
, (13a)[

Y22

Y2c

]
=

[
|h22|X2 + Z22

|h2c|Xc + Z2c

]
, (13b)

for Z11 ∼ N (0, σ2
11), σ2

11 ∈ [0, 1], independent of Z1c ∼
N (0, 1−σ2

11), and Z22 ∼ N (0, σ2
22), σ2

22 ∈ [0, 1] independent
of Z2c ∼ N (0, 1 − σ2

22), and where the inputs are subject to
E[|Xi|2] ≤ 1, i ∈ {1, c, 2}. Note the transformed channel in
Fig. 3 consists of two point-to-point channels and a BC all in
parallel. The original channel in Fig. 1 is a degraded version of
the channel in Fig. 3 since Yi ∼ Yii+Yic, i ∈ {1, 2}. As in the
proof of Th. 3, we first show that independent coding across
the parallel channels is optimal and then obtain the capacity
region of the channel as the sum of the capacity of parallel
channels. By Fano’s inequality:

N(R1 − εN ) ≤ I(Y N11 , Y
N
1c ;W1)

≤ I(Y N1c ;W1) + I(Y N11 ;W1) (14a)
≤ N (I(Y1c;Xc|U) + I(Y11;X1)) (14b)

where (14a) follows from the same steps as (10), and (14b)
from the rate bound for the degraded BC in [15], where the
auxiliary random variable U forms the Markov chain U−Xc−
Y1 − Y2 under the condition (7). Similarly we have that

N(R2 − εN ) ≤ I(Y N22 , Y
N
2c ;W1)

≤ I(Y N2c ;W1) + I(Y N22 ;W1) (15a)
≤ N (I(Y2c;U) + I(Y22;X1)) (15b)

where (15a) follows from the same steps as (10) for user 2,
and (15b) from the rate bound for the degraded BC in [15]
for the same U as in (14). The bounds of (14) and (15) do
not depend on the joint distribution of PX1,X2,Xc

but only
on the marginal distribution of each RV. For this reason we
can take Xc ⊥ X1 and Xc ⊥ X2 wlg while X1 ⊥ X2

by definition. From this consideration and the “Gaussian
maximizes entropy” property of [7], it follows that the optimal
distribution of X11 and X22 is zero-mean complex Gaussian
while from the “entropy power inequality” of [15] it follows
that the optimal U and Xc must be proper complex Gaussian.
The expression of (6) is obtained by noting that bounds are
maximized when the power constraint is met with equality.
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