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Abstract—We study the use of linear codes for network com- network codes may not be sufficient in general for solvapbilit
puting in single-receiver networks with various classes ofarget  [17]. However, it is known that for single-receiver netwsyk
functions of the source messages. Such classes include reitile, linear coding is sufficient for solvability when computing a

injective, and semi-injective target functions. Computirg capacity . . .
bounds are given with respect to these target function class scalar linear target function [4], [16]. Analogous to thelrg

for network codes that use routing, linear coding, or nonlirear ~capacity for network coding, the notion of computing capaci
coding. was defined for network computing in [8] and is the supremum

of achievable rates of computing the network’s target fiomct
One fundamental objective in the present paper is to under-
stand the performance of linear network codes for computing
Network codingconcerns networks where each receiver defifferent types of target functions. Specifically, we comgpa
mands a subset of messages generated by the source nodegh@ntfinear computing capacity with that of the (nonlinear)
the objective is to satisfy the receiver demands at the maxim computing capacity and the routing computing capacity for
possible throughput rate. Accordingly, research efforseh various different classes of target functions in singleereer
studied coding gains over routing [1], [9], [10], whethevdar networks. Such classes include reducible, injective, amdi-s
codes are sufficient to achieve the capacity [6], [7], [11B][ injective functions. Informally, a target function is semi
and cut-set upper bounds on the capacity and the tightnessnpéctive if it uniquely maps at least one of its inputs, and
such bounds [9], [10], [19]. a target function is reducible if it can be computed using a
Network computingon the other hand, considers a mor@near transformation followed by a function whose domain
general problem in which each receiver node demands a taragé a reduced dimension. Computing capacity bounds and
function of the source messages [3], [8], [12], [14], [18J8]. achievability are given with respect to the target function

Most problems in network coding are applicable to networiasses studied for network codes that use routing, linear
computing as well. Network computing problems arise igoding, or nonlinear coding.

applications such as sensor networks and vehicular neswork Our specific contributions will be summarized next.

In [3], a network computing model was proposed where
the network is modeled by a directed, acyclic graph with o
independent, noiseless links. The sources generate indepe A Contributions
messages and a single receiver node computes a targebfuncti In Section Ill, we study the computing capacity gain of
[ of these messages. The objective is to characterize iging linear coding over routing, and nonlinear coding over
maximum rate of computation, that is, the maximum numbgnear coding. In particular, we study various classes ajgt
of times f can be computed per network usage. Each noglenctions, including injective, semi-injective, reduleb and
in the network sends out symbols on its out-edges whigiear. The relationships between these classes is #itestr
are arbitrary, but fixed, functions of the symbols receiveigh Figure 1. We show that if a target function is not reducible
on its in-edges and any messages generated at the nodehéh the linear computing capacity and routing computing
linear network computing, this encoding is restricted teér capacity are equal whenever the source alphabet is a firlie fie
operations. Existing techniques for computing in netwarks (Theorem 111.4); the same result also holds for semi-iriject
routing, where the codeword sent out by a node consiststafget functions over rings. We also show that whenever a
symbols either received by that node, or generated by the nadrget function is injective, routing obtains the full counting
if it is a source (e.g. [15]). capacity of a network (Theorem 1I1.5), although whenever a

In network coding, it is known that linear codes are sukarget function is neither reducible nor injective, theséses
ficient to achieve the coding capacity for multicast netvgorky network such that the computing capacity is larger than
[1], but they are not sufficient in general to achieve the ugdi the linear computing capacity (Theorem 111.7). Thus for aon
capacity for non-multicast networks [6]. In network computinjective target functions that are not reducible, any catirgy
ing, it is known that when multiple receiver nodes demanghpacity gain of using coding over routing must be obtained
a scalar linear target function of the source messagesarlinghrough nonlinear coding. This result is tight in the serrsa t

. . _ , if a target function is reducible, then there always exists a
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I. INTRODUCTION



routing computing capacity. (Theorem 111.10). Due to ladk oB. Network computing and capacity
space, many of the proofs have been omitted. The interesteg_et % andn be positive integers. Given a netwai with

reader can find them in [4].

All target functions
|

Reducible SemijinjectiV(

Fig. 1. Decomposition of the space of all target functiorie irarious classes.

II. NETWORK MODEL AND DEFINITIONS

In this paper, anetwork N' = (G, S,p) consists of a
finite, directed acyclic multigraplG = (V,€), a setS =
{o1,...,05} € V of s distinct source nodesand a single
receiverp € V. We assume that ¢ S, and that the graply
contains a directed path from every nodelirto the receiver
p. For each node: € V, let &;,(u) and &,,:(u) denote the

source setS and alphabetd, a message generatos any
mapping

a: §— AR
For each source; € S, a(o;) is called amessage vectand
its components

Oé(ai)l geeey a(ai)k

are calledmessages

Definition 11.2. A (k,n) network code in a network/ con-
sists ofencoding functiona(®), for every out-edge € &,,:(v)
of every nodev € V — p, and adecoding functionp.

Furthermore, given &, n) network code, every edgec &
carries a vectorz, of at mostn alphabet symbols which
is obtained by evaluating the encoding functibff) on the
set of vectors carried by the in-edges to the node and the
node’s message vector if the node is a source. The objective
of the receiver is to compute the target functipof the source
messages, for any arbitrary message generkatdviore pre-
cisely, the receiver constructs a vectorioflphabet symbols,
such that for each € {1,2,...,k}, the i-th component of
the receiver's computed vector equals the value of the esir
target functionf, applied to the-th components of the source

in-edges and out-edges ofrespectively. We assume (withoutmessage vectors, for any choice of message genesator

loss of generality) that if a network node has no in-edgeth ] i
it is a source node. I = (u,v) € &, we will use the notation Definition 11.3. Suppose in a network/, the in-edges of the
head¢) = u andtail(e) = v. receiver aree;, ez, . . ., €|g,,. (»)- A (k,n) network code is said

An alphabetis a finite set of size at least two. Throughout® COMPUtef in N if for eachj € {1,2,...,k}, and for each
message generatar, the decoding function satisfies

this paper,A will denote asource alphabeand B will denote
U (2 ) = F(@(00); 0 a(02),)) - (@)

a receiver alphabetFor any positive integem, any vector

x € A™, and anyi € {1,2,...,m}, let x; denote thei-

th component ofr. Sometimes we viewd as an algebraic f there exists a(k,n) code that computeg in A/, then the
structure such as a ring, i.e., with multiplication and &ddi. ational numberk/n is said to be arachievable computing
Throughout this paper, vectors will always be taken to be rowjte,

vectors. LetF, denote a finite field of ordeg. A superscript

¢ will denote the transpose for vectors and matrices. In the network coding literature, one definition of thading

capacityof a network is the supremum of all achievable coding

rates [5]. We use an analogous definition for the computing

A. Target functions capacity.
For a given network\/ = (G, S, p), we uses throughout
the paper to denote the numbjgt| of receivers inN. For

given network\/, atarget functionis a mapping

f: A —B.

Definition 11.4. The computing capacitpf a network/A\” with
respect to a target functiofi is

Ccod(N: f) =
sup {% : 3 (k,n) network code that compute&in N}. ?3)

The goal in network computing is to computeat the receiver The notion of linear codes in networks is most often studied

p,”e:s a TPCt'Otn of tge somjjrce mﬁs‘tiagesmwekw'” assume tuﬁtth respect to finite fields. Here we will sometimes use more
all target functions depend on all the network sources 6‘e‘general fing structures.

target function cannot be a constant function of any onesof i
arguments). Definition I1.5. Let alphabetA be a ring. A(k,n) network
code in a network\V is said to be dinear network code (over

Definition I.1. Let alphabet4 be a ring. A target function A) if the encoding functions are linear ovet.

f+ A® — B is said to bereducibleif there exists an integer
A satisfying A < s, ans x A matrix 7' with elements inA,
and a mapy : A* — B such that for alk: € A°,

g(aT) = f(z).

The linear computing capacityCin (N, f) and therout-
ing computing capacityCow(N, f) are defined similarly

1)

1By default, we assume that edges carry exastlgymbols.



by restricting the encoding functions to be linear functionTheorem Ill.4. Let N be a network with target functiof :

(over A) and routing, respectively. We call the quantityd® — B and alphabetA. If A is a finite field andf is not
Ceod(N, f) — Cin (N, f) the computing capacity gainf using reducible, orA is a ring with identity andf is semi-injective,
nonlinear coding over linear coding. Similar “gains”, suchhen

as,Ccod(N, f) - Crout(Na f) and Clin (Na f) - CFOUI(N7 f) are Clin (Na f) = CTOUI(Na f) .

defined.

IIl. LINEAR NETWORK CODES FOR COMPUTING TARGET

o1 ) Ts—1 Os
' ® o 0 0 0
FUNCTIONS
It turns out that if intermediate network nodes are restdct
to use only routing, then a network’s receiver learns all the
source messages irrespective of the target function it ddma
v

In Section IlI-A, we prove a similar result when the interrized

ate nodes use linear network coding. It is shown that whaneve

a target function is not reducible the linear computing cétya

coincides with the routing computing capacity and the nezrei

must learn all the source messages. We also show that there P
exists a network such that the computing capacity is lafugan t
the routing computing capacity whenever the target fumctio
1S non-lnjectlye. Hencet' if th.e target functlop Is not l’elﬂllﬂ;. Fig. 2. NetworkNs has sources, 02, ...,0s, each connected to the relay
such computing capacity gain must be obtained from nonlineaby an edge ana is connected to the receiver by an edge.

coding. Section IlI-B shows that linear codes may provide

a Computing Capacity gain over routing for reducible target Theorem I11.4 showed that if a network’s target function is
functions and that linear codes may not suffice to obtain tf@t reducible (e.g. semi-injective target functions) theere

full computing capacity gain over routing. can be no computing capacity gain of using linear coding
over routing. The following theorem shows that if the target

A. Non-reducible target functions function is injective, then there cannot even be any noaline
computing gain over routing.

Verifying whether or not a given target function is redueibl  \qte that if the identity target function is used in Theo-
may not be easy. We now define a class of target functiongy, | 5, then the result states that there is no coding gain
that are easily shown to not be reducible. over routing for ordinary network coding. This is considten
Definition 1Il.1. A target functionf : A> — B is said to be Ssince our stated assumption in Section Il is that only single
semi-injectivef there exists € A* such thatf—*({ f(z)}) = receiver networks are considered here (for some networkts wi
{x}. two or more receivers, it is well known that linear coding may

. . _ , provide network coding gain over network routing).
Example 111.2. If f is the arithmetic sum target function, then

f is semi-injective (sincef(x) = 0 implies z = 0) but not Theo_rem .5, If A is a network with an injective target
injective (sincef(0,1) = f(1,0) = 1). Other examples of function f, then

sem|—|r_u(_ect|ve targeF functions include the identity, rimanm, Ceod N, F) = Crout(N, f)

and minimum functions.

p

Proof: It follows from [19, Theorem 4.2] that for any

Lemma 1Il.3. If alphabetA is a ring, then semi-injective single-receiver network\/ and the identity target function

target functions are not reducible. £, we haveCeodN, f) = Crowl(A, f). This can be straight-
Theorem 111.4 establishes for a network with a finite fieldorwardly extended to injective target functions for netiwo
alphabet, whenever the target function is not reducibhedir computing. [

computing capacity is equal to the routing computing cagaci Theorem Ill.4 showed that there cannot be linear computing
and therefore if a linear network code is used, the receivgain for networks whose target functions are not reduciutel,
ends up learning all the source messages even though it ohlyeorem I11.5 showed that the same is true for target fumstio
demands a function of these messages. that are injective. However, Theorem I11.7 will show via an

For network coding (i.e. wherf is the identity function), example network that nonlinear codes may provide a capacity
many multi-receiver networks have a larger linear capacigain over linear codes if the target function is not injeetiv
than their routing capacity. However, all single-receimet- This reveals a limitation of linear codes compared to nadin
works are known to achieve their coding capacity with rogitinones for non-injective target functions that are not rebligci
[19]. For network computing, the next theorem shows thathwit-or simplicity, in Theorem 111.7 we only consider the case
non-reducible target functions there is no advantage togusiwhen there are two or more sources. We need the following
linear coding over routing. lemma first.

2As a reminder, “network” here refers to single-receiverweeks in the Lemma. ”I;G- The gomputing capacity of the_ networ,
context of computing. shown in Figure 2, with respect to a target functipn A4° —



B, satisfies
. 1 (1]
" log)a | f (A%)]

Theorem 11.7. Let A be a finite field alphabet. Let > 2
and let f be a target function that is neither injective nor
reducible. Then there exists a netwokk such that

CCOd(Naf) >Clin(Naf)-

Proof: If N is the networkN, shown in Figure 2 with
alphabetA, then

C|in(J\/,f) = 1/8

CCOd(NSa f) > min
[2]

K]
[4
(5]
[from Theorem 111.4
! f <A
1, —————— rom s > 2, O < |A]°
o | | £ (A9)] < AP
S CCOd(N7 f) .

< min

[7]
[from Lemma 111.6

(8]

B. Reducible target functions [
In Theorem 111.8, we prove a converse to Theorem IIl.4 by
showing that if a target function is reducible, then therst®a [10]

network in which the linear computing capacity is largermtha
the routing computing capacity. Theorem 111.10 shows that'i’l]
even if the target function is reducible, linear codes mat/ no

achieve the full (nonlinear) computing capacity of a nelwor[lzl
Theorem 111.8. Let A be a ring. If a target functionf :
A* — B is reducible, then there exists a netwokk such

[13]
that

Clin (N7 f) > CI’OUI(N7 f) . (14]

For target functions that are not reducible, any improv 75
ment on achievable rate of computing using coding must be
provided by nonlinear codes (by Theorem Ill.4). However,
within the class of reducible target functions, it turns that (16]
there are target functions for which linear codes are ogdtima
(i.e., capacity achieving), while for certain other rechlei [17]
target functions, nonlinear codes might provide a strilethger
achievable computing rate compared to linear codes.

Remark II1.9. It is possible for a networkN to have a (18]
reducible target functioif but satisfyCjin (N, f) = Crout(N, f)
since the network topology may not allow coding to exploif9]
the structure of the target function to obtain a capacityngai

Theorem 1.7 shows that for every non-injective, non-
reducible target function, some network has a nonlinear-com
puting gain over linear coding, and Theorem I111.8 shows
that for every reducible (hence non-injective) target tiorg
some network has a linear computing gain over routing.
The following theorem shows that for some reducible target
function, some network has both of these linear and nonlinea
computing gains.

Theorem 111.10. There exists a network/ and a reducible
target functionf such that:

CCOd(Na f) > Clin (Na f) > Crout(Na f) .
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