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Abstract—This paper studies the problem of high-dimensional
multiple testing and sparse recovery from the perspective of
sequential analysis. In this setting, the probability of error is
a function of the dimension of the problem. A simple sequential
testing procedure for this problem is proposed. We derive neces-
sary conditions for reliable recovery in the non-sequential setting
and contrast them with sufficient conditions for reliable recovery
using the proposed sequential testing procedure. Applications of
the main results to several commonly encountered models show
that sequential testing can be exponentially more sensitive to the
difference between the null and alternative distributions (in terms
of the dependence on dimension), implying that subtle cases can
be much more reliably determined using sequential methods.

I. INTRODUCTION

High dimensional testing and sparse recovery problems arise
in a broad range of scientific and engineering applications.
The basic problem is summarized as follows. Let 8 € R”
denote a parameter vector. The dimension n may be very
large (thousands or millions or more), but @ is sparse in the
sense that most its elements are equal to a baseline/null value
denoted by 6y (e.g., g = 0). The support of the sparse subset
of elements that deviate from the baseline is denoted by S.

The parameter 8 is observed stochastically according to

) fyilte) g S )
g flyilor) i€esS

where f(-|0) is a parametric family of densities indexed by a
scalar parameter § € R. The goal of the high-dimensional
testing and sparse recovery problem is to identify S from
observations of this form. This problem has attracted attention
lately due to its importance in the biological sciences. It is
also relevant in communications problems including spectrum
sensing in cognitive radio, one of the motivations for our work.

The conventional theoretical treatment of this problem as-
sumes that a set of observations are collected prior to data
analysis. Typically, in what we refer to as the non-sequential
setting, each of the n components is measured (one or more
times) according to the model above and then component-wise
tests are performed to estimate S.

This papers investigates the high-dimensional testing prob-
lem from the perspective of sequential analysis. In this setting,
observations are gathered sequentially and adaptively, based on
information gleaned from previous observations. This allows
the observation process to focus sensing resources on certain
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components at the expense of ignoring others. For example,
the process might first measure each component once, then
focus on a reduced subset of ‘interesting’ components in a
second pass.

To compare sequential and non-sequential methods we
impose a budget on the total number of measurements that can
be made. The main results show sequential methods can be
dramatically more sensitive to small differences between the
baseline/null 6y and the alternative value of ;. Our approach
is similar to the so-called distilled sensing method proposed
in [1] [2], however there are two main distinctions. First,
the results in this paper are applicable to a large class of
problems characterized by one-sided tests; the distilled sensing
approach is specific to the Gaussian setting. Second, here we
are concerned with the probability of error in identifying S,
whereas the distilled sensing controls the false discovery and
non-discovery rates which is less demanding than the error
rate control. The probability of error is more natural and
appropriate in applications such as spectrum sensing.

To give a sense of the main results, consider the case in
which f(-|0) is a Gaussian with mean 6 and variance 1. If
0y = 0 and the alternative is 61 > 0, then reliable detection
(probability of error tending to zero as n — c0) is possible
using non-sequential methods if and only if #; > /2logn.
In contrast, a sequential method that we will demonstrate
is reliable as long as 6; > +/4log|S|, where |S| is the
cardinality of the support set. This shows that the sequential
method is more sensitive whenever |S| < nt/2; ie., the sparse
setting. The improvement is especially remarkable when 6
is very sparse; e.g., if |S| ~ logn, then sequential methods
succeed as long as 6, is larger than a constant mutiple of
Vloglogn. The gains provided by the sequential method are
even more pronounced for certain one-sided distributions. Un-
der the Gamma distribution model (which arises in spectrum
sensing), for constants ¢ and C, if 6y > C log(|S|log,n)
then the sequential method is reliable, but any non-sequential
thresholding procedure is unreliable if 6y < ¢ nz . To dramatize
this result, if |S| ~ logn, then the gap between these
conditions is doubly exponential in n.

II. PROBLEM STATEMENT

We begin by stating a main assumption about the family
f(:10). Let y, ..., ym beiid. random variables with common
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distribution f(-|0), for some 6§ € R. Let y = (y1,...,ym) and
define the likelihood ratio
7/ (y;01)
I'(y) :=
=11 7100
Assumption Al. I'(y) is a monotone non-decreasing function

fOV 91 Z 90.

We will state our main results with this monotonicity assump-
tion. However, in certain applications we consider it is more
natural to consider 87 < 6 and assume that the likelihood ratio
is a monotone non-increasing function. The main results carry
over to this setting with appropriate modification. Define T,
as the (log) likelihood ratio test statistic, which is a function
of y. The test statistic depends on the number of independent
observations, and so this is indicated by the subscript m. If
A1 holds, then the test at threshold 7 € R

01

Ty 2 7,

0o
is the uniformly most powerful test (UMP) of 6§ < 6y versus
6 > 6y. The monotonicity of the likelihood ratio is satisfied
by a large number of distributions in the exponential family
(including Gaussian, Poisson and exponential distributions).

A. Measurement Budget

To compare sequential and non-sequential methods we
impose a budget on the total number of measurements. The
total number of measurements N < 2mn, where m > 1 is an
integer and n is the dimension of 6.

B. Non-Sequential Testing

The non-sequential approach distributes the measurement
budget uniformly over the n components, making 2m i.i.d.
observations of each. Let ¥; 1, ..., ¥yi 2m denote the m obser-
vations of component ¢, and let T; 2,,, denote the corresponding
test statistic. The UMP test takes the form

01
Tiom 2 T. (2)
0o

The estimated support set at threshold 7 is defined to be

Sr={i : Tiom>T1}.

This estimator is optimal among all (non-sequential)
component-wise procedures because each test is UMP.

C. Sequential Thresholding

The sequential method we proposed is based on the fol-
lowing simple bisection idea. Instead of aiming to identify
the components in S (those with § = 6;), at each step of
the sequential procedure we aim to eliminate about 1/2 of
the components that follow the null, § = 6, from further
consideration. The components that remain after K such steps
is our estimate of the set S.

Suppose we begin by using half of our measurement budget
to collect m observations of each component. The test statistic

for each is T}, := T(Yi1,---,Yim). Assume 6y is known
and let T, |0y denote the random variable whose distribution
is that of the test statistic under the null, 8 = y. Consider the
threshold test

Tim > median(T},[00) .

For i ¢ S, the test statistic T ,,, falls below median(7,,|6o)
with probability 1/2. The threshold test above thus eliminates
approximately 1/2 of the components that follow the null. We
can next use a portion of our remaining budget of mn to repeat
the same measurement and thresholding procedure on the
remaining components. Since approximately 7/2 components
remain this will require mn/2 of the remaining budget.
Repeating this process for sufficiently many iterations will
remove, with high probability, all of the null components. We
call this process sequential thresholding and give a formal
algorithm below. The output of the procedure, Sk, is the
estimated support set. Notice that sequential thresholding does
not require prior knowledge of the size of the support set.

Sequential Thresholding

input: K > 0 steps, vo := median(7},|6o)
initialize: Sp = {1, ...,n}
for k=1,...,K do
for : € Sp,_1 do "
mewares (317, % { TU 0 047
’ H;n:1 fly;i;101) i€S
threshold: S;; = {i € Sx—1 : TZ(];)I >}
end for
end for
output: S

D. Sequential Thresholding Satisfies Budget

The number of measurements used by sequential threshold-
ing satisfies the overall measurement budget N < 2mn in
expectation. Let s = |S|, the cardinality of the support set.
The expected number of measurements is

K-1
> ISk]
k=0

K-1

< > <w+ms)

k=0
< 2m(n—s)+msK .

E

A

Our interest is in high-dimensional limits of n and s (and
possibly K'). Suppose that sK grows sublinearly with n. Then
for any € > 0 there exists an N, such that E {ZkK:_Ol |Sk|} <
2(1 4 ¢)mn for every n > N,. For ease of exposition, we
suppress the factor 1 + € as we proceed; it does not effect the
main results and conclusions of the paper as allowing the non-
sequential method 2(1+¢)mn observations is inconsequential.

E. Implementations

There are two possible implementations of sequential
thresholding which we refer to as parallel and scanning.



parallel: The parallel implementation measures and tests all
n components in parallel according to the procedure.

scanning: The scanning implementation measures and tests
the n components in a sequence (which can be arbitrary).
For example, the scanning implementation can begin with
component ¢ = 1 and repeatedly measure and threshold the
observations up to K times. If an observation falls below the
threshold at any point, then the scanning procedure immedi-
ately moves on to the next component. If K observations are
made without an observation falling below the threshold, then
the component is added to the set Sk . The expected number
of observations obeys the same bound as derived above.

The two implementations are equivalent from a theoretical
perspective. The parallel implementation may be more natural
for large-scale experimental designs (e.g., in the biological
sciences), whereas the scanning implementation is more ap-
propriate in communications applications such as spectrum
sensing. The latter also reveals natural connections between
sequential thresholding and sequential probability ratio tests.

F. Connection to Sequential Probability Ratio Tests

As we will show in the following section, in the high-
dimensional limit (n — oco) sequential thresholding can drive
the probability of error to zero if the divergence between
the null and alternative distributions is log|S| times a small
constant. This specializes in the Gaussian setting to the re-
quirement that the difference between the means is at least
\/41og |S|, which compares favorably to the requirement that
the difference exceeds /2 logn for non-sequential methods.

In fact, the log |S| dependence of sequential thresholding
is optimal, up to constant factors. This follows from well-
known results in sequential testing. Let S denote the result
of any testing procedure based on n local (component-wise)
tests of the form Hy: ¢ € S against Hy : ¢ € S. Each test is
based on the sequential observations ¥; 1, %2, --,¥; N, and
the stopping time of the test is the value of N (possibly
random) when the decision is made.

Suppose that each individual test has false-positive and
false-negative error probabilities less than « := ¢/(n — |S])
and 3 := €/|S], respectively. Then the expected total number
of errors is E|S N S|+ E|SC N S| < 2e. It is necessary that
this expected number tend to zero in order for the probability
of error, P(S # S), to tend zero. With the above specifications
for the two types of error, it is possible to design a sequential
probability ratio test (SPRT) for each component.

The SPRT computes a sequence of likelihood ratios, where
¢; n, is the likelihood ratio of y; 1,...,¥in, n > 1. The SPRT
terminates when ¢; ,, > B or ¢;,, < A, where the thresholds
A and B are determined by the equations a = B~1(1 — 3)
and 8 = A(1—«) (see [3] p. 11). Note that, unlike sequential
thresholding, the SPRT requires knowlege of both distributions
as well as the level of sparsity. Since such information is
usually unavailable in applications, we advocate the use of
sequential thresholding instead; it requires only crude knowl-
edge of the null and nothing about the alternative or sparsity

level.
From the Wald equation, the expected stopping time of the
SPRT per index is (approximately) [3]

=~ ot {alog (%) + (1—a)log (%)}
jol {(1 — B)log (%) + Blog (%)} ;

where E; denotes the expectation under f(-|6;) and pu; :=

E; {log ;EZ{Z;”, i =0,1. In our case o = ¢/(n — |S|) and

B =¢€/|S|, and as € — 0 we have

Eo[N']

Eq[N']

12

_ €
Eo[N'] = pg'log &

Eq[N']

o~ -

If |S| < n, then the expected total number of measurements
of made by all n SPRTs is

E[N] = (n — [S)Eo[N'] + [S|E4[N'] =~ Llog— .
po - |S]
Note that pug = —Dy := —D(f(|6‘0)||f(|91)), the KL

divergence of f(-|01) from f(-|fy), so expected total number
of observations made by the n SPRTs is

log
It follows from the optimality of the SPRT that no other
component-wise testing procedure with € error-rate requires
fewer observations. Now let us constrain this expected total to
be less than or equal to 2mn. This yields a necessary condition
for controlling the probability of error of any sequential test:

DUCIS10) 2 o log S

IIT. MAIN RESULTS

The main results rely on the extremal properties of the
test statistic. We say that a testing procedure is reliable if it
drives the probability of error to zero in the high-dimensional
limit. More formally, consider a sequence of multiple testing
problems indexed by dimension n. Let S(n) denote the true
support set and let S (n) = S; (non-sequential procedure) or
S(n) = Sk (sequential procedure). We define a notion of
reliability as follows.

Definition III.1. (Reliability) Ler £ denote the error event
{8(n) # S(n)}. We say that the support set estimator S(n)
is reliable if lim,, o, P(£) = 0; i.e., if the probability of error
tends to zero as n grows.

To keep the notation simple, in what follows we will
not explicitly indicate the dependence of the statistics on n.
We show that the non-sequential testing procedure in @) is
unreliable at every threshold level 7 if

]}»(MZQ:L 3)

I
o median(T5,, |61

n—oo



Sequential testing according to sequential thresholding is reli-
able if

lim P

minszl min;es T-(k)
median (73,]6p)

o §1> =0, “)

and K = (1 + ¢)logyn, for any ¢ > 0. We are interested
in ranges of 61 > 6y that satisfy the conditions above. In
many cases of interest, (3) and hold simultaneously for
a wide range parameter values. This implies that there are
many regimes in which sequential methods are reliable, but
non-sequential methods are not.

For example, we show in Section[TV-Al that if the underlying
component distributions are unit variance Gaussian with means
6o = 0 and 6; > 0, then the non-sequential procedure is

unreliable if 6; < % log n whereas sequential thresholding

is reliable if 6; > /2 log(|S|logyn). The size of the

sparse support |S| is typically much smaller than the overall
dimension n, and so there are many cases in which the
sequential method is reliable but the non-sequential method is
not. The gap between the two conditions can be exponentially
large in terms of the dimension n. As a specific example, if the
support is |S| ~ logn, then there are constants C, ¢ > 0 such
that the sequential method is reliable if #; > Cv/loglogn and
the non-sequential method is not if §; < cy/logn.

A. Limitation of Non-Sequential Testing

Theorem II1.2. If ([3) holds, then the non-sequential procedure
in @) is unreliable. Specifically, if £, is the error event {S; #
S}, then for every T

lim P(&) >

n—00

N =

Proof: The non-sequential testing procedure accepts the
null hypothesis if the test statistic 7} 2,, is less than some
threshold, 7, and conversely, rejects the null hypothesis if
T} 2m > 7. The probability of error at threshold level 7 is

PE) = P U{Tizm =7} ({Tizm <7} | ,

i2S =

and the minimum probability of error is min, P (&;). Now
suppose we take 7 = median(7%,,|61 ), the median value of the
test statistic under the alternative. At this threshold level, the
false-negative rate would be 1/2, and so the overall probability
of error would be at least 1/2. It follows that the minimum
probability of error can be bounded from below by

min P (57—) > min (1/2 , P(Uig‘S{Tiﬂm > median(Tgm|91)}) .

According to (@) the second argument above tends to 1 as
n — 0o, which completes the proof. ]

B. Capability of Sequential Thresholding

Theorem IIL3. If () holds, then sequential thresholding is
reliable if K = (1 + €)logy n, for € > 0. Specifically, if & is
the error event {Sk # S}, then for any € > 0

lim P(&) = 0.

n—00

Proof: The probability of error is

P(&) = P(Sk#S)

P{SNSE #0}U{S NSk # 0})
PSNSE #0)+P (S NSk #0) , (5

IN

where the superscript ¢ denotes the complementation of the set.
The upper bound on the probability of error consists of two
terms, the false-negative and false-positive probabilities. The
false positive probability (second term in (3))) can be bounded
as follows. Because we threshold at the median of the null
distribution, approximately half of the null components survive
each step.

P(S°NSk #0
K
- e(UN {T“j,{ > median (Tm|90)}
i8S k=1
< P (7)) > median (T,,|60) "
> (e 1 )
_ n—|S|
- =

Since K = (1 + €) log, n, with € > 0, we have
lim P(S°NSk #0)=0
n—00
Bounding the false-negative probability (first term in (3))

depends on the distribution of the test statistic under the
alternative 6:

P(SNSE #0)

P (LKJ U {Tl(]:g < median (Tm|6‘0)}>

k=1ieS

Ko k) .
= P minmin7;,, < median (7},|0)
k=1 i€eS 7

which, from (@), goes to zero in the limit, which completes
the proof. [ ]

IV. APPLICATIONS

To illustrate the main results we consider three canonical
settings arising in high-dimensional multiple testing. We again
have in mind a sequence of problems and consider behavior
in the high-dimensional limit. Thus, when we write § < g(n)
(or 6 > g(n)) we mean that the parameter § may (must) grow
with dimension n no faster (slower) than the function g(n).
Throughout this section we let s := |S], the cardinality of the
support set (which may also be considered to be a function of
n).



A. Gaussian Model

Gaussian noise models are commonly assumed in multi-
ple testing problems arising in the biological sciences (e.g.,
testing which of many genes or proteins are involved in a
certain process or function). For example, a multistage testing
procedure similar in spirit to sequential thresholding was
used to determine genes important for virus replication in
[4]. Consider a high dimensional hypothesis test in additive
Gaussian noise where the parameter 8 represents the mean of
the distribution. We assume the null hypothesis follows zero
mean (6y = 0), unit variance gaussian statistics; the alternate
hypothesis, mean ¢; > 0, unit variance:

iid
Yi ~ {

1) Non-Sequential Testing: We make 2m measurements of
each element of 6. The test statistic again follows a normal
distribution:

1 2m id
kA2
Tiom = o jgl Yij ~ {

N(0,1),
N(61,1),

i¢S
ies.

NO,57=), i¢S ©
N(el,ﬁ), 1€ 8.

Corollary IV.1. If 6; <
testing procedure in (2) is unreliable, i.e., min, P(E;) > 1/2.

M, then the non-sequential
m

Proof: For the test statistic in equation (@), we satisfy ()

provided median (T 2,,,01) < % (see, for example
[5I). By Theorem [[IL2] and since median (T 2,,,|01) = 61, if

6, < log(n — s)
m
then non-sequential thresholding is unreliable. [ ]

2) Sequential Testing: Sequential thresholding makes m
measurements of each component in the set Sy at each step.
The test statistic follows a normal distribution:

iid{ NO, %) i¢gS
Yij ~

N(@l, %) 1€S.
Corollary IV.2. If 6; > ,/% log(slogyn), then sequential

thresholding will reliably recover S.

w_ 1<
Tz,m_EZ

j=1

)

Proof: In this case, equation (4) is satisfied provided

median(T,,|6p) < 61 — % (see for example [5]). Since
median(T,,,|6p) = 0, Theorem tells us that provided

/2
0, >4/ —logKs ®)
m
with K = (1 + €) log, n, we reliably recover S.
|

B. Gamma Model: Spectrum Sensing

Often termed hole detection, the objective of spectrum
sensing is to identify unoccupied communication bands in the
electromagnetic spectrum. Most of the bands will be occupied
by primary users, but these users may come and go, leaving
certain bands momentarily open and available for secondary
users. Recent work in spectrum sensing has given considerable
attention to such scenarios, including some work employing
adaptive sensing methods (see, for example [6], [7]).

Following the notation throughout this paper, channel oc-
cupation is parameterized by 6, with 6y denoting the signal
plus noise power in the occupied bands, and 6, representing
the noise only power in the un-occupied bands. Without
loss of generality, we let 7 = 1. The statistics of a sin-
gle measurement follow a complex Gaussian distribution —
Yi Yen (0, 8). From Urkowitz’s seminal work [8]], making m
measurements of each index, the likelihood ratio test statistic
follows a Gamma distribution:

m
1id
TR =3 |y % {
j=1

Remarkably, for this problem there exist constants C,c > 0
such that the sequential testing procedure is reliable if 6y >
C' log(slogyn), but the non-sequential testing procedure is
unreliable if 6y < ¢(n — s)z=. To highlight this effect, if
s ~ logn, then the gap between these conditions is doubly
exponential in n.

Since we are interested in detecting the sparse set of
vacancies in the spectrum, our hypothesis test is reversed. We
reject the null hypothesis (occupied component) if the test
statistic falls below (rather than above) a certain threshold. In
this case, the likelihood ratio is monotone non-increasing for
01 < 6y, and so the inequalities in the key conditions and
(@) are reversed: specifically, the non-sequential thresholding
procedure is unreliable if

) min;gs T 2m
e <median(sz|91) - )

Gamma (m, 6p)

i¢S

1€ 8. ©)

Gamma (m, 1)

(10)

and sequential thresholding is reliable if

lim P

n—roo

k
<maka_1 maX;cs 7®

2 >1]=0. 11
median (T;,100) — ) 0 (i

1) Non-Sequential Testing: In the non-sequential procedure
@), we make 2m measurements per index. The distribution
of the test statistic follows a gamma distribution with shape
parameter 2m.

1

Corollary IV.3. If 6y < 2(m — 1)(n — s)2m, then the non-
sequential procedure in () is unreliable.

Proof: In this case, because the hypothesis test is reversed,
we aim to satisfy (I0). Since median(Ts,|01) > 2(m — 1),

we have
P(Mg)m(wg).

median (T, |61 2(m—1)



If 2(m — 1) > —Y% — we show in Appendix [Al that the

n—s) 2m

right hand side above goes to 1 as n grows large. Together
with Theorem[[I[2 this implies that if y < 2(m—1)(n—s)z=
then the non-sequential procedure is unreliable. ]
2) Sequential Testing: Sequential thresholding makes m
measurements of each component in the set Sy at each step.
The test statistic follows the Gamma distributions in (9)).

Corollary IV4. If 6§, > W, then sequential thresh-
olding is reliable.

Proof: Tt suffices to show is satisfied. For all m and
o, we have median(7),|0p) > p(m — 1). We upper bound

(I by
max’s_, max;es Tk

lim P 2>
e fo(m — 1) =

n—00

which goes to zero in the limit provided 6g(m — 1) > log K's
(see appendix . Together with Theorem if

log K
fo > —2 2% (12)

m—1
with K = (1 + €)logyn, then sequential thresholding is
reliable. ]

C. Poisson Model: Photon-based Detection

Lastly we consider a situation in which the component
distributions are Poisson. This model arises naturally in testing
problems involving photon counting (e.g., optical communica-
tions or biological applications using fluorescent markers). We
let the (sparse) alternative follow a Poisson with fixed rate 61,
and the null hypothesis a rate 6y, 8y > 6;:

1€ 8
1€S,

iid Poisson(p)
vi Poisson(6;)

Note that as 6y > 61, our hypothesis test is reversed as in the
spectrum sensing example (and equations (I0) and (I1)).

The sufficient statistic for the likelihood ratio test is a sum
of the individual measurements, again following a Poisson
distribution. In this setting, the gap between sequential and
non-sequential testing is similar to that of the Gaussian case.
Proofs are left to Appendices [C] and [Dl

Corollary IV.5. For any fixed 01, if 0y < %, non-
sequential thresholding is unreliable.

Corollary IV.6. For any fixed 61, if 6 > <&zlogantl
sequential thresholding is reliable.

V. CONCLUSION

This paper studied the problem of high-dimensional testing
and sparse recovery from the perspective of sequential analy-
sis. The gap between the null parameter 6y and the alternative
01 plays a crucial role in this problem. We derived necessary
conditions for reliable recovery in the non-sequential setting
and contrasted them with sufficient conditions for reliable
recovery using the proposed sequential testing procedure. Ap-
plications of the main results to several commonly encountered

models show that sequential testing can be exponentially (in
dimension n) more sensitive to the difference between the null
and alternative distributions, implying that subtle cases can be
much more reliably determined using sequential methods.

REFERENCES

[1] J.Haupt, R. Castro, and R. Nowak, “Distilled sensing: Selective sampling
for sparse signal recovery,” http://arxiv.org/abs/1001.5311.

[2] ——, “Improved bounds for sparse recovery from adaptive measure-
ments,” in Information Theory Proceedings (ISIT), 2010 IEEE Interna-
tional Symposium on, 2010, pp. 1563 —1567.

[3] D. Siegmund, Sequential Analysis. =~ New York, NY, USA: Springer-
Verlag, 2010.

[4] L. Hao, A. Sakurai, T. Watanabe, E. Sorensen, C. Nidom, M. Newton,
P. Ahlquist, and Y. Kawaoka, “Drosophila rnai screen identifies host genes
important for influenza virus replication,” Nature, pp. 890-3, 2008.

[5S] M. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related
Properties of Random Sequences and Processes. Berlin: Springer, 1983.

[6] A. Tajer, R. Castro, and X. Wang, “Adaptive spectrum sensing for agile
cognitive radios,” in Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, 2010, pp. 2966 —2969.

[71 W.Zhang, A. Sadek, C. Shen, and S. Shellhammer, “Adaptive spectrum
sensing,” in Information Theory and Applications Workshop (ITA), 2010,
31 2010.

[8] H. Urkowitz, “Energy detection of unknown deterministic signals,” Pro-
ceedings of the IEEE, vol. 55, no. 4, pp. 523 — 531, 1967.

[9] J. A. Gubner, Probability and Random Processes for Electrical and
Computer Engineers. New York, NY, USA: Cambridge University Press,
2006.



APPENDIX
A. Gamma Non-Sequential

The cumulative distribution function of Gamma(2m, 6) is
given as

N 2m—1 ~y ¢ 1
F("Y):l—e BUZ<%) E
=0
hence,

mings 75 2 et v\ 1 o
pESti2m ) 1 _ (e 7Yy 2
(Mresten 1) - (68 (2) 7)

Letting v = —%0

(n—s)2

lim 1— <e_(("—s)#) 251 (n— 3)2”€> )

£=0

and taking the limit, it can be shown

1
=1—¢ @,

If v > %0 then

(n—s) 2m

p(wg)zl,
v

B. Gamma Sequential

The cumulative distribution function of Gamma(m,1) is
given as

,_.

m—

¥4
Fiy)=1-e S L

!
£=0
hence,

m—1 Ks
K (k )
P Ty, = =1 -7 g .

Letting v = (1 + €) log K's, for some € > 0, we have

1 (@t ologKs)
TS 2 0o =0

£=0

f§|4

lim 1 —
n— oo

C. Poisson Non-Sequential

The likelihood ratio statistic is distributed as

€S
12m Zwav{ Z¢

i1 €S.
It suffices to show

Poisson(2m#by)
Poisson(2m#; )

. min;gs T 2m
e <median(T2m|91) B >

for any 6y < %. The bound we derive is loose, but
sufficient to show the adaptive scheme is superior. First, we

assume that median(Ts,,|61) > 0. Next we have
P (Hélél Tiom < median(T2m|91))

> P (min;gs T; 2m = 0)

= 1—(1—e 2m0)"™"

If 2mby < log(n — s), then

. —2mlp\" S __
nlgrréol—(l—e °) =1

w and concludes the

which is also true provided 6y <
proof.

D. Poisson Sequential

In sequential thresholding, for each i € S

< ii L ¢S
:Zym,ﬁ{ 3

= i€ S.

) Poisson(m#y)
B Poisson(m#)

We need to show, for the test statistic above,

maxX  max;cs T}
1. ]P) k=1 1€ 1,m >1 —0.
6o ( median(Tm|0) =

First, we note median(7},|0p) > mbfy — 1. Hence,

P (mlffxx max T ., > median(Tm|6‘o))
k=1 €S

< P(maxmaxTZWZmé‘o—l)
k=1 ieS

We can bound the probability of a single event by Chernoff’s
bound [9], p.166. For T; ,,, ~ Possion(m#;) we have:

- s ) )
o os() 1)

P(Tym>7) <

IN

which implies
Ks
P (mgxmaXTlm > 7) <1- (1 — e_v<l°g(m91)_l))
k=1 ieS

Letting v = log K's and taking the limit as n — oo of the
expression above for any fixed 6;, we conclude

lim P (manK_l maxies Ti,m > 1) —0

n—00 log K's
Thus, if log K's < mfy — 1, or equivalently
By > log Ks+1 ,

sequential thresholding is reliable.
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