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The Rate-Distortion Function for Product of Two
Sources with Side-Information at Decoders

Shun Watanab&lember, |IEEE

Abstract—This paper investigates a lossy source coding prob- Y =(Yy,Y2)
lem in which two decoders can access their side-information
respectively. The correlated sources are a product of two eo- A A A
ponent correlated sources, and we exclusively investigatthe Decoder Ip|—> X = (X1,X2)
case such that each component is degraded. We show the
rate-distortion function for that case, and give the folloning
observations. When the components are degraded in matched
order, the rate distortion function of the product sources s equal o
to the sum of the component-wise rate distortion functionsOn Decoder 2p—> X = (X1,X2)
the other hand, the former is strictly smaller than the latter
when the component sources are degraded in mismatched order
The converse proof for the mismatched case is motivated by & Z=(21,22)
enhancement technique used for broadcast channels. For kany
Hamming and Gaussian examples, we evaluate the rate-distion
functions.

X = (X1,X2) —*{ Encoderp

Fig. 1. The coding system investigated in this paper.

Index Terms—Heegard-Berger Problem, Rate-Distortion, Re-
versely Degraded, Side-Information In [8], Steinberg and Merhav investigated the successive
refinement for the Wyner-Ziv problem, which is a general-
ization of Heegard and Berger's problem. [d [9], Tian and
Diggavi investigated the multistage successive refinerfant

The source coding problem for correlated sources has bdB Wyner-Ziv problem. In these literatures [€] [9], thelesi
regarded as an important research area in informationyhedpformation is assumed to be degraded. [n][10], Tian and
and various types of coding problems were studied so fafggavi also investigated the side-information scalablerse
(e.g. [, [2], [3], [], [B]). In particular, our focus in th paper chlng, in which the S|de—_|nform_at|on is reversely degdade
is the lossy coding problem posed by Heegard and Berger M'-th respect to the successive re_fmement. When the ref|rpmen

In the problem, there is one encoder and multiple decod&¥er's rate of the side-information scalable source cgdin
(see Fig.[1). In this paper, we only treat the case wifly it is nothlng_ but nggard and Berger’s problem. In such
two decoders. The encoder sends an encoded versionddi@se. there is no difference between the degraded and the
principal sourceX. The decoder 1 reproduces the principdVersely degraded. o
source within prescribed distortion level by the help ofesid " order to provide some insight to Heegard and Berger's
information v, and the decoder 2 reproduces the principRfoblem, we investigate a special case of this problem in
source within prescribed distortion level by the help ofesid this paper. Specifically, we consider the case such that the
information Z. correlated source$X,Y, 7) is a cartesian product of two

In this setting, Heegard and Berger showed an upper bouf§nPonents correlated spurq@él,Yl, Z1) and (X, Y2, Z3) ,
on the rate distortion function. They also showed that tﬁaé‘d the components are mdepend.ent of each other (sdd Fig. 1)
upper bound is tight if the side-information is degradeel, i. Furthermore, we exclusively consider the case such thdt eac

X, Y, and Z form a Markov chain in this order. So far,COMPONentis degraded, i.e., either

there is no conclusive result, i.e., an upper bound and arlowe X, oY & 7,

bound coincide, without the degraded assumption, and wheth Xo & Yo 5 7 1)
Heegard and Berger’s upper bound is tight or not for non-

degraded cases has been a long-standing open pﬂ)blem or

I. INTRODUCTION

X1 e Zl, (2)
Part of this paper was presented at 2011 |IEEE Internatiopmp8sium on XoZy Y
Information Theory, Saint Petersburg, Russia. ] o
The author is with the Department of Information Science bmdlligent is satisfied, whered «+» B «» C represents that the random

Systems, University of Tokushima, 2-1, Minami-josanjimf@kushima 770- ; i i ;
8506, Japan, and with the Institute for System Researchyeldify of variables(4, B, C') form Markov chain in this order.

Maryland, College Park, MD 20742, USA, e-mail:shun-wata@kushima- ~ When [1) is satisfied, the joint sourcé’,Y, Z) are de-
u.ac.jp. graded. Thus, Heegard and Berger’s result suggests that the

Manuscript received ; revised upper bound is tight. On the otherhand, whieh (2) is satisfied,

1sgarro’s problem[7] can be regarded as a lossless spesilofHeegard .
and Berger's problem, and his resulfl [7, Theorem 1] holdshaut the the joint sources are not degraded. Thus, whether Heegard

degraded assumption. and Berger’s upper bound is tight or not is unclear so far. In
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this paper, we show that the upper bound is tight whenever Y =(Xy,1)

(2) holds by finding a tight lower bound (a converse), i.e.,

we characterize the rate-distortion function. To the bdst o

the author’'s knowledge, this is the first example such that th

rate-distortion function is characterized without the réetpd

assumpticﬁ X = (X1,X2) —*{ Encoderp
The problem setting treated in this paper is interesting not

only because we can obtain a conclusive result, but it is Decoder 2p|—> X = (X1,X2)

also interesting by the following reason. Since the compbne

correlated sources in our problem setting are independent Z=( %)

of each other, one might think that a combination of the

component-wise optimal scheme is optimal in total and thg > an intuitive example such that the rate-distortiamdtion (with

rate-distortion function of our problem setting is just theistortion 0) for the product source is strictly smaller than the sumamati

summation of the component-wise rate distortion function%f the component-wise rate distortion functiod$; and X are independent
uniform binary random variables, andrepresent a constant random variable.

However, this is not the Case!_ i.e., the rate distortion tionc ‘When two components are encoded and decoded sepaiabifynust be sent
of product sources can be strictly smaller than the summatifor each components, which meahbits must be sent to reprodu¢&, X2)

of the component-wise rate distortion functions even thougt Poth decoders. On the otherhand, if the encoder s&nds X, then both
P ecoders can reprodu¢ey, X2) as in the network codind [15]. Thus, when

the (.:om.p.onents are independent of each _Other- To e_xplesin & components are encoded and decoded jointijt suffices for the decoders
fact intuitively, let us consider an example illustratedmig.[d. to reproduce( X1, Xo).

When two components are encoded and decoded separately,
1 bit must be sent for each components, which meabgs )
must be sent to reprodude(;, X») at both decoders. On the@re two roles for the enhancement in the converse proof of the
otherhand, if the encoder sends @ X, then both decoders MIMO Gaussian broadcast channel. One of them is a reduction
can reproducéX;, X») as in the network coding [1&] Thus, ©f @ MIMO non-degraded Gaussian broadcast channel to a
when the components are encoded and decoded jointit, MIMO degraded Gaussian broadcast channel. As was pointed
suffices for the decoders to reproduc&;, X,). As we can Out in [S, Section 9.4], Poltyrev's result [17] can be also
find from this example, the rate distortion function of protiu derived by a straightforward application of the enhancemen
sources is not trivial, and it is interesting to charactefize argument. An application of the enhancement argument to our
rate distortion function for our problem setting. problem will be also discussed in this paper. Actually, it

It should be noted that the present work is motivated by tifit that a lower bound on the rate-distortion function detiv
results on product of two broadcast channels by Poltyrey [15Y @ straightforward application of the enhancement argume
and El Gamal[[18]. The broadcast channel [19] is also a lon§-l00se in general.
standing open problem in the network information theoryneve The rest of the paper is organized as follows. In Sedfibn I,
for two receivers. When there is an ordering between the t¥§ €xplain the problem setting treated in this paper, anal als
receivers (such as degraded, less noisy, and more Capaﬁé&lain known results. In Sectignllll, we show our main resul
then conclusive results have been obtairied [20]| [m,[zﬂnd its proof. In Sectio@}\/, we show the binary Hamming
[23], [24]. Poltyrev and El Gamal's conclusive results seerf €xample and the Gaussian example.
examples without such orderings. The result in this paper ca

Decoder Ip[—> X = (X1,X2)

be regarded as a source coding counterpart of Poltyrev and Il. PRELIMINARIES

El Gamal's results. However, there is a subtlety of distordi In this section, we formally define the problem setup and
in our problem setting that do not exist in the broadcastview Heegard and Berger’s results [6].

channel. Let (X, Y, Z) = ((Xl, XQ), (Yl, }/2), (Zl, ZQ)) be prOd-

Recently, Weingarteret. al. solved the capacity regionuct of correlated sources, i.e., componefits, Yy, Z;) and

of the MIMO Gaussian broadcast chanriell[25]. The MIMQX5, Yz, Z,) are independent of each other. The alphabet of

Gaussian broadcast channel is not degraded in generab]in [2he sources are denoted By = &) x A, V) = Vi X Vo,

the authors introduced a technique called enhancemente Thend Z = Z; x Z, respectively, where we assume that these
) . . . . _ alphabets are finite unless otherwise specified in the Gaussi
At the same time as the first version of this paper appearedeicanfer-

ence, Timoet. al. also showed the rate-distortion function for some specieﬁxample' Let(X", Y, Zn) ben mdependent and |dent|cally

cases of the lossy complementary delivery problem [11] &= [12]), which  distributed copies of X, Y, 7).

can be also regarded as special cases of non-degraded tHeegbBerger's Let )21, /'@2, )E'l, and /'92 be reproduction alphabets, and for

problem. More specifically, Timat. al. solved the lossy complementary .

delivery problem for the binary symmetric sources with Hamgndistortion ¢ = 1,2 let

measures, and general sources with small distortions anthiifag distortion s -

measures. Recently, Ting. al. also solved another special case of Heegard di: X; x X; — [O, oo), (3)

and Berger's problem by introducing the conditional lesssyaondition, 7.y V.

which subsumes the degraded condition| [13]] [14]. di: X x X = [0,00) )
3This example can be also regararded as a special case ofrtipteroen- be distortion measures. Then, let

tary delivery problem. The relationship between the comgletary delivery
roblem and the network coding was pointed outinl [16]. A Eméexample 7 IS - 4 - 7 -

\R/as also investigated i [11, E?(ampl(g 1] (see a@[[lz], Exartp as %n ({Sum(xl’x% B, d2) = C%l (1, 81) + ({2(:@’ Z2),

example of the lossy complementary delivery problem. dsum (21, 2,81, T2) = di(x1,21) + do(x2, T2),



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

be the sum distortion measures. the single letter characterization &f( D, D) is not clear (see
For blocklengthn, the coding system treated in this papeRemarkIlL).
consists of one encoder Remark 2: It should be noted that the results in this paper
" can be easily extended to the weighted sum distortion mea-
p: X" ={1,..., M} sures
and two decoders 5 L 5 N 55 N
K X dwsum (71,22, %1,32) = adi(z1,21) + Bda(x2, 2),
G Al My X Y™ = AT X &Y dwsum (21, T2, T1,T2) =  ady(21,21) + Bda (w2, T2),
and for somea, 3, a, 8 > 0.
w1, M} x 2" = )gln % ‘)2271. In [6], Heegard and Berger showed an upper bound on the

o rate-distortion function.
For quadrupletD = (Dy, Dy, Dy, Dy), rate R is said to be  Proposition 3: ([6, Theorem &) Let (W, U, ) be auxil-
D-achievable if, for eachy > 0, there exists a cod@p, ,7) iary random variables satisfying
with a sufficiently large blocklength such that 1) (W, U, U) o X o (Y, 2).

2) There exist functionsX(W,U,Y) and X/(W,U, Z)
<

1
—logM < R+~
n

such thatR[d;(X;, X!)] < D; andE[d;(X;, X})] < D;
and fOf 1= 17 2. . B
n 3) W < |X|+7, Ul < |X]- W[ +2, and U] < |X]-
1 Z]E[ (X, Xi)] < Di+n, (5) W[ + 2, whereW, U, andU are alphabets ofV, U,
ni= andU respectively.
1 & - - - Then, we have
— > Bldi(Xu, X)) < Di+7y (6)
"= R(D) < wmax{I(W;X|Y),I(W;X|Z)}
for i = 1,2 are satisfied, whereX7, X3) = ¢(o(X™),Y™) +I(U; XY, W)+ I(U; X|Z,W).

and (X2, X)) = (o(X™),Z™). Then, the rate-distortion

function is defined as Remark 4. In [6], Heegard and Berger also showed an

upper bound on the rate-distortion function for more thaeeh
R(D) :=inf{R : R is D-achievablé. decoders. However, Timet. al. pointed out that the statement
of [6, Theorem 2] for more than three decoders is invalid, and

Note that_we place_the ind_ividual distortion co_nstraintﬁh only the statement for two decoders is valid[26].[In][26kyh
and [8), which are slightly different from those in the ongl 4156 showed a corrected upper bound on the rate-distortion
Heegard and Beger's problerl [6]. By replacifg (5) abd (§)nction for more than three decoders.

with When the component sources are degraded in matched
1 e - NN . order, i.e.,
= Eldsum(X11, X, X1, X21)] < D+,
" t=1 X1 4 Y1 d Z17 (8)
1 n ~ ~ ~ ~ X2 d }/2 d Z2
= Eldsum(X11, X, X1, Xo1)] < D+ - »
ni4 are satisfied, then the joint sourceX¥,Y, 7) are degraded,
respectively, we can define the rate-distortion functior’
Rgum (D, D) for the sum distortions. Since the sum distortions X oV o 7
are special cases of joint distortions, they are speciascaé
[6]. For the degraded sources, Heegard and Beider [6] showed
From the definitions, we obviously have that the upper bound in Propositioh 3 is tight. In particditar
.- product of two sources, we have the following statement.
Rsum (D, D) Proposition 5: ([6, Theorem 3]) If the components sources

< min{R(D): Dy + Dy < D,Dy + Dy < D}. (7) are degraded in matched order, i.€], (8) is satisfied, then we

When [1) or [2) hold, the opposite inequality can be als%ave

proved via theé)ingle letter characterization (see Prdiposd R(D) = R*(D)
and Theorenh] .
. . . . = I(Wy; X412 1(Uy; X4\, W
Remgrk 1: We can also define the rate-distortion function minll (Wi; X1 20) + I(Us; Xa|Yi, W3)
R(D, D) for general joint distortions/ and d. The single +1(Wa; X3|Z2) + 1(Uz; Xa|Y2, Wa)],
letter chara_lcterlzatlon OR(D’ D) under the cond|t|<_)p Oﬂl) SProposition[B is a slight modification of][6, Theorem 2] to qmment
can be derived froni [6]. However, under the conditionldf (2siortion functions. The third condition, i.e., the canglity bound was

not stated in[[B, Theorem 2], and first shown [n1[26, Example Sihce

4Since it is obvious from the context, we omit subscripftom the encoder, our problem in this paper piaces individual distortion deaists on each

the decoders, and the message size to simplify the notations component of the product source, we have to increase thénafitids with
51t is not clear whether the opposite inequality hold or nogémneral. respect to[[26, Example 2].
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where the minimization is taken over all auxiliary randomvhere the minimization is taken over all auxiliary random

variablesiWy, W, U1, U, satisfying the following:

2) (Wl, Ul, Xl, Yl, Zl) and(WQ, UQ, XQ, }/2, ZQ) are inde-
pendent of each other.

3) There exist functionsX,;(W;,U;,Y;) and X;(W;, Z;)
such thaﬂE[ch(Xz,Xz)] < ﬁi and E[(L(X“Xl)] < Dl
fori=1,2.

4) (Wil < |X;|+2and|U;| < (|&;|+1)2 fori = 1,2, where
W, andU; are alphabets ofV; and U; respectively.

Furthermore, we also have

Rsum(ﬁab)
mln{R*(D) : Dl + DQ S D,Dl + DQ S D}

Remark 6: Technically, the result in[[6, Theorem 3] does

not directly imply Proposition]5, because Proposifibn Sesta

the stronger condition on the auxirially random variable

ie., (Wl, Ul, Xl, }/1, Zl) and (WQ, UQ, XQ, }/2, ZQ) are inde-
pendent of each other. We give a proof of Proposifibn 5
Appendix[A for readers’ convenience.

variablesWy, W, U1, Uy satisfying the following:
2) (Wl, Ul, Xl, }/1, Zl) and(WQ, UQ, XQ, }/2, ZQ) are inde-
pendent of each other.
3) There exist functionsX(Wy,U,Y:), Xo(Wa,Ys),
Xl(Wl, Zl), anng(Wg, Us, Zg) such that

Eld; (X, Xi)] < Dy

and

E[d;(X;, X;)] < D;
fori=1,2.

4) (Wil < ||+ 3 and U] < || - (JX] + 3) + 1 for
i = 1,2, whereW,; andl{; are alphabets ofl/; and U;
respectively.

E’urthermore, we also have

Rsum(ﬁa ﬁ)

n mln{RT(D) : Dl + DQ S D,Dl + DQ S D}

Note that R*(D) is nothing but the summation of the When the distortion levels are dl| we have the following

component-wise rate distortion functions, i.e.,
R*(D) = R;(D1, D) + R3(D2, D),
where
R} (D;, D;) = min[I(W;; Xi|Z;) + I(Us; X,| Y, Wi)] - (9)

and the minimization in[{9) is taken over dll/;, ;) satis-

corollary, which can be also derived as a straightforward
consequence of Sgarro’s result [7, Theorem 1].

Corollary 8: When the distortion measures are the Ham-
ming distortion measure andD,D,, Dy, D;) = 0
(0,0,0,0), we have

R(O) max{H(X1|Y1) + H(Xlevg),
H(X1|Z1) + H(X2|Z2)}

fying the conditions 1, 3, and 4 in Propositibh 5. This fact
implies that the optimal scheme for the degraded product max{H(Xy, Xo|V3,13), H(X1, Xo| 21, Z2)}-
sources is to combine the component-wise optimal scheme. Remark 9: It should be noted that

When sources(X,Y,Z) are not necessarily degraded,

whether the upper bound in Propositidn 3 is tight or not has ax{H (X1|Y1) + H(X2|Y2), H(X1|Z1) + H(X2| Z2)}

been an open problem for a long time. In the next section,
we will show that the upper bound is tight if the component

sources satisfy{{2).

1.
A. Satement of Results

M AIN RESULTS

S max{H(X1|Y1),H(X1|Zl)}
+ max{H (X2[Y2), H(X>|Z2)} (11)
= H(Xi1|Z1) + H(X2|Y2) (12)

hold, and the equality in the inequaliy {11) does not neces-
sarily hold in general, where the equality [n112) followerfr
(10). Note that[(T]1) is the rate that is needed when we apply

In this section, we consider the case in which the componésgarro’s coding scheme to each component. This fact implies

sources are degraded in mismatched order, i.e.,

X109 <—>Zl,

Xo & Zy & Yy (10)

are satisfied. In this case, the joint sour¢ésY, Z) are not
degraded, and the rate-distortion functiBfiD) has not been
clarified by any literatures. The following is our main resul
which will be proved in Sectiof TIT=C.

Theorem 7: Suppose thatX;, Y1, Z;) and(Xa2, Ya, Z5) are
independent of each other afd](10) is satisfied. Then, we h

RY(D)
min[max{I(W7; X1|Y1) + I(W3; X2|Y2),
I(W1; X11Zy) + 1(Wa; Xa|Z2)}
+ I(Uy; X1 Y1, Wh) + I(Ua; Xo| Zo, Wa),

R(D)

that the combination of the component-wise optimal scheme

is not necessarily optimal even though the components are
independent of each other. This phenomenon also appears for
lossy cases, which will be exemplified in Sectlond IV.

B. Comparison to Scalable Source Coding

In [10], Tian and Diggavi proposed a coding scheme that
is different from [6]. Although joint encoding and decoding
is required to achieve the rate-distortion function given i

é‘*f?eoreml]?, we can construct a code that achieve the rate-

distortion function from component-wise coding scheme of
[10] in a similar manner as the example of Hig. 2.

When we apply the coding scheme 6f [10] to the first
component sourcéXy, Yy, Z;), the sourceX7] is quantized
into the common descriptiol/{* and the private description
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Uj*. Then, we apply the bin coding to the common descriptiad®. Proof of Theorem[7]

Wi atrate 1) Direct Part: The direct part is a straightforward conse-

(W Xa|Vh) = I(Wi; X)) — I(Wis Vi), (13) guence of Pr0905|t|olﬁl 3. . .
For any auxiliary random variablé$Vy, W5, Uy, Us) satis-
where the ratd (1;; X,) corresponds to the quantization ratdying the conditions in Theoref] 7, let
and the ratd (W7; Y1) corresponds to the reduction of the rate
by the bin coding. Note that the equality [n113) requires the R
Markov condition(Wy,U;) +» X1 < (Y1, Z1). Furthermore, v = U,
U

we apply the bin coding t&V]* at extra rate = Uy,
Xiw,U,Y) = Xi(Wy,04,Y;
I(W1;Y1|Zy) = I(Wq; Y1) — I(Wh; Z1). A}( Vs ) Al( 1, U, Y1),
XoWUY) = Xo(Wa,Ya),
By using the first bin index;, the first decoder (withyy") X\(W,U,2) = X1(Wi,Z))
can reconstruct the common descriptidf{*. By using both XQ(W: ﬁ:Z) - XQ(W2: UQ,’ZQ)

the first bin index/; and the extra bin indeX,, the second

descriptionU1" is transmitted to the first decoder atrate  p_ (D D) follows from (7). -
2) Converse Part: As we have mentioned in Sectidd I,
Heegard and Berger showed the converse coding theorem for

Similarly, when we apply the coding scheme 6f1[10] tglegraded case. In the course of the proof, they essentially
the second component sourcEs, Ya, Z5), the sourceX? is showed the following lemma, which can be shown only for
quantized into the common descriptiéfiy and the private the degraded case. Although our purpose is to show the
description/3". Then, we apply the bin coding to the commoffonverse coding theorem for the non-degraded case, we need

I(Ul;X1|}/1,W1).

descriptionVz at rates the following lemma in our converse proof of TheorEm 7. A
proof of LemmdID is given in Appendix]B.
I(WQ,X2|ZQ) = I(WQ,XQ) —I(WQ,ZQ) Lemma 10: Let
and (A, B,C) = ((A1, A2), (B1, B2), (C1, ()
I(Wo; Zo|Ys) = I(Wa; Zo) — I(Wo; Ya) be product of correlated sources such that, B;,C;) and

(Aq, By, () are independent of each other and
respectively so that the first decoder (wit) can reconstruct
W3 from both the first bin index; and the second bin index Ai < Bi < C; (15)
o 7. T prvate descrption? 1 lso iransmid o the OF DO = 1.andi = 2 Let (4", B".C") ben independert
L P ption’s identically distributed copies of 4, B,C). Then, for any

second decoder at rate (possibly stochastic) functio,, = f,,(A™), we have

I(UQ;X2|ZQ,W2). n
H(Tn) > Z [I(TnaBl_ta01_1670$70517A1t|01t)

By using the above two component-wise coding scheme, P
we can construct a joint encoding and decoding scheme as +I(B}, BY; Ayy| By, Ty, By, Cyy, Cih C2)
follows. First, the encoder sendg,, J;, I,®.J2). This requires

+I(Tn7 B?v BQ_ta C{lv 02_,*,7 Cg:fa A2t|02t)

the rate
+I(B;;§7 A2t|BQta Tna B{l7 BQ_ta C{la CQ_ta C;;,)] )
I(Wh; X1|Y1) + I(W2; X2|Z2) .
where we use the notatiors;, = (Bi1,...,Bi 1), B, =
Fmax{I(Wi Yil20), H(We: Zal¥2)] (Bi(t41), - - -» B1a), and etc. t R

Note that the first (second) decoder can obtdin(l,) by W& now prove the converse part féi(D). Suppose that
first reconstructing’v?* (W3) and then subtractinds (J) the rateR is D-achievable. Then, for any > 0 there exists
from I, @ J». The encoder also sends the private descriptioAsCCde(y; ¢,) such that
Uy andUZ at ratesl (Uy; X1|Y1, Wh) and I(Us; X2|Za, Wa) 1
respectively. Consequently, the total rate coincides \fiti EH(SH)
rate-distortion function given in Theorenh 7. d

If we use a straightforward combination of the componen"fl-n

1
< —logM <R+~ (16)
n

wise coding schemd, and.J> will be transmitted separately 1 . - A
instead of /> @ J», and the rate loss from the joint coding n ZD“ < Ditm, (17)
scheme is , tzl
- D., < D,
min[1(Wi; Vi 21), [(Wa; Zu|Y2)]. (14) -2 D < Dity (18)

~
Il
-
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for i = 1,2 are satisfied, where we séf, = ga(){”), pit = (15), we can use Lemniall0, and we have
E[d; (X, X[})] and Dlt = E[d (Xlt,Xﬁ)] for (X7, X)) =

1

6lp(X™),Y™) and (X7, X3)= v(p(X"), 27), —H(S,)

The key idea of the proof is to derive two lower bounds 1™
on H(S,) by using Lemmd 10 as follows. First, 16, = Z EZ (Sns Y1 Yoy, Yoy, Zoy; Xoe|Yar)
Snv (AluBhCl) - (Xl,Yl,Zl) and (AQ,BQ,CQ) = t=1
(X2, Zs, Z5). Then, sincg A, B, C) satisfies[(I), we can use HI(Z3fy; Xotl Zov, S, Y1, Yy Yoy Z3y)
Lemmal1D, and we have +1(Sn, Yi;, Y1h, Yy Z55 X1 Yie)|

1 n

1 - EZ (Sns Y1, Yoy, Yor , 21 Zogs Xou| Yar)

_H(Sn) t=1

! FL(Z3; Xoa| Zos, Sy VI, Yo, Vb 20, Z57)

2 _Z Sn’Ylt’th’ZE’ZQ’X1t|Z1t) +I(Snuyltvyltvyv2 721t72$7227X1t|Y1t)} (21)

Z [I(Way; Xoy|Yar) + I(Usa; Xot| Zoy, War)
t=1
+I (Wi, Ure; Xue|[Yae)] s

S|

+I(Y1t7X1t|Y1t;Sn7}/1;7Z1;7Z$5Z§) =
+I(Sn7 }/lna Z{la Z2_ta Z;;&, X2t|Z2t)]

- —Z [1(Sn, Y, Yo', Zuys Zihs 255 X1 Z1e) = I(War; Xor|Yor,T)
+I(Uar; Xor|Zor, Wor, T)
+[(Y1t7X1t|Y1t,Sn,n;,%n,Zﬂ,th,Z;) +I(W1T,U1T;X1T|Y1T,T)
+I(Sn7Y1naY2;7Y2Jtr’ZIZ’ZQZ’ZQJ;;XQAZ%)] (19) = I(WQT,T;X2T|YQT)
- 32 (Was; X0l Zue) + I(Uss; Xue Vi, Way) +(Usr; Xor| Zor, Wor, T)
n +I(Wir, T, Urr; Xar|YiT), (22)

+I(W2t’ Ust; X2t|Z2)] where we used the fact that is degraded version of; in
= I(Whr; Xar|Zir, T) + I(Urr; Xaz [Yir, Wiz, T) @), i.e.,

+I(Wor, Uar; Xor| Zor, T')
= IWhir,T; X1r|Z1i7) + I(Urr; X |Yar, War, T)
+I(Wor, T, Uar; Xor|Zor) (20)

“ (Sn, Y1, Y5, Z5,) < Xot,
<~ (Sn;YfleQ;v}/ij_ng) A X2t7
Ane (Smylnvngvntv Z2_157 Zzt) < Xot.

Since (Wi, Uiy, Y1i) and (Wa, Ya;) include (S, Y, Y3)

where we used the fact tha} is degraded version af; in respectively, there exist function& (Wi, Uy, Y1) and

(19), i.e., Xot(Way, Yay) satisfying
) Eldi(X1,X1:)] = Du,
<~ (SmY'lt,Z{I,Z;l) < Xig, IE[CZQ(XQ,XQt)] = Dgt

Ad (SmYﬂ,Ylt, Z;ta Zitfa Z;l) <~ X1t7

respectively. Similarly, sincéW,,, Z1;) and (Wy;, Uy, Z
o (Smyln’zl_t’zrt’zg) & Xy, p y Y, €W, Z14) (Way, Uay, Zat)

include (S, 27, Zy) respectively, there exist functions
Xlt(Wlt; th) and XQt(WQt, UQt, th) SatiSfying

and we set E[di (X1, X1)] = Duy,
Elds (X2, X2)] = D
Wi = (S0, Y3, YS, 2y, 235, Z3), respectively. Thus, there exist functions
_ vt . .
U = Y, . B (Xa(War, T, Urr, Yar), Xo(War, T, Yor))
War = (SnvylnvvathQth{lvzﬂ)v . .
— for the first decoder and functions
U2t — Z2ta B B
(Xa(Whr, T, Zir), Xo(War, T, Usr, Zor))
and T is the uniform random numbers ofl,...,n} that for the second decoder satisfying
are independent of the other random variables. Note that 5 5 ~
Eld(X;, X;)] < D; 23
Wi, Ure, Woyr, Ugy satisfy (Wi, Uyr) < X < (Yir, Zi) for [N( - ) ~ T (23)
i=1,2. Eld(Xi, Xi)] < Di+vy (24)

Similarly, let T,, = S,, (A1, B1,C1) = (X2, Z5,Y3) and for i = 1,2. Thus, by combining[(16)[(20), anf{22), and
(As, By, C3) = (X3,Y1,Y1). Then, since(A, B, C) satisfies by takingW, = (Wi, T), Uy = Uy, Wo = (War, T), and
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U, = Usr, we have that there exist;, W5, Uy, Us satisfying be the rate-distortion function for this source. Let

(23) and [(Z4) and
R(D) > I(Wy;X1|Z1)+ 1(Uy; Xq|Y1, Wh)
+1 (W3, Uz; X3\ Z2) — 7, and
I(Wy,Uy; X1|Y1) R(D|((X1, Xs), (Y1,Ys), (Y1, Z2)))

FI(Wa; Xo|Ys) + I(Us; X3|Z2, Wa) — 7. be the rate-distortion functions for the enhanced sources

Although the auxirially random variablé§V,, Uy, X1,Y1,Z;) respectively. Then, we have
and (Wy, Uz, X5,Y5, Z5) chosen above are not necessarily
independent of each other, they do not appear together in R(D|((X1, X2), (Y1,Y2), (Z1, Z2)))
any one term. Thus we can tak&V,,U;, X1,Y1,7;) and > max{R(D|((X1,X2), (Y1, Z2),(Z1, Z2))),
(Wa,Us, Xo,Ys, Z5) to be independent of each other. R(D|((X1,Xs), (Y1,Ya), (Y1, Z2)))}. (25)

By applying the cardinality bound on the auxiliary random
variables, which will be proved in AppendiX C, we have  As will be exemplified in Sectiof 1V-B, this lower bound is

loose in general.
R(D) > R'(D +~1) -7, g

wherel = (1,1,1,1). Sincey > 0 is arbitrary, by the IV. EXAMPLES
continuity of R (D) with respecttaD, we have the converse ) ) ) )
part forR(D)El . The converse part foRqum (D, D) can be To illustrate our main result, we consider a binary example
proved almost in the same manner. m and a Gaussian example.
Remark 11: In the above converse proof, we derived
the independence betvyeen(Wl, Uy, X1,Y1,Z1) and A Binary Example
(Wa,Us, Xo,Ys,75) by using the fact that they do not . . . . .
appear together in any term one term. Thus, we cannot derivén this section, we evaluate the rate distortion function fo

the independence between them if we employ general jomF binary Hamming example. We first review some known

distortion measured and d. Without this independence, Weresu[t of the binary Ha".‘m‘”g vgrsion of the rate-distortio_n
cannot prove the matching direct part from Propositidn fgnchon.where the S|d¢—|nfo_rmat|on may be_ absﬁht [(_3]. This
result will be used to investigate the rate-distortion fiorc

R(D|((X1, X2), (Y1, Z2), (Z1, Z2)))

Y

R(D)

because )
for product of two binary sources.
I(Wy, Wy; X1, Xo|Y1,Y2) Let X be the uniform binary source, and Ktbe the output
= I(Wy; X1|Y7) + I(Wa; X,|Ya), of the binary symmetric channel with crossover probability
1 . )
I(Wy, Wa: X1, Xo| Z1, Zs) p < 3, where the input isY. Let Z be a constant, and ldtbe

the Hamming distortion measure. The rate-distortion fiomct
of this situation is given by

do not hold in general. For this reason, the single letter
characterization oR(D, D) is not clear.

Remark 12: In the above converse argument, we reducgghere the minimization is taken over all auxiliary random
the proof to the degraded case by settind, B1,C1) =  variablesiV andU satisfying the following:
(Xl,Yl,Zl) and (AQ,BQ,CQ) = (XQ,ZQ,ZQ), or by set- 1) (W U) SX oY
ting (A1,B1,C1) = (X3,2,Y3) and (g, B;,Cs) = 2) There exist functions (W, U, Y) and X (W) such that
(X1,Y1,Y7). This reduction argument is motivated by the E[d(X X)] <D andE[d(X, X)] < D
enhancement technique introduced by Weingaeteal. [25], 3) W <’|X| {2 and u| < (|)’(| 4 2—)2 '

in which the converse proof of the MIMO (not necessarily - o ) o
degraded) broadcast channel was reduced to that of the MIMc\N explicit form of B, (D, D) was first studied in[6], and a

degraded broadcast channel. This kind of argument was ifoSe upper bound was obtained. After that, Kerpez [27] and
plicitly used in [18]. As is pointed out if[5, Section 9.4het F!emlng an_d Eff_rosB]_ also studle_d_thls problem. Finally,
result in [17] can be obtained by a straightforward appiérat 11@" and Diggavil[8] derived an explicit form a%,(D, D).
of the enhancement argument. For0<g¢ <1, let

It should b ted that the followi traightf d li

t should be noted that the following straightforward appli Go(q) = h(p* q) — h(g),
cation of the enhancement argument gives only loose coavers
in our problem. Suppose th&{Xy, Xs), (Y1,Y2),(Z1,22)) whereh(-) is the binary entropy function angkq = p(1—q)+
satisfies the Markov conditions ifi_(10), and let (1—p)q is the binary convolution. It was shown in[27] that the
R(DI(X:. X)) (Y:.Yo). (7. 7 rate dlstorupn region can be partitioned into four suboagi

(DI((X3, X2), (11, ¥2), (21, Z2))) three of which are degenerate.

:Since the cardinalities of the auxiliary random variablee Bounded,  , Region I:0 < D < % and0 < D < min{D, p}. In this
RT(D) can be described as a finite dimensional optimization prokded region,Rb([), D) is a function of bothD andD, and it

the continuity of Rt (D) with respecttoD follows from the continuity of the :
mutual information with respect to the test channel. is the only non-degenerate case.

= I(Wl,X1|Zl)—|—I(WQ,X2|Z2)

Ry(D, D) = min[I(W; X) + I(U; X|W,Y)], (26)
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o Region Il D > % and0 < D < p. In this region,
the common descriptiol” is not needed, an®;, (D, D)
reduces to the Wyner-Ziv rate-distortion function, i.e.,

Ry(D,D) = RYZ(D)
= min [0G(5)].

« Region ll: 0 < D < L and D > min{D,p}. In this

region, the refinement descriptidn is not needed, and

Rb(D, D) reduces to the ordinary rate-distortion functionrZig 3. The test channel betweéhand W

ie.,
Ry(D,D) =1 — h(D).

« Region IV:D > % andD > p. In this region, clearly both
descriptiongV andU can be constant, anfl, (D, D) =
0.

To describe the rate-distortion function for region |, wede
to introduce some notations. For parametéfs o, 5,0, 1)
satisfying

0<D<;,0<0a,<p, 0<7<6<1,

1

57

we define
BP(D,CY,ﬁ,e,T) = (e_T)GP(a)+TGP(B)

+(1 - H)GP(’Y(Da «, ﬂa 95 T))a

where
D—(0—-71)1—a)—78
% 0F#1

7(D7a7ﬂ7977-)_{ 9:1

[N

We also define

For region I, Tian and Diggavi [9] showld

Rb(ﬁa f))
= min [l —=h(Dx*p)+ By(D,a, B,0,7)].
(D,e,3,60,7)€Q,(D,D)
(27)
The righthand side of (26) can be rewritten as
min[[(W;Y) + I(U,W; X|Y)], (28)

8Tian and Diggavi also showed that the restriction to the HnipsaD =D
and (0 —7)a+ 78+ (1 —0)p = D in the definition ofQ, (D, D) does not
increase the rate-distortion function. However, in theecafthe product of
two sources, it is not clear whether such a restriction dagsintrease the
rate-distortion function.

w X
0 1B 0
U=0 1-a
B
1 5 1
0 a 0
u=1 B
1-a
1 i 1
0 1y 0
Y
u=2
y
1 iy 1

Fig. 4. The test channel betweéi and X.

and Rb(f), f)) is achieved by reverse test channels described
in Figs.[3 and}¥. Note that

~omin 1= (D *p)+ By(D,a, 3,0,7)]
(D,a,,0,7)€Q,(D,D)

= R}Z(D) (29)
for D =1 and

min [1—h(D *p)—i—Bp(D,oz,ﬂ,@,T)]
(D,a,ﬂ,@,T)EQp(D,D)
= 1—-h(D=xp)+G,(D) (30)

1 - h(D)

for D = min{D,p} and D < 1, which will be proved in

Appendix[D. Thus, we can also write
Rb(Dv D)
= min ~ [1—h(Dx*p)+ By(D,a,B,0,7)]
(D,e,3,0,7)€Q,(D,D)

for any (D, D).

Now, we consider the rate-distortion function for product
of two binary sources. LefX; and X be the independent
uniform binary sources. LeY; be the output of the binary
symmetric channel with crossover probability < % where
the input isX;. Let Z5 be the outputs of the binary symmetric
channel with crossover probabilifyy < % where the input
is Xo. Then, letY> and Z; be constant. Obviously, this pair
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of correlated sources satisfy the Markov conditiondid (10) B. Gaussian Example
this case, we have the following.

Theorem 13: For anyD — (ﬁhbl,f)z,f)z), we have In this section, we evaluate the rate distortion function fo

the Gaussian example. We consider jointly Gaussian sources
(X:,Y;,Z;) given byY; = X;+ N;, andZ;, = X; + N; ..

R(D) = mm[mavx{l ~h(Drxpr), 1= Dz % p2)} whereN; , andNN; . are Gaussian noises with varianéasy,
+Bp, (Pl’alvﬁl’elle) and Ei,N; such that¥; y, < Y1 v, and Xy, < g,
+B,,(Ds, a2, B2, 0, 72)], (31) respectively. The conditional variance of; given Y; is

denoted byEl .|y €tc.. To avoid tedious degenerate cases, we
where the minimizations are taken over assume thaD; < ¥, ol andD; < %, s fori=1,2.
y L In the above setting, the rate-distortion function is gitgn
(D1, a1, Br, 01, 71) € Qpy (D1, Da) the following theorem. The theorem can be proved by first
and showing that Gaussian auxiliary random variables suffind, a

then by elementary calculation.

- ~ 4 Theorem 14: We have
(D2, a2, 2,02, ) € Qp, (D2, Ds)

respectively. R(D)
Proof: See AppendiXE. [ | ~ ax log Y1zly
In the following, for a symmetric case, we compare the 2 (D1 El N, T 37 Ny) 1
rate-distortion function, the upper bound derived by the 1 S aly
component-wise scheme, and the lower bound derived by the + 5 log f);’
straightforward enhancement. Ligt = p, = p < 1. Letd.(p) 2
the critical distortion[[2], i.e., the distortion satisfig }1 El,wlz 1 22,0z
58 pH T8 1 —1 1
G, (de(p) . (s~ Sk, + ¥ai)
S = G (de(p). 1 (D7 =Sy 48 y) !
c(p) —p +=log
~ ~ _ _ ~ ~ 2 (B* + E1 ,Ny )
Let Dy = Dy = D, whered.(p) < D < 1. Let Dy = Dy = (D31 —$5L 4xsl )t
D. From [31), it is clear that the summation of the component- +l log ~—2 2’Ny71 2y ’
wise rate-distortion functions is (B3 + EQ,NZ)_l
2 min [1=hDx*p)+ Bp(D, a,3,0,7)], where
(D,a,3,0,7)€Q,(D,D)
Bf = max[Di' =%y Dt -2,

which is strictly larger than the joint rate-distortion fition
obtained from Theorefi 13. By = max[Dy' =¥ Dyt —¥oq ).

Suppose thaD > D. In this case, in a similar manner as
(30), we can show that the joint rate-distortion function is  Note that the component-wise rate-distortion functiores ar

- - given by
R(D) =1 — h(D % p) + 2G,(D).
%/ A ~ 1 E1,ac|z
On the other hand, from Propositidi 5, the rate-distortion Bi(Dy, Dy) = g log Dy
function of the source saFisfyirjg](S) is_ the summation of 1 (D ElN +271 )71
the component-wise rate-distortion functions. Thus, tveer +=log " ,
bound in [Zb) is given by 2 (Bf + X, N1)
WZ R;(.[)Q,Dg) = 11Og@
— WD xp) + Gp(D) + R)#(D). 2 D,
. . _ Dyt =N +355)7!
SmceRZVZ(D) < Gp(D) for d.(p) < D < %, the lower +110g( 2 Q’Nyi_ 2,N.)
bound in [Z5) is loose. 2 (B3 + X n,) 7"

Suppose thaD < d.(p). In this case, in a similar manner
as [9, Corollary 2], we can show that the joint rate-distorti BY N0ting X v, < ¥ n. and¥s y, > X v., we have

function is

i D' =%, + Ei}vy B Dt =%y + Ef,}vy
— h(D % p) 4+ 2G,(D). (32) i 916|y Dk 916|Z El,}vz + Ei}vy
n—1
The lower bound in[(25) coincide witli (B2) in this case, and < =

thus tight. Sla
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and
AN—1 1 1 A—1 -1 —1 — RD Functior
D2 - Ez,Ny + EQ,NZ . D2 - Ez,Ny + E2.,Nz R
—1 - —1 —1 —1 2.0p
E2,m|z ZQ,w\y - Z?,Ny + EQ,NZ
N — Upper Bounc
DQ_1 1.8f
< -
2,z|y 1.6f - Lower Bounc
Thus, we have y
R(D) < Ri (D1, D1) + R3(D2, D2), o
which implies that the combination of the component—wise1 ______
optimal scheme is suboptimal for Gaussian product sources.’
Next, we consider the lower bound in{25). Let 08 . . . . . ' b
0.10 0.15 0.20 0.25 0.30 0.35 0.40
Dimin = min{Dy, D},
D, _ min{f)g DQ} Fig. 5. The red solid curve is the rate-distortion functidhe green dotted
min - I :

curve is the upper bound derived by the component-wise seh@&ime blue
. . . dashed curve is the lower bound derived by the straighthatvegplication
Then, using the same notations as in Renbaidk 12, we haveof the enhancement.

R(D|((X1, X2), Y1, Z2), (Z1, Z2)))
1 o Y1l N 1 log (D;t — 2;}Vz + Ei}vy)*l and
T2 b 2 ¥ -1 -1 1 Zm s im s
2 Dy 2 (Bl + El,Ny) R(D) = Zlog— _1| — + = log _|
1 Yo 2|z 2 (D' =25 +Xy)"t 2 D
EERCl . Do 4 uyh)
, +log . T , (35)
and (B*+Xy)
where
R(D|((X1,X2), (Y1,Y2), (Y1, Z2))) -
1. Sy B* =max[D™' — £ 1, D7t = B
= —log—"¥
2 D1,min R We also have
1. Souy, 1. (Dy'=%5y +354)7" i P L e T
+-log =22v 4 —1og( 2 2Ny ) R;(D, D)+ Ry(D, D)
2 D, 2 (B + 3, 5.)7! S A—1 _ y—1 —1y-1
N o|s (D D )
. = log—— +log — (36)
Thus, if D (B* + 33!
D, < (D7t — El_,}\/z + Ef,}vy)_lv (33) The lower bound in[(25) is given by
d A— - — — 3 N—1 _ y—1 —1y—1
Dy < (D3'—=%5h, +Zon)7h (34) L Yols Log (D~ - %5 jrlEN )
2% D "2 (B + 5!
then we have 1 S,
X + = log —=, (37)
Bi +%k, = Diniw=Di, 2 D
Bi+%;, = D;,rlnin = Dy, where D,,;, := min{D, D}.

The distortion such thaE (83) and {34) hold with equality is
and the lower bound i {25) is tight. However, [[f{33) brl(34piven by
are not satisfied, then the lower boundinl(25) is not neciégsar

tight.

In the following, for a symmetric case, we compare thgor fixed D, the rate-distortion function, the upper bound, and
rate-distortion function, the upper bound derived by thge lower bound are functions d. From [35) and[(36), we
component-wise scheme, and the lower bound derived by #¥n find that the rate-distortion function and the upper bloun
straightforward enhancement, i.e., the lower bound[id.(2%re constant fo> > D*. On the other hand, froni_(B7), we

D*:= (D' -2+

We setXy, = Yx, = Yx, Yin, = X2n. = Xy, can find that the lower bound is constant for > D. For
Yin.=%an, =%y, D1 =Dy =D,andD; = Dy =D, ¥x =1,%y=1,%y =2, andD = £, we plot the rate-
whereX y < X. In this case, we have distortion function, the upper bound, and the lower bound in
Fig.[8. In this case, note thdd* = i. We can find that the
Yialy = Yo2ez = Xals upper bound is loose for ever®y, and that the lower bound

izl = Yoaly = Zgls is loose forD > D*.
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V. CONCLUSION where we set
In this paper, we investigated the lossy coding problem for Wis (Sn,Yi;, Z1 215, Z3),
a product of two sources with two decoders, and characterize U, — + v
. . . 1t = (Sflt ) YYQ )7
the rate-distortion function. o e om e
War = (Sn, Yy 7Y2thle2th2t)v

It is important to extend our result to the case in which there
exists correlation between component sources. One of such Uy = Yy,
examples is vector Gaussian sources. As was mentioned in . )
RemarKIR, the converse proof in this paper is motivated ey tANd 7' is the uniform random number ofl,...,n} that
enhancement argument introduced by Weingaetenl. [25]. '€ independent of _the other random variables. Note that
However, as we have exemplified in Sectlodl IV, the bourtdie: Ut War, Uz satisfy (Wi, Uir) <+ X <+ (Yie, Zut) for
derived by the straightforward application of the enhaneem * = 1,2.
argument is loose in general. Thus, some ingenious way ofN @ similar reason as in Sectibn [ll-C2, there exist funusio
enhancement might be needed to solve the vector GausstanWir, T, Uir, Yir) and X;(Wir, T, Z;r) satisfying [2B)

Heegard and Berger problem. This topic will be investigatédnd [24) fori = 1,2. Thus, by takingWy = (Wir,T),
in elsewhere. Uy = Uir, Wy = (Wap,T), andU; = Usr, we have that

there existiV,, Wy, Uy, U, satisfying [28) and{(24) and
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the clarity of this paper. the cardinalities of the auxiliary alphabets. Singe> 0 is
arbitrary, by the continuity ofR*(D) with respect toD,

we have the converse part fét(D). The converse part for

APPENDIX Rsum(f),D) can be proved almost in the same mannem

A. Proof of Proposition[q

Since the direct part directly follows from Propositidn 32 W B, Proof of Lemma[I0
only prove the converse part. We proved the converse part for ) , e
R(D). Suppose thaR is D-achievable. Then, for any > 0, The lemma is proved in a similar manner as Heegard
there exists a codep, ¢, ) satisfying [16)-{I8), where we use@nd Berger's converse argument. Our strategy is to regard

the same notation as in SectiBAIHC2. We will lower bounfl": 5", C") as correlated SOources of block lengtn. Then,
H(S,) by using Lemmd10. LeT},, = S,, (A1, B;,Cy) = we use Heegard and Berger’s converse argument to the inde-

(X1,Y1,Z1) and (As, Ba, Ca) = (Xa,Ys, Zs). Then, from pendently but not identical distributed sources of lerjth

LemmalID, we have First, by chain rules, we have
1 H(T,
—H(S,) (Th)
n > (T, AC™)
1 " _ _ n _ n., An|my _ n. An n
> EZ[I(Sn,ylt,th,zg,zg;xlqzlt) = InTn,B JAY|C™) = I(B™; AT, CT)
t=1 — n mn
LYY X [Yag, S0, Yy, 250, 245, Z3) = 2 [I(T,, BY, By; Au| Ay, CT, Cy)
IS0 Y0 Yor, 27 Zis Z3s Xurl 2 —I(Bu; A}, A3|T,,, By, CF, C¥)
(Yot XoaYar, S, VI Yo, 21, 231, 25)] HI(T,, By BY: Ag| AT, Ay, CF,CF)
1 " _ AN gn n — n n
= - ST H(Wass X16 Zue) + T(Ure; Xue|Yae, Wie) I(Bo; AT, A3 [T, BY, By, OF, C3)]
t=1 H — — + n H
+I(Way; Xot| Zor) + I(Uas; Xot|Yaor, Way)] ﬁ;:/cee(Alt’ C1i) and(4y,, Oy, Oy, C3) are independent, we
= I(Whir; Xar|Zir, T) + I(Urr; Xar|Yir, Wiz, T)
+I(War; Xor|Zar, T) + I(Uar; Xor|Yar, War, T) I(T,, BY', By; A Ay, C1, C3)
= I(Whr,T; Xar|Zi7) + I(Urr; Xaz[Yir, Wiz, T) = I(T,, Ay, By, By, Cy,,Ct,, C3; Ay |Chy)

+I(Wor, T Xor|Zir) + I(Uar; Xor|Yor, Wor, T), > (T, B}, BY,Cy,, Cf,, C3s A1 |Chy).
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Similarly, since (A2, Cot) and (A7, A,,,C, Cs,, CS) are  Similarly, from (8), we have
independent, we have
I(B;;§7 A2t|BQt7 Tn7 3?7 B2_t7 Cf]u C;)

I(T,, By, BY; Ag |AT, AL, CT,CY _ _
(T, BY, By AzelA1, 43, O, C) > I(Bj: Asi|Bar, Tn, BY, By O Conn Csh). (42)

2 I(T’IHB?wB;Lu0?702_,*170;;57142”0215)

Furthermore, since the Markov chains Finally, by substituting[(39)E(42) intd_(B8), we have

Blt <~ (Altaclt) <~ (Tn7A;§7Ai’_tu gaB]:*,aCl_,ﬂC]ﬁuCg)

H(Tn) > [I(TnaBItaOl;vcltvc;?AlAOlt)

NE

~~
Il
-

and
+ (Bitu Bgv AltlBltaTna B];,u C;tu Cit&a C;I)

+I(TnaB?7B;ta0?702;70;;;"42”0215)
hOId’ we have +I(B;_taA2t|B2taTnaB?7B2_ta0?702_1570;)] .
I(Blt§A7ll’Ag|TmBl_tvC?’Og)
= I(BlhAlt'TnuBl_tuCIlucg)

~

BQt <~ (AQtcht) <~ (TnvA?;Agth;_th?aBQ_ta 0?702_,*,5 O;;&)

and I
C. Proof of Cardinality Bounds

I(Byy; AT, AY|T,,, B, B,,,CT1", C¥ . .
(Bzr; 41 _2| P T 2 ) . We prove the cardinality bounds by using the support lemma
= 1(Ba; Azl T, By, By, O, ). [29], [5]. We prove by two steps. In the first step, we reduce

Thus, we have the cardinality ofit; andWW,. We considetX;|+ 3 continuos
functions of Py, x, w, (-, -|w1) as follows:

H(T»)
- T P, RN = P, ’ )
Z Z [I(Tan?ngaOl_taci’;,vcgaAlt|Olt) f0= 1( Ule‘Wl( |w1)) uzl UleIWl(U1 I1|w1)
t=1
—I(Blt;A1t|Tn,B17t,O{l,Cg) for T = 1, Ceey |X1| —1 and
+I(Tn5B?7Bg’O?7C2_taO;E;A2t|02t)
—I(Bay; Ao |Ty, BY, By, C7, C3)] . @) JrvPuxw (o fw)) = HEW)
By chain rul o —H(Xq|Y1, W1 = wi) + I(Ur; Xq|Y1, Wi = wn),
chain rules, we have
y chain ruies, we hav f1.2(Po, x,yw, (5 lwr)) == H(X1|Z1)
I(T,, B}, B}, Cy,, Ct,, C3; A1|Chy) —H(X1|Z1, W1 = wy) + I(Uy; X1 Y1, W1 = wy),
~I(Bu; AulTo, By, CF, C5) FaPoew, (olwn)) = E [dy(Xa, K (wr, U3, 1))
- I(TanﬂvcﬂacltaOS;A1t|Clt) ~ ~
+1(Bus; Au|To, Boy, C, C2) fiPu, xyw, (5 lwr)) == E [d(XlaXl(thl))} .
+I(BYf;, By; Aw|But, Ty, By, C1, C3) By using the support lemma to these functions, there
—I(By; A1l Ty, By, CT, C3) exists random variableW] with cardinality |Wj| <
= I(T,,By,, C;;,C, C2 Ay |Chy) |X1| + 3 and the corresponding random variatilg, i.e.,

n — o m Pyrwr x, (ur,wr,21) = Py (w1)P, (u1,x1|wy), such
+ pn. Ui w X, (U1, Wi, 21 wi (w1) Pu, x, jw, (U, 21
+1(Byy, By's A1¢|Bit, T, Byy,, CF, C3). (39) that the marginaPy, is préserved and

Similarly, we have

I(Ty, By, By, C}', Cyy, Cof; Agt|Cay)
—1(Ba; Aot| T, BY, By, C}', CF)
= I(T,, B}, By, CF, Cs,, Cori Agi|Cay)
+1(By;; As|Bay, T, BY, B;,,C7,C3).  (40)

I(W{; Xa|Yh) + I(Uy; X |Ya, W)

= I(Wy; Xq|Y1) + I(Uy; Xu|Yy, W)
I(Wy; X1121) + L(Uy; X1|Y1, WY)

= I(Wy; X4|Zy) + I(Ur; X1|Y1, Wh),

E {Cil(XlaXl(W{aU{ayl))}
From [8), we have . .
- = B[d(X, X0, U 1)
Clt Ad Blt — (TnvAltaBltvcltvci";? Og) ~ ~ ,
E [dl(XlaXl(lezl))}
Thus, we have - -
= E|d(X1,X:(Wh,Z1))].
I(B{;; A1t| By, Ty, By, C7, CF) [ T 1))}
= I(BY, Cu; Au|Biy, T, By, Crp, O, C3) Similarly, there exists¥V; with cardinality [Wj| < |Xa| + 3
> I(Bﬂ;AulBlt,Tn,B;t,Cl}, Cf;, C?). (41) and the corresponding random varialdl¢ such thatPx, is
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preserved and
I(Wy; Xo|Ya) + 1(Us; Xo| Z2, W3)
= I(Way; Xa|Ya) + I(Us; X2|Z2, Wa)
I(W3; X2|Z2) + I1(Ug; Xo| Za, W)
= I(W2; X3|Z2) + 1(Uz; X2|Z2, Wa),
E Jz(Xz,Xz(Wzlayz))}

= E [sz(XzaXz(WzaYé))] ;
E |da(Xz, X2(W5, U, 22) |

= B [d(Xo, Xo(Ws, U, 2))]

13

Thus, the lefthand side of (R9) is larger than or equal to the
nghthand side. On the other hand, fér = 1, by setting
D=D,a=pgandr = ¢, and optlmlzmg(ﬁ 9) we can
show that the lefthand S|de ach|eves the righthand sidedn (2

b) Proof of (30): By noting thatG,(-) is a convex
function, for any(D, a, 8,6, 7) € Q,(D, D) we have

B,(D,a,3,0,7) = (0—1)Gp(a)+7G,(B)
+(1=0)Gp(y(D, , 3,0,7))
= (0-7)Gp(1 —a)+7Gp(B)
+(1 = 0)Gp(y(D, , 8,6, 7))
> GP(D)'

In the next step, we reduce the cardinality &f and Smcel — h(p* D) and G,,(D) are monotone decreasing for
Uj. We consider|W,| - |&1| + 1 continuous functions of D < 3, the lefthand side OCBO) is larger than or equal to the

Py x, v (- +|u1) as follows:

90,w1,2: (Pwy x, 107 (5 [ur)) = Py x, vy (wi, 21]ur)

for (wi,z1) =1,...,)Wj|-|X|—1and

W] X1 |Uj (s |u1))

g1 (P
= H(X:|V1,W]) — H(X1|Y1,W{, U1 = uy),
g,(

WXl\U'( Ju1))
= E |di(X1, X1(W],u1,Y1))| .

By using the support lemma to these functions, there ekits
with cardinality [t/'| < [Wi| - X1+ 1 = |X|(|X | +3) +1

such that the marginahy, x, is preserved,
I(UY; Xa[Yh, Wy) = I(Uy; Xa|Y1, W7),
and

E [Jl(Xla Xl(Wllv U{/a Yl)):|

= K |:CZ1(X1,X1(W1/7 U{ayl)):| :

Similarly, there existd/) with cardinality |14 | < |Xs|(|Xz| +

3) + 1 such thatPy, v, is preserved,
L(UY; X3|Zo, W5) = 1(Us; Xo|Zo, W3),
and
B [da(Xz, X2(W5,Uf, 22))|

= B [0 (X, Xo(W4, U3, 7))

By relabeling (W7, Uy, W3, Uy) as (Wy,Uy, Wa,Us), we

have the cardinality bounds.

D. Proof of (29) and (30)

a) Proof of (29): By noting thatG,(-) is a non-negative
and convex function, for anyD, o, 3,0, 7) € Q,(D, D) we

have
Bp(D,a,ﬁ,b',T) = (0 —7)Gp(a) + 7G,(B)
+(1 - H)Gp(’Y(D,Oé,B,H,T))
=2 (0 —7)Gp(a) +7GR(B)
> 06, (997a+ ﬁ)
> RY4(D).

nghthand side. On the other hand, whéh= p, by setting
D=D,0=7=a=/=0,we can show that the lefthand
side coincides with the righthand side [R(30). When= D,

by settingD = D, 0 =7 =1, « = 0, and 8 = D, we can
show that the lefthand side coincides with the righthane sid

in (30).

E. Proof of Theorem[I3
First, note that[(28) can be written as

—HY|W)+H(Y|UW)—-H(X|UW),
where we used the relations

I(W;Y) = 1—HY|W), (43)

I(U,W;X|Y) = HY|UW)—-HX|UW). (44)
To prove [2¥), Tian and Diggavi essentially showed the
following in [9, Appendix 5].

Lemma 15: Let (U, W) be auxiliary random variables sat-
isfying the condition§ll and 2 right aftdr {26). Then, we have
1-—HY|W) > 1-h(Dxp),
H(Y|U7 W) - H(X|U7 W) > Bp(DaO‘aBueuT)

for some(D, a, 3,0, 7) € Q,(D, D).

By noting thatZ; andY; are constant and by using chain
rules, for a fixed auxiliary random variab(€/, W7, Us, Wa),
we can rewrite the rate condition of Theoréim 7 as

max{l(Ur, Wi; X1|Y1) + I(W2; Z3) + I(Us, Wa; Xo|Z5),
I(W; Y1) + I(U, W Xa | Y1) 4+ 1(Uz, Wa; X2|Z3) }.
Then, by using LemmBa_15 and the relations[inl (43) (44),
we have
I(Uy, Wy X1|Y1) + I(Wa; Z2) + (U2, Wa; Xa|Z2)
> 1= Nh(Da*p2)+ By, (D1, a1, B1,01,71)
+ Bpg (D27 2, 527 927 T2)
and
I(Wy; Y1) + LUy, Wi X1|Y1) + I(Us, Wa; Xo|Z2)
> 1—=nh(Dy*p1)+ Bp, (D1, a1, B1,01,71)
+ Bpg (D27 2, 527 921 T2)
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for some [25] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz),&Thpacity region
. . of the Gaussian MIMO broadcast chann¢éEEE Trans. Inform. Theory,
(D1,a1,51,01,71) € o (D1,Dn) vol. 52, no. 9, pp. 3936-3964, September 2006.
[26] R. Timo, T. Chan, and A. Grant, “Rate distortion with esithformation
and at many decoders,IEEE Trans. Inform. Theory, vol. 57, no. 8, pp.
5240-5257, August 2011.
- N, T [27] K. J. Kerpez, “The rate-distortion function of a binaymmetric source
(D2, a2, B2,02,72) € . (D2, DQ)' when side information may be absentBEEE Trans. Inform. Theory,
: : : vol. 33, no. 3, pp. 448-452, May 1987.
T_hus_’ the lefthand side is Iarger than (_)r eq_”a' to _the rlg1‘_dha[28] M. Fleming and M. Effros, “On rate-distortion with midetypes of side
side in [31). We can prove the other direction of inequality b~ information,”|EEE Trans. Inform. Theory, vol. 52, no. 4, pp. 16981705,
using the reverse test channels described in Eigs. $Jand 4.  April 2006. _ _
[29] I. Csiszar and J. Kornednformation Theory, Coding Theorems for
Discrete Memoryless Systems, 2nd ed. Cambridge University Press,
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