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The Rate-Distortion Function for Product of Two
Sources with Side-Information at Decoders

Shun WatanabeMember, IEEE

Abstract—This paper investigates a lossy source coding prob-
lem in which two decoders can access their side-information
respectively. The correlated sources are a product of two com-
ponent correlated sources, and we exclusively investigatethe
case such that each component is degraded. We show the
rate-distortion function for that case, and give the following
observations. When the components are degraded in matched
order, the rate distortion function of the product sources is equal
to the sum of the component-wise rate distortion functions.On
the other hand, the former is strictly smaller than the latter
when the component sources are degraded in mismatched order.
The converse proof for the mismatched case is motivated by the
enhancement technique used for broadcast channels. For binary
Hamming and Gaussian examples, we evaluate the rate-distortion
functions.

Index Terms—Heegard-Berger Problem, Rate-Distortion, Re-
versely Degraded, Side-Information

I. I NTRODUCTION

The source coding problem for correlated sources has been
regarded as an important research area in information theory,
and various types of coding problems were studied so far
(e.g. [1], [2], [3], [4], [5]). In particular, our focus in this paper
is the lossy coding problem posed by Heegard and Berger [6].

In the problem, there is one encoder and multiple decoders
(see Fig. 1). In this paper, we only treat the case with
two decoders. The encoder sends an encoded version of
principal sourceX . The decoder 1 reproduces the principal
source within prescribed distortion level by the help of side-
information Y , and the decoder 2 reproduces the principal
source within prescribed distortion level by the help of side-
informationZ.

In this setting, Heegard and Berger showed an upper bound
on the rate distortion function. They also showed that the
upper bound is tight if the side-information is degraded, i.e.,
X , Y , and Z form a Markov chain in this order. So far,
there is no conclusive result, i.e., an upper bound and a lower
bound coincide, without the degraded assumption, and whether
Heegard and Berger’s upper bound is tight or not for non-
degraded cases has been a long-standing open problem1.
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1Sgarro’s problem [7] can be regarded as a lossless special case of Heegard

and Berger’s problem, and his result [7, Theorem 1] holds without the
degraded assumption.
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Fig. 1. The coding system investigated in this paper.

In [8], Steinberg and Merhav investigated the successive
refinement for the Wyner-Ziv problem, which is a general-
ization of Heegard and Berger’s problem. In [9], Tian and
Diggavi investigated the multistage successive refinementfor
the Wyner-Ziv problem. In these literatures [8], [9], the side-
information is assumed to be degraded. In [10], Tian and
Diggavi also investigated the side-information scalable source
coding, in which the side-information is reversely degraded
with respect to the successive refinement. When the refinement
layer’s rate of the side-information scalable source coding is
0, it is nothing but Heegard and Berger’s problem. In such
a case, there is no difference between the degraded and the
reversely degraded.

In order to provide some insight to Heegard and Berger’s
problem, we investigate a special case of this problem in
this paper. Specifically, we consider the case such that the
correlated sources(X,Y, Z) is a cartesian product of two
components correlated sources(X1, Y1, Z1) and(X2, Y2, Z2)
and the components are independent of each other (see Fig. 1).
Furthermore, we exclusively consider the case such that each
component is degraded, i.e., either

X1 ↔ Y1 ↔ Z1,

X2 ↔ Y2 ↔ Z2
(1)

or

X1 ↔ Y1 ↔ Z1,

X2 ↔ Z2 ↔ Y2
(2)

is satisfied, whereA ↔ B ↔ C represents that the random
variables(A,B,C) form Markov chain in this order.

When (1) is satisfied, the joint sources(X,Y, Z) are de-
graded. Thus, Heegard and Berger’s result suggests that their
upper bound is tight. On the otherhand, when (2) is satisfied,
the joint sources are not degraded. Thus, whether Heegard
and Berger’s upper bound is tight or not is unclear so far. In

http://arxiv.org/abs/1105.2864v2
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this paper, we show that the upper bound is tight whenever
(2) holds by finding a tight lower bound (a converse), i.e.,
we characterize the rate-distortion function. To the best of
the author’s knowledge, this is the first example such that the
rate-distortion function is characterized without the degraded
assumption2.

The problem setting treated in this paper is interesting not
only because we can obtain a conclusive result, but it is
also interesting by the following reason. Since the component
correlated sources in our problem setting are independent
of each other, one might think that a combination of the
component-wise optimal scheme is optimal in total and the
rate-distortion function of our problem setting is just the
summation of the component-wise rate distortion functions.
However, this is not the case, i.e., the rate distortion function
of product sources can be strictly smaller than the summation
of the component-wise rate distortion functions even though
the components are independent of each other. To explain this
fact intuitively, let us consider an example illustrated inFig. 2.
When two components are encoded and decoded separately,
1 bit must be sent for each components, which means2 bits
must be sent to reproduce(X1, X2) at both decoders. On the
otherhand, if the encoder sendsX1 ⊕X2, then both decoders
can reproduce(X1, X2) as in the network coding [15]3. Thus,
when the components are encoded and decoded jointly,1 bit
suffices for the decoders to reproduce(X1, X2). As we can
find from this example, the rate distortion function of product
sources is not trivial, and it is interesting to characterize the
rate distortion function for our problem setting.

It should be noted that the present work is motivated by the
results on product of two broadcast channels by Poltyrev [17]
and El Gamal [18]. The broadcast channel [19] is also a long-
standing open problem in the network information theory even
for two receivers. When there is an ordering between the two
receivers (such as degraded, less noisy, and more capable),
then conclusive results have been obtained [20], [21], [22],
[23], [24]. Poltyrev and El Gamal’s conclusive results are few
examples without such orderings. The result in this paper can
be regarded as a source coding counterpart of Poltyrev and
El Gamal’s results. However, there is a subtlety of distortions
in our problem setting that do not exist in the broadcast
channel.

Recently, Weingartenet. al. solved the capacity region
of the MIMO Gaussian broadcast channel [25]. The MIMO
Gaussian broadcast channel is not degraded in general. In [25],
the authors introduced a technique called enhancement. There

2At the same time as the first version of this paper appeared in the confer-
ence, Timoet. al. also showed the rate-distortion function for some special
cases of the lossy complementary delivery problem [11] (seealso [12]), which
can be also regarded as special cases of non-degraded Heegard and Berger’s
problem. More specifically, Timoet. al. solved the lossy complementary
delivery problem for the binary symmetric sources with Hamming distortion
measures, and general sources with small distortions and Hamming distortion
measures. Recently, Timoet. al. also solved another special case of Heegard
and Berger’s problem by introducing the conditional less noisy condition,
which subsumes the degraded condition [13], [14].

3This example can be also regararded as a special case of the complemen-
tary delivery problem. The relationship between the complementary delivery
problem and the network coding was pointed out in [16]. A similar example
was also investigated in [11, Example 1] (see also [12, Example 1]) as an
example of the lossy complementary delivery problem.

X = (X1,X2)

Y = (X1,    )

Z = (    ,X2)

Encoder ϕ

Decoder 1 φ

Decoder 2 ψ

X = (X1,X2)

X = (X1,X2)

Fig. 2. An intuitive example such that the rate-distortion function (with
distortion 0) for the product source is strictly smaller than the summation
of the component-wise rate distortion functions.X1 andX2 are independent
uniform binary random variables, and⊥ represent a constant random variable.
When two components are encoded and decoded separately,1 bit must be sent
for each components, which means2 bits must be sent to reproduce(X1, X2)
at both decoders. On the otherhand, if the encoder sendsX1⊕X2, then both
decoders can reproduce(X1,X2) as in the network coding [15]. Thus, when
the components are encoded and decoded jointly,1 bit suffices for the decoders
to reproduce(X1,X2).

are two roles for the enhancement in the converse proof of the
MIMO Gaussian broadcast channel. One of them is a reduction
of a MIMO non-degraded Gaussian broadcast channel to a
MIMO degraded Gaussian broadcast channel. As was pointed
out in [5, Section 9.4], Poltyrev’s result [17] can be also
derived by a straightforward application of the enhancement
argument. An application of the enhancement argument to our
problem will be also discussed in this paper. Actually, it turns
out that a lower bound on the rate-distortion function derived
by a straightforward application of the enhancement argument
is loose in general.

The rest of the paper is organized as follows. In Section II,
we explain the problem setting treated in this paper, and also
explain known results. In Section III, we show our main result
and its proof. In Section IV, we show the binary Hamming
example and the Gaussian example.

II. PRELIMINARIES

In this section, we formally define the problem setup and
review Heegard and Berger’s results [6].

Let (X,Y, Z) = ((X1, X2), (Y1, Y2), (Z1, Z2)) be prod-
uct of correlated sources, i.e., components(X1, Y1, Z1) and
(X2, Y2, Z2) are independent of each other. The alphabet of
the sources are denoted byX = X1 × X2, Y = Y1 × Y2,
andZ = Z1 × Z2 respectively, where we assume that these
alphabets are finite unless otherwise specified in the Gaussian
example. Let(Xn, Y n, Zn) ben independent and identically
distributed copies of(X,Y, Z).

Let X̂1, X̂2, X̃1, andX̃2 be reproduction alphabets, and for
i = 1, 2 let

d̂i : Xi × X̂i → [0,∞), (3)

d̃i : Xi × X̃i → [0,∞) (4)

be distortion measures. Then, let

d̂sum(x1, x2, x̂1, x̂2) = d̂1(x1, x̂1) + d̂2(x2, x̂2),

d̃sum(x1, x2, x̃1, x̃2) = d̃1(x1, x̃1) + d̃2(x2, x̃2),
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be the sum distortion measures.
For blocklengthn, the coding system treated in this paper

consists of one encoder4

ϕ : Xn → {1, . . . ,M}

and two decoders

φ : {1, . . . ,M} × Yn → X̂n
1 × X̂n

2

and

ψ : {1, . . . ,M} × Zn → X̃n
1 × X̃n

2 .

For quadrupletD = (D̂1, D̂2, D̃1, D̃2), rateR is said to be
D-achievable if, for eachγ > 0, there exists a code(ϕ, φ, ψ)
with a sufficiently large blocklengthn such that

1

n
logM ≤ R+ γ

and

1

n

n
∑

t=1

E[d̂i(Xit, X̂it)] ≤ D̂i + γ, (5)

1

n

n
∑

t=1

E[d̃i(Xit, X̃it)] ≤ D̃i + γ (6)

for i = 1, 2 are satisfied, where(X̂n
1 , X̂

n
2 ) = φ(ϕ(Xn), Y n)

and (X̃n
2 , X̃

n
2 ) = ψ(ϕ(Xn), Zn). Then, the rate-distortion

function is defined as

R(D) := inf{R : R is D-achievable}.

Note that we place the individual distortion constraints in(5)
and (6), which are slightly different from those in the original
Heegard and Beger’s problem [6]. By replacing (5) and (6)
with

1

n

n
∑

t=1

E[d̂sum(X1t, X2t, X̂1t, X̂2t)] ≤ D̂ + γ,

1

n

n
∑

t=1

E[d̃sum(X1t, X2t, X̃1t, X̃2t)] ≤ D̃ + γ

respectively, we can define the rate-distortion function
Rsum(D̂, D̃) for the sum distortions. Since the sum distortions
are special cases of joint distortions, they are special cases of
[6].

From the definitions, we obviously have

Rsum(D̂, D̃)

≤ min{R(D) : D̂1 + D̂2 ≤ D̂, D̃1 + D̃2 ≤ D̃}. (7)

When (1) or (2) hold, the opposite inequality can be also
proved via the single letter characterization (see Proposition 5
and Theorem 7)5.

Remark 1: We can also define the rate-distortion function
R(D̂, D̃) for general joint distortionsd̂ and d̃. The single
letter characterization ofR(D̂, D̃) under the condition of (1)
can be derived from [6]. However, under the condition of (2),

4Since it is obvious from the context, we omit subscriptn from the encoder,
the decoders, and the message size to simplify the notations.

5It is not clear whether the opposite inequality hold or not ingeneral.

the single letter characterization ofR(D̂, D̃) is not clear (see
Remark 11).

Remark 2: It should be noted that the results in this paper
can be easily extended to the weighted sum distortion mea-
sures

d̂wsum(x1, x2, x̂1, x̂2) = α̂d̂1(x1, x̂1) + β̂d̂2(x2, x̂2),

d̃wsum(x1, x2, x̃1, x̃2) = α̃d̃1(x1, x̃1) + β̃d̃2(x2, x̃2),

for someα̂, β̂, α̃, β̃ ≥ 0.
In [6], Heegard and Berger showed an upper bound on the

rate-distortion function.
Proposition 3: ([6, Theorem 2]6) Let (W, Û , Ũ) be auxil-

iary random variables satisfying

1) (W, Û , Ũ) ↔ X ↔ (Y, Z).
2) There exist functionsX̂ ′

i(W, Û , Y ) and X̃ ′
i(W, Ũ , Z)

such thatE[d̂i(Xi, X̂
′
i)] ≤ D̂i andE[d̃i(Xi, X̃

′
i)] ≤ D̃i

for i = 1, 2.
3) |W| ≤ |X | + 7, |Û | ≤ |X | · |W| + 2, and |Ũ | ≤ |X | ·

|W| + 2, whereW , Û , and Ũ are alphabets ofW , Û ,
and Ũ respectively.

Then, we have

R(D) ≤ max{I(W ;X |Y ), I(W ;X |Z)}

+ I(Û ;X |Y,W ) + I(Ũ ;X |Z,W ).

Remark 4: In [6], Heegard and Berger also showed an
upper bound on the rate-distortion function for more than three
decoders. However, Timoet. al. pointed out that the statement
of [6, Theorem 2] for more than three decoders is invalid, and
only the statement for two decoders is valid [26]. In [26], they
also showed a corrected upper bound on the rate-distortion
function for more than three decoders.

When the component sources are degraded in matched
order, i.e.,

X1 ↔ Y1 ↔ Z1,

X2 ↔ Y2 ↔ Z2
(8)

are satisfied, then the joint sources(X,Y, Z) are degraded,
i.e.,

X ↔ Y ↔ Z.

For the degraded sources, Heegard and Berger [6] showed
that the upper bound in Proposition 3 is tight. In particularfor
product of two sources, we have the following statement.

Proposition 5: ([6, Theorem 3]) If the components sources
are degraded in matched order, i.e., (8) is satisfied, then we
have

R(D) = R∗(D)

:= min[I(W1;X1|Z1) + I(U1;X1|Y1,W1)

+I(W2;X2|Z2) + I(U2;X2|Y2,W2)],

6Proposition 3 is a slight modification of [6, Theorem 2] to component
distortion functions. The third condition, i.e., the cardinality bound was
not stated in [6, Theorem 2], and first shown in [26, Example 2]. Since
our problem in this paper places individual distortion constraints on each
component of the product source, we have to increase the cardinalities with
respect to [26, Example 2].
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where the minimization is taken over all auxiliary random
variablesW1,W2, U1, U2 satisfying the following:

1) (Wi, Ui) ↔ Xi ↔ (Yi, Zi) for i = 1, 2.
2) (W1, U1, X1, Y1, Z1) and(W2, U2, X2, Y2, Z2) are inde-

pendent of each other.
3) There exist functionsX̂i(Wi, Ui, Yi) and X̃i(Wi, Zi)

such thatE[d̂i(Xi, X̂i)] ≤ D̂i andE[d̃i(Xi, X̃i)] ≤ D̃i

for i = 1, 2.
4) |Wi| ≤ |Xi|+2 and|Ui| ≤ (|Xi|+1)2 for i = 1, 2, where

Wi andUi are alphabets ofWi andUi respectively.

Furthermore, we also have

Rsum(D̂, D̃)

= min{R∗(D) : D̂1 + D̂2 ≤ D̂, D̃1 + D̃2 ≤ D̃}.

Remark 6: Technically, the result in [6, Theorem 3] does
not directly imply Proposition 5, because Proposition 5 states
the stronger condition on the auxirially random variables,
i.e., (W1, U1, X1, Y1, Z1) and (W2, U2, X2, Y2, Z2) are inde-
pendent of each other. We give a proof of Proposition 5 in
Appendix A for readers’ convenience.

Note that R∗(D) is nothing but the summation of the
component-wise rate distortion functions, i.e.,

R∗(D) = R∗
1(D̂1, D̃1) +R∗

2(D̂2, D̃2),

where

R∗
i (D̂i, D̃i) = min[I(Wi;Xi|Zi) + I(Ui;Xi|Yi,Wi)] (9)

and the minimization in (9) is taken over all(Ui,Wi) satis-
fying the conditions 1, 3, and 4 in Proposition 5. This fact
implies that the optimal scheme for the degraded product
sources is to combine the component-wise optimal scheme.

When sources(X,Y, Z) are not necessarily degraded,
whether the upper bound in Proposition 3 is tight or not has
been an open problem for a long time. In the next section,
we will show that the upper bound is tight if the component
sources satisfy (2).

III. M AIN RESULTS

A. Statement of Results

In this section, we consider the case in which the component
sources are degraded in mismatched order, i.e.,

X1 ↔ Y1 ↔ Z1,

X2 ↔ Z2 ↔ Y2
(10)

are satisfied. In this case, the joint sources(X,Y, Z) are not
degraded, and the rate-distortion functionR(D) has not been
clarified by any literatures. The following is our main result,
which will be proved in Section III-C.

Theorem 7: Suppose that(X1, Y1, Z1) and(X2, Y2, Z2) are
independent of each other and (10) is satisfied. Then, we have

R(D) = R†(D)

:= min[max{I(W1;X1|Y1) + I(W2;X2|Y2),

I(W1;X1|Z1) + I(W2;X2|Z2)}

+ I(U1;X1|Y1,W1) + I(U2;X2|Z2,W2)],

where the minimization is taken over all auxiliary random
variablesW1,W2, U1, U2 satisfying the following:

1) (Wi, Ui) ↔ Xi ↔ (Yi, Zi) for i = 1, 2.
2) (W1, U1, X1, Y1, Z1) and(W2, U2, X2, Y2, Z2) are inde-

pendent of each other.
3) There exist functionsX̂1(W1, U1, Y1), X̂2(W2, Y2),

X̃1(W1, Z1), andX̃2(W2, U2, Z2) such that

E[d̂i(Xi, X̂i)] ≤ D̂i

and

E[d̃i(Xi, X̃i)] ≤ D̃i

for i = 1, 2.
4) |Wi| ≤ |Xi| + 3 and |Ui| ≤ |Xi| · (|Xi| + 3) + 1 for

i = 1, 2, whereWi andUi are alphabets ofWi andUi

respectively.

Furthermore, we also have

Rsum(D̂, D̃)

= min{R†(D) : D̂1 + D̂2 ≤ D̂, D̃1 + D̃2 ≤ D̃}.

When the distortion levels are all0, we have the following
corollary, which can be also derived as a straightforward
consequence of Sgarro’s result [7, Theorem 1].

Corollary 8: When the distortion measures are the Ham-
ming distortion measure and(D̂1, D̂2, D̃1, D̃2) = 0 =
(0, 0, 0, 0), we have

R(0) = max{H(X1|Y1) +H(X2|Y2),

H(X1|Z1) +H(X2|Z2)}

= max{H(X1, X2|Y1, Y2), H(X1, X2|Z1, Z2)}.

Remark 9: It should be noted that

max{H(X1|Y1) +H(X2|Y2), H(X1|Z1) +H(X2|Z2)}

≤ max{H(X1|Y1), H(X1|Z1)}

+max{H(X2|Y2), H(X2|Z2)} (11)

= H(X1|Z1) +H(X2|Y2) (12)

hold, and the equality in the inequality (11) does not neces-
sarily hold in general, where the equality in (12) follows from
(10). Note that (11) is the rate that is needed when we apply
Sgarro’s coding scheme to each component. This fact implies
that the combination of the component-wise optimal scheme
is not necessarily optimal even though the components are
independent of each other. This phenomenon also appears for
lossy cases, which will be exemplified in Section IV.

B. Comparison to Scalable Source Coding

In [10], Tian and Diggavi proposed a coding scheme that
is different from [6]. Although joint encoding and decoding
is required to achieve the rate-distortion function given in
Theorem 7, we can construct a code that achieve the rate-
distortion function from component-wise coding scheme of
[10] in a similar manner as the example of Fig. 2.

When we apply the coding scheme of [10] to the first
component source(X1, Y1, Z1), the sourceXn

1 is quantized
into the common descriptionWn

1 and the private description
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Un
1 . Then, we apply the bin coding to the common description

Wn
1 at rate

I(W1;X1|Y1) = I(W1;X1)− I(W1;Y1), (13)

where the rateI(W1;X1) corresponds to the quantization rate
and the rateI(W1;Y1) corresponds to the reduction of the rate
by the bin coding. Note that the equality in (13) requires the
Markov condition(W1, U1) ↔ X1 ↔ (Y1, Z1). Furthermore,
we apply the bin coding toWn

1 at extra rate

I(W1;Y1|Z1) = I(W1;Y1)− I(W1;Z1).

By using the first bin indexI1, the first decoder (withY n
1 )

can reconstruct the common descriptionWn
1 . By using both

the first bin indexI1 and the extra bin indexI2, the second
decoder (withZn

1 ) can reconstructWn
1 . After that the private

descriptionUn
1 is transmitted to the first decoder at rate

I(U1;X1|Y1,W1).

Similarly, when we apply the coding scheme of [10] to
the second component source(X2, Y2, Z2), the sourceXn

2 is
quantized into the common descriptionWn

2 and the private
descriptionUn

2 . Then, we apply the bin coding to the common
descriptionWn

2 at rates

I(W2;X2|Z2) = I(W2;X2)− I(W2;Z2)

and

I(W2;Z2|Y2) = I(W2;Z2)− I(W2;Y2)

respectively so that the first decoder (withY n
2 ) can reconstruct

Wn
2 from both the first bin indexJ1 and the second bin index

J2 and the second decoder (withZn
2 ) can reconstructWn

2

from J1. The private descriptionUn
2 is also transmitted to the

second decoder at rate

I(U2;X2|Z2,W2).

By using the above two component-wise coding scheme,
we can construct a joint encoding and decoding scheme as
follows. First, the encoder sends(I1, J1, I2⊕J2). This requires
the rate

I(W1;X1|Y1) + I(W2;X2|Z2)

+max[I(W1;Y1|Z1), I(W2;Z2|Y2)].

Note that the first (second) decoder can obtainJ2 (I2) by
first reconstructingWn

1 (Wn
2 ) and then subtractingI2 (J2)

from I2 ⊕ J2. The encoder also sends the private descriptions
Un
1 andUn

2 at ratesI(U1;X1|Y1,W1) andI(U2;X2|Z2,W2)
respectively. Consequently, the total rate coincides withthe
rate-distortion function given in Theorem 7.

If we use a straightforward combination of the component-
wise coding scheme,I2 andJ2 will be transmitted separately
instead ofI2 ⊕ J2, and the rate loss from the joint coding
scheme is

min[I(W1;Y1|Z1), I(W2;Z2|Y2)]. (14)

C. Proof of Theorem 7

1) Direct Part: The direct part is a straightforward conse-
quence of Proposition 3.

For any auxiliary random variables(W1,W2, U1, U2) satis-
fying the conditions in Theorem 7, let

W = (W1,W2),

Û = U1,

Ũ = U2,

X̂ ′
1(W, Û , Y ) = X̂1(W1, U1, Y1),

X̂ ′
2(W, Û , Y ) = X̂2(W2, Y2),

X̃ ′
1(W, Ũ , Z) = X̃1(W1, Z1),

X̃ ′
2(W, Ũ , Z) = X̃2(W2, U2, Z2).

Then, Proposition 3 implies Theorem 7. The direct part for
Rsum(D̂, D̃) follows from (7).

2) Converse Part: As we have mentioned in Section II,
Heegard and Berger showed the converse coding theorem for
degraded case. In the course of the proof, they essentially
showed the following lemma, which can be shown only for
the degraded case. Although our purpose is to show the
converse coding theorem for the non-degraded case, we need
the following lemma in our converse proof of Theorem 7. A
proof of Lemma 10 is given in Appendix B.

Lemma 10: Let

(A,B,C) = ((A1, A2), (B1, B2), (C1, C2))

be product of correlated sources such that(A1, B1, C1) and
(A2, B2, C2) are independent of each other and

Ai ↔ Bi ↔ Ci (15)

for both i = 1 andi = 2. Let (An, Bn, Cn) ben independent
identically distributed copies of(A,B,C). Then, for any
(possibly stochastic) functionTn = fn(A

n), we have

H(Tn) ≥

n
∑

t=1

[

I(Tn, B
−
1t, C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

+I(B+
1t, B

n
2 ;A1t|B1t, Tn, B

−
1t, C

−
1t, C

+
1t, C

n
2 )

+I(Tn, B
n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t;A2t|C2t)

+I(B+
2t;A2t|B2t, Tn, B

n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t)

]

,

where we use the notationsB−
1t = (B11, . . . , B1(t−1)), B

+
1t =

(B1(t+1), . . . , B1n), and etc.
We now prove the converse part forR(D). Suppose that

the rateR is D-achievable. Then, for anyγ > 0 there exists
a code(ϕ, φ, ψ) such that

1

n
H(Sn) ≤

1

n
logM ≤ R + γ (16)

and

1

n

n
∑

t=1

D̂it ≤ D̂i + γ, (17)

1

n

n
∑

t=1

D̃it ≤ D̃i + γ (18)
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for i = 1, 2 are satisfied, where we setSn = ϕ(Xn), D̂it =
E[d̂i(Xit, X̂

n
it)] and D̃it = E[d̃i(Xit, X̃

n
it)] for (X̂n

1 , X̂
n
2 ) =

φ(ϕ(Xn), Y n) and (X̃n
1 , X̃

n
2 )= ψ(ϕ(Xn), Zn).

The key idea of the proof is to derive two lower bounds
on H(Sn) by using Lemma 10 as follows. First, letTn =
Sn, (A1, B1, C1) = (X1, Y1, Z1) and (A2, B2, C2) =
(X2, Z2, Z2). Then, since(A,B,C) satisfies (15), we can use
Lemma 10, and we have

1

n
H(Sn)

≥
1

n

n
∑

t=1

[

I(Sn, Y
−
1t , Z

−
1t, Z

+
1t, Z

n
2 ;X1t|Z1t)

+I(Y +
1t ;X1t|Y1t, Sn, Y

−
1t , Z

−
1t, Z

+
1t, Z

n
2 )

+I(Sn, Y
n
1 , Z

n
1 , Z

−
2t, Z

+
2t;X2t|Z2t)

]

=
1

n

n
∑

t=1

[

I(Sn, Y
−
1t , Y

n
2 , Z

−
1t, Z

+
1t, Z

n
2 ;X1t|Z1t)

+I(Y +
1t ;X1t|Y1t, Sn, Y

−
1t , Y

n
2 , Z

−
1t, Z

+
1t, Z

n
2 )

+I(Sn, Y
n
1 , Y

−
2t , Y

+
2t , Z

n
1 , Z

−
2t, Z

+
2t;X2t|Z2t)

]

(19)

=
1

n

n
∑

t=1

[I(W1t;X1t|Z1t) + I(U1t;X1t|Y1t,W1t)

+I(W2t, U2t;X2t|Z2t)]

= I(W1T ;X1T |Z1T , T ) + I(U1T ;X1T |Y1T ,W1T , T )

+I(W2T , U2T ;X2T |Z2T , T )

= I(W1T , T ;X1T |Z1T ) + I(U1T ;X1T |Y1T ,W1T , T )

+I(W2T , T, U2T ;X2T |Z2T ) (20)

where we used the fact thatY2 is degraded version ofZ2 in
(19), i.e.,

Y n
2 ↔ (Sn, Y

−
1t , Z

n
1 , Z

n
2 ) ↔ X1t,

Y n
2 ↔ (Sn, Y

−
1t , Y1t, Z

−
1t, Z

+
1t, Z

n
2 ) ↔ X1t,

Y n
2 ↔ (Sn, Y

n
1 , Z

−
1t, Z

+
1t, Z

n
2 ) ↔ X1t,

and we set

W1t = (Sn, Y
−
1t , Y

n
2 , Z

−
1t, Z

+
1t, Z

n
2 ),

U1t = Y +
1t ,

W2t = (Sn, Y
n
1 , Y

−
2t , Y

+
2t , Z

n
1 , Z

−
2t),

U2t = Z+
2t,

and T is the uniform random numbers on{1, . . . , n} that
are independent of the other random variables. Note that
W1t, U1t,W2t, U2t satisfy (Wit, Uit) ↔ Xit ↔ (Yit, Zit) for
i = 1, 2.

Similarly, let Tn = Sn, (A1, B1, C1) = (X2, Z2, Y2) and
(A2, B2, C2) = (X1, Y1, Y1). Then, since(A,B,C) satisfies

(15), we can use Lemma 10, and we have

1

n
H(Sn)

≥
1

n

n
∑

t=1

[

I(Sn, Y
n
1 , Y

−
2t , Y

+
2t , Z

−
2t;X2t|Y2t)

+I(Z+
2t;X2t|Z2t, Sn, Y

n
1 , Y

−
2t , Y

+
2t , Z

−
2t)

+I(Sn, Y
−
1t , Y

+
1t , Y

n
2 , Z

n
2 ;X1t|Y1t)

]

=
1

n

n
∑

t=1

[

I(Sn, Y
n
1 , Y

−
2t , Y

+
2t , Z

n
1 , Z

−
2t;X2t|Y2t)

+I(Z+
2t;X2t|Z2t, Sn, Y

n
1 , Y

−
2t , Y

+
2t , Z

n
1 , Z

−
2t)

+I(Sn, Y
−
1t , Y

+
1t , Y

n
2 , Z

−
1t, Z

+
1t, Z

n
2 ;X1t|Y1t)

]

(21)

=
1

n

n
∑

t=1

[I(W2t;X2t|Y2t) + I(U2t;X2t|Z2t,W2t)

+I(W1t, U1t;X1t|Y1t)] ,

= I(W2T ;X2T |Y2T , T )

+I(U2T ;X2T |Z2T ,W2T , T )

+I(W1T , U1T ;X1T |Y1T , T )

= I(W2T , T ;X2T |Y2T )

+I(U2T ;X2T |Z2T ,W2T , T )

+I(W1T , T, U1T ;X1T |Y1T ), (22)

where we used the fact thatZ1 is degraded version ofY1 in
(21), i.e.,

Zn
1 ↔ (Sn, Y

n
1 , Y

n
2 , Z

−
2t) ↔ X2t,

Zn
1 ↔ (Sn, Y

n
1 , Y

−
2t , Y

+
2t , Z

n
2 ) ↔ X2t,

Zn
1 ↔ (Sn, Y

n
1 , Y

−
2t , Y

+
2t , Z

−
2t, Z2t) ↔ X2t.

Since(W1t, U1t, Y1t) and(W2t, Y2t) include(Sn, Y
n
1 , Y

n
2 )

respectively, there exist functionŝX1t(W1t, U1t, Y1t) and
X̂2t(W2t, Y2t) satisfying

E[d̂1(X1, X̂1t)] = D̂1t,

E[d̂2(X2, X̂2t)] = D̂2t

respectively. Similarly, since(W1t, Z1t) and (W2t, U2t, Z2t)
include (Sn, Z

n
1 , Z

n
2 ) respectively, there exist functions

X̃1t(W1t, Z1t) andX̃2t(W2t, U2t, Z2t) satisfying

E[d̃1(X1, X̃1t)] = D̃1t,

E[d̃2(X2, X̃2t)] = D̃2t

respectively. Thus, there exist functions

(X̂1(W1T , T, U1T , Y1T ), X̂2(W2T , T, Y2T ))

for the first decoder and functions

(X̃1(W1T , T, Z1T ), X̃2(W2T , T, U2T , Z2T ))

for the second decoder satisfying

E[d̂(Xi, X̂i)] ≤ D̂i + γ (23)

E[d̃(Xi, X̃i)] ≤ D̃i + γ (24)

for i = 1, 2. Thus, by combining (16), (20), and (22), and
by takingW1 = (W1T , T ), U1 = U1T , W2 = (W2T , T ), and
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U2 = U2T , we have that there existW1,W2, U1, U2 satisfying
(23) and (24) and

R(D) ≥ I(W1;X1|Z1) + I(U1;X1|Y1,W1)

+I(W2, U2;X2|Z2)− γ,

R(D) ≥ I(W1, U1;X1|Y1)

+I(W2;X2|Y2) + I(U2;X2|Z2,W2)− γ.

Although the auxirially random variables(W1, U1, X1, Y1, Z1)
and (W2, U2, X2, Y2, Z2) chosen above are not necessarily
independent of each other, they do not appear together in
any one term. Thus we can take(W1, U1, X1, Y1, Z1) and
(W2, U2, X2, Y2, Z2) to be independent of each other.

By applying the cardinality bound on the auxiliary random
variables, which will be proved in Appendix C, we have

R(D) ≥ R†(D + γ1)− γ,

where 1 = (1, 1, 1, 1). Since γ > 0 is arbitrary, by the
continuity ofR†(D) with respecttoD, we have the converse
part forR(D)7 . The converse part forRsum(D̂, D̃) can be
proved almost in the same manner.

Remark 11: In the above converse proof, we derived
the independence between(W1, U1, X1, Y1, Z1) and
(W2, U2, X2, Y2, Z2) by using the fact that they do not
appear together in any term one term. Thus, we cannot derive
the independence between them if we employ general joint
distortion measureŝd and d̃. Without this independence, we
cannot prove the matching direct part from Proposition 3
because

I(W1,W2;X1, X2|Y1, Y2)

= I(W1;X1|Y1) + I(W2;X2|Y2),

I(W1,W2;X1, X2|Z1, Z2)

= I(W1;X1|Z1) + I(W2;X2|Z2)

do not hold in general. For this reason, the single letter
characterization ofR(D̂, D̃) is not clear.

Remark 12: In the above converse argument, we reduced
the proof to the degraded case by setting(A1, B1, C1) =
(X1, Y1, Z1) and (A2, B2, C2) = (X2, Z2, Z2), or by set-
ting (A1, B1, C1) = (X2, Z2, Y2) and (A2, B2, C2) =
(X1, Y1, Y1). This reduction argument is motivated by the
enhancement technique introduced by Weingartenet. al. [25],
in which the converse proof of the MIMO (not necessarily
degraded) broadcast channel was reduced to that of the MIMO
degraded broadcast channel. This kind of argument was im-
plicitly used in [18]. As is pointed out in [5, Section 9.4], the
result in [17] can be obtained by a straightforward application
of the enhancement argument.

It should be noted that the following straightforward appli-
cation of the enhancement argument gives only loose converse
in our problem. Suppose that((X1, X2), (Y1, Y2), (Z1, Z2))
satisfies the Markov conditions in (10), and let

R(D|((X1, X2), (Y1, Y2), (Z1, Z2)))

7Since the cardinalities of the auxiliary random variables are bounded,
R†(D) can be described as a finite dimensional optimization problem and
the continuity ofR†(D) with respecttoD follows from the continuity of the
mutual information with respect to the test channel.

be the rate-distortion function for this source. Let

R(D|((X1, X2), (Y1, Z2), (Z1, Z2)))

and

R(D|((X1, X2), (Y1, Y2), (Y1, Z2)))

be the rate-distortion functions for the enhanced sources
respectively. Then, we have

R(D|((X1, X2), (Y1, Y2), (Z1, Z2)))

≥ max{R(D|((X1, X2), (Y1, Z2), (Z1, Z2))),

R(D|((X1, X2), (Y1, Y2), (Y1, Z2)))}. (25)

As will be exemplified in Section IV-B, this lower bound is
loose in general.

IV. EXAMPLES

To illustrate our main result, we consider a binary example
and a Gaussian example.

A. Binary Example

In this section, we evaluate the rate distortion function for
the binary Hamming example. We first review some known
result of the binary Hamming version of the rate-distortion
function where the side-information may be absent [6]. This
result will be used to investigate the rate-distortion function
for product of two binary sources.

LetX be the uniform binary source, and letY be the output
of the binary symmetric channel with crossover probability
p < 1

2 , where the input isX . LetZ be a constant, and letd be
the Hamming distortion measure. The rate-distortion function
of this situation is given by

Rb(D̂, D̃) = min[I(W ;X) + I(U ;X |W,Y )], (26)

where the minimization is taken over all auxiliary random
variablesW andU satisfying the following:

1) (W,U) ↔ X ↔ Y .
2) There exist functionŝX(W,U, Y ) andX̃(W ) such that

E[d(X, X̂)] ≤ D̂ andE[d(X, X̃)] ≤ D̃.
3) |W| ≤ |X |+ 2 and |U| ≤ (|X |+ 2)2.

An explicit form ofRb(D̂, D̃) was first studied in [6], and a
loose upper bound was obtained. After that, Kerpez [27] and
Fleming and Effros [28] also studied this problem. Finally,
Tian and Diggavi [9] derived an explicit form ofRb(D̂, D̃).

For 0 ≤ q ≤ 1, let

Gp(q) = h(p ∗ q)− h(q),

whereh(·) is the binary entropy function andp∗q = p(1−q)+
(1−p)q is the binary convolution. It was shown in [27] that the
rate distortion region can be partitioned into four subregions,
three of which are degenerate.

• Region I:0 ≤ D̃ < 1
2 and0 ≤ D̂ < min{D̃, p}. In this

region,Rb(D̂, D̃) is a function of bothD̂ andD̃, and it
is the only non-degenerate case.
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• Region II: D̃ ≥ 1
2 and 0 ≤ D̂ < p. In this region,

the common descriptionW is not needed, andRb(D̂, D̃)
reduces to the Wyner-Ziv rate-distortion function, i.e.,

Rb(D̂, D̃) = RWZ
p (D̂)

= min
(β,θ):0≤θ≤1,0≤β≤p,θβ+(1−θ)p=D̂

[θG(β)].

• Region III: 0 ≤ D̃ < 1
2 and D̂ ≥ min{D̃, p}. In this

region, the refinement descriptionU is not needed, and
Rb(D̂, D̃) reduces to the ordinary rate-distortion function,
i.e.,

Rb(D̂, D̃) = 1− h(D̃).

• Region IV:D̃ ≥ 1
2 andD̂ ≥ p. In this region, clearly both

descriptionsW andU can be constant, andRb(D̂, D̃) =
0.

To describe the rate-distortion function for region I, we need
to introduce some notations. For parameters(D,α, β, θ, τ)
satisfying

0 ≤ D ≤
1

2
, 0 ≤ α, β ≤ p, 0 ≤ τ ≤ θ ≤ 1,

we define

Bp(D,α, β, θ, τ) = (θ − τ)Gp(α) + τGp(β)

+(1− θ)Gp(γ(D,α, β, θ, τ)),

where

γ(D,α, β, θ, τ) =

{

D−(θ−τ)(1−α)−τβ

1−θ
θ 6= 1

1
2 θ = 1

.

We also define

Qp(D̂, D̃)

= {(Ď, α, β, θ, τ) :

(1− θ)p ≤ Ď − (θ − τ)(1 − α)− τβ ≤ (1− θ)(1 − p),

0 ≤ τ ≤ θ ≤ 1,

0 ≤ α, β ≤ p,

(θ − τ)α + τβ + (1− θ)p ≤ D̂,

Ď ≤ D̃}.

For region I, Tian and Diggavi [9] showed8

Rb(D̂, D̃)

= min
(Ď,α,β,θ,τ)∈Qp(D̂,D̃)

[1− h(Ď ∗ p) +Bp(Ď, α, β, θ, τ)].

(27)

The righthand side of (26) can be rewritten as

min[I(W ;Y ) + I(U,W ;X |Y )], (28)

8Tian and Diggavi also showed that the restriction to the equalities Ď = D̃

and(θ− τ)α+ τβ+(1− θ)p = D̂ in the definition ofQp(D̂, D̃) does not
increase the rate-distortion function. However, in the case of the product of
two sources, it is not clear whether such a restriction does not increase the
rate-distortion function.

W

U

0

1

0

1

2

τ

τ

θ−τ

θ−τ

1−θ

1−θ

Fig. 3. The test channel betweenU andW .

0

1

0

1

0 0

11

0 0

1 1

β

1−β

α

1−α

1−γ

1−γ

γ

γ

α

1−β

1−α
β

W X

U=1

U=2

U=0

Fig. 4. The test channel betweenW andX.

andRb(D̂, D̃) is achieved by reverse test channels described
in Figs. 3 and 4. Note that

min
(Ď,α,β,θ,τ)∈Qp(D̂,D̃)

[1− h(Ď ∗ p) +Bp(Ď, α, β, θ, τ)]

= RWZ
p (D̂) (29)

for D̃ = 1
2 and

min
(Ď,α,β,θ,τ)∈Qp(D̂,D̃)

[1− h(Ď ∗ p) +Bp(Ď, α, β, θ, τ)]

= 1− h(D̃ ∗ p) +Gp(D̃) (30)

= 1− h(D̃)

for D̂ = min{D̃, p} and D̃ ≤ 1
2 , which will be proved in

Appendix D. Thus, we can also write

Rb(D̂, D̃)

= min
(Ď,α,β,θ,τ)∈Qp(D̂,D̃)

[1− h(Ď ∗ p) +Bp(Ď, α, β, θ, τ)]

for any (D̂, D̃).
Now, we consider the rate-distortion function for product

of two binary sources. LetX1 and X2 be the independent
uniform binary sources. LetY1 be the output of the binary
symmetric channel with crossover probabilityp1 < 1

2 , where
the input isX1. LetZ2 be the outputs of the binary symmetric
channel with crossover probabilityp2 < 1

2 , where the input
is X2. Then, letY2 andZ1 be constant. Obviously, this pair
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of correlated sources satisfy the Markov conditions in (10). In
this case, we have the following.

Theorem 13: For anyD = (D̂1, D̃1, D̂2, D̃2), we have

R(D) = min[max{1− h(Ď1 ∗ p1), 1− h(Ď2 ∗ p2)}

+Bp1
(Ď1, α1, β1, θ1, τ1)

+Bp2
(Ď2, α2, β2, θ2, τ2)], (31)

where the minimizations are taken over

(Ď1, α1, β1, θ1, τ1) ∈ Qp1
(D̂1, D̃1)

and

(Ď2, α2, β2, θ2, τ2) ∈ Qp2
(D̃2, D̂2)

respectively.
Proof: See Appendix E.

In the following, for a symmetric case, we compare the
rate-distortion function, the upper bound derived by the
component-wise scheme, and the lower bound derived by the
straightforward enhancement. Letp1 = p2 = p < 1

2 . Let dc(p)
the critical distortion [2], i.e., the distortion satisfying

Gp(dc(p))

dc(p)− p
= G′

p(dc(p)).

Let D̃1 = D̂2 = D̄, wheredc(p) < D̄ < 1
2 . Let D̂1 = D̃2 =

D. From (31), it is clear that the summation of the component-
wise rate-distortion functions is

2 min
(Ď,α,β,θ,τ)∈Qp(D,D̄)

[1− h(Ď ∗ p) +Bp(Ď, α, β, θ, τ)],

which is strictly larger than the joint rate-distortion function
obtained from Theorem 13.

Suppose thatD ≥ D̄. In this case, in a similar manner as
(30), we can show that the joint rate-distortion function is

R(D) = 1− h(D̄ ∗ p) + 2Gp(D̄).

On the other hand, from Proposition 5, the rate-distortion
function of the source satisfying (8) is the summation of
the component-wise rate-distortion functions. Thus, the lower
bound in (25) is given by

1− h(D̄ ∗ p) +Gp(D̄) +RWZ
p (D̄).

SinceRWZ
p (D̄) < Gp(D̄) for dc(p) < D̄ < 1

2 , the lower
bound in (25) is loose.

Suppose thatD ≤ dc(p). In this case, in a similar manner
as [9, Corollary 2], we can show that the joint rate-distortion
function is

1− h(D̄ ∗ p) + 2Gp(D). (32)

The lower bound in (25) coincide with (32) in this case, and
thus tight.

B. Gaussian Example

In this section, we evaluate the rate distortion function for
the Gaussian example. We consider jointly Gaussian sources
(Xi, Yi, Zi) given by Yi = Xi + Ni,y andZi = Xi + Ni,z.
whereNi,y andNi,z are Gaussian noises with variancesΣi,Ny

and Σi,Nz
such thatΣ1,Ny

< Σ1,Nz
and Σ2,Nz

< Σ2,Ny

respectively. The conditional variance ofXi given Yi is
denoted byΣi,x|y etc.. To avoid tedious degenerate cases, we
assume that̂Di < Σi,x|y andD̃i < Σi,x|z for i = 1, 2.

In the above setting, the rate-distortion function is givenby
the following theorem. The theorem can be proved by first
showing that Gaussian auxiliary random variables suffice, and
then by elementary calculation.

Theorem 14: We have

R(D)

= max

[

1

2
log

Σ1,x|y

(D̃−1
1 − Σ−1

1,Nz
+Σ−1

1,Ny
)−1

+
1

2
log

Σ2,x|y

D̂2

,

1

2
log

Σ1,x|z

D̃1

+
1

2
log

Σ2,x|z

(D̂−1
2 − Σ−1

2,Ny
+Σ−1

2,Nz
)−1

]

+
1

2
log

(D̃−1
1 − Σ−1

1,Nz
+Σ−1

1,Ny
)−1

(B∗
1 +Σ−1

1,Ny
)−1

+
1

2
log

(D̂−1
2 − Σ−1

2,Ny
+Σ−1

2,Nz
)−1

(B∗
2 +Σ−1

2,Nz
)−1

,

where

B∗
1 = max[D̃−1

1 − Σ−1
1,Nz

, D̂−1
1 − Σ−1

1,Ny
],

B∗
2 = max[D̂−1

2 − Σ−1
2,Ny

, D̃−1
2 − Σ−1

2,Nz
].

Note that the component-wise rate-distortion functions are
given by

R∗
1(D̂1, D̃1) =

1

2
log

Σ1,x|z

D̃1

+
1

2
log

(D̃−1
1 − Σ−1

1,Nz
+Σ−1

1,Ny
)−1

(B∗
1 +Σ−1

1,Ny
)−1

,

R∗
2(D̂2, D̃2) =

1

2
log

Σ2,x|y

D̂2

+
1

2
log

(D̂−1
2 − Σ−1

2,Ny
+Σ−1

2,Nz
)−1

(B∗
2 +Σ−1

2,Nz
)−1

.

By notingΣ1,Ny
< Σ1,Nz

andΣ2,Ny
> Σ2,Nz

, we have

D̃−1
1 − Σ−1

1,Nz
+Σ−1

1,Ny

Σ−1
1,x|y

=
D̃−1

1 − Σ−1
1,Nz

+Σ−1
1,Ny

Σ−1
1,x|z − Σ−1

1,Nz
+Σ−1

1,Ny

<
D̃−1

1

Σ−1
1,x|z
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and

D̂−1
2 − Σ−1

2,Ny
+Σ−1

2,Nz

Σ−1
2,x|z

=
D̂−1

2 − Σ−1
2,Ny

+Σ−1
2,Nz

Σ−1
2,x|y − Σ−1

2,Ny
+Σ−1

2,Nz

<
D̂−1

2

Σ−1
2,x|y

.

Thus, we have

R(D) < R∗
1(D̂1, D̃1) +R∗

2(D̂2, D̃2),

which implies that the combination of the component-wise
optimal scheme is suboptimal for Gaussian product sources.

Next, we consider the lower bound in (25). Let

D1,min = min{D̂1, D̃1},

D2,min = min{D̂2, D̃2}.

Then, using the same notations as in Remark 12, we have

R(D|((X1, X2), (Y1, Z2), (Z1, Z2)))

=
1

2
log

Σ1,x|z

D̃1

+
1

2
log

(D̃−1
1 − Σ−1

1,NZ
+Σ−1

1,Ny
)−1

(B∗
1 +Σ−1

1,Ny
)−1

+
1

2
log

Σ2,x|z

D2,min

and

R(D|((X1, X2), (Y1, Y2), (Y1, Z2)))

=
1

2
log

Σ1,x|y

D1,min

+
1

2
log

Σ2,x|y

D̂2

+
1

2
log

(D̂−1
2 − Σ−1

2,Ny
+Σ−1

2,Nz
)−1

(B∗
2 +Σ−1

2,Nz
)−1

.

Thus, if

D̂1 ≤ (D̃−1
1 − Σ−1

1,Nz
+Σ−1

1,Ny
)−1, (33)

D̃2 ≤ (D̂−1
2 − Σ−1

2,Ny
+Σ−1

2,Nz
)−1, (34)

then we have

B∗
1 +Σ−1

1,Ny
= D−1

1,min = D̂−1
1 ,

B∗
2 +Σ−1

2,Nz
= D−1

2,min = D̃−1
2 ,

and the lower bound in (25) is tight. However, if (33) or (34)
are not satisfied, then the lower bound in (25) is not necessarily
tight.

In the following, for a symmetric case, we compare the
rate-distortion function, the upper bound derived by the
component-wise scheme, and the lower bound derived by the
straightforward enhancement, i.e., the lower bound in (25).
We set ΣX1

= ΣX2
= ΣX , Σ1,Ny

= Σ2,Nz
= ΣN ,

Σ1,Nz
= Σ2,Ny

= ΣN̄ , D̂1 = D̃2 = D, andD̃1 = D̂2 = D̄,
whereΣN < ΣN̄ . In this case, we have

Σ1,x|y = Σ2,x|z =: Σx|s,

Σ1,x|z = Σ2,x|y =: Σ̄x|s,

0.10 0.15 0.20 0.25 0.30 0.35 0.40
D0.8

1.0

1.2

1.4

1.6

1.8

2.0
R

Lower Bound

Upper Bound

RD Function

Fig. 5. The red solid curve is the rate-distortion function.The green dotted
curve is the upper bound derived by the component-wise scheme. The blue
dashed curve is the lower bound derived by the straightforward application
of the enhancement.

and

R(D) =
1

2
log

Σx|s

(D̄−1 − Σ−1
N̄

+Σ−1
N )−1

+
1

2
log

Σ̄x|s

D̄

+ log
(D̄−1 − Σ−1

N̄
+Σ−1

N )−1

(B∗ +Σ−1
N )−1

, (35)

where

B∗ = max[D̄−1 − Σ−1
N̄
, D−1 − Σ−1

N ].

We also have

R∗
1(D, D̄) +R∗

2(D̄,D)

= log
Σ̄x|s

D̄
+ log

(D̄−1 − Σ−1
N̄

+Σ−1
N )−1

(B∗ +Σ−1
N )−1

. (36)

The lower bound in (25) is given by

1

2
log

Σ̄x|s

D̄
+

1

2
log

(D̄−1 − Σ−1
N̄

+Σ−1
N )−1

(B∗ +Σ−1
N )−1

+
1

2
log

Σx|s

Dmin
, (37)

whereDmin := min{D, D̄}.
The distortion such that (33) and (34) hold with equality is

given by

D∗ := (D̄−1 − Σ−1
N̄

+Σ−1
N )−1.

For fixedD̄, the rate-distortion function, the upper bound, and
the lower bound are functions ofD. From (35) and (36), we
can find that the rate-distortion function and the upper bound
are constant forD ≥ D∗. On the other hand, from (37), we
can find that the lower bound is constant forD ≥ D̄. For
ΣX = 1, ΣN = 1, ΣN̄ = 2, and D̄ = 2

7 , we plot the rate-
distortion function, the upper bound, and the lower bound in
Fig. 5. In this case, note thatD∗ = 1

4 . We can find that the
upper bound is loose for everyD, and that the lower bound
is loose forD > D∗.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

V. CONCLUSION

In this paper, we investigated the lossy coding problem for
a product of two sources with two decoders, and characterized
the rate-distortion function.

It is important to extend our result to the case in which there
exists correlation between component sources. One of such
examples is vector Gaussian sources. As was mentioned in
Remark 12, the converse proof in this paper is motivated by the
enhancement argument introduced by Weingartenet. al. [25].
However, as we have exemplified in Section IV, the bound
derived by the straightforward application of the enhancement
argument is loose in general. Thus, some ingenious way of
enhancement might be needed to solve the vector Gaussian
Heegard and Berger problem. This topic will be investigated
in elsewhere.
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APPENDIX

A. Proof of Proposition 5

Since the direct part directly follows from Proposition 3, we
only prove the converse part. We proved the converse part for
R(D). Suppose thatR is D-achievable. Then, for anyγ > 0,
there exists a code(ϕ, φ, ψ) satisfying (16)–(18), where we use
the same notation as in Section III-C2. We will lower bound
H(Sn) by using Lemma 10. LetTn = Sn, (A1, B1, C1) =
(X1, Y1, Z1) and (A2, B2, C2) = (X2, Y2, Z2). Then, from
Lemma 10, we have

1

n
H(Sn)

≥
1

n

n
∑

t=1

[

I(Sn, Y
−
1t , Z

−
1t, Z

+
1t, Z

n
2 ;X1t|Z1t)

+I(Y +
1t , Y

n
2 ;X1t|Y1t, Sn, Y

−
1t , Z

−
1t, Z

+
1t, Z

n
2 )

+I(Sn, Y
n
1 , Y

−
2t , Z

n
1 , Z

−
2t, Z

+
2t;X2t|Z2t)

+I(Y +
2t ;X2t|Y2t, Sn, Y

n
1 , Y

−
2t , Z

n
1 , Z

−
2t, Z

+
2t)

]

=
1

n

n
∑

t=1

[I(W1t;X1t|Z1t) + I(U1t;X1t|Y1t,W1t)

+I(W2t;X2t|Z2t) + I(U2t;X2t|Y2t,W2t)]

= I(W1T ;X1T |Z1T , T ) + I(U1T ;X1T |Y1T ,W1T , T )

+I(W2T ;X2T |Z2T , T ) + I(U2T ;X2T |Y2T ,W2T , T )

= I(W1T , T ;X1T |Z1T ) + I(U1T ;X1T |Y1T ,W1T , T )

+I(W2T , T ;X2T |Z1T ) + I(U2T ;X2T |Y2T ,W2T , T ),

where we set

W1t = (Sn, Y
−
1t , Z

−
1t, Z

+
1t, Z

n
2 ),

U1t = (Y +
1t , Y

n
2 ),

W2t = (Sn, Y
n
1 , Y

−
2t , Z

n
1 , Z

−
2t, Z

+
2t),

U2t = Y +
2t ,

and T is the uniform random number on{1, . . . , n} that
are independent of the other random variables. Note that
W1t, U1t,W2t, U2t satisfy (Wit, Uit) ↔ Xit ↔ (Yit, Zit) for
i = 1, 2.

In a similar reason as in Section III-C2, there exist functions
X̂i(WiT , T, UiT , YiT ) and X̃i(WiT , T, ZiT ) satisfying (23)
and (24) for i = 1, 2. Thus, by takingW1 = (W1T , T ),
U1 = U1T , W2 = (W2T , T ), andU2 = U2T , we have that
there existW1,W2, U1, U2 satisfying (23) and (24) and

R(D) ≥ I(W1;X1|Z1) + I(U1;X1|Y1,W1)

+I(W2;X2|Z2) + I(U2;X2|Y2,W2).

Although the auxirially random variables(W1, U1, X1, Y1, Z1)
and (W2, U2, X2, Y2, Z2) chosen above are not necessarily
independent of each other, they never appear in any term
simultaneously. Thus we can take(W1, U1, X1, Y1, Z1) and
(W2, U2, X2, Y2, Z2) to be independent of each other. By
using the support lemma [4], we have the statement on
the cardinalities of the auxiliary alphabets. Sinceγ > 0 is
arbitrary, by the continuity ofR∗(D) with respect toD,
we have the converse part forR(D). The converse part for
Rsum(D̂, D̃) can be proved almost in the same manner.

B. Proof of Lemma 10

The lemma is proved in a similar manner as Heegard
and Berger’s converse argument. Our strategy is to regard
(An, Bn, Cn) as correlated sources of block length2n. Then,
we use Heegard and Berger’s converse argument to the inde-
pendently but not identical distributed sources of length2n.

First, by chain rules, we have

H(Tn)

≥ I(Tn;A
n|Cn)

= I(Tn, B
n;An|Cn)− I(Bn;An|Tn, C

n)

=

n
∑

t=1

[

I(Tn, B
n
1 , B

n
2 ;A1t|A

−
1t, C

n
1 , C

n
2 )

−I(B1t;A
n
1 , A

n
2 |Tn, B

−
1t, C

n
1 , C

n
2 )

+I(Tn, B
n
1 , B

n
2 ;A2t|A

n
1 , A

−
2t, C

n
1 , C

n
2 )

−I(B2t;A
n
1 , A

n
2 |Tn, B

n
1 , B

−
2t, C

n
1 , C

n
2 )

]

.

Since(A1t, C1t) and(A−
1t, C

−
1t, C

+
1t, C

n
2 ) are independent, we

have

I(Tn, B
n
1 , B

n
2 ;A1t|A

−
1t, C

n
1 , C

n
2 )

= I(Tn, A
−
1t, B

n
1 , B

n
2 , C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

≥ I(Tn, B
n
1 , B

n
2 , C

−
1t, C

+
1t, C

n
2 ;A1t|C1t).
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Similarly, since (A2t, C2t) and (An
1 , A

−
2t, C

n
1 , C

−
2t, C

+
2t) are

independent, we have

I(Tn, B
n
1 , B

n
2 ;A2t|A

n
1 , A

−
2t, C

n
1 , C

n
2 )

≥ I(Tn, B
n
1 , B

n
2 , C

n
1 , C

−
2t, C

+
2t;A2t|C2t).

Furthermore, since the Markov chains

B1t ↔ (A1t, C1t) ↔ (Tn, A
−
1t, A

+
1t, A

n
2 , B

−
1t, C

−
1t, C

+
1t, C

n
2 )

and

B2t ↔ (A2t, C2t) ↔ (Tn, A
n
1 , A

−
2t, A

+
2t, B

n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t)

hold, we have

I(B1t;A
n
1 , A

n
2 |Tn, B

−
1t, C

n
1 , C

n
2 )

= I(B1t;A1t|Tn, B
−
1t, C

n
1 , C

n
2 )

and

I(B2t;A
n
1 , A

n
2 |Tn, B

n
1 , B

−
2t, C

n
1 , C

n
2 )

= I(B2t;A2t|Tn, B
n
1 , B

−
2t, C

n
1 , C

n
2 ).

Thus, we have

H(Tn)

≥

n
∑

t=1

[

I(Tn, B
n
1 , B

n
2 , C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

−I(B1t;A1t|Tn, B
−
1t, C

n
1 , C

n
2 )

+I(Tn, B
n
1 , B

n
2 , C

n
1 , C

−
2t, C

+
2t;A2t|C2t)

−I(B2t;A2t|Tn, B
n
1 , B

−
2t, C

n
1 , C

n
2 )

]

. (38)

By chain rules, we have

I(Tn, B
n
1 , B

n
2 , C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

−I(B1t;A1t|Tn, B
−
1t, C

n
1 , C

n
2 )

= I(Tn, B
−
1t, C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

+I(B1t;A1t|Tn, B
−
1t, C

n
1 , C

n
2 )

+I(B+
1t, B

n
2 ;A1t|B1t, Tn, B

−
1t, C

n
1 , C

n
2 )

−I(B1t;A1t|Tn, B
−
1t, C

n
1 , C

n
2 )

= I(Tn, B
−
1t, C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

+I(B+
1t, B

n
2 ;A1t|B1t, Tn, B

−
1t, C

n
1 , C

n
2 ). (39)

Similarly, we have

I(Tn, B
n
1 , B

n
2 , C

n
1 , C

−
2t, C

+
2t;A2t|C2t)

−I(B2t;A2t|Tn, B
n
1 , B

−
2t, C

n
1 , C

n
2 )

= I(Tn, B
n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t;A2t|C2t)

+I(B+
2t;A2t|B2t, Tn, B

n
1 , B

−
2t, C

n
1 , C

n
2 ). (40)

From (8), we have

C1t ↔ B1t ↔ (Tn, A1t, B
−
1t, C

−
1t, C

+
1t, C

n
2 ).

Thus, we have

I(B+
1t;A1t|B1t, Tn, B

−
1t, C

n
1 , C

n
2 )

= I(B+
1t, C1t;A1t|B1t, Tn, B

−
1t, C

−
1t, C

+
1t, C

n
2 )

≥ I(B+
1t;A1t|B1t, Tn, B

−
1t, C

−
1t, C

+
1t, C

n
2 ). (41)

Similarly, from (8), we have

I(B+
2t;A2t|B2t, Tn, B

n
1 , B

−
2t, C

n
1 , C

n
2 )

≥ I(B+
2t;A2t|B2t, Tn, B

n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t). (42)

Finally, by substituting (39)–(42) into (38), we have

H(Tn) ≥

n
∑

t=1

[

I(Tn, B
−
1t, C

−
1t, C

+
1t, C

n
2 ;A1t|C1t)

+I(B+
1t, B

n
2 ;A1t|B1t, Tn, B

−
1t, C

−
1t, C

+
1t, C

n
2 )

+I(Tn, B
n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t;A2t|C2t)

+I(B+
2t;A2t|B2t, Tn, B

n
1 , B

−
2t, C

n
1 , C

−
2t, C

+
2t)

]

.

C. Proof of Cardinality Bounds

We prove the cardinality bounds by using the support lemma
[29], [5]. We prove by two steps. In the first step, we reduce
the cardinality ofW1 andW2. We consider|X1|+3 continuos
functions ofPU1X1|W1

(·, ·|w1) as follows:

f0,x1
(PU1X1|W1

(·, ·|w1)) :=
∑

u1

PU1X1|W1
(u1, x1|w1),

for x1 = 1, . . . , |X1| − 1 and

fI,Y (PU1X1|W1
(·, ·|w1)) := H(X1|Y1)

−H(X1|Y1,W1 = w1) + I(U1;X1|Y1,W1 = w1),

fI,Z(PU1X1|W1
(·, ·|w1)) := H(X1|Z1)

−H(X1|Z1,W1 = w1) + I(U1;X1|Y1,W1 = w1),

f
d̂
(PU1X1|W1

(·, ·|w1)) := E

[

d̂1(X1, X̂1(w1, U1, Y1))
]

,

fd̃(PU1X1|W1
(·, ·|w1)) := E

[

d̃(X1, X̃1(w1, Z1))
]

.

By using the support lemma to these functions, there
exists random variableW ′

1 with cardinality |W ′
1| ≤

|X1| + 3 and the corresponding random variableU ′
1, i.e.,

PU ′

1
W ′

1
X1

(u1, w1, x1) = PW ′

1
(w1)PU1X1|W1

(u1, x1|w1), such
that the marginalPX1

is preserved and

I(W ′
1;X1|Y1) + I(U ′

1;X1|Y1,W
′
1)

= I(W1;X1|Y1) + I(U1;X1|Y1,W1)

I(W ′
1;X1|Z1) + I(U ′

1;X1|Y1,W
′
1)

= I(W1;X1|Z1) + I(U1;X1|Y1,W1),

E

[

d̂1(X1, X̂1(W
′
1, U

′
1, Y1))

]

= E

[

d̂1(X1, X̂1(W1, U1, Y1))
]

,

E

[

d̃1(X1, X̃1(W
′
1, Z1))

]

= E

[

d̃1(X1, X̃1(W1, Z1))
]

.

Similarly, there existsW ′
2 with cardinality |W ′

2| ≤ |X2| + 3
and the corresponding random variableU ′

2 such thatPX2
is
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preserved and

I(W ′
2;X2|Y2) + I(U ′

2;X2|Z2,W
′
2)

= I(W2;X2|Y2) + I(U2;X2|Z2,W2)

I(W ′
2;X2|Z2) + I(U ′

2;X2|Z2,W
′
2)

= I(W2;X2|Z2) + I(U2;X2|Z2,W2),

E

[

d̂2(X2, X̂2(W
′
2, Y2))

]

= E

[

d̂2(X2, X̂2(W2, Y2))
]

,

E

[

d̃2(X2, X̃2(W
′
2, U

′
2, Z2))

]

= E

[

d̃2(X2, X̃2(W2, U2, Z2))
]

.

In the next step, we reduce the cardinality ofU ′
1 and

U ′
2. We consider|W ′

1| · |X1| + 1 continuous functions of
PW ′

1
X1|U ′

1
(·, ·|u1) as follows:

g0,w1,x1
(PW ′

1
X1|U ′

1
(·, ·|u1)) = PW ′

1
X1|U ′

1
(w1, x1|u1)

for (w1, x1) = 1, . . . , |W ′
1| · |X1| − 1 and

gI(PW ′

1
X1|U ′

1
(·, ·|u1))

= H(X1|Y1,W
′
1)−H(X1|Y1,W

′
1, U1 = u1),

g
d̂
(PW ′

1
X1|U ′

1
(·, ·|u1))

= E

[

d̂1(X1, X̂1(W
′
1, u1, Y1))

]

.

By using the support lemma to these functions, there existsU ′′
1

with cardinality |U ′′
1 | ≤ |W ′

1| · |X1|+ 1 = |X1|(|X1|+ 3) + 1
such that the marginalPW ′

1
X1

is preserved,

I(U ′′
1 ;X1|Y1,W

′
1) = I(U ′

1;X1|Y1,W
′
1),

and

E

[

d̂1(X1, X̂1(W
′
1, U

′′
1 , Y1))

]

= E

[

d̂1(X1, X̂1(W
′
1, U

′
1, Y1))

]

.

Similarly, there existsU ′′
2 with cardinality|U ′′

2 | ≤ |X2|(|X2|+
3) + 1 such thatPW ′

2
X2

is preserved,

I(U ′′
2 ;X2|Z2,W

′
2) = I(U ′

2;X2|Z2,W
′
2),

and

E

[

d̃2(X2, X̃2(W
′
2, U

′′
2 , Z2))

]

= E

[

d̃2(X2, X̃2(W
′
2, U

′
2, Z2))

]

.

By relabeling (W ′
1, U

′′
1 ,W

′
2, U

′′
2 ) as (W1, U1,W2, U2), we

have the cardinality bounds.

D. Proof of (29) and (30)

a) Proof of (29): By noting thatGp(·) is a non-negative
and convex function, for any(Ď, α, β, θ, τ) ∈ Qp(D̂, D̃) we
have

Bp(Ď, α, β, θ, τ) = (θ − τ)Gp(α) + τGp(β)

+(1− θ)Gp(γ(Ď, α, β, θ, τ))

≥ (θ − τ)Gp(α) + τGp(β)

≥ θGp

(

θ − τ

θ
α+

τ

θ
β

)

≥ RWZ
p (D̂).

Thus, the lefthand side of (29) is larger than or equal to the
righthand side. On the other hand, for̃D = 1

2 , by setting
Ď = D̃, α = β and τ = θ

2 , and optimizing(β, θ), we can
show that the lefthand side achieves the righthand side in (29).

b) Proof of (30): By noting that Gp(·) is a convex
function, for any(Ď, α, β, θ, τ) ∈ Qp(D̂, D̃) we have

Bp(Ď, α, β, θ, τ) = (θ − τ)Gp(α) + τGp(β)

+(1− θ)Gp(γ(Ď, α, β, θ, τ))

= (θ − τ)Gp(1− α) + τGp(β)

+(1− θ)Gp(γ(Ď, α, β, θ, τ))

≥ Gp(Ď).

Since1 − h(p ∗ Ď) andGp(Ď) are monotone decreasing for
Ď ≤ 1

2 , the lefthand side of (30) is larger than or equal to the
righthand side. On the other hand, whenD̂ = p, by setting
Ď = D̃, θ = τ = α = β = 0, we can show that the lefthand
side coincides with the righthand side in (30). WhenD̂ = D̃,
by settingĎ = D̃, θ = τ = 1, α = 0, andβ = D̃, we can
show that the lefthand side coincides with the righthand side
in (30).

E. Proof of Theorem 13

First, note that (28) can be written as

1−H(Y |W ) +H(Y |U,W )−H(X |U,W ),

where we used the relations

I(W ;Y ) = 1−H(Y |W ), (43)

I(U,W ;X |Y ) = H(Y |U,W )−H(X |U,W ). (44)

To prove (27), Tian and Diggavi essentially showed the
following in [9, Appendix 5].

Lemma 15: Let (U,W ) be auxiliary random variables sat-
isfying the conditions 1 and 2 right after (26). Then, we have

1−H(Y |W ) ≥ 1− h(Ď ∗ p),

H(Y |U,W )−H(X |U,W ) ≥ Bp(Ď, α, β, θ, τ)

for some(Ď, α, β, θ, τ) ∈ Qp(D̂, D̃).
By noting thatZ1 andY2 are constant and by using chain

rules, for a fixed auxiliary random variable(U1,W1, U2,W2),
we can rewrite the rate condition of Theorem 7 as

max{I(U1,W1;X1|Y1) + I(W2;Z2) + I(U2,W2;X2|Z2),

I(W1;Y1) + I(U1,W1;X1|Y1) + I(U2,W2;X2|Z2)}.

Then, by using Lemma 15 and the relations in (43) and (44),
we have

I(U1,W1;X1|Y1) + I(W2;Z2) + I(U2,W2;X2|Z2)

≥ 1− h(Ď2 ∗ p2) +Bp1
(Ď1, α1, β1, θ1, τ1)

+Bp2
(Ď2, α2, β2, θ2, τ2)

and

I(W1;Y1) + I(U1,W1;X1|Y1) + I(U2,W2;X2|Z2)

≥ 1− h(Ď1 ∗ p1) +Bp1
(Ď1, α1, β1, θ1, τ1)

+Bp2
(Ď2, α2, β2, θ2, τ2)
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for some

(Ď1, α1, β1, θ1, τ1) ∈ Qp1
(D̂1, D̃1)

and

(Ď2, α2, β2, θ2, τ2) ∈ Qp2
(D̃2, D̂2).

Thus, the lefthand side is larger than or equal to the righthand
side in (31). We can prove the other direction of inequality by
using the reverse test channels described in Figs. 3 and 4.
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