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Abstract—Contrary to the assumption that most quan-
tum error-correcting codes (QECC) make, it is expected
that phase errors are much more likely than bit errors in
physical devices. By employing the entanglement-assisted
stabilizer formalism, we develop a new kind of error-
correcting protocol which can flexibly trade error correc-
tion abilities between the two types of errors, such that high
error correction performance is achieved both in symmetric
and in asymmetric situations. The characteristics of the
QECCs can be optimized in an adaptive manner dur-
ing information transmission. The proposed entanglement-
assisted QECCs require only one ebit regardless of the
degree of asymmetry at a given moment and can be decoded
in polynomial time.

I. I NTRODUCTION

The development of quantum error-correcting codes
(QECCs) allows one to detect and correct quantum
errors caused by the imperfection of physical devices [1],
[2]. However, most of the known QECCs assume that
phase errors and bit errors occur equally likely. Recent
investigation demonstrates that the noise in physical
devices is typically asymmetric; phase errors are far
more likely than bit errors in most situations (see, for
example, [3] and references therein).

The effect can be catastrophic if a QECC designed
for symmetric phase and bit errors is employed in a
quantum system whose components produce asymmetric
errors. The type of errors that happens more often will
overwhelm the overall system performance while the
error-correcting ability for the less likely type of errors
will be wasted. In fact, it is shown that QECCs taking
advantage of the asymmetry in quantum errors achieve
significantly better error correction performance [3], [4],
[5], [6]. However, there has been made little progress on
constructions for codes that can be adaptively fine-tuned
according to the degree of asymmetry.

The primary purpose of this Letter is to develop
an adaptive code construction, which can achieve very
satisfactory performance and can flexibly trade error
correction abilities between phase errors and bit errors.
We employ a recently developed framework, called

entanglement-assisted stabilizer formalism [7], so that
high error correction performance can be achieved in
various situations ranging from symmetric to moderately
asymmetric to heavily asymmetric. The flexibility of
error correction abilities is realized in such a way that
one can optimize the characteristics of a QECC in an
adaptive manner during information transmission.

Our primary tools are the theories of low-density
parity-check (LDPC) codes [8] and combinatorial de-
signs [9]. Classical LDPC codes belong to an important
class of modern coding theory. They can be system-
atically constructed using combinatorial design theory
while almost achieving classical Shannon limit with
very simple decoding circuits [10]. Similar results have
been recently observed in the quantum domain thanks
to the ability of the entanglement-assisted stabilizer
formalism to import every classical linear code [7],
[14]. Combinatorial quantum LDPC codes based on
the entanglement-assisted stabilizer formalism have the
best error correction performance over the depolarizing
channel [11], [12], [13]. We will show that the adaptable
noise control can be achieved by effectively utilizing
LDPC codes and combinatorial mathematics. The pro-
posed codes inherit the very low decoding complexity
and notable high performance of entanglement-assisted
quantum LDPC codes while requiring extremely small
amounts of entanglement.

II. ENTANGLEMENT-ASSISTED QUANTUMLDPC
CODES

QECCs based on the entanglement-assisted stabi-
lizer formalism are calledentanglement-assisted quan-
tum error-correcting codes (EAQECCs). An [[n, k; c]]
EAQECC encodesk logical qubits inton physical qubits
with the help ofc copies of maximally entangled states
(c ebits). It has been shown that the great perfor-
mance of EAQECCs does not necessarily come from
the amount of ebits [12], [13]. Therefore, we will focus
on EAQECCs requiring only one ebit in the Letter.
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The CSS construction is one of the simplest methods
to obtain quantum analogues of LDPC codes from binary
linear codes [14]. Thequantum check matrix of a CSS-
type EAQECC of lengthn is of the form

[

H1 0
0 H2

]

,

where H1 and H2 are parity-check matrices of bi-
nary linear codes of lengthn. If H1 and H2 give
[n, k1, d1] and [n, k2, d2] binary linear codes respec-
tively, then the resulting CSS-type EAQECC requires
c = rank(H1H

T
2 ) ebits and can encodek1 + k2 −n+ c

logical qubits inton physical qubits (See [16], [15]).
A bounded-distance decoder can correct up to⌊d1−1

2 ⌋
phase flips (Zs) and up to⌊d2−1

2 ⌋ bit flips (Xs) in two
separate decoding steps. We say that the code is ofZ-
distance d1 andX-distance d2. We denote such a CSS-
type EAQECC which is of lengthn, dimensionk, Z-
distancedz , andX-distancedx and requiresc ebits by
[[n, k, (dz, dx); c]].

The CSS construction often assumes that the parity-
check matricesH1 and H2 are full-rank. However,
decoders of LDPC codes can exploit redundant rows
in parity-check matrices without additional quantum
interactions. It is also readily checked that adding or
deleting redundant rows does not change the required
amount of entanglement. For this reason, we allow
linearly dependent rows inH1 andH2.

Theorem 2.1: Let H1 andH2 be parity-check matri-
ces of binary linear codes of parameters[n, k1, d1] and
[n, k2, d2] respectively. Then there exists an[[n, k1+k2−
n+ c, (d1, d2); c]] EAQECC with c = rank(H1H

T
2 ).

If H1 andH2 have only small numbers of ones, the cor-
responding quantum check matrix can be efficiently de-
coded by the sum-product algorithm, which qualifies the
resulting EAQECC as an entanglement-assisted quantum
LDPC code. For details of entanglement-assisted quan-
tum LDPC codes requiring only one ebit, the reader is
referred to [12], [13] and references therein.

In the reminder of this section we define basic no-
tions related to LDPC codes required in the subsequent
sections. For facts and undefined notions related to
LDPC codes and combinatorial design theory, we refer
the reader to [8], [9]. An LDPC code isregular if
its parity-check matrix has constant row and column
weights. Generally speaking, regular LDPC codes have
better error floors than irregular ones. One can optimize
the threshold of an irregular LDPC code by a careful
choice of row and column weights in exchange for the
performance in the error floor region. In order to provide
stable performance from adaptive noise control, we only
employ regular LDPC codes.

A 4-cycle in a parity-check matrix is a2 × 2 all one
sub-matrix. A6-cycle is a3×3 sub-matrix in which each

row and column has exactly two ones. Typically short
cycles negatively affect error correction performance. If
the shortest cycles in a parity-check matrix is of length
w, the corresponding LDPC code is said to havegirth
w. The positive effect of avoiding6- or longer cycles
is much smaller than avoiding4-cycles while it severely
limits the available codes in the quantum setting. For this
reason, we focus on LDPC codes with girth six.

III. A SYMMETRIC EAQECCS

In general, adding more rows to a parity-check ma-
trix increases its error-correcting ability as long as the
additional rows do not induce undesirable topological
structures such as short cycles. We exploit this fact and
the structure of the quantum check matrix of a CSS-type
EAQECC.

A pair of binary linear codes areisomorphic if one can
be obtained by permuting the coordinate positions of the
other. LetH1 andH2 be v×n matrices defining binary
linear codes which are isomorphic but not identical and
write

H1 =







r1

...
rv






, H2 =







s1

...
sv






,

whereri and si are then-dimensional binary vectors
representing parity-check equations. BecauseH1 andH2

define isomorphic codes, theZ-distance andX-distance
of the corresponding CSS-type code are the same. If
H1 is obtained by permuting the rows and columns of
H2, the sum-product algorithm gives the identical error
correction performance for phase errors and bit errors.

The fundamental of our adaptive noise control is to
swap part of rows responsible for phase errors and bit
errors. Construct aw × n binary matrixR by takingw
rows ofH2. Without loss of generality, we assumeR =
{si|1 ≤ i ≤ w}. If discrepancy between assumed error
probabilities and the actual channel behavior is detected,
we define a new quantum check matrixH ′ as follows:

H ′ =

[

H ′

1 0
0 H ′

2

]

=















H1 0
R

0
sw+1

...
sv















.

H ′ gives a CSS-type[[n, n− rank(H ′

1)− rank(H ′

2) +
rank(H ′

1H
′T
2 ); rank(H ′

1H
′T
2 )]] EAQECC.

One may expect that in general the additional parity-
check equationsR will increase the error correction
ability for phase errors as long as swapping rows does
not induce4-cycles while bit errors will be less likely
to be corrected because of the loss of the rows. Ideally
we would like rank(H1) + rank(H2) = rank(H ′

1) +
rank(H ′

2) to maintain the same dimension and to ensure



the improvement on the error correction ability for phase
errors. In order to keep the consumption of ebits as low
as possible,R must be chosen so that rank(H1H

T
2 ) =

rank(H ′

1H
′T
2 ) = 1.

Thus, the criteria for desirable parity-check matrices
H1 andH2 for adaptive noise control are summarized
as follows:

1) H1 and H2 define isomorphic but not identical
classical LDPC codes with girth six or greater,

2) rank (H1H
T
2 ) = 1,

3) H1 andH2 allow various choices of a setR of rows
such that removingR from H2 and adding it toH1

give rank(H ′

1H
′T
2 ) = 1 without inducing4-cycles,

4) rank(H1) + rank(H2) = rank(H ′

1) + rank(H ′

2)
for various choices ofR meeting Criterion 3).

If the code designer wishes to utilize regular LDPC codes
for each level of asymmetry, the pair of matrices must
also satisfy:

5) H1 andH2 have constant row and column wights,
6) For each choice ofR satisfying Criteria 3) and 4),

R has the constant column weight.

We call a CSS-type code obtained by a pair of binary
matrices meeting all the six criteria anadaptive quan-
tum noise control code (AQNCC). If a channel always
produces asymmetric noise, one might wish to exchange
rows in the same manner by usingH1 andH2 defining
asymmetric quantum LDPC codes in which no choice of
R gives exactly the same error correction abilities for the
two types of errors. We call such CSS-type codesaskew
AQNCCs. The parameters of AQNCCs will be referred
to in the same manner as EAQECCs.

Now we present a combinatorial construction for
AQNCCs. A cyclic difference matrix (CDM) of order v

with µ rows, denoted by(v, µ) CDM, is aµ× v matrix
M = (mi,j) with entries from the cyclic groupZv of
order v such that for each0 ≤ i < j ≤ µ − 1, the set
{mi,ℓ −mj,ℓ|0 ≤ ℓ ≤ v − 1} contains every element of
Zv. We assume that the elements ofZv are represented
by nonnegative integers up tov−1 by taking the residue
group of orderv.

Theorem 3.1: For any odd primep ≥ 5 and any inte-
geri, 0 ≤ i ≤ p−5

2 , there exists a[[p2, 2(i+1)(p−1); 1]]
AQNCC.
Proof. Consider the set ofp−tuple vectors{ra}, where
ra = (0, a, 2a, . . . , (p − 1)a), 1 ≤ a ≤ p − 1, over the
ring Zp. The (p − 1) × p matrix obtained by stacking
ra forms a (p, p − 1) CDM. Let I(x) be the circulant
permutation matrix with a one at the(x + y)th column
and theyth row. For eachx ∈ Zv, replace all entriesx
in the CDM withI(x). Let H1 be the firstp−1

2 layers of
p circulant permutation matrices andH2 the remaining
p−1
2 layers. Two different rows of which one is from

H1 and the other fromH2 share a one at exactly one

position. The row weight is uniformlyp. Thus, we have
rank(H1H

T
2 ) = 1. Because two different rows within

H1 or H2 share a one at most one position,H1 andH2

have no4-cycles. It is easy to check thatrp−a = (0, (p−
1)a, (p−2)a, . . . , a). HenceH1 andH2 are parity-check
matrices of regular LDPC codes with girth six which
are nonidentical and isomorphic. Take an arbitrary set
R of r layers fromH2 for some nonnegative integer
r ≤ p−1

2 − 1 and name the resulting(p(p−1)
2 − pr) ×

p2 matrix asH ′

2. Add R to H1 to create a(p(p−1)
2 +

pr) × p2 matrix H ′

1. It is straightforward to see that
rank(H ′

1H
′T
2 ) = 1 regardless of the choice ofR. The

row and column weights ofR are constant. Thus,H ′

1 and
H ′

2 give entanglement-assisted quantum regular LDPC
codes requiring only one ebit with girth six again. A
simple linear algebraic calculation proves that the rank
of any j layers ofp circulant permutation matrices in
the expanded CDM isj(p − 1) + 1. Hence, we have
rank(H1)+ rank(H2) = rank(H ′

1)+ rank(H ′

2). Thus,
H1 andH2 give a[[p2, 2(p−1); 1]] AQNCC. Discarding
i layers each fromH1 andH2 increases the dimension
by 2i(p− 1). ✷

Theorem 3.2: For any odd primep ≥ 3 and any
integeri, 0 ≤ i ≤ p−3

2 , there exists an askew[[p2, (2i+
3)(p− 1); 1]] AQNCC.
Proof. Construct a(p, p− 1) CDM as in the proof of
Theorem 3.1 and putr0 = (0, 0, . . . , 0) on top of the
matrix. The resulting matrix is a(p, p) CDM. Expanding
the CDM and choosingR as in the proof of Theorem
3.1 prove the assertion. ✷

Here we give a small example of AQNCCs given in
Theorem 3.1. We first construct a(7, 6) CDM using rows
ri = (0, i, 2i, 3i, 4i, 5i, 6i) overZ7 as follows:





















r1

r2

r3

r4

r5

r6

r7





















=

















0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 1 4
0 4 1 5 2 6 3
0 5 3 1 6 4 2
0 6 5 4 3 2 1

















.

Replace entryx with I(x) to create a42 × 49 binary
matrix. For example, every “2” in the above matrix is
replaced by





















0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0





















.

Let H1 be the first three layers of7 circulant per-
mutation matrices obtained by replacing the entries of



the first three rows of the CDM.H2 is obtained by
replacing the entries of the remaining half of the CDM.
Applying H1 and H2 to the CSS construction gives
entanglement-assisted quantum LDPC codes with girth
six of parameters[[49, 12; 1]]. We can turn this code
into asymmetric codes without changing the length and
dimension. For example, moving the layer coming from
r4 or the two layers coming fromr4 andr5 to H1, we
obtain parameters[[49, 12; 1]] or [[49, 12; 1]] respectively.
If the noise level of a channel becomes lower, one can
increase the dimension of the AQNCC by deleting layers
from H1 or H2 or both.

IV. PERFORMANCE

We performed a series of numerical simulations of
the AQNCC constructed in Sec. III. In particular, we
chose a medium size[[841, 56; 1]] AQNCC constructed
according to Theorem 3.1 (withp = 29), and depict the
block error performance in Fig. 1. In the simulations,
we used the iterative decoding algorithm since our
AQNCCs are also sparse quantum codes. The correcting
power of the phase errors over the bit errors in our
AQNCCs is controlled by the difference of ranks of
the parity check matricesH ′

1 and H ′

2 (see the proof
of Theorem 3.1 for the definition ofH ′

1 and H ′

2) .
When rank(H ′

1) = rank(H ′

2), our AQNCC corresponds
to the standard QECC, and are suitable for the symmetric
channels. As one might expect from carefully designed
asymmetric QECCs, a notable result is that the AQNCCs
perform much better than the standard EAQECCs when
the Pauli channel is asymmetric. For example, the best
block error rate among the set of AQNCCs is four times
better than the standard EAQECC whenPz = 0.02 and
Px = 0.005.

We can adjust our AQECCs by changing the value
of rank(H ′

1) − rank(H ′

2) while keeping the block size
and the pre-shared entanglement the same. This allows
us to use our AQNCCs in an adaptive manner. We
consider the simplest case where the phase errorPz is
slowly time-variant, but the bit errorPx is time-invariant.
Specifically, we assume thatPz changes every100 uses
of the channels, and is uniformly distributed between0
and0.03. The receiver will notify the sender to increase
the phase correcting power in the AQNCCs if he fails to
decode the phase errors but can correctly decode the bit
errors.

V. CONCLUSION

We have described principles of a flexible error-
correction protocol, adaptive quantum noise control,
which can optimize error correction performance of
quantum error-correcting codes according to the char-
acteristics of channels during information transmission.
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Fig. 1. Block error performance of the[[841, 56; 1]] AQNCC
constructed from Theorem 3.1 where we choosep = 29 and i = 0.
The vertical axis represents the block error rate. The horizontal axis
represents the extra correcting power of the phase error over the bit
error. Eachr in the horizontal axis corresponds to a[[841, 56; 1]]
AQNCC where the matrixH′

1
contains extrar layers coming fromH2

in the CSS construction in Theorem 3.1. The AQNCC corresponds to
a standard EAQECC (same correcting power between the phase errors
and the bit errors) whenr = 0. The phase errorsPz in the asymmetric
Pauli channel range from0.01 to 0.03 while the bit errorPx is fixed
at 0.005. In the adaptive simulation, the phase errorPz is slowly time-
variant while the bit errorPx is time-invariant. Specifically, we assume
that Pz changes every100 uses of the channels, and is uniformly
distributed between0 and0.03.

The primary theoretical tools are the entanglement-
assisted stabilizer formalism, low-density parity-check
codes, and combinatorial design theory. The combina-
tion of the three allowed us to design quantum error-
correcting codes which can flexibly trade error correction
abilities for phase errors and bit errors. Our method
requires only one ebit, which would make it easier to
implement adaptive noise control in the future. Because
physical devices are expected to cause phase errors much
more frequently, we believe that adaptive quantum noise
control code will be of importance in various situations.

An interesting question is whether a similar flexible
optimization can be realized without using ebits. While it
seems to be difficult without ebits because of the severe
limitation of the symplectic orthogonality, it is certainly
worth investigation. Designing adaptive quantum noise
control codes for more parameters with better overall
performance is also an interesting open problem. We
expect that the extensive use of information theory
and combinatorial design theory to analyze parity-check
matrices as in [13], [17], [18] will be key to a further
development of the theory of adaptive noise control.
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