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Abstract—Contrary to the assumption that most quan- entanglement-assisted stabilizer formalism [7], so that
tum error-correcting codes (QECC) make, it is expected high error correction performance can be achieved in

that phase errors are much more likely than bit errors in  \arjoys situations ranging from symmetric to moderately
physical devices. By employing the entanglement-assisted

stabilizer formalism, we develop a new kind of error- asymmetric _to hee_l\(i_ly a.symm.etric.. The flexibility of
correcting protocol which can flexibly trade error correc- ~ €ITOr correction abilities is realized in such a way that
tion abilities between the two types of errors, such that hig one can optimize the characteristics of a QECC in an
error correction performance is achieved both in symmetric adaptive manner during information transmission.

and in asymmetric situations. The characteristics of the ; ; -~ ;
QECCs can be optimized in an adaptive manner dur Our primary tools are the theories of low-density

ing information transmission. The proposed entanglement- Parity-check (LDPC) codes [[8] and combinatorial de-
assisted QECCs require only one ebit regardless of the signs [9]. Classical LDPC codes belong to an important
degree of asymmetry at a given moment and can be decodedclass of modern coding theory. They can be system-
in polynomial time. atically constructed using combinatorial design theory
while almost achieving classical Shannon limit with
very simple decoding circuits [10]. Similar results have
The development of quantum error-correcting codéseen recently observed in the quantum domain thanks
(QECCs) allows one to detect and correct quantufs the ability of the entanglement-assisted stabilizer
errors caused by the imperfection of physical devicés [¥hrmalism to import every classical linear code [7],
[2]. However, most of the known QECCs assume th§I4]. Combinatorial quantum LDPC codes based on
phase errors and bit errors occur equally likely. Recetiie entanglement-assisted stabilizer formalism have the
investigation demonstrates that the noise in physideést error correction performance over the depolarizing
devices is typically asymmetric; phase errors are fahannel[[11],[[12],[1B]. We will show that the adaptable
more likely than bit errors in most situations (see, fofioise control can be achieved by effectively utilizing
example, [[3] and references therein). LDPC codes and combinatorial mathematics. The pro-
The effect can be catastrophic if a QECC designgsbsed codes inherit the very low decoding complexity
for symmetric phase and bit errors is employed in and notable high performance of entanglement-assisted
quantum system whose components produce asymmegjitantum LDPC codes while requiring extremely small
errors. The type of errors that happens more often willmounts of entanglement.
overwhelm the overall system performance while the
error-correcting ability for the less likely type of errors |
will be wasted. In fact, it is shown that QECCs taking
advantage of the asymmetry in quantum errors achieve
significantly better error correction performance [8],,[4] QECCs based on the entanglement-assisted stabi-
[5], [6]. However, there has been made little progress dizer formalism are calledntanglement-assisted quan-
constructions for codes that can be adaptively fine-tunedn error-correcting codes (EAQECCSs). An[[n, k; c|]
according to the degree of asymmetry. EAQECC encodes logical qubits inton physical qubits
The primary purpose of this Letter is to develogvith the help ofc copies of maximally entangled states
an adaptive code construction, which can achieve vefy ebits). It has been shown that the great perfor-
satisfactory performance and can flexibly trade erronance of EAQECCs does not necessarily come from
correction abilities between phase errors and bit errothe amount of ebits [12]/.[13]. Therefore, we will focus
We employ a recently developed framework, calledn EAQECCSs requiring only one ebit in the Letter.

I. INTRODUCTION

. ENTANGLEMENT-ASSISTED QUANTUMLDPC
CODES
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The CSS construction is one of the simplest methodsw and column has exactly two ones. Typically short
to obtain quantum analogues of LDPC codes from binagycles negatively affect error correction performance. If
linear codes/[14]. Theuantum check matrix of a CSS- the shortest cycles in a parity-check matrix is of length

type EAQECC of length is of the form w, the corresponding LDPC code is said to hawah
oo 0 w. The positive effect of avoiding- or longer cycles
{ 01 I } , is much smaller than avoidingtcycles while it severely
2

limits the available codes in the quantum setting. For this
where H, and H, are parity-check matrices of bi-reason, we focus on LDPC codes with girth six.

nary linear codes of lengtm. If H, and H, give
[n, k1,d1] and [n, ks, ds] binary linear codes respec- . AS.YMMETR'C EAQECGs _

tively, then the resulting CSS-type EAQECC requires In general, adding more rows to a parity-check ma-
¢ = rank(H, HI) ebits and can encodg + ky —n+c¢ trix increases its error-correcting ability as long as the
logical qubits inton physical qubits (Se€ [16][ [15]). additional rows do not induce undesirable topological
A bounded-distance decoder can correct uqig‘—lj structures such as short cycles. We exploit this fact and
phase flips (Zs) and up tp%J bit flips (Xs) in two the structure of the quantum check matrix of a CSS-type
separate decoding steps. We say that the code &-of EAQECC. . . -

distance d; and X-distance d;. We denote such a CSS- A pair of binary linear codes aieomorphic if one can
type EAQECC which is of lengt, dimensionk, Z- be obtained by permuting the coordinate positions of the
distancedz, andX-distancedm and require& ebits by other. LetH; andH2 bewv x n matrices defining binary
([n, k, (d., dy); c]]. linear codes which are isomorphic but not identical and

The CSS construction often assumes that the parity!ite

check matricesH; and H, are full-rank. However, 1 51
decoders of LDPC codes can exploit redundant rows Hy = C| s He = o
in parity-check matrices without additional quantum Ty Sv

interactions. It is also readily checked that adding or

deleting redundant rows does not change the requir\é\’(ﬁ]ereri ands; are then-dimensional binary vectors

. representing parity-check equations. Becaliseand H»
amount of entanglement. For this reason, we aIIO\(’:)Iefine isomorphic codes, th#&-distance andX -distance
linearly dependent rows i/, and Ho. P '

Theorem 2.1: Let H; and H, be parity-check matri- of the corr-espondmg CS.S type code are the same. If
i . H, is obtained by permuting the rows and columns of
ces of binary linear codes of parametisk,, d;] and . i . .
. . H,, the sum-product algorithm gives the identical error
[, ke, da] respectively. Then there exists in, ki+ka— %o ion berformance for phase errors and bit errors
n + ¢, (dy, ds); ] EAQECC withe = rank(HyHT). b P :

It 7. and H. have onlv small numbers of ones. the cor- The fundamental of our adaptive noise control is to
L2 y . . swap part of rows responsible for phase errors and bit
responding quantum check matrix can be efficiently dé- : . .
. : o errors. Construct a x n binary matrix R by takingw
coded by the sum-product algorithm, which qualifies thé . ;
. . rows of H,. Without loss of generality, we assunit=
resulting EAQECC as an entanglement-assisted quant%‘%n|1 < i < w}. If discrepancy between assumed error
LDPC code. For details of entanglement-assisted quan-", ...~ 2’ pancy S
tum LDPC codes requiring only one ebit, the reader %robablhtles and the actual channel behavior is detected,
: : . we define a new quantum check matfiX as follows:
referred to[[12],[[13] and references therein.

In the reminder of this section we define basic no- H; 0
tions related to LDPC codes required in the subsequent ) R
sections. For facts and undefined notions related to o = { H; 0 ] _ Swt1
LDPC codes and combinatorial design theory, we refer 0 H 0
the reader to[[8],[19]. An LDPC code isegular if s

its parity-check matrix has constant row and column
weights. Generally speaking, regular LDPC codes hav# gives a CSS-typ{n,n — rank(H|) — rank(H}) +
better error floors than irregular ones. One can optimizenk(H; H5T'); rank(H} H5T')]] EAQECC.
the threshold of an irregular LDPC code by a careful One may expect that in general the additional parity-
choice of row and column weights in exchange for theheck equationsk will increase the error correction
performance in the error floor region. In order to providability for phase errors as long as swapping rows does
stable performance from adaptive noise control, we onhot induce4-cycles while bit errors will be less likely
employ regular LDPC codes. to be corrected because of the loss of the rows. Ideally
A 4-cycle in a parity-check matrix is 2 x 2 all one we would like rank H;) + rank(Hs) = rank(Hj) +
sub-matrix. A6-cycle is a3 x 3 sub-matrix in which each rank(H}) to maintain the same dimension and to ensure



the improvement on the error correction ability for phasgosition. The row weight is uniformly. Thus, we have
errors. In order to keep the consumption of ebits as lovank(H; H]) = 1. Because two different rows within
as possible R must be chosen so that raf; H] ) = H; or H, share a one at most one positidit, and H»
rank(H} H5T) = 1. have noi-cycles. It is easy to check thaj_, = (0, (p—
Thus, the criteria for desirable parity-check matrice)a, (p—2)a, ..., a). HenceH; and H, are parity-check
H, and H, for adaptive noise control are summarizetatrices of regular LDPC codes with girth six which
as follows: are nonidentical and isomorphic. Take an arbitrary set
1) H, and H, define isomorphic but not identical ©t Of rllayers from H, for some r_10nr(1e_gle)1t|ve integer
classical LDPC codes with girth six or greater, " < 5~ — 1 and name the resulting=5— — pr) x
2) rankH,H]) =1, p? matrix asH,. Add R to H; to create a(@ +
3) H; andH, allow various choices of a sét of rows pr) x p> matrix Hi. It is straightforward to see that
such that removing® from I and adding it tarf; ~ rank(H{Hj") = 1 regardless of the choice dt. The
give rank(H| H4T) = 1 without inducing4-cycles, row and column weights aR are constant. Thug/; and
4) rank(H,) + rank(H,) = rank(H}) + rank(H}) H3 give entanglement-assisted quantum regular LDPC
for various choices oRR meeting Criterion 3). codes requiring only one ebit with girth six again. A

If the code designer wishes to utilize regular LDPC cod mple linear algebraic calculation proves that the rank

& . ) e
for each level of asymmetry, the pair of matrices mudf 8y J layers ofp circulant permutation matrices in
also satisfy: ' the expanded CDM ig(p — 1) + 1. Hence, we have

) rank(Hy) + rank(Hsz) = rank(Hj)+ rank(H}). Thus,
5) H; and H, ha_ve consta_nt row anq cplumn nghtsHl and H, give a[[p?, 2(p—1); 1]] AQNCC. Discarding
6) For each choice oft satisfying Criteria 3) and 4), ; |ayers each fromH, and H, increases the dimension
R has the constant column weight. by 2i(p — 1). 0
We call a CSS-type code obtained by a pair of binary Theorem 3.2: For any odd primep > 3 and any
matrices meeting all the six criteria amlaptive quan- integeri, 0 < i < ”2;3, there exists an askeffp?, (2i +
tum noise control code (AQNCC). If a channel always 3)(p — 1);1]] AQNCC.
produces asymmetric noise, one might wish to exchangeoof. Construct a(p,p — 1) CDM as in the proof of
rows in the same manner by usitfy and H» defining Theorem 31l and put, = (0,0,...,0) on top of the
asymmetric quantum LDPC codes in which no choice @hatrix. The resulting matrix is &, p) CDM. Expanding
R gives exactly the same error correction abilities for thghe CDM and choosing? as in the proof of Theorem
two types of errors. We call such CSS-type codg®w [3.1 prove the assertion. O
AQNCCs. The parameters of AQNCCs will be referred Here we give a small example of AQNCCs given in
to in the same manner as EAQECCs. Theoreni311. We first construc{@ 6) CDM using rows
Now we present a combinatorial construction for, = (0,1, 2i, 34, 41, 5i, 6i) over Z, as follows:
AQNCCs. Acyclic difference matrix (CDM) of order v

with ;2 rows, denoted byw, 1) CDM, is au x v matrix T 01 23 45 6
M = (m, ;) with entries from the cyclic groufZ, of T2 0 2 46 1 3 5
orderwv such that for eaclt < i < j < pu — 1, the set 3 03 6 2 5 1 4
{m;e —m;,|0 < ¢ <v—1} contains every element of 1Tl o 415 26 3
Z,,. We assume that the elementsZf are represented s 053 16 4 2
by nonnegative integers up to- 1 by taking the residue :i 0 6 54 3 21

group of order.

Theorem 3.1: For any odd prime» > 5 and any inte- Replace entryr with I(x) to create a2 x 49 binary
geri, 0 < i < 225, there exists &p?,2(i+1)(p—1);1]] matrix. For example, every2” in the above matrix is
AQNCC. replaced by
Proof. Consider the set gf—tuple vectorr, }, where

re = (0,a,2a,...,(p —1)a), 1 <a < p-—1, over the 0010000
. . . . 00 01 0 0O
ring Z,. The (p — 1) x p matrix obtained by stacking
. 00 0 01 0O
r, forms a(p,p — 1) CDM. Let I(x) be the circulant 00000 1 0
permutation matrix with a one at thig + y)th column
. 0 000 0 01
and theyth row. For eache € Z,, replace all entries 100000 0
in the CDM with I(z). Let H; be the first2>! layers of 0100000

p circulant permutation matrices arfd, the remaining

% layers. Two different rows of which one is fromLet H; be the first three layers of circulant per-

H, and the other fronmH, share a one at exactly onemutation matrices obtained by replacing the entries of



the first three rows of the CDMH, is obtained by

replacing the entries of the remaining half of the CDM
Applying H; and H, to the CSS construction gives
entanglement-assisted quantum LDPC codes with git
six of parameterg[49,12;1]]. We can turn this code
into asymmetric codes without changing the length ar
dimension. For example, moving the layer coming fror
r4 or the two layers coming fronr, andr; to Hy, we

obtain parameter$49, 12; 1]] or [[49, 12; 1]] respectively.

If the noise level of a channel becomes lower, one ci

increase the dimension of the AQNCC by deleting laye \Q/J\/_@\{/

from H; or H, or both.

Block Error Rate

—o—pP ,=0.01
N ‘*7?2:0.02

P =0.03
z
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n

IV. PERFORMANCE 0 2 a 6 8 10 12

We performed a series of numerical simulations of
the AQNCC constructed in SeElll. In particular, we
chose a medium Si2ﬁ841,56; 1]] AQNCC constructed Fig. 1. Block error performance of th§841,56;1]] AQNCC

. . . constructed from Theorefn 3.1 where we chopse 29 andi = 0.
according to Theorem 3.1 (with = 29), and depict the The vertical axis represents the block error rate. The boti# axis

block error performance in Fi@ 1. In the simulationgepresents the extra correcting power of the phase errar theebit

; : : ; ; ror. Eachr in the horizontal axis corresponds to[@41, 56; 1]]
we used the iterative decoding algorithm since OlifQNCC where the matri¥{] contains extra layers coming fromH

AQNCCs are also sparse quantum codes. The correctjfghe CSs construction in TheordmB.1. The AQNCC correspdad
power of the phase errors over the bit errors in owrstandard EAQECC (same correcting power between the phase e
AQNCCs is controlled by the difference of ranks oS ieror) uhen b The phase et e seyrerc
the parity check mamceﬂi and Hé (see the proof at0.005. In the adaptive simulation, the phase erRyris slowly time-
of Theorem[ 3.1 for the definition OH{ and Hé) . variant while the bit erroi; is time-invariant. Specifically, we assume
When ranKH{) _ rank(Hé), our AQNCC corresponds tcll’,;:lttrilt)glzjte(:(;]abr:a%\?vsee%mgr%dog.OL;,S.ES of the channels, and is uniformly
to the standard QECC, and are suitable for the symmetric
channels. As one might expect from carefully designed
asymmetric QECCs, a notable result is that the AQNCOthe primary theoretical tools are the entanglement-
perform much better than the standard EAQECCs whewsisted stabilizer formalism, low-density parity-check
the Pauli channel is asymmetric. For example, the basides, and combinatorial design theory. The combina-
block error rate among the set of AQNCCs is four timegon of the three allowed us to design quantum error-
better than the standard EAQECC whEn= 0.02 and correcting codes which can flexibly trade error correction
P, = 0.005. abilities for phase errors and bit errors. Our method
We can adjust our AQECCs by changing the valuequires only one ebit, which would make it easier to
of rank H}) — rankH}) while keeping the block size implement adaptive noise control in the future. Because
and the pre-shared entanglement the same. This allogigysical devices are expected to cause phase errors much
us to use our AQNCCs in an adaptive manner. Wmaore frequently, we believe that adaptive quantum noise
consider the simplest case where the phase dfrais control code will be of importance in various situations.
slowly time-variant, but the bit erra?,, is time-invariant. ~ An interesting question is whether a similar flexible
Specifically, we assume th&t. changes every00 uses optimization can be realized without using ebits. While it
of the channels, and is uniformly distributed betwéen seems to be difficult without ebits because of the severe
and0.03. The receiver will notify the sender to increasdimitation of the symplectic orthogonality, it is certajnl
the phase correcting power in the AQNCC:s if he fails tworth investigation. Designing adaptive quantum noise
decode the phase errors but can correctly decode theduittrol codes for more parameters with better overall
errors. performance is also an interesting open problem. We
expect that the extensive use of information theory
V. CONCLUSION and combinatorial design theory to analyze parity-check
matrices as in[[13], [17],.118] will be key to a further

Wwe have described prlr_10|ples of a fle>.(|ble errort']‘JeveIopment of the theory of adaptive noise control.
correction protocol, adaptive quantum noise control,
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