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Abstract—It has been shown recently that the maximum rate the diversity offered by a code, depends on the consteflatio
of a 2-real-symbol (single-complex-symbol) maximum likehood it employs. A code can offer full-diversity for certain sajn
(ML) decodable, square space-time block codes (STBCs) with gat 4 pyt not for another signal set. The CODs are special

unitary weight matrices is 3—;‘ complex symbols per channel use . . . . . .
(cspcu) for 2* number of transmit antennas [1]. These STBCs are in this aspect since they offer full-diversity for any araiy

obtained from Unitary Weight Designs (UWDs). In this paper, Signal set. The coding gaif of an STBCC is defined as
we show that the maximum rates for 3- and 4-real-symbol (2- 1
complex-symbol) ML decodable square STBCs from UWDs, for S = min. e (HT 1) i

2 transmit antennas, are 241 and -1 cspcu, respectively. §—5,5#5 i=1 ’

STBCs achieving this maximum rate are constructed. A set of -1
sufficient conditions on the signal set, required for these ardes NH N

to achieve full-diversity are derived along with expressias for matrix (S — S) (S — S) andr is the minimum of the rank
their coding gain.

where);, 4 2,---,r are the non-zero eigenvalues of the

N H . .
of (S - S) (S — S) for all possible codeword pairs$(.S)

|I. INTRODUCTION . . A
(S,S € C), with S £ 5 [3].

Consider anV transmit antennay,. receive antenna quasi-
static Rayleigh flat fading MIMO channel given by A. Encoding complexity and group ML Decoding

Y=XH+W (1) One of the important aspects in the design of STBCs is
their ML decoding complexity. This depends on their encgdin
complexity [2]. If we use[(R) for encoding an STBC from a
TD, we see that, in general, one needs to choose an element
m A and then substitute for the real variabigs. .., zx in

where H € CN*Nr is the channel matrix with the entries
assumed to be i.i.d., circularly symmetric Gaussian rand
variables~ Ac (0,1), X € C"* is the matrix of transmitted ¢

S|_gna_l,_W € CTfNT is a complex white Gaussu;u: ]Cm_se matriXye | STD. This method of encoding clearly requires a look-up
with iid., entries~ Ne (O_’ No) andy € C77r is the o (memory) with.A| entries. However, if the signal sgtis
matrix of received signall{ is the field of complex numbers). 5 catesian product afsmaller signal sets i real variables,
Throu_ghput this paper, we assuffie= N. . i then the encoding complexity can be reduced (to memory with
Definition 1 LSTD [2]): An N x N Linear Space-Time g|A|% entries). Moreover, itd = AjxAzx --- x.A, where

Design (LSTD) or simply a desigiX in K real variablesc K
gn ( ) pKy g b eachA; C Rs with cardinality|.4 73, then the STBQ itself

.., xx is a matrix >_;* . z;A;, where 4; € CNXN, § = , _
K >im1 Tidi : decomposes into a sum gfdifferent STBCs as follows.

1,...,K and Ay,..., Ax are linearly independent over the L o Th b iatel derina/relabeli
field of real numberR. The matrices4; are known as the et K = g_)" en, by appropriately reordering/relabeling
the real variables, we can assume without loss of gen-

weight matrices. , e
Definition 2 Rate): The rate of anV x N designX in K eralitfl that S(s) = 70, 24 = Si(s1) + Sa(s2) +

A

real variables is? = 2 complex symbols per channel use + Sy(sg), Where Si(s;) :TZj:(i.fl)AJrl zjA; ands; =
(Cspcu)' [I(i—l))\-ﬁ-l I(i—l))\+2 .o CCZ')\] s fOI’ 1 = 1,2, g, Hence,
Definition 3 6TBC): An N x N Space-Time Block Code the STBC decomposes és= }~7_, C;, where
i i NXxN
(STBC)C is a finite sub.set oft . _ _ Ci={Si(s1) | 51 € Ay}
An STBC can be obtained from a design by letting the Co = {Sa(ss) | 80 € Az}
vector (z1, ..., xx) take values from a finite setl ¢ RK. :
The setA is called the signal set. Denote the STBC obtained C.—1§ ' c
this way byC(X, A). Lets = [z1 22 ... xx]T and S(s) = o = {S(sg) [ 89 € Ag}-
Zfil x;A;. Then, we have For the given channel{1) the ML decoder is given by
C(X,A) ={S(s)|s € A}. ) X:arg%%HY_XHH%.
An STBC C, whose encoding symbolsz{,--- ,zx) are

chosen from a setl is said to offerfull-diversiWiﬁ for every IHere we have assumed that the fiksvariables belong to first group and

. . A A . A second\ variables belong to second group and lastariables belong to the
pOSSIb|e codeword paII‘S( S) (ASa S e C)’ with .S # 5, the g—th group. In general, the partitioning of real variableigtgroups can

codeword difference matrig —.S is full-ranked [3]. In general, be arbitrary.
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For ag-group encodable STBC, X=>_7_, X; for some X € Il. REPRESENTATION OFA—REAL SYMBOL DECODABLE
Ci. Let, G = {Au_1)p+1, A—1)r+2, -+, Ain}, where, G UNITARY WEIGHT STBCs
is the set of weight matrices corresponding to STBCIt is

) In this section, we give a representation)ofreal symbol
shown in [4]- [6] that, the ML decoder decomposes as ! on, We giv P I y

or g-group decodable STBCs. Any x n codeword matrixS

. g of a linear STBCS with g groups is represented as
X = arg min ||V - X:H|,

i=1 g—1 X
if the weight matricesd,,i = 1,..., K satisfy the conditions §= in-jA”

i=0 j=1
H H
A At AP Ap =0 VAEC A G, k#L @) for A-real symbol decodable STBCs, wheke = %. We
In other words, the component STBQ%'s can then be considerA = 3 and 4. All the K’ matrices {4;;, 0 < i <
decoded independently. g—1, 1 <j <)) have to be linearly independent ovRr
Definition 4 ( [7]): A STBCC = {S(s)|[s€ A C R¥} is For a g-group decodable STBG, a set of necessary and
said to beg-group decodable o% real symbol decodable (or sufficient conditions on the weight matrices are (fré (3)),

% complex symbol ML decodable) & is g-group encodable
and if the associated weight matrices sati§fy (3).

B. Contributions for0<i#k<g-—1andl < j1,j < X UWDs also satisfy

the following criteria
In [1], an achievable upper bound on the rate of unitary- g

weight single-complex-symbol-decodable (SSD) code is de- AgAij =I,for0<i<g-—landl<j<A (5
rived to beg—j cspeu for2® antennas. The maximum rate

of 3- and 4-real symbol ML decodabl® x 2¢ (a > 2)

Unitary Weight Designs (UWDs) (LSTDs with unitary weight Lemma 1 ([[1]): Let S be a unitary-weight STBC (i.e.

matrices) has not been reported so far in the literatureheo ©btained from a UWD) and consider the STB& =

best of our knowledge. {US|S € S}, whereU is any unitary matrix. Then ifS
The contributions of this paper are as follows: satisfies condition$ [4) andl(5), then so dées Further, both
« We show that the maximum rate of 3- and 4-real symb§i€ codes have the same coding gain for any signalset
ML decodable2® x 2¢ (a > 2) UWDs areS(é;l) cspeu The STB_CSS and$U are sa_ud to bequivalent To simplify
our analysis of unitary weight STBCs, we make use of
ngrmalization as described below. L&tbe a unitary weight

and % cspcu, respectively. (Sectignllll)
o Codes which achieve this maximum rate are presentg BC and let its codeword matri be expressed as

(Explicit construction in the proof of Theorenh 2).
« For our explicitly constructed codes, signal sets achigvin A .

full-diversity have been identified along with expressions S = x5 A5

for their coding gain (Section V). i

Organization: In Section]l, we define 3- and 4-real symbo . A [ AiH
decodable unitary weight STBCs and explain the notion bfon5|der the cod&y = {45 5|5 € S}. Clearly, from

normalization and its use in our analysis. In Secfioh III, WEemma L.Sn is equivalent toS. The weight matrices afy

present the main result of this paper, a tight upper bound on

the rates of 3- and 4-real symbol decodabflex 2¢ UWDs. Ajj = AﬁAéj for0<i<g—1andl<j<A\.

In Section[1V, signal sets achieving full-diversity haveehe '

identified for the STBCs given in Sectidnllll. Concluding We call the codeSy to be the normalized code of.

remarks and scope for further work constitute Sedfibn V. In general, any unitary-weight STBC with one of its weight
Notations: R and C denote the field of real and complexmatrices being the identity matrix is calledrmalizedunitary-

numbers respectively. The set of purely imaginary numbeigight STBC. Studying unitary-weight STBCs becomes sim-

is represented bymg(C). GL(n,C) denotes the group of pler by studying the normalized unitary-weight STBCs. Now,

invertible matrices of size x n with complex entries. For any the conditions presented inl (4) arid (5) can be written as

complex matrix4, AT and A¥ represent the Transpose and _

Hermitian of A respectively.l,, and0,, represent the: x n Ag = —Aij (equalentIyAfj = 1) ©)

identity matrix and the zero matrix, respectively. For a set Ag}, Aij, = Aij, Agj,, fori#0and1 < j,ji,ja <A (7)

S, |S| denotes the cardinality of. The Frobenius norm is

denoted by||.|| . For setsA; and A, the Cartesian product and

of A; and A, is _denote_d byA; x 42. For a complex numb_er Aij, Apsy = —Arjy Aij, 8)

Z, complex conjugate i€*. Also, j represents/—1 unless it

is used as a subscript or index of some quantityorasarunniogl <i#k <g—1andl < ji,j2 < A

variable. Bold face small letters (ex) represent vectors. The grouping of weight matrices is shown below.

Agl Akﬂé + Aksz Aijl =0, (4)

—

Q

<
Il
o

J=1



Aoi: 1y jn jﬂ ﬁ(g—l)l By, By, Foq_3. Let Agy = I,, and forl < i < 2a — 3,
02 12 22 .. (g—1)2 o 0, 0 O I, 0 O 0
: : : . : _ Om Ei 0771 Om . _ Om _Im 0771 Om .
: : : . : Al = |:Om 0. B Om:| ; Aoz = |:Om 0, I, o 1 ;
Aox Apx | Ao | -0 | Ag-1)a Om  Om  Om B Om Om Om —Im
[1l. AN UPPER BOUND ON THE RATE OF3-AND 4-REAL e G O O fr O Om O
SYMBOL DECODABLE UNITARY WEIGHT STBCs e I A A S Il [ S A
0771 Om Om _I7n Om 0771 Om Im

In this section, we determine the upper bound on the rat
PP i2 = A2y Ais = AosAin and Ay = AoaAir.

of 3-and 4-real symbol decodabl# x 2* UWDs and also . It can be easily seen that these matrices satisfy the condi-

give a construction scheme to obtain designs meeting ﬂﬁ'gns [2), [6) and[{8). So, we have constructed a 4-real symbo

upper bound. To do so, we make use of the following Iemm% _ 2 group decodable UWD. The rate of this design is

regarding matrices of size x n. 4(2a=2) ~ a—1 cspeu m
Lemma 2 ([[8]): Considern x n matrices with complex Qé:rollarja; There .exists a ratd=1 cspcu, 3-real sym-
. . 2(1 1
entries. _ bol decodable® x 2* UWD for a > 2.
1) If n = 2%ng, with ny odd, then there aré elements Proof: Straightforward from Theorefd 2, by removing,
of GL(n,C) that anti-commute pairwise if and only if jyatrices. ™
L<2a+1. _ _ Theorem 3:For a 3-real symbol decodabé x 2* UWD,
2) It n = 2% and matricesry, ..., Fy, anti-Commute the rate in cspeu is tightly upper bounded #-2.
pairwise, then the set of products, £, - -- £, with Proof: Let g be the number of groups. From Theorem
1 < iy < -+ < is < 2a along with I, forms [ and CorollanfTL, it is enough to show that= 2a — 1 is

a basis for the2** dimensional space of albk x n ot possible. To prove this, consider the following grogpin
matrices ovelC. In each casé”? is a scalar matrix (i.e. of weight matrices:

F? = cl,, wherec e C).

I, F F . Foq—
Let Fy,. .., Fy, be anti-commuting, anti-Hermitian, unitary Y Al A2 Y\ 2a-2
matrices (so that?? = —1I,,, i = 1,2,---,2a). We can get A02 A12 A22 A(Q“’Q)Q
these matrices from matrix realizations of Clifford algabr 03 | A8 ] e (2a-2)3
and is given in[[9]. The theorem is proved in the following 5 steps, the proof
Lemma 3 ([[1]): The productF; F,, --- F;. with 1 < iy < for all of which is given in Appendix B:
... < iy < 2a squares tq_l)%jn, Step 1: Finding a relation between coefficientsAf, and
Lemma 4 ([[]): Let Oy = {F, ,F,,,---,F;.} andQy = Agj_(z',j € {2,3}) when expanded in terms of the
{Fj,,Fjy,-- , Fj.} with 1 < i) < --- < iy <2aandl < bagls_ofLemmi_lz. N
j1 < o < jr < 2a. Let [, N Q| = p. Then, the product Step 2: Finding a relation between coeﬁ|C|entsA@_1§, Ay
matrix F, F;, - - - F;, commutes witht;, F, - - - F, , if exactly and Ay (i, j, k € {2,3}) when expanded in terms
one of the following is satisfied, and anti-commutes othsewi of the basis of Lemm@l2.

Step 3: Showing that there is a possibility of 7 types of

1) r, s andp are all odd. solutions that takes into account the relations in Step

2) The productrs is even and is even (including 0). 1

Lemma 5 ([[1]): The maximum rate in cspcu of & x 2*  Step 4: Showing that after including the relations from Step
unitary-weight SSD code ig:%r. 2 also, there is a possibility of 7 types of solutions.

The above Lemma is equivalent to showing tBatis the Step 5: None of the 7 solutions in Step 4 is possible.
maximum number of groups possible for 2-real symbol (1- -
complex symbol) decodablg x 2 UWD. Theorem 4:For a 4-real symbol decodab®é x 2¢ UWD,

Though the following theorem (proof given in Appendix Akhe rate in cspeu is tightly upper bounded igy%)
does not give a tight bound, Theorém 1 and Thedreém 2 affe proof is given in Appendix C.

used in Theorerfil3, to get a tight bound. Example 1:Consider a1 x 4 UWD with weight matrices
Theorem 1:For a 3-real symbol decodab®é x 2¢ UWD, 4., = I,, A;; = jI, and
the rate in cspcu is upper bounded ﬁjﬁ%” which is not

tight. 1 0 0 0 10 0 0
. ; -1 0 -1 0 0 01 0 0
Theorem 2:There exists a ratg;= cspcu, 4-real symbol Adz=14 o0 1 olAs=1¢ 0 -1 o
decodable?® x 2¢ UWD for a > 2. 0 0 0 -1 0 0 0 —1
Proof: Proof is by explicit construction. This construction
is based on the proof of Theorem 6 id [2]. 1 0 0 0
Fora > 2 let m = 2272 andn = 2%. Then from Lemma Ag=]9 -1 00
[2, for m x m matrices, we can havé(a — 2) + 1 anti- 0 0 -1 0"
Hermitian and anti-commuting unitary matrices. Let them be o 0 01



with A1 = jAg2, A13 = jAgz and Ay = jAgs. The For a differential signal sef\B, V A xx’ € AB Let,

codeword matrixS(xg,x1) is given by &; = [xo 21 - - 1
(x0,x1) is g ] y &i = [zo 21 ) Al) \I/(Axx’):[((Axx)l+(Axx’)g+(Axx’)3+(Axx')4)2}‘l‘
1
14 2000 [(Axx")1 — (Axx)2 4+ (Axx')s — (Axx)1)?]
S(XO Xl):ZZ(EA: 0 22 0 0 ’ ’ ’ ’ 271
’ et Wt 0 0 Zs 0|’ [((Axx )1+ (Axx')2 — (Axx')3 — (AxX')4) } 4
1=0 j=
L 0 0 0 Zy| [(Axx)1 — (Bxx')2 — (Axx)s + (Axx)a)?] T .
for 4-real symbol decodable UWD arf{x, x1) is given by
[ Zs 0 0 0] Theorem 5:If B is the signal set, from which the variables
13 of a group take values from, for the STBC of TheorEm 2,
Stox) =S wgdy = | o 00 hen, the code achieves full-diversity if the differentiagnal
0,X1 22 ij Aij 0 0 Z 0| then, the code achieves full-diversity if the differentigna
=0 j= L0 0 0 Z | set AB satisfies
/ /
for 3-real symbol decodable UWD, where, ¥ (Axx") >0, vV (Axx' #0) e AB. 9)
7 " " n iy 4 iz 4 s 4 7 Proof: Proof available in Appendix D. [ ]
L 01T 02 7 03 T P04 T AL T T2 TS Now, we will find the signal seB, which gives full-diversity
Zy = xo1 — To2 + Toz — Toa + JT11 — JT12 + jT13 — jT14  for the STBC of Theorern]2.
Z3 = o1 + Toz — To3 — Toa + JT11 + JT12 — JT13 — JX14 Let usTdefine a new vector variableg £ [Aq; A g A
_ /
Zy = 201 — Tog — To3 + Toa + juny — jwiz — jarg +jog 93 Dl 88LHg =P Axx!, where
Zs = w01 + To2 + Toz + JT11 + jT12 + JT13 1 1 1
Zg = xo1 — To2 + Toz + JjT11 — jT12 + jT13 P = 1 _1 _1 :1
Zr = o1 + To2 — Toz + JT11 + jT12 — jT13 1 -1 -1 1
Zs = To1 = Tz = o3 + jT11 = jiz = jria. Now, A,.in (from Appendix D) can be re-written as (sinée
It is easily checked that the weight matrices above satiBfy (is invertible Aq = 0 iff Axx’ = 0)
to (8). So, for this 4-real symbol decodable UWD, rate is 1 Amin = min [(Ag1)2(Ag2)(0q3)2 (Da)?]
cspeu and for 3-real symbol decodable UWD, raté isspcu. T Ag#o
Example 2:Consid§r a8 >28 UWD Wlth codeword matrix To achieve full diversity we need\,,;, > 0. This can be
S(x0,%1,X2,X3) = > ;0 > ;—; ZijAij given by achieved ifAg; # 0, V1 < i < 4. And, this can be guaranteed
by letting x = [x1 22 23 z4]7 take values fromP~1G,Z*,
[ Z1 Zs Zs3 Zy s Zs Z7 Zg 7 where, G, is the generator matrix of a 4-dimensional lattice
? —gs —52 ? gs —? —56 gs designed to maximize the product distarice [10]] [11], ard th
5 6 7 8 1 2 3 4 i i e ai
7 -7 7 7 7 —Ze -2 7 coding gaind,,, is given by
Zi -7y  Zi -Zi Zi -Zi Zi —Zi |- ) . ) ) -
Zy  Zi —Zi —Zs Z; Zy —Zs —Zg Omin = (Dmin)™ = min [(Aq1)*(Ag2)"(Ags)*(Aga)”]7. (10)
Zi —Zi Zy —ZF Zy —Zi  Zi —Z3 Ag70
L Z7  Zs —Z5 —Zs Zz Zi —Zi —Z3 | The right hand side of (10) can be obtained froml [10]) [11].

where,Z; = xo1 +jz11, Z2 = 21+ j¥31, Z3 = 22 +j32, A. Calculation of Diversity and Coding gain with examples

Za=aop + Jia, Zy = @3 + jwis, Zo = T2+ JTa3, Z7 = | et the signal seB be obtained fof£1 £1 +1 +1]7 € z*
Tog+jx34 aNdZg = x4 + jx14. By calculatingS* .S, we can from P~1G,Z*. Here, P~' = 1P and from [L1]
easily say that, this design is 4-real symbol decodable UWD. 4 ;

Rate of this design is 1 cspcu. By assigning = 0 (_i € 03664 —07677 04231  0.3121
{0,1,2,3}), we get 3-real symbol decodable UWD with rate | —0.2264 —04745 —0.6846 —0.5050
3 cspeu. Y7 | —04745 02264 —0.5050  0.6846

—0.7677 0.3664 0.3121 —0.4231

IV. DIVERSITY AND CODING GAIN )
Let x € B, be written asx = eP 1G4z, for somez €

In this Section, we show that for the code shown in Theoreml +1 +1 +1)7, where,e is used for normalizing the
[2, full diversity is achievable for 4-real symbol decodablg\,erage energy. DefinB(x) = ||x|? = 22 + 2} + 22 + 2.
STBCs withn = 2 antennas. Also, expressions for codingnen
gain are presented. 1 1

Let, x = [z1 @2 =3 x4]7 take values from a finite signal set E(x) ZZeQZTQZfPP_lgz;z = Zezsz = e

B. The differential signal sef\5 of signal set5 is defined as
Here, we used the fact théf G, = I, from [11] andz”z = 4.

AB = {/Axx' =x —x'|x,x € B}. So, E(x) = ¢ = E for all x such thatx € B.



Let, Au = Gy A v, whereAu = [Auy Auz Aug Auy) Asin (@30), here toalet[(AS)? (AS)] is a product of sum of
and Av = [Av; A vy Awvs Awy. Let Av; € {—2,0,2}.  squares of real numbers, so,

Define, det|(AS)H (AS)] >
N 2 2 274
by & puin, [(Aur)? (Duz)®(Aug)?(Aua)?]T = 0.6503. [(Axix)1 + (Axix)s + (Axix))s + (Axix)) 4]
Now, the following example calculates the coding gains for [((Ax;x})1 — (AxiX})2 + (Ax;X])3 — (Axix§)4)]4
a4 x 4 and8 x 8, 4-real symbol decodable Unitary-weight [(Axix)h + (Axix))s — (Axix))s — (Axix,)4)]”
STBCs of Exampl€]l and Examglé 2. : 4
Example 3:For the codewords of Example[l (for 4-real [((Axixi)1 = (Axixi)2 — (Axix))s + (Axix})a)]

symbol decodable UWD), average enety,, is given by oy some < i < 3. And, A,,;,, occurs when all but one
1 9y 1 ) 9 ) ,. amongAx;x;, 0 <i < 3 are zeros. So, fronL_(10), coding
Bavg = EMHSHF} _EE(|Z1| 12" + 125" + | Z4]7) gain is given bye25,, = 1.3006 = 1.1414dB. Sinced,,in > 0,
1 E this STBC has full diversity.
=ZE(||Xo||2 + il = X
whereE is over all possible information symbols. Fat,,, =
1 to be satisfiedE = 2 ande = v/2. From [10), coding gain
is given bye2§, = 1.3006 = 1.1414dB. Sinced,,;, > 0, this

V. DIscussION ANDCONCLUDING REMARKS

In this paper, we have shown that, the maximum rate
achieved by 3- and 4-real symbol ML decodallfe x 2¢
UWDs is 2= and 2a=D ¢cspeu respectively. We have also

STBC has full diversity. g 27 2a i
For the codeword of Example®, the average energy,, 9iven aSTBCWh|ch achieves the maximum rate. And, also
is given by ~ shown that thisSTBC can achieve full-diversity for rotated
3 lattice constellations. Possible directions for furthesearch
1 2 1 are:
Eavy =g E(IIS13) = Z|Z| = SEQ Il = 5B, are
§=0 1) A general upper bound on the rate of theeal symbol
wherekE is over all possible information symbols. FBF,,, = decodable UWDs is yet to be found.
1 to be satisfiedE = 2 ande = /2. 2) Even though maximum rate possible fegroup decod-
Let, for a complex numbef; = R{Z;} +j3{Z;}, AZ; = able CUWDs is found, it is not found for general UWDs.

R{AZ;} + jS{AZ;}, whereR{Z,}, S{Z;} are the real and These could possibly be the future direction of research.
imaginary parts ofZ; respectively. To find coding gain we

need to finddet[(AS)7 (AS)] = det[(AS)(AS)H]. ACKNOWLEDGEMENT
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2a let us consider the following weight matrices,

In F1 F2 s F2a71
Aoz | A1z | Aoz | . | Apa—1)2
Aoz | A1z | A2z | oo | A@a-1)3

whereAy; = I, andA;; = F; (j =1,2,---,2a —1). From
Case-3 in the proof of Theorem 1 ofi [1};, can be written
asAjp = m[[;27,,; F, for j =1,2,-- 20 — 1. Hence,
Ajs must be equal ta; 1 Fj+aj2Fs,+a; F1F5--- Fy,. But
theseA ss violate linear independence of weight matrices, so
we cannot havel;ss for g = 2a. This completes the proof.

APPENDIXB

Proof of Theorem[3

Step 1

Let A = Y2 augFy 30 Fprd, Ay €
{0,1}, m =1,2,--- ,2a, i = 0,1,2,--- ,2a — 2, k = 2,3
and a;;; € C. This is possible because of Lemma 2.
Considering Ay, since Apj, anti-commutes withFy, Fj,
-+, Fyq_o, every individual term of4;; must anti-commute

with Fy, F3, ---, Fy,_o. The only matrices from the set
(FME) . Fye . N\ € {0,1}, i = 1,2,---,2a} that
anti-commute with Iy, Fs,--- ,Fo,_o are Fy, Fh,_1,

Fyy,  FiFoq 1Fo,, IMFy---Fy o, FoF3---F5, g,
FyF3 .- Fyy oFs,, and FiF,---Fy,. Hence, let (for
ke {2,3})

Ak =01 F1 + araFog—1 + aksFaq + apaF1Foq—1F5,
+apsF1Fy - Fog_o + ageFol3 - Foq_q
+aprFokFs - Foq_oFs + apgF1Fo -+ - Foq.

Similarly, let (for k € {2,3})
Asi, =ck1 Fa + craFoa—1 + ck3Fag + cpaF1 Fog—1F2,

+epsF1Fy - Fog_o 4+ cpe 13- - Fog_q
+ g7 F1Fs - FogoFo, + cps 1 Fo -+ - Foe. (1)

Let, (F1Fy--- Fy,)? = pI, wherep = —1 when,a is odd
andp = 1 when,a is even. Further, fron{{6)43, = A2, =


http://www1.tlc.polito.it/

—1,, and from the above equations we have

Aty = — (afy + aks + ais — aia + p(ais + ais + a7 — ais))In
— 2(ak1ak4 + parsars)Faa—1F2a
+ 2(ar1ar6 + ar2ars)F1 - - - Fag_1
+ 2(ar1ar7 + ar3ars)F1 - - Foq—2F2,
+ 2(ar2ars — parsars) FiFaq
— 2(akr2arr — agzare)FaFs - Faq
— 2(ar3aks — pagrars)FiFaa—1,
A3y = — (i1 + Ciz + iz — Cha + p(Chs + Cio + Cir — Chs)) In
— 2(cr1¢ka + perscrs) Faa—1F2a
— 2(cr1ck6 — Cracks)F1 -+ Faq_1
— 2(cr1ckr — Cr3crs)F1 -+ - Faa—2Faq
+ 2(cracka + perocrs) FoFhaq
— 2(crackr — cr3cre) F1F3 -+ Faq_1Fb,
—2(

Ck3Cka + DCr7Crs) Folba 1.

Since I,, Faq_1Foa, FiFs - Faq_1, F1Fy -+ Faq_2F>,,
FiFo, 5Py Foy, FiFoq_1, Folse, FiF3---Fp, and
Fy Fy, 4 are linearly independent ovér, the following equa-
tions have to be satisfied.

a1 + Ao + ais — ais ‘HD(flzs + aje + aiy — ais) = 1%} (12)

2 2 2 2 2 2 2 2
Ck1 + Cio + Chz — Ca + D(Cios + ke + Cir — Cis) = 1;

ap1ak4 + pagsars = 0; ap1are + agzars = 0;
ax10k7 + agzaxs = 0; axears — pagears = 0;
ak2ak7 — GR3ake = 0; arzags — pagrars = 0; (13)

Cr1Cra + perscrs = 05 cricre — cracrs = 0;

Ck1Ck7 — Cr3Cks = 0; CracCra + pcrecrs = 0;

Ck2Ck7 — Cr3Ck6 = 0; Ck3Cra + pcrrcks = 0.

Since A4 —Ay, i € {1,2} k € {2,3}, we
need, ar1, ag2, a3, ck1, Ck2, Ck3 € R, aps, ca €
img(C). Also if p = 1, axs, ake, ar7, Ck5, Ck6, Ck7 €
R, ars € img(C), cs € img(C) and if p -1,
aks, ke, k7, Cks, Cke, Ck7 € img(C), axs € R, crs € R.

For A;; and Ay, (i, 5 € {2, 3}) to anti-commute the follow-

It should be noted that in the first row, excefy, all are

mutually anti-commuting matrices and all of them also anti-

commute WithFnga_l and FiFy,. So, F1, -IF,, -I1 F3,
<o+, -F1F5, 1 and 1 F5, are 2a pairwise anti-commuting
matrices.

From (8), A}, (k € {2,3}) has to be anti-commuting
with A5, Ay, -+, Afg,_z),- The only matrices from the
set {FMFM ... Fpe )\, € {0,1},i = 1,2,---,2a} that
anti-commute withF Fy, FF3, --- and FyFs, o are I,
F1Foq_ 1, Moy, I Foq 1Fog, Fo - Foq_o, FoF3 -+ Fo,_q,
FoF5-- - Foy oFs,, FoFs--- Fy,. Hence, let (fork S {2, 3})

Al =bii Fy + b Fi Fog—1 + b Fi Fag + bpa Py Faq—1 Fag
+bpsFo - Fog_o + brpeFoF3 - Foq_q
+ b7 FoFs - Foq_oFo, + bipgFoF3 - - Fh,.

From [8),(4},)*=—1I, and we have

(A5%)" = — (b + o + b — bl + p(bis + bis + by — bis)) [
— 2(br1bra + pbrsbs) Foa—1F2a
— 2(br2bra + pbrebrs) Foa
+ 2(bk1bre — brabis)F1Fa -+ Faq_1
+ 2(bk1brr — brsbis) F1Fs - - - Fag_2Faq
— 2(br2brr — brsbre) F1FoF3 -+ - Fo,
+ 2(bx3bra + pbrrbrs) Faa—1.

Since, I, Fog—1Foq, F1Fs - Foq_1, F1Fs- - Foq_oFs,,
Fy,, F1FoF5 - - Fy,, Fo, 1 are linearly independent ovér
the following equations have to be satisfied.

bi1 + biz + bks — bia + p(bis + bis + bir — bis) = 1; (15)
br1bra + pbrsbrs = 0; br1bre — brabrs = 0; br1brr — brsbrs = 0;
brabra + pbrebrs = 0; brabr7 — brabre = 0; brsbra + pbrrbrs = 0.

Since A}l = — A}, (k € {2,3}), we needby1, bi2, bis €
R, bgs € ng((C) If p=1, brs, brg, b7 € R, big € ng((C)
and pr = —1, bis, brs, b7 € img((C), brs € R.

For Ay, and Ay; (5,k € {2,3}) to anti-commute the fol-

ing conditions need to be satisfied (we get these conditioving conditions need to be satisfied (we get these conmmitio

by equatingA1;Az; + Az;41; = 0 and using the linear py equatingA’lkA’zj + A’zj T

independence condition ové&r).

ai2¢ja + paigcie = 0; aiacjs + aiscj2 = 0; aizcjr — aizcje = 0;
a;3¢j4 + paiscjt = 0; aizcjs + aiscjzs = 05 aacjz — paiscis = 0;
a;acj3 — paircis = 0; aiacje + aiecja = 0; aiacjr + asrcia = 05
a;iscjs + aigcjs = 0; aecjz — airciz = 0; aecir — aircje = 0;

ai2Cj2 + ai3¢;3 + paiscjs — paiscig = 0.
(14)

Step 2

0 and using the linear
independence condition ové&l)

bracja — pbrscje = 0; bracjs — brscja = 0; bracjr — bracje = 0;
bracja — pbrscir = 0; bracjs — brscjz = 0; bracjz — pbrecjs = 0;
bracjz — pbrrcis = 0; bracje + brecja = 0; bracj7 + brrcja = 0;
brscjs + brscjs = 0;  brecjz — brrcjz = 0;

bracje + bracjs — pbiscis + pbrscis = 0.

brecjr — brrcje = 0;
(16)

From LemmdlL, by multiplying all the weight matrices by

— Ay (i.e.,—Fy), we get another equivalent UWD with weight ~ Similarly, by equatingA7if Ay, + A A},

0 (i,k €

matrices grouped as shown at the top of the next page, affér3}) and using the linear independence condition ofer

interchanging the first and the second columns.

we get



In Ay =-F 5 = —F1Fy A'(Qa,g)l =—F1Fo 2
Abe = —Fi1 A To=—FiAp | Ay = —F1Ax Alga—yp = —F1A@a_2)2
03 = —F1 A3 13 = —F1Ap3 53 = —F1Ass Aéga,g)g =—F1A@4-2)3

braais + pbrgaie = 0; br2ais — brsaiz = 0; braair — brzae = 0;
brzais + pbrgair = 0; brzais — brsaiz = 0; braaiz — pbreais = 0;
braaiz — pbrrais = 0; braais — breaia = 0; braair — brra = 0;

brsais + brgais = 0; breaiz — brraiz = 0; breair — brrais = 0;

Let ar, =[ax1 ar2 ar3 a4 axs ake agr axsl, by = [bra
bra brz bra brs bre br7 brs] and cx =[ck1 cr2 cr3 cra crs
Cke Ck7 Ckg] for k € {2,3} Let a; :[1 0000O0O0 O]
(according to notation foFy in ay). Similarly, letb; =[1 0 0
00000]andc; =[1 00 0 0 0 0 0Q]. To construct the weight
matrices, it is enough to find linearly independapgs, linearly

braaiz + br3aiz — pbrsais + pbrgais = 0. (17) independenbys and linearly independeni,s (k = 1,2,3),
which satisfy conditiond(13) td_(17). Since, any combinati
Step 3 of (a®, ¢, b® 4 j ke {1,2}) has to satisfy above
" : conditions,z; (3 <i <20, i #9) are forced to be constants.
The conditions[(TI3) td(17) can also be re-written as N . . .
[T3) ) Now, we find the possibilities under which solution exists
[ Oy L S > I O I i for a;, c;, i,j5 € {2,3}.
- - - -~ " . . .
a5 ) a6 a7 From the above conditions assuming all coefficients are non
G _ PS8 _ G2 _ G3 _ zero, we can writea; andc; usinga;; andc;, as (fori,j €
= = = = 2jo
Cj5 Cj4 Cje  C47 {2,3})
bk —pbes  br2  brs ; (18)
— = =T =5 = Zky
brs bra bre br ai22i1 a2 —a;2
. - . LAl = —/———3 ai2 = A42; i3 = 5 Aiq4 =
The relations between the coefficients in the representatio 24 25 Zi123
of Aj; and Ay, 4,5 € {2,3} are a5 = 22, ap = —22. g = 22, pae = 22
Z4 Zil Zi125 z3
;92 ;6 —Cj6 Ci9 ;2 —Cj9 —Cj2252 Cj2 —Cj2
== — =T = =gy — = =y L= —2"0 gjp = g s =3 ca=_——
pa;s A4 Cj4 DCjs a;s Cj5 Z4 Z5 Zj2Z3
Qi Gig _ Cj _ Cj2 ~ e ai5  —Cjs — Cj5:ﬁ; Cjﬁzcﬁ; cﬂ:ﬁ; pcjgzcﬁ
= = = = ) — = = ) z 25 232
a;3 Q7 Cj7 C43 paig  Ppcjs 4 72 35 (22)
a7 a;3 Cj7 Cj3 a;3 Cj3
— = = = :zﬁ;—:—L:Zﬂ
Ai4 bais Cj4 bcjs Qa5 Cj5
ai2Cj ai3Cj ai5Cis — paigcis = 0. 19 ;2% —CioZ;
72 _]2+ 13C53 +p 15C55 paigc;s ( ) and 24 = ;2‘111 _ 0321 ]2. (23)
The relations between the coefficients in the representatio ’ ’
of Ay; and Aoy, (i.e., Aj;, and A},) i,k € {2,3} are From [13), [22) and(23)
1 —pa;1C;
@i2 di6 = ka — _ka = 210" Gi2 bk2 P @i2C52 (1 + 5 = %) = M
= =7 = =210 - = - T A1 Z z Zi1%;
pais @4 bra  pbrs Tais bis ' 5 3 1252 ) ,
ai2 _ aie _ brke b2 aiz  —bs So 14 1 p _ —paancii _ PCi_ pag
s am b b T obrs W ' 22 22 zpnzjpapciy 22, abzy
i3 Q47 k7 k3 pais POks 5 3 11<5j2032C52 2752 12741
a7 a3 by —brs a3z bis (24)
an pas b pbes O am bV
’ ’ ) From [12) and[{22) td(24)

aiobra + ai3brs — passbrs + pagbrs = 0. (20)

The relations between the coefficients in the representatio =

of Ao, and Ay, (i.e., A}y, and A5;) i,k € {2,3} are

bio bk  Cjg  —Cj2 bra  cjo .

— == = = Z16; — = —— = 217}

Db bra Cja  PCjs brs  ¢js

bre  bre  cjs  Cjo , bis  —cjs ,

—— = == = == = zg; —— = —— = 291;

brs  bpr ¢ 3 pbrs  DpCjg

by brks  cjr —cj3 Cbks e ,
=0 = — = = Z19; 7 = T = 220

bra pbrs  Ccja P8 bis  ¢js5

bracjo + bracjz — pbrscjs + pbrscjs = 0.

<1 + Z%) (a31 + air + ajs — pals)

71
P 1 »p p )\’
() (et (e 5-5)) - (0 )
Zi1 Z5 23 Zi1

2
e p 2
and similarly <1 + T) c1=1. (25)
Zj2

For a given p, by choosing the values of
Zil, Zj2, 23, 25, i1, @2, Cjl, CjQ‘ we can getal- and
c;. For example, fop = 1, let z3 = £, 2y = 2}, 25 = 3,
Cy = —ag = % Now, for z01 = 1 = 290 andas; = ¢91 = %



Weget
1 -1 -1 1113
A= —— — — = = = = ;
32633
111111 i
©2=15633263 3|

and, forzs; = —1 = 232 andas; = c31 = 34, we get
e | Azt =l =1
3 2 6 3 326 3 3]

[—1 11 -1 -1 -1 —i]
C3 =

Now we consider the cases where some of the coefficie
a;,S Orc;;s are zero. For these cases we (isé (12) b (25).

Case 1 Letas; = 0. Then,a25 =0 0rasy = as3 = asg =
0.

Let ass = ao3 asg = 0 and ass 75 0. Then, we get
Cj2 = Cj3 = Cjg = Cj5 = O, j = 2,3. SO,lecj4 = Cj1Cj6 =
cjicyr = 0. If ¢;1 # 0, Ag; = £F; is clearly not a solution.
This impliesc; = 0. From [14), we have (fof, j € {2,3})

(£27}

[£77}

—Cja —Cj4 a6 _ Cj6

— = =3
Qg7 Cj7

for some constantg,, y2, ys3. From these equations, and
cs are linearly dependent. So, assuming = ass = asg = 0
andass # 0 is not valid.

Now, let ass = as3 = ass = 0 and ass = 0. Consider
244, R27,28, 211, R14, %15, 217, 220, 221+ Let ass }é 0. Now, if
aso 75 0, thencjg = Cj5 = 0 or bjg = bj5 =0,75 =23
With out loss of generality assumg; = ¢j5 =0, j = 2,3.
Then,cj3 = ¢j3 = 0, j = 2,3. Theng;s, j = 1,2,3 cannot
be linearly independent. This happens everug§ # 0 or
ass }é 0. Soazs = azz3 = azg = 0, when ass 7§ 0. Then,
again Cja = Cj3 Cjs = Cjg = 0, 5 = 2,3, which is
not valid. Soass = 0. If age = agg3 = azg = 0, then for

a7

= Y1; = Y2;
Qi Cj6 Cj7

ass }é 0 and ass 7§ 0, then,cos = o3 = cog = 0 which is
not possible. Ifazgs = 0, sinceass # 0 thencz, = 0, then
agq = agyq = 0, then028 =c35 = 0. If aso 75 0 and ass 75 0,
then coa = c23 = 0, so not a solution. Sas; = 0. Then,
c22 =c32 =0, c37 =0, azr =0, az7 = 0 andeaz = ¢33 = 0,
which is not a solution. So, let;; = 0, j = 2,3. Now, as
in the previous assumptioms, # 0, asz # 0 andasg # 0 is
not possible andizs # 0, ass # 0 andasg = 0 is also not
possible. So, letis2 # 0, ags = 0 andass = 0. Thencjs = 0,
Aj4 = 0 andeg = O,j = 2, 3. And, Cj2 = 0, Cj7 = 0, ajr = 0
andcjscjs =0, j = 2, 3. So, this is not a valid option.

Now, let ass 0. Then, we geta226j5 a23Cjs =

Cj5 = 0, j = 2,3 Since, fOfCLQQ = a23 = asg = as; = 0,
I@) to [25) do not have a solutior,;s = 0, j = 2,3.
Now, ¢j1 = 0 or ¢;u = ¢j6 = ¢;7 = 0 has to be satisfied.
Let ¢ju = ¢j6 = ¢;v = 0, j = 2,3. Then, we have (for
i,7 € {2,3})

Cj2 _ Qe (53 ai7 Cj2 Qi
—— = =Y4 —— =""—=VYs5;, —— = —=1VYs;
pcjs 4 pcjs [£271 Cj3 Qg7

a;2Cj2 + ai3cj3 — pa;gcig = 0, (26)

for some constantg,, ys, ys. For c;s to be linearly inde-
pendent, we need;s = a5 = a;y = 0 = ass. Sincec;s and
a;s have to satisfy linearly independence conditions, we need
4 vectors {ioz a3 ags], [as2 ass ass], [coz c23 cogl, [c32 €33
638] such thataigcj‘g + ai3cj3 — pa;gcig = 0 (Z,j € {2, 3})
Since,ai4 =a;5 = G5 = a;7 =0 = Cj4 = Cj5 = Cjg = Cj7
(4,5 € {2,3}) and Ay;s, Agjs (i, 5 € {1,2,3}) (from[1]) are
to be linearly independentafs ass ass], [ase ass ass], [coo
co3 cog] and [es2 ¢33 c35] have to be linearly independent over
R, which is not possible. Hence;s = cjg = ¢;7 =0,j = 2,3
is not a valid option.
Now, let coy = ca6 = ca7 = 0 andc3; = 0. No solution
if aio = a;3 = a;g = 0 for some: € {2,3} Let a;o 75 0,
a;3 75 0 and a;s 75 0,: € {2,3} ThenC34 75 0, c36 75 0 and

ai, ap and az to be linearly independent, we need to have;; # 0. If a;4 = a;s = a;7 = 0 for bothi € {2, 3}, a;s won't
cj2 = Cjz = Cju = ¢jg = ¢j7 = ¢j3 = 0, j = 2,3. Inthat case, be linearly independent. So, lets # 0, axs # 0 andagy # 0
c1, cz andcg cannot satisfy linear independence condition®r somek € {2,3}. Then from [26)c;2 = ¢j3 = ¢js = 0,
(because only;; # 0 and ¢;5 # 0). So, with out loss of j; = 2,3, so not valid. Now, letass = 0. Thencgy = 0,

generality letasy # 0. Thenc;s =0, j = 2, 3. Sinceass = 0,
az1 = 0 0rasy = azg = azy = 0. Let azy agg = az7y = 0.
SinCECj5 =0, Cj1 = 0 or Cja = Cje = Cj7 0,75 =2,3. Let
cja = cj6 = cj7 =0, j =2,3. Then, for¢;s, j = 1,2,3 to be
linearly independenisy = asg = agr = 0, which is not valid.
So, Iet024 =cog =co7 =0 and031 =0. From[@, ifa32 75 0,
ass 75 0 and ass 75 0, then,622 = o3 = o8 = 0 which is
not possible. Ifass = 0, thencsy, = 0, thenayy, = 0, then
cog = c3g = 0, which giVGSC%Q + 033 =0. S0coy = co3 =0,
becausecss, c23 € R. So, letc;; = 0, j = 2,3. Now, as in
previous assumption;, = c;3 = ¢ = 0, 7 = 2,3. Now,
only ¢;a, ¢j6, cj7 are possibly non-zero. So, we cannot ggt

ais = 0,c8 =0,1 € {2,3} and azgs = 0. If as2 75 0 and
ass # 0, ¢jo = ¢;3 = 0, j = 2,3, so not a solution. So, let
ag3 = 0. Then037 =0, ;7 = 0 andeQ = Cj3 = 0, j = 2,3,
SO not a solution.

Now, let co; = ¢33 = 0. By proceeding as in above
assumption, we get;s = 0, a;4 = 0, ¢;s = 0, @ € {2,3}
and asg = 0, when azg = 0. If ass }é 0 and a3 7§ 0,
cj2 = ¢j3 = 0, j = 2,3, so not a solution. So, letys = 0.
Then cit = 0,a;7 =0 and Cja = Cj3 = 0,7 =23, so
as1 = az1 = 0 not valid.

Case 2 Let ass = 0. Then,agl =0 0rasy = asg = ao7 =
0. Sinceas; = 0 is not possiblegsy = ass = asg = asy = 0.

ande;s satisfying linear independence conditions. So, considgow, we getasscjs = asscjs = azecjs =0, j € {2,3}. Since
az; = 0. Again, SinCeCj5 =0, Cj1 = 0 or Cja = Cje = Cj7 = Q22 = (23 = (24 — Q25 = A26 — A27 — A28 — 0 is not a valid
0,j =23 If cja = ¢cjg = ¢;7 =0, j = 2,3, we cannot solution,c;s = 0, j € {2,3}. Then,cj1 =0 of ¢ju = ¢cj6 =
geta;s andc;s satisfying linear independence conditions. Se,7 = 0. Sincec;; = 0 is not valid (from Case 1, because of
let Coy = Cog = Cco7 = 0 and c31 = 0. From, ifagg 75 0, similarity betweenai and Cj), Cj4 = Cj5 = Cjg = Cj7 = 0.



Similarly, sincec;s = 0, ass = 0 andass = azg = az7 = 0.

So, from Case 1, we cannot gefs andc;s satisfying linear

independence conditions. S@; = 0 is not possible.

Case 3 Let ayy = 0. Then,CLQG =00ras; = as3z = asg =
0. From Case 1lao; = 0 is not valid. So0,a26 = 0. Now,
Cjel28 = CjA23 = Cj2025 = 0,7 € {2,3} Sincea25 =0is
not valid, Cjo = 0 (j S {2,3}) Sincele = Cj3 = Cjg = 0
is not Va"d,Cjﬁ =0 (j S {2,3}) Now, a;o = a;s = Cj2 =
cje =0, 1,7 € {2,3}. If we denotea; andc; usinga,s and

only a;1, a;5, ¢i1, ¢;5 as non-zeros. From which we cannot
geta;s, ande;s (i € {2, 3}) satisfying the linear independence
conditions.

Step 4

As in the case of solving forag andc;), for solving @;
and by) or (b, andc;) we get similar conditions on their
coefficients. Therefore, we may be able to get solutions $o
bss andc;s, which satisfy the linear independence conditions,
if they satisfy one of the following conditions: (forc {2,3})

¢;3, instead ofa;o and cja, and fpllow thg Iines_ of[(24) and 1) None of the coefficients ia; or b; or ¢; are 0
(25), we geta;s andc;s, satisfying the linear independence 2) aio = aig = bp = big = ;o = cig — 0 and other

conditions. coefficients are non-zero.

Case 4 Let @23 = O Then’a27 = O or 421 = A2 = d28 = 3) a;3 = Q7 — bi3 = bi7 = C;j3 = Cij7 = O and Other
0. From Case 1g2; = 0 is not valid. So,as7 = 0. Then, we coefficients are non-zero
gelagocj7 = a28Cj7 = G25Cj3 = A24Cj3 = A24Cj7 = A26C;3 = 4) a4y = aig = by = bis = ciu = c;5 = 0 and other

a26Cj7 = 0,7 € {2,3} If Cj3 75 0, thena25 = Q94 = Q96 =

az7 = 0, and this is not possible from Case 2. $g; = 0. 5)

Sincele = Cj2 = Cjg = 0 is not Valid,Cj7 =0 (j S {2,3})

Then, a;3 = air = ¢j3 = ¢j7 = 0. By following the lines 6)

of (24) and [(Z2b), we geh;s andc;s, satisfying the linear

independence conditions. 7)
Case 5 Let asy = 0. Then,ass = 0, becauseias = ass =

azs = azy = 0is not valid from Case 2. Now, we getacjs = Step 5

A923Ci4 = A26Ci8 = A27Ci8 = A26Ci4 = A97Ci4 = Qo5Cig = 0,

j23€ JE273}'26|fjij8 7&27013225 ;6@;2 ~ ;277 ji a2425:ﬁ;28 _ From [E),'[Q.'D) and(21), since;s, bys, ¢;5 cannot be zero,

0, and this is not possible from Case 2. $gs = 0. Since We have (fori,j, k € {2,3})

Cj1 = Cj2 = Cj3 = 0 is not Va”d,Cj4 =0 (j € {2,3}) Now,

ais = a;s = cju = ¢;z = 0. By following the lines of[(Z#) and

(5), we geta;s andc;s, satisfying the linear independence %3 = @i7 = bis = bir = ¢j3 = ¢j7 =0 from 27, 214, 220,

conditions. G4 = Q8 = by = bpg = cju = c;3 =0 from zg, 215, 291.
Case 6: Let ayg = 0. Since,ag4 = Q95 = a9g = ao7 = 0

is not valid from Case 2355 = 0. So, Case 3 follows.
Case 7: Let as7 = 0. Since,ag4 = Q95 = a9g = ag7 = 0

is not valid from Case 2395 = 0. So Case 4 follows.
Case 8: Let asg = 0. Then,a24 =00rasy =agsy = as3 =

0. From Case 1q21 = a23 = a2 = ag2 = 0 is not valid. So,

as4 = 0 and Case 5 follows. 2a — 2 group 3-real symbol decodable UWDs, the maximum
From the above cases, it follows thats, andc;s (i € achievable rate ig2e2) — 37D cspeu. Since this rate is

{2, 3}), satisfying the linear independence conditions are pogchievable, this upper bound is tight. This completes tbefor

sible only if
1) None of the coefficients in; or c; are O.

0 and other coefficients are

coefficients are non-zero.

a2 = a6 = bio = big = Ci2 = Cip = Qi3 = Q7 = bz =

b;7 = ¢i3 = ¢;7 = 0 and other coefficients are non-zero.
a2 = a6 = bja = big = Cj2 = Cip = Ajg = Qg = by =

b;s = cia = c;s = 0 and other coefficients are non-zero.
a3 = a7 = biz = bir = ¢;3 = Cir = Qg = Q8 = by =

bi;s = cis = c;g3 = 0 and other coefficients are non-zero.

a2 = aip = bra = bs = cjo = cj6 =0 from z4, 211, 217,

Now, we are left with onlyzil, ais, b1, bis, Cj1, Cj5, which
are non-zero, from which we cannot gats, b,s andc;s
which satisfy the linear independence conditions. Hepce,
2a — 1 is not possible.

From Corollary[1, since we are able to genergte=

APPENDIXC

2) a2 = i = Ciz = Cig = Proof of Theorem[4

3) 2i03n:ze;;)7. — ¢i3 = ¢;7 = 0 and other coefficients are Proof: Let g be the number of groups. Then, the rate is
non-zero. given bysz% = 52 cspcu. From Theoref 3, the maximum

4) a; = ajs = ¢4 = c;s = 0 and other coefficients are humber of groups possible for 3-real symbol decodable UWDs
non-zero. is 2a—2. So, for 4-real symbol decodable UWDs the maximum

number of groups possible is 2a — 2, but in Theoren 12, we
constructe®a — 2 group 4-real symbol decodable UWDs. So,
the maximum number of groups possible (achievable) for 4-
real symbol decodable UWDs 28— 2. Hence, the tight upper
bound on the rate of 4-real symbol decodabiex 2¢ (a > 2)

UWD is £=% cspcu. [ ]

5) ai2 = ais = ci2 = Cig = a3 = a;7 = ¢3 = ¢;7 = 0 and
other coefficients are non-zero.

6) ai2 = Gig = Cia = Cip = Qia = Qg = Ciu = ¢;3 = 0 and
other coefficients are non-zero.

7) ai3 = a7 = €3 = Cir = Qu = Qg = Cju = ;8 = 0 and
other coefficients are non-zero.

Here,a;x = ai = cio = Cig = Qi3 = Qi1 = Ci3 = Cij7 =

a4 = a;3 = cia = c;g = 0 and other coefficients are non-zero,

possibility is not taken into account, because, we are léft w

APPENDIXD

Proof of Theorem[3



Let S and S’ be two distinct codewords of the code as infor some0 < i < 2a — 3. And, A,,;, occurs when all but

Theoren . Let

2a—3 4 2a—3 4

= > > wiAy, S'=) > wiAy,
=0 j=1 i=0 j=1
whereAg; = 1,,. For0 <i <2a—3 and1 < ji,j» <4,
AL Ay, + AR Ay =240, A, (27)

Let AS £ 8 -8, (hxixl); 2 zy; — 2, and

Ax;x; & [(Axixi) (BAxixg)2 (Axix))3 (Ax;x.)4]T. Then,
(AS)}{(AS) is given by

2a—3 4 2a—3 4
[Z Z(AXiX,’i)inj [Z Z (Axx});
=0 j=1 m=0 j=1
2a-3 / 4 H /4
= < (AXZXQ)JALJ> <Z(AXLX2)JALJ> (28)
i=0 \j=1 =1

2
=) [((Axix))T + (Axix))s + (Axix})3 + (Axix}) ) In+
=0
2(Axix;)1(AXiX;)2 Aoz + 2(A%;X5) 1 (AXX} )3 Aoz +
2(Axix;)1(Axix;)aAos + 2(Ax; %) 2 (Ax%5)3 Aoz Aoz +
2(Ax;x5)2(Axx})aA02 Aos + 2(Axix;)3(AXix;) 4 Aoz Aoa],
(29

)
|
w

where, [28) and{29) occurs because[df (E]) (5) andl (27).
Now, we calculate the determinant 6A\.S) (AS) using
Aga, Ags, Ags as given in Theorer] 2.

det[(AS)T A S] =
[2a—3

S (Axix)s + (Dxixh)a + (Axix)s + (Bxix})a)

=0 i

w3

[2a—3
Z (Axixi)1 — (Axix})2 + (Axix))s — (Axix})4)?

L i=0 i

w3

V)
2
w
w3

((Axixi)1 + (Axix))2 — (Axix})s — (Axix})a)?

3
Q

|

w
w3

((Axixi)1 — (Axix))2 — (Axix})s + (Axix))a)?

© (30)

The minimum of the determinant, denoted BY,,;,, of
(AS)YH (AS) for all possible non-zerd\S is given as

Ain = ﬁlgi;élo det[(AS)H(AS)). (32)

one amongAx;x;, 0 <1i < 2a— 3 are zeros.

Therefore, Apin = minay,xz0(P(Axx7))", for
Ax;x; € AB (i.e.x; € B)V 0 <4 < 2a— 3. To achieve
full diversity we need/\,,.;, > 0, which can be guaranteed if
(9) is satisfied. This completes the proof.

Since the expression in the right hand side of equafioh (30)
is a product of sum of squares of real numbers, we can write

@0), (31) as
det[(AS)(AS)] >
[(Axixi)s + (Axixt)z + (Dxixt)s + (Axixi)a)?] ¥
[(Axixi)n — (Axixt)a + (Axixt)s — (Axix})a)?] F
[(Axixi) + (Axixt)z — (Dxixt)s — (Axixi)a)?]
[(Axixi)s = (Axixt)z — (Dxixt)s + (Axixi)a)?]



	I Introduction
	I-A Encoding complexity and group ML Decoding
	I-B Contributions

	II Representation of -real symbol decodable unitary weight STBCs
	III An upper bound on the rate of 3-and 4-real symbol decodable unitary weight STBCs
	IV Diversity and Coding Gain
	IV-A Calculation of Diversity and Coding gain with examples

	V Discussion and Concluding remarks
	References

