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When is a Function Securely Computable?
Himanshu Tyagi, Prakash Narayan and Piyush Gupta

Abstract

A subset of a set of terminals that observe correlated signals seek to compute a given function of

the signals using public communication. It is required thatthe value of the function be kept secret from

an eavesdropper with access to the communication. We show that the function is securely computable

if and only if its entropy is less than the “aided secret key” capacity of an associated secrecy generation

model, for which a single-letter characterization is provided.

Index Terms

Aided secret key, balanced coloring lemma, function computation, maximum common function,

omniscience, secret key capacity, secure computability.

I. INTRODUCTION

In an online auction,m − 1 bidders acting independently of each other, randomly placeone ofk

bids on a secure server. After a period of independent daily bidding, the server posts a cryptic message

on a public website. Our results show that form > k + 1, such a message exists from which each

bidder can deduce securely the highest bids, but no message exists to allow any of them to identify

securely the winners.

In general, suppose that the terminals inM = {1, . . . ,m} observe correlated signals, and that a

subsetA = {1, . . . , a} of them are required to compute “securely” a given (single-letter) functiong of

all the signals. To this end, following their observations,all the terminals are allowed to communicate

interactively over a public noiseless channel of unlimitedcapacity, with all such communication being

observed by all the terminals. The terminals inA seek to computeg in such a manner as to keep

its value information theoretically secret from an eavesdropper with access to the public interterminal

communication. See Figure 1. A typical application arises in a wireless network of colocated sensors

which seek to compute a given function of their correlated measurements using public communication

that does not give away the value of the function.

Our goal is to characterize necessary and sufficient conditions under which such secure computation

is feasible. We formulate a new Shannon theoretic multiterminal source model that addresses the

elemental question:When can a functiong be computed so that its value is independent of the public

communication used in its computation?
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Fig. 1. Secure computation ofg

We establish that the answer to this question is innately connected to a problem of secret key (SK)

generation in which all the terminals inM seek to generate “secret common randomness” at the largest

rate possible, when the terminals inAc = M/A are provided with side information for limited use,

by means of public communication from which an eavesdroppercan glean only a negligible amount of

information about the SK. The public communication from a terminal can be any function of its own

observed signal and of all previous communication. Side information is provided to the terminals inAc

in the form of the value ofg, and can be used only for recovering the key. Such a key, termed an aided

secret key (ASK), constitutes a modification of the originalnotion of a SK in [14], [1], [6], [7]. The

largest rate of such an ASK, which can be used for encrypted communication, is the ASK capacityC.

Since a securely computable functiong for A will yield an ASK (for M) of rate equal to its entropy

H , it is clear thatg necessarily must satisfyH ≤ C. We show that surprisingly,H < C is a sufficient

condition for the existence of a protocol for the secure computation ofg for A. When all the terminals

in M seek to computeg securely, the corresponding ASK capacity reduces to the standard SK capacity

for M [6], [7]. We also show that a function that is securely computed byA can be augmented by

residual secret common randomness to yield a SK forA of optimum rate.

We also present the capacity for a general ASK model involving arbitrary side information at the

secrecy-seeking set of terminals for key recovery alone. Its capacity is characterized in terms of the

classic concept of “maximum common function” [8]. Althoughthis result is not needed in full dose for

characterizing secure computability, it remains of independent interest.

We do not tackle the difficult problem of determining the minimum rate of public communication

needed for the secure computation ofg, which remains open even in the absence of a secrecy constraint
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[11]. Nor do we fashion efficient protocols for this purpose.Instead, our mere objective in this work is

to find conditions for theexistenceof such protocols.

The study of problems of function computation, with and without secrecy requirements, has a long

and varied history to which we can make only a skimpy allusionhere. Examples include: algorithms for

exact function computation by multiple parties (cf. e.g., [20], [9], [10]); algorithms for asymptotically

accurate (in observation length) function computation (cf. e.g., [18], [13]); exact function computation

with secrecy (cf. e.g., [17]); and problems of oblivious transfer [16], [2].

Our results in Section III are organized in three parts: capacity of ASK model; characterization of

the secure computability ofg; and a decomposition result for the total entropy of the model. Proofs are

provided in Section IV and concluding remarks in Section V.

II. PRELIMINARIES

Let X1, . . . , Xm, m ≥ 2, be rvs with finite alphabetsX1, . . . ,Xm, respectively. For any nonempty

setA ⊆ M = {1, . . . ,m}, we denoteXA = (Xi, i ∈ A). Similarly, for real numbersR1, . . . , Rm

andA ⊆ M, we denoteRA = (Ri, i ∈ A). Let Ac be the setM\A. We denoten i.i.d. repetitions

of XM = (X1, . . . , Xm) with values inXM = X1 × . . .× Xm by Xn
M = (Xn

1 , . . . , X
n
m) with values

in Xn
M = Xn

1 × . . . × Xn
m. Following [6], givenǫ > 0, for rvs U, V, we say thatU is ǫ-recoverable

from V if Pr (U 6= f(V )) ≤ ǫ for some functionf(V ) of V . All logarithms and exponentials are with

respect to the base2.

We consider a multiterminal source model for secure computation with public communication; this

basic model was introduced in [6] in the context of SK generation with public transaction. Terminals

1, . . . ,m observe, respectively, the sequencesXn
1 , . . . , X

n
m, of lengthn. Let g : XM → Y be a given

mapping, whereY is a finite alphabet. Forn ≥ 1, the mappinggn : Xn
M → Yn is defined by

gn(xnM) = (g(x11, . . . , xm1), . . . , g(x1n, . . . , xmn)),

xnM = (xn1 , . . . , x
n
m) ∈ Xn

M.

For convenience, we shall denote the rvgn (Xn
M) by Gn, n ≥ 1, and, in particular,G1 = g (XM)

simply byG. The terminals in a given setA ⊆ M wish to “compute securely” the functiongn(xnM)

for xnM in Xn
M. To this end, the terminals are allowed to communicate over anoiseless public channel,

possibly interactively in several rounds. Randomization at the terminals is permitted; we assume that

terminal i generates a rvUi, i ∈ M, such thatU1, . . . , Um andXn
M are mutually independent. While

the cardinalities of range spaces ofUi, i ∈ M, are unrestricted, we assume thatH (UM) <∞.

Definition 1. Assume without any loss of generality that the communication of the terminals inM
occurs in consecutive time slots inr rounds; such communication is described in terms of the mappings

f11, . . . , f1m, f21, . . . , f2m, . . . , fr1, . . . , frm,

with fji corresponding to a message in time slotj by terminali, 1 ≤ j ≤ r, 1 ≤ i ≤ m; in general,

fji is allowed to yield any function of(Ui, X
n
i ) and of previous communication described in terms of

{fkl : k < j, l ∈ M or k = j, l < i}. The corresponding rvs representing the communication will be
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depicted collectively as

F = {F11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frm},

whereF = F
(n)(UM, Xn

M). A special form of such communication will be termednoninteractive

communicationif F = (F1, ..., Fm), whereFi = fi (X
n
i ), i ∈ M.

Definition 2. For ǫn > 0, n ≥ 1, we say thatg is ǫn-securely computable(ǫn- SC) by (the terminals

in) a given setA ⊆ M with |A| ≥ 1 from observations of lengthn, randomizationUM and public

communicationF = F
(n), if

(i) gn is ǫn- recoverable from(Ui, X
n
i ,F) for every i ∈ A, i.e., there existŝg(n)i satisfying

Pr
(
ĝ
(n)
i (Ui, X

n
i ,F) 6= Gn

)
≤ ǫn, i ∈ A, (1)

and

(ii) gn satisfies the “strong” secrecy condition1

I(Gn ∧ F) ≤ ǫn. (2)

By definition, anǫn-SC functiong is recoverable (asgn) at the terminals inA and is effectively

concealed from an eavesdropper with access to the public communicationF.

Definition 3. We say thatg is securely computableby A if g is ǫn- SC byA from observations of

lengthn, suitable randomizationUM and public communicationF, such thatlim
n
ǫn = 0.

III. W HEN IS g SECURELY COMPUTABLE?

We consider first the case when all the terminals inM wish to compute securely the functiong,

i.e.,A = M. Our result for this case will be seen to be linked inherentlyto the standard concept of SK

capacity for a multiterminal source model [6], [7], and serves to motivate our approach to the general

case whenA ⊆ M.

Definition 4. [6], [7] For ǫn > 0, n ≥ 1, a functionK of (UM, Xn
M) is an ǫn-secret key(ǫn-SK)

for (the terminals in) a given set2 A′ ⊆ M with |A′| ≥ 2, achievable from observations of lengthn,

randomizationUM and public communicationF = F
(n)(UM, Xn

M) as above if

(i) K is ǫn-recoverable from(Ui, X
n
i ,F) for every i ∈ A′;

(ii) K satisfies the “strong” secrecy condition

log |K| −H(K | F) = log |K| −H(K) + I(K ∧ F) ≤ ǫn, (3)

whereK = K(n) denotes the set of possible values ofK. The SK capacityC(A′) for A′ is the largest

rate lim
n

(1/n) log |K(n)| of ǫn-SKs forA′ as above, such thatlim
n
ǫn = 0.

1The notion of strong secrecy for SK generation was introduced in [15], and developed further in [4], [5].
2For reasons of notation that will be apparent later, we distinguish between the secrecy seeking setA′ ⊆ M and the set

A ⊆ M pursuing secure computation.
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Remarks.(i) The secrecy condition (3) is tantamount jointly to a nearly uniform distribution forK (i.e.,

log |K| −H(K) is small) and to the near independence ofK andF (i.e., I(K ∧ F) is small).

(ii) For the trivial case|A′| = 1, clearlyC(A′) = H(XA′).

A single-letter characterization of the SK capacityC(A′) is provided in [6], [7].

Theorem 1. [6], [7] The SK capacityC(A′) equals

C(A′) = H(XM)−RCO(A′), (4)

where

RCO(A′) = min
RM∈R(A′)

m∑

i=1

Ri (5)

with

R(A′) =

{
RM : RB ≥ H(XB | XBc), B  M,A′ * B

}
. (6)

Furthermore, the SK capacity can be achieved with noninteractive communication and without recourse

to randomization at the terminals inM.

Remark.The SK capacityC(A′) is not increased if the secrecy condition (3) is replaced by either of

the following weaker requirements3 [14], [6]:

1

n
I(K ∧ F) ≤ ǫn and

1

n
(log |K| −H(K)) ≤ ǫn, (7)

or

1

n
I(K ∧ F) ≤ ǫn and lim sup

n

1

n
log |K| <∞. (8)

We recall from [6] thatRCO(A′) has the operational significance of being the smallest rate of

“communication for omniscience” forA′, namely the smallest ratelim
n

(1/n) log ‖F(n)‖ of suitable

communication for the terminals inM wherebyXn
M is ǫn-recoverable from(Ui, X

n
i ,F

n) at each

terminal i ∈ A′, with lim
n
ǫn = 0; here‖F(n)‖ denotes the cardinality of the set of values ofF

(n).

Thus,RCO(A′) is the smallest rate of interterminal communication among the terminals inM that

enables every terminal inA′ to reconstruct with high probability all the sequences observed by all the

other terminals inM with the cooperation of the terminals inM/A′. The resulting omniscience forA′

corresponds to total “common randomness” of rateH(XM). The notion of omniscience, which plays

a central role in SK generation for the multiterminal sourcemodel [6], will play a material role in the

secure computation ofg as well.

Noting thatgn : Xn
M → Yn implies

1

n
log |gn (Xn

M)| ≤ log |XM|, (9)

3When randomization at the terminals inM is not permitted, the converse proof in [6] uses only the firstpart of (7) or (8).
When randomization is allowed, since the cardinality of therange space ofUM is unrestricted, the converse proof in [6] uses
additionally the second part of (7) or (8).
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a comparison of the conditions in (2, 9) and (8) that must be met by a securely computableg and a

SK K, respectively, shows for a giveng to be securely computable, it is necessary that

H(G) ≤ C(M). (10)

Remarkably, it transpires thatH(G) < C(M) is a sufficient condition forg to be securely computable,

and constitutes our first result.

Theorem 2. A functiong is securely computable byM if

H(G) < C(M). (11)

Conversely, ifg is securely computable byM, thenH(G) ≤ C(M).

Theorem 2 is, in fact, a special case of our main result in Theorem 5 below.

Example1. Let m = 2, and letX1 andX2 be {0, 1}-valued rvs with

PX1(1) = p = 1− PX1(0), 0 < p < 1,

PX2|X1
(1 | 1) = PX2|X1

(0 | 0) = 1− δ, 0 < δ <
1

2
.

Let g(x1, x2) = x1 + x2 mod 2.

From [14], [1] (and also Theorem 1 above),C({1, 2}) = h(p ∗ δ)−h(δ), wherep ∗ δ = (1− p)δ+

p(1− δ). SinceH(G) = h(δ), by Theorem 2g is securely computable if

2h(δ) < h(p ∗ δ). (12)

We give a simple scheme for the secure computation ofg when p = 1
2 , that relies on Wyner’s well-

known method for Slepian-Wolf data compression [19] and a derived SK generation scheme in [22],

[21]. We can write

Xn
1 = Xn

2 +Gn mod 2 (13)

with Gn being independent separately ofXn
2 and Xn

1 . We observe as in [19] that there exists a

binary linear code, of rate∼= 1 − h(δ), with parity check matrixP such thatXn
1 , and soGn, is

ǫn-recoverable from(F1, X
n
2 ) at terminal 2, where the Slepian-Wolf codewordF1 = PXn

1 constitutes

public communication from terminal 1, and whereǫn decays to0 exponentially rapidly inn. Let Ĝn be

the estimate ofGn thereby formed at terminal 2. Further, letK = K(Xn
1 ) be the location ofXn

1 in the

coset of the standard array corresponding toP. By the previous observation,K too is ǫn-recoverable

from (F1, X
n
2 ) at terminal 2. From [22], [21],K constitutes a “perfect” SK for terminals 1 and 2, of

rate∼= I(X1 ∧X2) = 1− h(δ), and satisfying

I(K ∧ F1) = 0. (14)

Also, observe from (13) thatK = K(Xn
1 ) = K(Xn

2 +Gn) andF1 = F1(X
n
1 ) = F1(X

n
2 + Gn), and

for each fixed value ofGn, the (common) arguments ofK andF1 have the same distribution asXn
1 .
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Hence by (14),

I(K ∧ F1, G
n) = I(K ∧ F1 | Gn) = 0, (15)

sinceI(K ∧Gn) ≤ I(Xn
1 ∧Gn) = 0.

Then terminal 2 communicateŝGn in encrypted form as

F2 = Ĝn +K mod 2

(all represented in bits), with encryption feasible since

H(G) = h(δ) < 1− h(δ) ∼= 1

n
H(K),

by the sufficient condition (12). Terminal 1 then decryptsF2 usingK to recoverĜn. The computation

of gn is secure since

I(Gn ∧ F1, F2) = I(Gn ∧ F1) + I(Gn ∧ F2 | F1)

is small; specifically, the first term equals0 sinceI(Gn ∧ F1) ≤ I(Gn ∧ Xn
1 ) = 0, while the second

term is bounded using (15) according to

I(Gn ∧ F2 | F1) = H(Ĝn +K | F1)−H(Ĝn +K | F1, G
n)

≤ H(K)−H(Gn +K | F1, G
n) + δn

= I(K ∧ F1, G
n) + δn = δn,

where the inequality follows by Fano’s inequality and the exponential decay ofǫn to 0.

Next, we turn to the general model for the secure computability of g by a given setA ⊆ M. Again

in the manner of (10), it is clear that a necessary condition is

H(G) ≤ C(A).

In contrast, whenA  M, H(G) < C(A) is not sufficient for g to be securely computable byA as

seen by the following simple example.

Example2. Let m = 3, A = {1, 2} and consider rvsX1, X2, X3 with X1 = X2, whereX1 is

independent ofX3 andH(X3) < H(X1). Let g be defined byg(x1, x2, x3) = x3, xi ∈ Xi, 1 ≤ i ≤ 3.

Clearly,C({1, 2}) = H(X1). Therefore,H(G) = H(X3) < C({1, 2}). However, forg to be computed

by the terminals1 and2, its value must be conveyed to them necessarily by public communication from

terminal3. Thus,g is not securely computable.

Interestingly, the secure computability ofg can be examined in terms of a new SK generation

problem that is formulated next.

A. Secret Key Aided by Side Information

We consider an extension of the SK generation problem in Definition 4, which involves additional

side informationZn
A′ that is correlated withXn

M and is provided to the terminals inA′ for use inonly
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the recovery stageof SK generation; however, the public communicationF remains as in Definition

1. Formally, the extension is described in terms of generic rvs (X1, . . . , Xm, {Zi, i ∈ A′}), where the

rvs Zi too take values in finite setsZi, i in A′. We note that the full force of this extension will not

be needed to characterize the secure computability ofg; an appropriate particularization will suffice.

Nevertheless, this concept is of independent interest.

Definition 5. A functionK of (UM, Xn
M, Zn

A′) is anǫn- secret key aided by side informationZn
A′ (ǫn-

ASK) for the terminalsA′ ⊆ M, |A′| ≥ 2, achievable from observations of lengthn, randomization

UM and public communicationF = F(UM, Xn
M) if it satisfies the conditions in Definition 4 with

(Ui, X
n
i , Z

n
i ,F) in the role of(Ui, X

n
i ,F) in condition (i). The corresponding ASK capacityC(A′, ZA′)

is defined analogously as in Definition 4.

In contrast with the omniscience rate ofH(XM) that appears in the passage following Theorem

1, now an underlying analogous notion of omniscience will involve total common randomness of rate

exceedingH(XM). Specifically, the enhanced common randomness rate will equal the entropy of the

“maximum common function” (mcf) of the rvs(XM, Zi)i∈A, introduced for a pair of rvs in [8] (see

also [3, Problem 3.4.27]).

Definition 6. [8] For two rvsQ,R with values in finite setsQ,R, the equivalence relationq ∼ q′

in Q holds if there existN ≥ 1 and sequences(q0, q1, . . . , qN ) in Q with q0 = q, qN = q′ and

(r1, . . . , rN ) in R satisfyingPr (Q = ql−1, R = rl) > 0 andPr (Q = ql, R = rl) > 0, l = 1, . . . , N .

Denote the corresponding equivalence classes inQ by Q1, . . . ,Qk. Similarly, let R1, . . . ,Rk′ denote

the equivalence classes inR. As argued in [8],k = k′ and for1 ≤ i, j ≤ k,

Pr (Q ∈ Qi | R ∈ Rj) = Pr (R ∈ Rj | Q ∈ Qi) =

{
1, i = j,

0, i 6= j.

The mcf of the rvsQ,R is a rv mcf(Q,R) with values in{1, . . . , k} and pmf

Pr (mcf(Q,R) = i) = Pr (Q ∈ Qi) = Pr (Q ∈ Qi, R ∈ Ri) , i = 1, . . . , k.

For rvsQ1, ..., Qm taking values in finite alphabets, we define themcf(Q1, ..., Qm) recursively by

mcf(Q1, ..., Qm) = mcf

(
mcf(Q1, ..., Qm−1), Qm

)
(16)

with mcf(Q1, Q2) as above.

Definition 7. With Qn denotingn i.i.d. repetitions of the rvQ, we define

mcf
n(Q1, ..., Qm) = {mcf (Q1t, ..., Qmt)}nt=1 . (17)

Note thatmcfn(Q1, ..., Qm) is a function ofeachindividualQn
i , i = 1, ...,m.

Remark.As justification for the definition (16), consider a rvξ that satisfies

H(ξ | Qi) = 0, i = 1, ...,m (18)

and suppose for any other rvξ′ satisfying (18) thatH(ξ) ≥ H(ξ′). Then Lemma 3 below shows that

ξ must satisfyH(ξ) = H(mcf(Q1, ..., Qm)).
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The following result for the mcf ofm ≥ 2 rvs is a simple extension of the classic result form = 2

[8, Theorem 1].

Lemma 3. Given0 < ǫ < 1, if ξ(n) is ǫ-recoverable fromQn
i for eachi = 1, ...,m, then

lim sup
n

1

n
H
(
ξ(n)

)
≤ H(mcf(Q1, ..., Qm)). (19)

Proof: The proof involves a recursive application of [8, Lemma, Section 4] to mcf(Q1, ..., Qm) in (16),

and is provided in Appendix A.

We are now in a position to characterize ASK capacity. In a manner analogous to Theorem 1, this

is done in terms ofH(mcf(XM, Zi)i∈A′) and the smallest rate of communicationRCO(A′, ZA′) for

each terminal inA′ to attain omniscience that corresponds ton i.i.d. repetitions ofmcf(XM, Zi)i∈A′ .

Theorem 4. The ASK capacityC(A′;ZA′) equals

C(A′;ZA′) = H(mcf((XM, Zi)i∈A′))−RCO(A′;ZA′)

where

RCO(A′;ZA′) = min
RM∈R(A′;ZA′ )

∑

i∈M

Ri

with

R(A′;ZA′) =

{
RM : RB ≥ max

j∈Bc∩A′
H(XB | XBc , Zj), B  M,A′ * B

}
. (20)

The proof of Theorem 4 is along the same lines as that of Theorem 1 [6] and is provided in

Appendix B.

The remark following Theorem 1 also applies to the ASK capacity C(A′;ZA′), as will be seen

from the proof of Theorem 4.

B. Characterization of Secure Computability

If g is securely computable by the terminals inA, thenGn constitutes an ASK forM under the

constraint (8), of rateH(G), with side information in the form ofGn provided only to the terminals in

Ac in the recovery stage of SK generation. Thus, a necessary condition for g to be securely computable

by A, in the manner of (10), is

H(G) ≤ C(M;ZM), (21)

whereZM = ZM(A) = {Zi}i∈M with

Zi =

{
0, i ∈ A
G, i ∈ Ac.

(22)
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By particularizing Theorem 4 to the choice ofZM as above, the right side of (21) reduces to

C(M;ZM) = H(XM)−RCO(M;ZM) (23)

where

RCO(M;ZM) = min
RM∈R(M;ZM)

∑

i∈M

Ri

with

R(M;ZM) =

{
RM : RB ≥

{
H(XB | XBc), B  M,A * B

H(XB | XBc , G), B  M,A ⊆ B

}
.

Our main result says that the necessary condition (21) is tight.

Theorem 5. A functiong is securely computable byA ⊆ M if

H(G) < C(M;ZM). (24)

Furthermore, under the condition above,g is securely computable with noninteractive communication

and without recourse to randomization at the terminals inM.

Conversely, ifg is securely computable byA ⊆ M, thenH(G) ≤ C(M;ZM).

Remarks.(i) It is easy to see thatC(M) ≤ C (M;ZM) = C (M;ZM(A)) ≤ C(A). In particular, the

second inequality holds since in the context ofC (M;ZM) the side information for recoveryZM in

(22) is not provided to the terminals inA and by noting that a SK forM is also a SK forA.

(ii) Observe in Example 2 thatC (M;ZM) = C(M) = 0 and so, by Theorem 5,g is not securely

computable as noted earlier.

Example3. For the auction example in Section I,A = {1, ...,m− 1} andX1, ..., Xm−1 are i.i.d. rvs

distributed uniformly on{1, ..., k}, whileXm = (X1, ..., Xm−1). Let g1(x1, ..., xm) = max
1≤i≤m−1

xi and

g2(x1, ..., xm) = arg max
1≤i≤m−1

xi. Then, straightforward computation yields fork < m− 1 that

H(G1) < log k < H(G2) = log(m− 1),

and for bothg1, g2 that

C (M;ZM) = C(M),

where, by Theorem 1,

C(M) = H(XM)−RCO(M) = (m− 1) log k − (m− 2) log k = log k.

By Theorem 5,g1 is securely computable whereasg2 is not. In fact,g2 is not securely computable

by any terminal i ∈ {1, ...,m − 1}. This, too, is implied by Theorem 5 upon nothing that for each

i ∈ {1, ...,m− 1} and a restricted choiceA = {i},

C (M;ZM(A)) = H(Xi) = log k < log(m− 1) = H(G2),

where the first equality is a consequence of remark (i) following Theorem 5 and remark (ii) after

Definition 4.
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C. A Decomposition Result

The sufficiency condition (24) prompts the following two natural questions: Does the difference

C (M;ZM)−H(G) possess an operational significance? Ifg is securely computable by the terminals

in A, clearlyGn forms a SK forA. CanGn be augmented suitably to form aSK for A of maximum

achievable rate?

The answers to both these questions are in the affirmative. Inparticular, our approach to the second

question involves a characterization of the minimum rate ofcommunication for omniscience forA,

under the additional requirement that this communication be independent ofGn. Specifically, we show

below that for a securely computable functiong, this minimum rate remainsRCO(A) (see (6)).

Addressing the first question, we introduce a rvKg = K
(n)
g such thatK = (Kg, G

n) constitutes

an ǫn-ASK for M with side informationZM as in (22) and satisfying the additional requirement

I (Kg ∧Gn) ≤ ǫn. (25)

Let the largest ratelimn(1/n) log |K(n)
g | of such an ASK beCg (M;ZM). Observe that sinceK is

required to be nearly independent ofF, whereF is the public communication involved in its formation,

it follows by (25) thatKg is nearly independent of(Gn,F).

Turning to the second question, in the same vein letK ′
g be a rv such thatK ′ =

(
K ′

g, G
n
)

constitutes

anǫn-SK for A ⊆ M and satisfying (25). LetCg(A) denote the largest rate ofK ′
g. As noted above,K ′

g

will be nearly independent of(Gn,F′), whereF′ is the public communication involved in the formation

of K ′.

Proposition 6. For A ⊆ M, it holds that

(i) Cg (M;ZM(A)) = C (M;ZM(A)) −H(G),

(ii) Cg(A) = C(A) −H(G).

Remarks.(i) For the caseA = M, both (i) and (ii) above reduce toCg(M) = C(M)−H(G).

(ii) Theorem 1 and Proposition 6 (ii) lead to the observation

H(XM) = RCO(A) +H(G) + Cg(A),

which admits the following heuristic interpretation. The “total randomness”Xn
M that corresponds

to omniscience decomposes into three “nearly mutually independent” components: a minimum-sized

communication for omniscience forA and the independent parts of an optimum-rate SK forA composed

of Gn andK ′
g.

IV. PROOFS OFTHEOREM 5 AND PROPOSITION6

A. Proof of Theorem 5

The necessity of (21) follows by the comments preceding Theorem 5.

The sufficiency of (24) will be established by showing the existence ofnoninteractivepublic

communication comprising source codes that enable omniscience corresponding toXn
M at the terminals
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in A, and thereby the computation ofg. Furthermore, the corresponding codewords are selected soas

to be simultaneously independent ofGn, thus assuring security.

First, from (24) and (23), there existsδ > 0 such thatRCO(M;ZM) + δ < H(XM|G), using

G = g(XM). For eachi andRi ≥ 0, consider a (map-valued) rvJi that is uniformly distributed on

the familyJi of all mappingsXn
i → {1, . . . , ⌈exp(nRi)⌉}, i ∈ M. The rvsJ1, ..., Jm, Xn

M are taken

to be mutually independent.

Fix ǫ, ǫ′, with ǫ′ > mǫ and ǫ + ǫ′ < 1. It follows from the proof of the general source network

coding theorem [3, Lemma 3.1.13 and Theorem 3.1.14] that forall sufficiently largen,

Pr
({
jM ∈ JM : Xn

M is ǫn-recoverable from
(
Xn

i , jM\{i}

(
Xn

M\{i}

)
, Zn

i

)
, i ∈ M

})

≥ 1− ǫ, (26)

providedRM = (R1, ..., Rm) ∈ R(M;ZM), where ǫn vanishes exponentially rapidly inn. This

assertion follows exactly as in the proof of [6, Proposition1, with A = M] but with X̃i there equal to

(Xi, Zi) rather thanXi, i ∈ M. In particular, we shall chooseRM ∈ R(M;ZM) such that

m∑

i=1

Ri ≤ RCO(M;ZM) +
δ

2
. (27)

Below we shall establish that

Pr ({jM ∈ JM : I (jM(Xn
M) ∧Gn) ≥ ǫn}) ≤ ǫ′, (28)

for all n sufficiently large, to which end it suffices to show that

Pr
({
jM ∈ JM : I

(
ji(X

n
i ) ∧Gn, jM\{i}

(
Xn

M\{i}

))
≥ ǫn
m

})
≤ ǫ′

m
, i ∈ M, (29)

since

I (jM (Xn
M) ∧Gn) =

m∑

i=1

I
(
ji (X

n
i ) ∧Gn | j1 (Xn

1 ) , . . . , ji−1

(
Xn

i−1

))

≤
m∑

i=1

I
(
ji (X

n
i ) ∧Gn, jM\{i}

(
Xn

M\{i}

))
.

Then it would follow from (26), (28) and definition ofZM in (21) that

Pr

({
jM ∈ JM : Gn is ǫn-recoverable from

(
Xn

i , jM\{i}

(
Xn

M\{i}

))
, i ∈ A,

andI(jM(Xn
M) ∧Gn) < ǫn

})
≥ 1− ǫ− ǫ′.

This shows the existence of a particular realizationjM of JM such thatGn is ǫn-SC from

(Xn
i , jM\{i}

(
Xn

M\{i}

)
) for eachi ∈ A.

It now remains to prove (29). Fixi ∈ M and note that for eachji ∈ Ji, with ‖ji‖ denoting the
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cardinality of the (image) setji(Xn
i ),

I
(
ji

(
Xn

i

)
∧Gn, jM\{i}

(
Xn

M\{i}

))

≤ I
(
ji(X

n
i ) ∧Gn, jM\{i}

(
Xn

M\{i}

))
+ log ‖ji‖ −H (ji(X

n
i ))

= D(ji(X
n
i ), (G

n, jM\{i}(X
n
M\{i})‖Uji(Xn

i
) ×
(
Gn, jM\{i}

(
Xn

M\{i}

))
, (30)

where the right side above denotes the (Kullback-Leibler) divergence between the joint pmf of

ji(X
n
i ),
(
Gn, jM\{i}

(
Xn

M\{i}

))
and the product of the uniform pmf onji(Xn

i ) and the pmf of(
Gn, jM\{i}

(
Xn

M\{i}

))
. Using [6, Lemma 1], the right side of (30) is bounded above further by

svar log
‖ji‖
svar

, (31)

wheresvar = svar(ji(X
n
i );G

n, jM\{i}(X
n
M\{i}) is the variational distance between the pmfs in the

divergence above. Therefore, to prove (29), it suffices to show that

Pr
({
jM ∈ JM : svar

(
ji(X

n
i );G

n, jM\{i}

(
Xn

M\{i}

))
≥ ǫn
m

})
≤ ǫ′

m
, i ∈ M, (32)

on account of the fact thatlog ‖ji(Xn
i )‖ = O(n), and the exponential decay to0 of ǫn. Defining

J̃i =
{
jM\{i} ∈ JM\{i} : Xn

M is ǫn-recoverable from
(
Xn

i , jM\{i}

(
Xn

M\{i}

)
, Zn

i

)}
,

we have by (26) thatPr
(
JM\{i} ∈ J̃i

)
≥ 1− ǫ. Thus, in (32),

Pr
({
jM ∈ JM : svar

(
ji (X

n
i ) ;G

n, jM\{i}

(
Xn

M\{i}

))
≥ ǫn
m

})

≤ ǫ +
∑

jM\{i}∈J̃i

Pr
(
JM\{i} = jM\{i}

)
×

Pr
({
ji ∈ Ji : svar

(
ji(X

n
i );G

n, jM\{i}

(
Xn

M\{i}

))
≥ ǫn
m

})
,

sinceJi is independent ofJM\{i}. Thus, (32), and hence (29), will follow upon showing that

Pr
({
ji ∈ Ji : svar

(
ji(X

n
i );G

n, jM\{i}

(
Xn

M\{i}

))
≥ ǫn
m

})
≤ ǫ′

m
− ǫ, jM\{i} ∈ J̃i, (33)

for all n sufficiently large. FixjM\{i} ∈ J̃i. We take recourse to Lemma C2 in Appendix C, and set

U = Xn
M, U ′ = Xn

i , V = Gn, h = jM\{i}, and

U0 =
{
xnM ∈ Xn

M : xnM = ψi

(
xni , jM\{i}

(
xnM\{i}

)
, gn (xnM) 1 (i ∈ Ac)

)}

for some mappingψi. By the definition ofJ̃i,

Pr (U ∈ U0) ≥ 1− ǫn,

so that condition (C2)(i) preceding Lemma C2 is met. Condition (C2)(ii), too, is met since conditioned

on the events in (C2)(ii), only thosexnM ∈ U0 can occur that are determined uniquely by theirith
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componentsxni .

Upon choosing

d = exp

[
n

(
H(XM|G)− δ

6

)]
,

in (C3), the hypotheses of Lemma C2 are satisfied withλ =
√
ǫn, for an appropriate exponentially

vanishingǫn. Then, by Lemma C2, with

r = ⌈exp[nRi]⌉ , r′ =



exp


n


 ∑

l∈M\{i}

Rl +
δ

6







,

and withJi in the role ofφ, we get from (C4) and (27) that

Pr
({
ji ∈ Ji : svar

(
ji(X

n
i );G

n, jM\{i}

(
Xn

M\{i}

))
≥ 14

√
ǫn

})

decays to0 doubly exponentially inn, which proves (33). This completes the proof of Theorem 5.

B. Proof of Proposition 6

(i) Since the rv(K(n)
g , Gn), with nearly independent components, constitutes an ASK for M with

side informationZM as in (22), it is clear that

H(G) + Cg (M;ZM) ≤ C (M;ZM) . (34)

In order to prove the reverse of (34), we show thatC (M;ZM) − H(G) is an achievable ASK rate

for Kg that additionally satisfies (25). First, note that in the proof of Theorem 5, the assertions (26)

and (29) mean that for all sufficiently largen, there exists a public communicationFM, say, such that

I(FM ∧Gn) < ǫn andXn
M is ǫn-recoverable from(Xn

i , FM, Zn
i ) for every i ∈ M, with lim

n
ǫn = 0.

Fix 0 < τ < δ, whereδ is as in the proof of Theorem 5. Apply Lemma C2, choosing

U = U ′ = Xn
M, U0 = Xn

M, V = Gn, h = FM, d = exp
[
n
(
H (XM|G)− τ

6

)]
, (35)

whereby the hypothesis (C3) of Lemma C2 is satisfied for alln sufficiently large. Fixing

r′ =
⌈
exp

[
n
(
RCO (M;ZM) +

τ

2

)]⌉
,

by Lemma C2 a randomly chosenφ of rate

1

n
log r = H(XM|G)−RCO (M;ZM)− τ = C (M;ZM)−H(G) − τ

will yield an ASK Kg = K
(n)
g = φ (Xn

M) which is nearly independent of(FM, Gn) (and, in particular,

satisfies (25)) with positive probability, for alln sufficiently large.

(ii) The proof can be completed as that of part (i) upon showing that for a securely computableg, for

all τ > 0 andn sufficiently large, there exists a public communicationF ′
M that meets the following

requirements: its rate does not exceedRCO(A) + τ ; I(F ′
M ∧ Gn) < ǫn; andXn

M is ǫn-recoverable

from (Xn
i , F

′
M) for every i ∈ A. To that end, forRM = (R1, ..., Rm) ∈ R(M;ZM) as in the proof
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of Theorem 5, considerR′
M = (R′

1, ..., R
′
m) ∈ R(A) that satisfiesR′

i ≤ Ri for all i ∈ M and

m∑

i=1

R′
i ≤ RCO(A) + τ,

noting thatR (M;ZM) ⊆ R(A). Further, forJM andJM as in that proof, define a (map-valued) rv

J ′
i that is uniformly distributed on the familyJ ′

i of all mappings from

{1, . . . , ⌈exp(nRi)⌉} to {1, . . . , ⌈exp(nR′
i)⌉}, i ∈ M. The random variablesJ1, ..., Jm,

J ′
1, ..., J

′
m, X

n
M are taken to be mutually independent. DefineJ 0

M as the set of mappingsjM ∈ JM

for which there exists aj′M ∈ J ′
M such thatXn

M is ǫn-recoverable from

(Xn
i , j

′
M (jM (Xn

M))) for everyi ∈ A. By the general source network coding theorem [3, Lemma 3.1.13

and Theorem 3.1.14], applied to the random mappingJ ′
M (JM), it follows that for all sufficiently large

n,

Pr
(
JM ∈ J0

M

)
≥ 1− ǫ.

This, together with (26) and (29) in the proof of Theorem 5, imply that for a securely computableg

there existjM ∈ JM and j′M ∈ J ′
M for which the public communicationF ′

M , j′M(jM) satisfies

the aforementioned requirements. Finally, apply Lemma C2 with U,U ′,U0, V andd as in (35) but with

h = F ′
M and

r′ =
⌈
exp

[
n
(
RCO (A) +

τ

2

)]⌉
.

As in the proof above of part (i), a SKK ′
g = K

′(n)
g of rate

1

n
log r = H(XM|G)−RCO (A)− τ = C (A)−H(G)− τ

which is nearly independent of(F ′
M, Gn) (and, hence, satisfies (25)) exists for alln sufficiently large.

V. D ISCUSSION

We obtain simple necessary and sufficient conditions for secure computability involving function

entropy and ASK capacity. The latter is the largest rate of a SK for a new model in which side information

is provided for use in only the recovery stage of SK generation. This model could be of independent

interest. In particular, a function is securely computableif its entropy is less than ASK capacity of an

associated secrecy model. The difference is shown to correspond to the maximum achievable rate of an

ASK which is independent of the securely computed function and, together with it, forms an ASK of

optimum rate. Also, a function that is securely computed byA can be augmented to form a SK forA
of maximum rate.

Our results extend to functions defined on a block of symbols of fixed length in an obvious manner

by considering larger alphabets composed of supersymbols of such length. However, they do not cover

functions of symbols of increasing length (inn).

In our proof of Theorem 5, g was securely computed from omniscience at all the terminals in

A ⊆ M that was attained using noninteractive public communication. However, as Example 1 illustrates,

omniscience is not necessary for the secure computation ofg, and it is possible to make do with
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communication of rate less thanRCO(M) using an interactive protocol. A related unresolved question

is: what is the minimum rate of public communication for secure computation?

A natural generalization of the conditions for secure computability of g by A ⊆ M given here

entails a characterization of conditions for the secure computability of multiple functionsg1, ..., gk by

A1, ...,Ak of M, respectively. This unsolved problem, in general, will notpermit omniscience for any

Ai, i = 1, ..., k. For instance withm = 2, A1 = {1}, A2 = {2}, andX1 andX2 being independent, the

functionsgi(xi) = xi, i = 1, 2, are securely computable trivially, but not through omniscience since, in

this example, public communication is forbidden for the secure computation ofg1, g2.

APPENDIX A

The proof of Lemma 3 is based on [8, Lemma, Section 4], which isparaphrased first. Let the rvs

Q andR take values in the finite setQ andR, respectively. For a stochastic matrixW : Q → Q,

let {D̃1, ..., D̃l} be the ergodic decomposition (into communicating classes)(cf. e.g., [12]) ofQ based

on W . Let D̃(n) denote a fixed ergodic class ofQn (the n-fold Cartesian product ofQ) on the basis

of Wn (the n-fold product ofW ). Let D(n) andR(n) be any (nonempty) subsets of̃D(n) andRn,

respectively.

Lemma GK. [8] For D̃(n),D(n),R(n) as above, assume that

Pr
(
Qn ∈ D(n) | Rn ∈ R(n)

)
≥ exp[−nǫn],

Pr
(
Rn ∈ R(n) | Qn ∈ D(n)

)
≥ exp[−nǫn], (A1)

wherelim
n
ǫn = 0. Then (as stated in [8, bottom of p. 157]),

Pr
(
Qn ∈ D(n)

)

Pr
(
Qn ∈ D̃(n)

) ≥ exp[−nκǫn log2 ǫn], (A2)

for a (positive) constantκ that depends only on the pmf of(Q,R) and onW .

A simple consequence of (A2) is that for a given ergodic classD̃(n) and disjoint subsetsD(n)
1 , ...,D(n)

t

of it, and subsetsR(n)
1 , ...,R(n)

t (not necessarily distinct) ofRn, such thatD(n)
t′ ,R(n)

t′ , t′ = 1, ..., t,

satisfy (A1), then

t ≤ exp[nκǫn log
2 ǫn]. (A3)

Note that the ergodic decomposition ofQn on the basis ofWn for the specific choice

W (q|q′) =
∑

r∈R

Pr (Q = q | R = r) Pr (R = r | Q = q′) , q, q′ ∈ Q

corresponds to the set of values ofmcfn(Q,R) defined by (17) [8]. Next, pickQ = Qm, R =

(Q1, ..., Qm−1), and define the stochastic matrixW : Q → Q by

W (q|q′) =
∑

α

Pr (Q = q | mcf(Q1, ..., Qm−1) = α)Pr (mcf(Q1, ..., Qm−1) = α | Q = q′) ,

q, q′ ∈ Q. (A4)
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The ergodic decomposition ofQn on the basis ofWn (with W as in (A4)) will correspond to the set

of values ofmcfn(Q1, ..., Qm), recalling (16). Sinceξ(n) is ǫ-recoverable fromQn
i , i = 1, ...,m, note

that

ξ′(n) =
(
ξ(n), mcfn(Q1, ..., Qm)

)

also isǫ-recoverable in the same sense, recalling definition 7. Thisimplies the existence of mappings

ξ
′(n)
i , i = 1, ...,m, satisfying

Pr
(
ξ
′(n)
1 (Qn

1 ) = ... = ξ′(n)m (Qn
m) = ξ′(n)

)
≥ 1− ǫ. (A5)

For each fixed valuec = (c1, c2) of ξ′(n), let

D(n)
c =

{
qnm ∈ Qn

m : ξ′(n)m (qnm) = c
}
,

R(n)
c =

{
(qn1 , ..., q

n
m−1) ∈ Qn

1 × ...×Qn
m−1 : ξ

′(n)
i (qni ) = c, i = 1, ...,m− 1

}
.

Let C(ǫ) denote the set ofc’s such that

Pr
(
Qn ∈ D(n)

c | Rn ∈ R(n)
c

)
≥ 1−

√
ǫ,

Pr
(
Rn ∈ R(n)

c | Qn ∈ D(n)
c

)
≥ 1−

√
ǫ. (A6)

Then, as in [8, Proposition 1], it follows from (A5) that

Pr
(
ξ′(n) ∈ C(ǫ)

)
≥ 1− 4

√
ǫ. (A7)

Next, we observe for each fixedc2, that the disjoint setsD(n)
c1,c2 lie in a fixed ergodic class ofQn

(determined byc2). Since (A6) are compatible with the assumption (A1) for alln sufficiently large, we

have from (A3) that

‖{c1 : (c1, c2) ∈ C(ǫ)}‖ ≤ exp[nκǫn log
2 ǫn], (A8)

whereκ depends on the pmf of(Q1, ..., Qm) andW in (A4), and wherelim
n
ǫn = 0. Finally,

1

n
H
(
ξ′(n)

)
=

1

n
H
(
ξ(n), mcfn(Q1, ..., Qm

)

≤ H (mcf(Q1, ..., Qm)) +
1

n
H
(
ξ(n),1

(
ξ′(n) ∈ C(ǫ)

)
| mcfn(Q1, ..., Qm)

)

= H (mcf(Q1, ..., Qm)) +
1

n

+
1

n
H
(
ξ(n) | mcfn(Q1, ..., Qm),1

(
ξ′(n) ∈ C(ǫ)

))

≤ H(mcf(Q1, ..., Qm)) + δn,

wherelim
n
δn = 0 by (A7) and (A8).
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APPENDIX B

Considering first the achievability part, fixδ > 0. From the result for a general source network [3,

Theorem 3.1.14] it follows, as in the proof of [6, Proposition 1], that forRM ∈ R (A′, ZA′) and alln

sufficiently large, there exists a noninteractive communicationF
(n) = (F

(n)
1 , ..., F

(n)
m ) with

1

n
log ‖F(n)‖ ≤

m∑

i=1

Ri + δ,

such thatXn
M is ǫn-recoverable from

(
Xn

i , Z
n
i ,F

(n)
)
, i ∈ A′. Therefore,{mcf ((XMt, Zit)i∈A′)}nt=1

is ǫn-recoverable from
(
Xn

i , Z
n
i ,F

(n)
)
, i ∈ A′. The last step takes recourse to Lemma C2 in Appendix

C. Specifically, chooseU = U ′ = {mcf ((XMt, Zit)i∈A′)}nt=1, U0 = U , V = constant,h = F (n),

d = n [H (mcf ((XM, Zi)i∈A′))− δ], whereby the hypothesis (C3) of Lemma C2 is satisfied for alln

sufficiently large. Fixing

r′ =

⌈
exp

[
n

(
m∑

i=1

Ri + δ

)]⌉
,

Lemma C2 implies the existence of aφ, and thereby an ASKK(n) = φ ({mcf ((XMt, Zit)i∈A′)}nt=1),

of rate
1

n
log r = H (mcf ((XM, Zi)i∈A′))−

m∑

i=1

Ri − 3δ.

In particular, we can choose
m∑

i=1

Ri ≤ RCO (A′;ZA′) +
δ

2
.

Sinceδ was arbitrary, this establishes the achievability part.

We prove the converse part under either of the weaker conditions (7) or (8). LetK = K(n) (UM, Xn
M, Zn

M)

be anǫn-ASK for A′, achievable using observations of lengthn, randomizationUM, public communi-

cationF = F (UM, Xn
M) and side informationZn

M. Then,

1

n
H(K) ≤ 1

n
H(K | F) + ǫn. (B1)

Let Ku = K (u,Xn
M, Zn

M) denote the random value of the ASK for a fixedUM = u. Since(Xn
M,K)

is ǫn-recoverable from the rvs(UM, Xn
M, Zn

i ) for eachi ∈ A′,

PUM ({u : (Xn
M,Ku) is

√
ǫn-recoverable from(UM = u,Xn

M, Zn
i ) for eachi ∈ A′ })

≥ 1−√
ǫn.

(B2)

Also, for eachUM = u

1

n
H (Xn

M,K | UM = u) =
1

n
H (Xn

M,Ku)
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by independence ofUM and (Xn
M, Zn

M), and therefore, by Lemma 3, foru in the set in (B2),

1

n
H (Xn

M,K | UM = u) ≤ H (mcf ((XM, Zi)i∈A′ )) + δn, (B3)

for all n sufficiently large and wherelim
n
δn = 0. Then,

1

n
H(UM, Xn

M,K) ≤ 1

n
H (UM) +H (mcf ((XM, Zi)i∈A′)) + δn +

√
ǫn log (|XM||ZM|) , (B4)

by (B2) and (B3). The proof is now completed along the lines of[6, Lemma 2 and Theorem 3].

Specifically, denoting the set of positive integers{1, ..., l} by [1, l],

1

n
H(UM, Xn

M,K) =
1

n
H(K | F) +

m∑

i=1

R′
i +

1

n
H(UM),

where

R′
i =

1

n

∑

ν:ν≡i mod m

H(Fν | F[1,ν−1]) +
1

n
H
(
Ui, X

n
i | F,K, U[1,i−1], X

n
[1,i−1]

)
−H(Ui). (B5)

ConsiderB *M, A′ * B. For j ∈ A′ ∩Bc, we have

1

n
H (UB) +

1

n
H
(
XB | Xn

Bc , Zn
j

)
=

1

n
H
(
UB, X

n
B | UBc , Xn

Bc , Zn
j

)

=
1

n
H
(
F1, ..., Frm,K, UB, X

n
B | UBc , Xn

Bc , Zn
j

)
.

Furthermore, sinceK is ǫn-recoverable from(F, UBc , Xn
Bc , Zn

j ) andH(Fν | UBc , Xn
Bc) = 0 for ν ≡ i

mod m with i ∈ Bc,

1

n
H
(
F1, ..., Frm,K, UB, X

n
B | UBc , Xn

Bc , Zn
j

)

=
1

n

rm∑

ν=1

H
(
Fν | F[1,ν−1], UBc , Xn

Bc , Zn
j

)
+

1

n
H
(
K | UBc , Xn

Bc , Zn
j ,F

)

+
1

n

∑

i∈B

H
(
Ui, X

n
i | UBc∩[i+1,m], X

n
Bc∩[i+1,m], Z

n
j ,F,K, U[1,i−1], X

n
[1,i−1]

)

≤ 1

n

∑

i∈B

[ ∑

ν:ν≡i mod m

H
(
Fν | F[1,ν−1]

)
+H

(
Ui, X

n
i | F,K, U[1,i−1], X

n
[1,i−1]

)]
+
ǫn log |K|+ 1

n

≤
∑

i∈B

Ri +H(UB), (B6)

where

Ri ,

(
R′

i +
ǫn log |K|+ 1

n

)
, i ∈ M.



20

It follows from (B1) and (B4)-(B6) that

1

n
H(K) ≤ H (mcf ((XM, Zi)i∈A′))−

m∑

i=1

Ri +

(
ǫn + δn +

ǫn log |K|+ 1

n
+
√
ǫn log (|XM||ZM|)

)
,

(B7)

whereRM ∈ R (A′, ZA′) from (B6), and therefore

m∑

i=1

Ri ≥ RCO (A′, ZA′) . (B8)

Then, (B7), (B8) imply

1

n
H(K) ≤ C (A′, ZA′) +

(
ǫn + δn +

ǫn log |K|+ 1

n
+
√
ǫn log (|XM||ZM|)

)
.

The proof is completed using the second part of (8) directly,or the second part of (7) in the manner of

[6, Theorem 3]. This completes the converse part.

APPENDIX C

Our proof of achievability in Theorem 4 and sufficiency in Theorem 5 rely on a “balanced coloring

lemma” in [1]; we state below a version of it from [6].

Lemma C1. [1, Lemma 3.1] LetP be any family ofN pmfs on a finite setU , and letd > 0 be such

that P ∈ P satisfies

P

({
u : P (u) >

1

d

})
≤ ǫ, (C1)

for some0 < ǫ < (1/9). Then the probability that a randomly selected mappingφ : U → {1, ..., r}
fails to satisfy

r∑

i=1

∣∣∣∣∣∣
∑

u:φ(u)=i

P (u)− 1

r

∣∣∣∣∣∣
< 3ǫ,

simultaneously for eachP ∈ P , is less than2Nr exp
(
− ǫ2d

3r

)
.

In contrast to the application of Lemma C1 in [6, Lemma B.2], our mentioned proofs call for

a balanced coloring of a set corresponding to a rv that differs from another rv for which probability

bounds are used. However, both rvs agree with high probability when conditioned on a set of interest.

Consider rvsU,U ′, V with values in finite setsU ,U ′,V , respectively, whereU ′ is a function ofU ,

and a mappingh : U → {1, . . . , r′}. For λ > 0, let U0 be a subset ofU such that

(i) Pr (U ∈ U0) > 1− λ2;

(ii) given U ∈ U0, h(U) = j, U ′ = u′, V = v, there existsu = u(u′) ∈ U0 satisfying

Pr (U = u | h(U) = j, V = v, U ∈ U0) =Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0) ,

1 ≤ j ≤ r′, v ∈ V . (C2)
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Then the following holds.

Lemma C2. Let the rvsU,U ′, V and the setU0 be as above. Further, assume that

PUV

({
(u, v) : Pr (U = u | V = v) >

1

d

})
≤ λ2. (C3)

Then, a randomly selected mappingφ : U ′ → {1, . . . , r} fails to satisfy

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v)

r∑

i=1

∣∣∣∣∣∣
∑

u′∈U ′:φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v)− 1

r

∣∣∣∣∣∣
< 14λ, (C4)

with probability less than2rr′|V| exp
(
− cλ3d

rr′

)
for a constantc > 0.

Proof: Using the condition (i) in the definition ofU0, the left side of (C4) is bounded above by

2λ2+

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v, U ∈ U0)

r∑

i=1

∣∣∣∣∣∣
∑

u′∈U ′:φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0)−
1

r

∣∣∣∣∣∣
.

Therefore, it is sufficient to prove that

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v, U ∈ U0)

r∑

i=1

∣∣∣∣∣∣
∑

u′∈U ′:φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0)−
1

r

∣∣∣∣∣∣
< 12λ,

(C5)

with probability greater than1− 2rr′|V| exp
(
− cλ3d

rr′

)
for a constantc > 0.

Let q = PV

({
v ∈ V : Pr (U ∈ U0|V = v) < 1−λ2

3

})
. Then, since

1− λ2 ≤ Pr (U ∈ U0) ≤
∑

v∈V : Pr(U∈U0|V=v)< 1−λ2

3

Pr (U ∈ U0|V = v)PV (v) + (1− q)

<
1− λ2

3
q + (1− q),

we get from the extremities above that

q <
3λ2

2
. (C6)

For u ∈ U0 andv ∈ V satisfying

Pr (U ∈ U0|V = v) ≥ 1− λ2

3
, Pr (U = u|V = v, U ∈ U0) >

3

d(1 − λ2)
, (C7)
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we have that

Pr (U = u|V = v) >
1

d
.

Therefore, by (C6) and (C3), it follows that

∑

(u,v):u∈U0,Pr(U=u|V =v,U∈U0)>
3

d(1−λ2)

Pr (U = u, V = v) ≤ λ2 + q <
5λ2

2
,

which is the same as

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v, U ∈ U0)

∑

u∈U0: Pr(U=u|V =v,U∈U0)>
3

d(1−λ2)

Pr (U = u|h(U) = j, V = v, U ∈ U0) <
5λ2

2
. (C8)

The bound in (C8) will now play the role of [6, inequality (50), p. 3059] and the remaining steps of

our proof, which are parallel to those in [6, Lemma B.2], are provided here for completeness.

Setting

D =




(j, v) :

∑

u∈U : Pr(U=u|V=v,U∈U0)>
3

d(1−λ2)

Pr (U = u|h(U) = j, V = v, U ∈ U0) ≤
5λ

2




, (C9)

we get that

∑

(j,v)∈Dc

Pr (h(U) = j, V = v, U ∈ U0) < λ. (C10)

Next, defining

E =

{
(j, v) : Pr (h(U) = j, V = v, U ∈ U0) ≥

λ

r′
Pr (V = v, U ∈ U0)

}
, (C11)

it holds for (j, v) ∈ E,

Pr (U = u|h(U) = j, V = v, U ∈ U0) ≤
r′

λ
Pr (U = u|V = v, U ∈ U0) . (C12)

Also,

∑

(j,v)∈Ec

Pr (h(U) = j, V = v, U ∈ U0) <
λ

r′

r′∑

j=1

∑

v∈V

Pr (V = v, U ∈ U0)

≤ λ. (C13)

Further, for(j, v) ∈ E, if

Pr (U = u|h(U) = j, V = v, U ∈ U0) >
3r′

λd(1 − λ2)
(C14)
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then from (C12), we have

Pr (U = u|V = v, U ∈ U0) >
3

d(1− λ2)
. (C15)

Therefore, recalling the conditions that defineU0 in (C2), we have for(j, v) ∈ E ∩D that

∑

u′∈U ′:

Pr(U ′=u′|h(U)=j,V=v,U∈U0)> 3r′

λd(1−λ2)

Pr (U ′ = u′|h(U) = j, V = v, U ∈ U0)

=
∑

u′∈U ′:

Pr(U=u(u′)|h(U)=j,V =v,U∈U0)> 3r′

λd(1−λ2)

Pr (U = u(u′)|h(U) = j, V = v, U ∈ U0)

=
∑

u∈U :

Pr(U=u|h(U)=j,V =v,U∈U0)>
3r′

λd(1−λ2)

Pr (U = u|h(U) = j, V = v, U ∈ U0)

≤ 5λ

2
, (C16)

where second equality is by (C2), and the previous inequality is by (C14), (C15) and (C9). Also, using

(C10), (C13), we get

∑

(j,v)∈E∩D

Pr (h(U) = j, V = v, U ∈ U0) ≥ 1− 2λ. (C17)

Now, the left side of (C5) is bounded, using (C17), as

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v, U ∈ U0)

r∑

i=1

∣∣∣∣∣∣
∑

u′∈U ′:φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0)−
1

r

∣∣∣∣∣∣

≤ 4λ+
∑

(j,v)∈E∩D

Pr (h(U) = j, V = v, U ∈ U0)

r∑

i=1

∣∣∣∣∣∣
∑

u′∈U ′:φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0)−
1

r

∣∣∣∣∣∣
. (C18)

Using (C16), the family of pmfs{Pr (U ′ = (·)|h(U) = j, V = v, U ∈ U0) , (j, v) ∈ E ∩D} satisfies

the hypothesis (C1) of Lemma C1 withd replaced byλ(1−λ2)d
3r′ and ǫ replaced by5λ/2; assume that

0 < λ < 2/45 so as to meet the condition following (C1). The mentioned family consists of at most
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r′|V| pmfs. Therefore, using Lemma C1,

r′∑

j=1

∑

v∈V

Pr (h(U) = j, V = v, U ∈ U0)

r∑

i=1

∣∣∣∣∣∣
∑

u′∈U ′:φ(u′)=i

Pr (U ′ = u′ | h(U) = j, V = v, U ∈ U0)−
1

r

∣∣∣∣∣∣
<

23λ

2

with probability greater than

1− 2rr′|V| exp
(
−25λ3(1− λ2)d

36rr′

)
≥ 1− 2rr′|V| exp

(
−cλ

3d

rr′

)
,

for a constantc. This completes the proof of (C5), and thereby the lemma.
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