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When is a Function Securely Computable?
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Abstract

A subset of a set of terminals that observe correlated sSgse¢k to compute a given function of
the signals using public communication. It is required thatvalue of the function be kept secret from
an eavesdropper with access to the communication. We shaivihté function is securely computable
if and only if its entropy is less than the “aided secret kegpacity of an associated secrecy generation
model, for which a single-letter characterization is pdad.

Index Terms

Aided secret key, balanced coloring lemma, function comfpan, maximum common function,
omniscience, secret key capacity, secure computability.

I. INTRODUCTION

In an online auctionyn — 1 bidders acting independently of each other, randomly ptawe of k
bids on a secure server. After a period of independent dailgitg, the server posts a cryptic message
on a public website. Our results show that fer > &k + 1, such a message exists from which each
bidder can deduce securely the highest bids, but no messags ® allow any of them to identify
securely the winners.

In general, suppose that the terminalsht = {1,...,m} observe correlated signals, and that a
subsetd = {1,...,a} of them are required to compute “securely” a given (singléel) functiong of
all the signals. To this end, following their observatioal,the terminals are allowed to communicate
interactively over a public noiseless channel of unlimitegbacity, with all such communication being
observed by all the terminals. The terminals.inseek to computg in such a manner as to keep
its value information theoretically secret from an eavepger with access to the public interterminal
communication. See Figufé 1. A typical application arises iwireless network of colocated sensors
which seek to compute a given function of their correlate@soeements using public communication
that does not give away the value of the function.

Our goal is to characterize necessary and sufficient cemditinder which such secure computation
is feasible. We formulate a new Shannon theoretic multileainsource model that addresses the
elemental questionVhen can a functiolg be computed so that its value is independent of the public
communication used in its computatibn
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Fig. 1. Secure computation gf

We establish that the answer to this question is innatelyected to a problem of secret key (SK)
generation in which all the terminals v seek to generate “secret common randomness” at the largest
rate possible, when the terminals 4f = M /A are provided with side information for limited use,
by means of public communication from which an eavesdropparglean only a negligible amount of
information about the SK. The public communication from amt@al can be any function of its own
observed signal and of all previous communication. Sidermtion is provided to the terminals ¢
in the form of the value of;, and can be used only for recovering the key. Such a key, ttanaided
secret key (ASK), constitutes a modification of the origination of a SK in [14], [[1], [6], [7]. The
largest rate of such an ASK, which can be used for encryptathumication, is the ASK capacity'.
Since a securely computable functigrfor .4 will yield an ASK (for M) of rate equal to its entropy
H, it is clear thaty necessarily must satisfif < C. We show that surprisinglyi/ < C'is a sufficient
condition for the existence of a protocol for the secure catafion ofg for A. When all the terminals
in M seek to compute securely, the corresponding ASK capacity reduces to thedatd SK capacity
for M [€], [[7]. We also show that a function that is securely coneguby .4 can be augmented by
residual secret common randomness to yield a SK&4af optimum rate.

We also present the capacity for a general ASK model invglarbitrary side information at the
secrecy-seeking set of terminals for key recovery aloreecdipacity is characterized in terms of the
classic concept of “maximum common functiof’] [8]. Althoutitis result is not needed in full dose for
characterizing secure computability, it remains of indefsnt interest.

We do not tackle the difficult problem of determining the minim rate of public communication
needed for the secure computatiorngofvhich remains open even in the absence of a secrecy canstrai



[11]. Nor do we fashion efficient protocols for this purpobestead, our mere objective in this work is
to find conditions for theexistenceof such protocols.

The study of problems of function computation, with and withsecrecy requirements, has a long
and varied history to which we can make only a skimpy allusiere. Examples include: algorithms for
exact function computation by multiple parties (cf. e.@Q][ [9], [10]); algorithms for asymptotically
accurate (in observation length) function computation €cfj., [18], [13]); exact function computation
with secrecy (cf. e.g.[T17]); and problems of obliviousnster [16], [2].

Our results in Sectiof Il are organized in three parts: capaf ASK model; characterization of
the secure computability af, and a decomposition result for the total entropy of the nhdeélemofs are
provided in Sectiof IV and concluding remarks in Secfidn V.

[1. PRELIMINARIES

Let Xy,..., X,,, m > 2, be rvs with finite alphabetd’, ..., X,,, respectively. For any nhonempty
setA C M ={1,...,m}, we denoteX, = (X;, i € A). Similarly, for real numbersR;,..., R,
and A C M, we denoteR,4 = (R;, i € A). Let A° be the setM\ A. We denoten i.i.d. repetitions
of Xy = (X1,...,X;n) with values inXy = &) x ... x &, by X% = (X7, ..., X]) with values
in Xy, = &7 x ... x A, Following [€], givene > 0, for rvs U, V, we say that/ is e-recoverable
from V if Pr(U # f(V)) < e for some functionf (V') of V. All logarithms and exponentials are with
respect to the base

We consider a multiterminal source model for secure contjputavith public communication; this
basic model was introduced inl[6] in the context of SK genenawith public transaction. Terminals
1,...,m observe, respectively, the sequencgs, ..., X, of lengthn. Let g : X»y — )V be a given
mapping, where) is a finite alphabet. For > 1, the mapping™ : X7, — V" is defined by

gn(xn,/\/t) = (g(xlla oo axml)a o ag(xlna oo 7xmn))a

oy = (2l ... ) € XYy

For convenience, we shall denote the g% (X7%,) by G",n > 1, and, in particularG* = g (Xnm)
simply by G. The terminals in a given sed C M wish to “compute securely” the functiogl’(z; )

for 27y, in A,. To this end, the terminals are allowed to communicate ovegiseless public channel,
possibly interactively in several rounds. Randomizatibitha terminals is permitted; we assume that
terminali generates a r¥;, i € M, such that’/,...,U,, and X}, are mutually independent. While
the cardinalities of range spacesdf,i € M, are unrestricted, we assume tHa{Un) < cc.

Definition 1. Assume without any loss of generality that the communicatid the terminals inM
occurs in consecutive time slots+rrounds; such communication is described in terms of the mapgp

flla"'afl’ﬂuf?la'"af2m7"'7f7‘11"'1f7‘m7

with f;; corresponding to a message in time sldby terminali, 1 < j <r, 1 < i <m; in general,
f;i is allowed to yield any function ofU;, X*) and of previous communication described in terms of
{fwr : k<j, le Mork=j | <i}. The corresponding rvs representing the communicatiohbeil



depicted collectively as
F={Fu,. ...Fum For,....Fom, ... Fra,..., Fr},

where F = F(Up, X7). A special form of such communication will be termedninteractive
communicationif F = (Fi, ..., F},), whereF; = f; (X["), i € M.

Definition 2. Fore, > 0,n > 1, we say thaly is ¢,-securely computablé,- SC) by (the terminals
in) a given setd C M with |A| > 1 from observations of length, randomizationU,, and public
communicatiorF = F(™) | if

(i) g™ is €,- recoverable from(U;, X', F) for everyi € A, i.e., there exist@f") satisfying
Pr (5" (U X1V F) £ G") S eny i€ A (1)

and

(i) g™ satisfies the “strong” secrecy condiﬂ:n
I(G" AF) < ¢,. (2)

By definition, ane,-SC functiong is recoverable (ag™) at the terminals ind and is effectively
concealed from an eavesdropper with access to the publiencmicationF.

Definition 3. We say thatg is securely computabley A if g is €,- SC by A from observations of
lengthn, suitable randomizatiotV ., and public communicatioii®, such thafime, = 0.

[1I. WHEN IS g SECURELY COMPUTABLE?

We consider first the case when all the terminals\ihwish to compute securely the functign
i.e., A = M. Our result for this case will be seen to be linked inheretulyhe standard concept of SK
capacity for a multiterminal source model [6]] [7], and serto motivate our approach to the general
case whend C M.

Definition 4. [6], [7] For €, > 0,n > 1, a function K of (Ux, X7},) is ane,-secret key(e,-SK)
for (the terminals in) a given setd’ C M with |A’| > 2, achievable from observations of length
randomization/, and public communicatioff = F(™) (U, X7,) as above if

(i) K is e,-recoverable fromU;, X, F) for everyi € A’;

(i) K satisfies the “strong” secrecy condition
log |KC| — H(K | F) = log |K| — H(K) + I(K AF) < ¢, 3)

whereC = K(") denotes the set of possible valuesFof The SK capacityC(A’) for A’ is the largest
ratelim (1/n)log|K™| of €,-SKs for A’ as above, such théim e, = 0.

1The notion of strong secrecy for SK generation was introduineI5], and developed further inl[4]][5].
2For reasons of notation that will be apparent later, we miistish between the secrecy seeking 4étC M and the set
A C M pursuing secure computation.



Remarks.(i) The secrecy conditioi13) is tantamount jointly to a mganiform distribution forK (i.e.,
log |K| — H(K) is small) and to the near independencefdfandF (i.e., I(K A F) is small).
(i) For the trivial caselA’| = 1, clearlyC'(A") = H(X 4/).
A single-letter characterization of the SK capadity.A’) is provided in [6], [7].
Theorem 1. [6], [7] The SK capacity’(A’) equals

C(A") = H(Xpm) — Reo(A), (4)
where
Reo(A) = RM@}&A/) ;Ri (5)
with
R(A) = {RM :Rp > H(Xp | Xp:), BEGMA ¢ B}. (6)

Furthermore, the SK capacity can be achieved with nonimtéra communication and without recourse
to randomization at the terminals iM.

Remark.The SK capacityC'(A’) is not increased if the secrecy conditidnh (3) is replaced ithee of
the following weaker requirements[14], [6]:

1 1
—I(KAF)<e, and = (log|K|— H(K)) < ey, (7)
n n
or
1 . 1
—I(KAF)<e¢, and limsup—log|K| < oco. (8)
n nooon

We recall from [[6] thatR-o(A’") has the operational significance of being the smallest rate o
“communication for omniscience” ford’, namely the smallest ratém (1/n)log|F™ || of suitable
communication for the terminals i whereby X}, is en-recovergble from(U;, X', F"*) at each
terminali € A’, with lime,, = 0; here ||[F(")|| denotes the cardinality of the set of valuesFf").
Thus, Roo(A') is the gmallest rate of interterminal communication amdmg terminals inM that
enables every terminal i’ to reconstruct with high probability all the sequences oleg by all the
other terminals inM with the cooperation of the terminals it /.A’. The resulting omniscience fot’
corresponds to total “common randomness” of rBteX \,). The notion of omniscience, which plays
a central role in SK generation for the multiterminal souncedel [6], will play a material role in the
secure computation of as well.

Noting thatg™ : X}, — Y™ implies

1
—log lg"™ (Xx)] < log | X, 9)

3When randomization at the terminals vl is not permitted, the converse proof [ [6] uses only the fiest of [7) or [B).
When randomization is allowed, since the cardinality of thege space of/. is unrestricted, the converse proof i [6] uses
additionally the second part dfl(7) dil (8).



a comparison of the conditions ifl @, 9) ad (8) that must bé gea securely computable and a
SK K, respectively, shows for a givapto be securely computable, it is necessary that

H(G) < C(M). (10)

Remarkably, it transpires théf (G) < C(M) is a sufficient condition foy to be securely computable,
and constitutes our first result.

Theorem 2. A functiong is securely computable byt if
H(G) < C(M). (11)

Conversely, ifg is securely computable by1, then H(G) < C'(M).
Theorent® is, in fact, a special case of our main result in Tére@ below.
Examplel. Let m = 2, and letX; and X, be {0, 1}-valued rvs with

PXl(l):pzl_le(O)v 0<p<l,

1

Let g(z1,22) = 21 + 2 mod 2.
From [14], [1] (and also Theorel 1 aboveé)({1,2}) = h(p*4d) — h(d), wherepxd = (1 —p)d +
p(1 —0). Since H(G) = h(d), by TheoreniRy is securely computable if

2h(8) < hip *0). (12)

We give a simple scheme for the secure computation ofhenp = % that relies on Wyner’s well-
known method for Slepian-Wolf data compressibn| [19] and @ved SK generation scheme in[22],
[21]]. We can write

X'=X3+G" mod?2 (13)

with G™ being independent separately &fy and X}*. We observe as in_[19] that there exists a
binary linear code, of ratéz 1 — h(d), with parity check matrixP such thatX?}, and soG", is
en-recoverable fron{Fy, X7') at terminal 2, where the Slepian-Wolf codewdrd = P X" constitutes
public communication from terminal 1, and wheredecays td) exponentially rapidly im. Let G" be
the estimate of7" thereby formed at terminal 2. Further, I&t= K (X}") be the location ofX{ in the
coset of the standard array correspondindtoBy the previous observatiods™ too is ¢, -recoverable
from (Fy, X7') at terminal 2. From[[22],[21]K constitutes a “perfect” SK for terminals 1 and 2, of
rate> I(X; A X2) =1 — h(9), and satisfying

I(K AFy)=0. (14)

Also, observe from[{13) thak = K(X}") = K(XJ + G") and F}, = Fy(X}") = Fi (X} + G™), and
for each fixed value o0&, the (common) arguments ¢f and 7 have the same distribution a§;'.



Hence by [1W),
I(KANFL,G")Y=T(KAF, | G") =0, (15)

since(K AG™) < I(X? ANG™) =0.
Then terminal 2 communicates” in encrypted form as

F,=G"+K mod?2
(all represented in bits), with encryption feasible since

H(G) = h(5) < 1 — h(5) = %H(K),

by the sufficient conditio{12). Terminal 1 then decryptsusing K to recoverG”. The computation
of g™ is secure since

I(Gn/\Fl,Fg):I(Gn/\Fl)+I(Gn/\F2|F]_)

is small; specifically, the first term equéalssince I(G™ A Fy) < I(G™ A X]') = 0, while the second
term is bounded using {I1L5) according to

I(G"ANFy |F))=H(G"+ K| F)-HG"+ K| F,G")
<H(K)-H(G"+ K | Fi,G") + 6,
=I(KANF,G")+ 0, =6,

where the inequality follows by Fano’s inequality and th@axential decay oé,, to 0. O
Next, we turn to the general model for the secure computglufig by a given setd C M. Again
in the manner of[(0), it is clear that a necessary conditon i

H(G) < C(A).

In contrast, whend ¢ M, H(G) < C(A) is not sufficient forg to be securely computable by as
seen by the following simple example.
Example2. Let m = 3, A = {1,2} and consider rvsX;, X5, X3 with X; = X, where X; is
independent ofX; and H(X3) < H(X1). Let g be defined byy(z1, 22, 23) = 23, 2; € X;, 1 <14 < 3.
Clearly,C({1,2}) = H(X1). Therefore H(G) = H(X3) < C({1,2}). However, forg to be computed
by the terminald and?2, its value must be conveyed to them necessarily by publicnconication from
terminal 3. Thus,g is not securely computable. O
Interestingly, the secure computability 9f can be examined in terms of a new SK generation
problem that is formulated next.

A. Secret Key Aided by Side Information

We consider an extension of the SK generation problem in Biefirid, which involves additional
side informationZ’}, that is correlated withX’}, and is provided to the terminals i’ for use inonly



the recovery stagef SK generation; however, the public communicatBrremains as in Definition
[I. Formally, the extension is described in terms of genessc( X, ..., X, {Z;,i € A’'}), where the
rvs Z; too take values in finite setg;, ¢« in A’. We note that the full force of this extension will not
be needed to characterize the secure computability; @nh appropriate particularization will suffice.
Nevertheless, this concept is of independent interest.

Definition 5. A function K of (Uxq, X}y, Z7,) is ane,- secret key aided by side informaticfi;, (e,.-
ASK) for the terminalsd’ C M, |A’| > 2, achievable from observations of length randomization
Uam and public communicatiol = F(Ux, X if it satisfies the conditions in Definitiof] 4 with
(U;, X", Z F) in the role of(U;, X*, F') in condition (i). The corresponding ASK capac®{.A’, Z 4/)
is defined analogously as in Definitiah 4.

In contrast with the omniscience rate 8f(X 1) that appears in the passage following Theorem
[I, now an underlying analogous notion of omniscience wilblae total common randomness of rate
exceedingH (X o). Specifically, the enhanced common randomness rate withlehe entropy of the
“maximum common function” (mcf) of the rv6X a(, Z;):c 4, introduced for a pair of rvs i [8] (see
also [3, Problem 3.4.27]).
Definition 6. [8] For two rvs @, R with values in finite set®Q, R, the equivalence relation ~ ¢
in Q holds if there existV > 1 and sequence§jo, q1,...,qn) in Q with ¢o = ¢, gv = ¢’ and
(ri,...,ry) in R satisfyingPr(Q = ¢-1,R=r;) > 0andPr(Q=¢q,R=7r)>0,1=1,...,N.
Denote the corresponding equivalence classe@ ioy Q,..., Q. Similarly, let R4, ..., Ry denote
the equivalence classes ®. As argued in[[8],k = k' and for1 <i,j <k,

L, i=y,
0, i#j.

The mcf of the rvsQ, R is a rvmcf(Q, R) with values in{1,...,k} and pmf

PI‘(QEQi|RERJ‘)—PI‘(R€RJ’|Q€Qi)—{

Pr(mcf(Q,R)=1i)=Pr(Qe Q;)=Pr(Qe Q;\,ReR;), i=1,... k.
For rvs @y, ..., Q. taking values in finite alphabets, we define thef (Q1, ..., @,,) recursively by

mcf(Q1, ..., Qm) = mcf(mcf(Ql, ey Qm—1), Qm) (16)

with mc£(Q1, Q2) as above.

Definition 7. With Q™ denotingn i.i.d. repetitions of the nQ, we define

mcf™(Q1, ..., Q) = {mcf (Q1¢, ..., th)}?:l . a7)

Note thatmcf™(Q1, ..., @) is a function ofeachindividual Q7,i =1, ..., m.

Remark.As justification for the definition[(16), consider a gvthat satisfies
HE1Q:)=0, i=1,..m (18)

and suppose for any other & satisfying [I8) thatt/ (¢) > H(¢'). Then Lemmal3 below shows that
& must satisfyH (¢) = H(mcf(Q1, ..., Qm))-



The following result for the mcf ofn > 2 rvs is a simple extension of the classic resultfor= 2
[8l Theorem 1].

Lemma 3. Given0 < ¢ < 1, if £(™) is e-recoverable fromQ? for eachi = 1,...,m, then
1
limsup —H (5<”>) < Hmet(Q1, .., Q). (19)

Proof: The proof involves a recursive application bf [8, Lemma,t®ec4] tomcf(Q1, ..., @) in (@6),
and is provided in Appendix A.

We are now in a position to characterize ASK capacity. In ameamnalogous to Theordnh 1, this
is done in terms off (mcf (X, Z;)ica’) @and the smallest rate of communicati®ao(A’, Z 4 ) for
each terminal ind’ to attain omniscience that correspondsitai.d. repetitions ofmct (X ¢, Z;)ica:-

Theorem 4. The ASK capacity’(A’; Z /) equals

C(A's Za) = H(mef((Xam, Zi)iea)) — Reo(A'; Za)
where

R .AI;Z 1) = i Rl
CO( A) RMG’]I&%;ZA/)Z'EZ/\A

with

R(.AI;ZA/): {RM :RB > ‘EI]Igla%(A H(XB |XBc,Zj), BE;M,.AI%B} (20)
7 c ’

The proof of Theorenil4 is along the same lines as that of The@ig6] and is provided in
Appendix B.

The remark following Theorefll 1 also applies to the ASK caya€i(A’; Z 4 ), as will be seen
from the proof of Theorernl4.

B. Characterization of Secure Computability

If g is securely computable by the terminals.dh thenG™ constitutes an ASK formt under the
constraint[(B), of raté7 (&), with side information in the form ofs™ provided only to the terminals in
A¢ in the recovery stage of SK generation. Thus, a necessaditmnfor ¢ to be securely computable
by A, in the manner of[(10), is

H(G) < C(M; Zpm), (21)

whereZy = Zy(A) = {Z;}iem With

Zi:{o, 1eA (22)
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By particularizing Theorerl4 to the choice &f,, as above, the right side df(21) reduces to

C(M;Zp) = HXm) — Roco(M; Zp) (23)
where
Roo(M; Zpm) = RME%%;ZM)EA; R;
with

H(Xp|Xp:), BSCM,ALB
RM;Zpm) =< Rm: Rp > .
| ) { He {H(XBIXBC,G), B¢ M,ACB

Our main result says that the necessary condifioh (21) Ig.tig
Theorem 5. A functiong is securely computable byt C M if

H(G) < C(M; Znm). (24)

Furthermore, under the condition above,is securely computable with noninteractive communication
and without recourse to randomization at the terminalsiifi

Conversely, ifg is securely computable byt C M, then H(G) < C(M; Z ).
Remarks.(i) It is easy to see that'(M) < C (M; Zy) = C(M; Zp(A)) < C(A). In particular, the
second inequality holds since in the context(fM; Z ) the side information for recoverg ,, in
(22) is not provided to the terminals id and by noting that a SK foM is also a SK forA.
(il) Observe in Example 2 that’' (M; Zy) = C(M) = 0 and so, by Theoreii 5 is not securely
computable as noted earlier.
Example3. For the auction example in SectihA = {1,...,m — 1} and X1, ..., X,,,_; are i.i.d. rvs
distributed uniformly on{1, ..., k}, while X,,, = (X1, ..., X;,—1). Let g1 (z1, ...,z ) = max x; and

1<i<m—1
g2(x1, ..., x;,) = arg max ;. Then, straightforward computation yields for< m — 1 that

1<i<m—1

H(Gy) <logk < H(G2) = log(m — 1),

and for bothgy, g» that
C(M;Zpm) = C(M),

where, by Theorerm]1,
C(M) =H(Xm)— Rco(M) =(m—1)logk — (m —2)logk = logk.

By Theorem(b,g; is securely computable wheregs is not. In fact,g, is not securely computable
by any terminali € {1,...,m — 1}. This, too, is implied by Theoreml 5 upon nothing that for each
i€{l,...,m—1} and a restricted choicd = {i},

C(M; Zm(A)) = H(X;) = logk <log(m — 1) = H(G»),

where the first equality is a consequence of remark (i) fdligwTheorem{ b and remark (ii) after
Definition[4. O
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C. A Decomposition Result

The sufficiency condition[(24) prompts the following two mal questions: Does the difference
C (M; Zy) — H(G) possess an operational significance@ 1§ securely computable by the terminals
in A, clearly G™ forms a SK forA. CanG"™ be augmented suitably to form&K for A of maximum
achievable rate?

The answers to both these questions are in the affirmati@articular, our approach to the second
question involves a characterization of the minimum rate@hmunication for omniscience fod,
under the additional requirement that this communicatierndependent of/”. Specifically, we show
below that for a securely computable functignthis minimum rate remain®co(.A) (see [6)).

Addressing the first question, we introduce aiy = Ké(,") such thatK = (K,,G™) constitutes
an ¢,-ASK for M with side informationZ,, as in [22) and satisfying the additional requirement

I(K,AG™) < en. (25)

Let the largest ratéim,,(1/n) log|IC§,”)| of such an ASK beC9 (M; Z,). Observe that sincé’ is
required to be nearly independent®f whereF is the public communication involved in its formation,
it follows by (28) thatk, is nearly independent aiG", F).

Turning to the second question, in the same veitklgbe a rv such thak'’ = (K;], G™) constitutes
ane,-SK for A C M and satisfying[(25). Le€'?(.A) denote the largest rate &f;. As noted abovel’;
will be nearly independent diz™, F'), whereF" is the public communication involved in the formation
of K'.

Proposition 6. For A C M, it holds that

(i) C7(M;Zm(A)) =C(M;Zm(A) — H(G),
(i4) CI(A) = C(A) — H(G).

Remarks.(i) For the cased = M, both (i) and (ii) above reduce 69 (M) = C(M) — H(G).
(i) Theorem[1 and Propositidd 6 (ii) lead to the observation

H(Xm) = Reo(A) + H(G) + CI(A),

which admits the following heuristic interpretation. Theotal randomness’X %, that corresponds
to omniscience decomposes into three “nearly mutually peddent” components: a minimum-sized
communication for omniscience fot and the independent parts of an optimum-rate SKA@momposed
of G" and K.

V. PROOFS OFTHEOREMI[G AND PROPOSITIONG

A. Proof of Theoreral5

The necessity of(21) follows by the comments preceding Téredd.
The sufficiency of [24) will be established by showing thesesiice ofnoninteractivepublic
communication comprising source codes that enable onemiseicorresponding t& 'y, at the terminals
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in A, and thereby the computation gf Furthermore, the corresponding codewords are selected so
to be simultaneously independent@f, thus assuring security.

First, from [24) and[(23), there exists> 0 such thatRco(M; Zum) + 6 < H(Xm|G), using
G = g(Xm). For eachi and R; > 0, consider a (map-valued) r¥; that is uniformly distributed on
the family 7; of all mappingsX* — {1,..., [exp(nR;)]}, i € M. The rvsJy, ..., J,,, X\, are taken
to be mutually independent.

Fix €, €', with ¢ > me ande + ¢ < 1. It follows from the proof of the general source network
coding theorem([3, Lemma 3.1.13 and Theorem 3.1.14] thaalfasufficiently largen,

Pr ({jM € Jm = Xy is e,-recoverable from(Xi",jM\{i} (X}f/[\{i}) ,ZZ-") 1€ M})
Z 1- €, (26)
provided Ry = (R1,...,Rn) € R(M;Zr), wheree, vanishes exponentially rapidly in. This

assertion follows exactly as in the proof 6f [6, Propositigrwith A = M] but with X, there equal to
(Xi, Z;) rather thanX;, i € M. In particular, we shall choosB € R(M; Zq) such that

" )
ZRicho(M;ZM)+§. (27)
i=1
Below we shall establish that
Pr({jm € Tnm T (Gm(X3y) ANG") = en}) < €, (28)
for all n sufficiently large, to which end it suffices to show that
. Con - " €n e
Pr({]MEJM.I(]i(Xi)/\G s JM\ {4} (XM\{l}))ZE})SE’ i€ M, (29)

since

M-

I(jam (X3) ANG™) I(Gi (XP)AG™ | g1 (XT) - s dim (XT00))

.
Il
-

<

I

Il
-

I (j (X AG™, jan(ay (X?A\{i})) '

2

Then it would follow from [26),[(2B) and definition of , in (21) that
Pr({jM € Jm : G" is e,-recoverable from(Xl-",jM\{i} (X}f/[\{i})) i€ A,
andI(jm (X ) ANG") < en}) >1—e—¢.
This shows the existence of a particular realizatjan of J, such thatG" is ¢,-SC from

(X7 dangiy (Xj(/l\{i})) for eachi € A.
It now remains to prove[(29). Fix € M and note that for each, € 7;, with ||j;|| denoting the
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cardinality of the (image) sef;(X"),

105 (X1) A G Ganvgsy (X))
<I (ji(Xin) A G™, iy (X}\l/l\{i})) +log ||l — H (ji(X{"))
= DX (G iy (K ) Wiy * (G iy (X)) (39)
where the right side above denotes the (Kullback-Leiblergence between the joint pmf of
ji(Xi”),(G”,jM\{i} (X}(/[\{i})) and the product of the uniform pmf gi3(X;*) and the pmf of
(G",jM\{i} (Xj\’/l\{i})). Using [6, Lemma 1], the right side df (B0) is bounded abowvéhier by

svar log Wi (31)

SUGT

where suar = Svar (Ji(X); G™, jan\ (4} (X}\LA\{Z.}) is the variational distance between the pmfs in the
divergence above. Therefore, to prolzel (29), it suffices twsthat

Pr ({jM € IM : Svar (ji(Xin);Gnva\{i} (X}\I/[\{i})) > %}) < %, i€ M, (32)

on account of the fact thabg ||j;(X;")|| = O(n), and the exponential decay @oof ¢,,. Defining
Ji = {j/\/l\{i} € Tm\(iy : X is e,-recoverable from(XZ-",jM\{i} (X}f/l\{i}) ,Zi”)} ,

we have by[(26) thaPr (JM\{Z-} c j) > 1— e Thus, in [32),

€n

Pr ({jM € IM : Svar (jz' (Xi"): G jagiy (X/’\l/l\{i})) 2 E})
et Y Pr(ang =dang) X
Jrmgiy €T:

Pr ({] € Ji : Svar (ji(Xin);Gnva\{i} (X?A\{i})) = %}) ’

since J; is independent off v\ (;3. Thus, [32), and henc&(29), will follow upon showing that

!’

Pr({ii € Ztsvar (36X G ianiy (Xhagn)) 2 2}) S == i € (39)

m

for all n sufficiently large. Fixjn (i) € J;. We take recourse to LemnialC2 in Appendix C, and set
U= X}\IA,UI = XZ-n,V =G",h ZjM\{i}, and

Uy = {177\4 € Xy ah = (I?vj/\/l\{i} (I1/l\/[\{i}) 9" (2Ry) 1 (i € Ac))}
for some mapping);. By the definition of.7;,
Pr(U ely) >1— e,

so that condition[{32)(i) preceding LemmalC2 is met. CondiffC2)(ii), too, is met since conditioned
on the events in[{Q2)(ii), only those}, € U, can occur that are determined uniquely by thifr
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componentscy'.
Upon choosing

d = exp [n (H(XM|G) —~ %)} :

in (C3), the hypotheses of LemmalC2 are satisfied witk= /€, for an appropriate exponentially
vanishinge,,. Then, by Lemm&_Q2, with

r= [exp[nRiH ) = |VeXp [n ( Z o g)]“ |
leM\{i}

and with J; in the role of¢, we get from[[CH) and{27) that

Pr ({.71 € Ji : Svar (ji(Xin); G", Jm\{i} (X}\’A\{i})) > 14\/5})

decays td) doubly exponentially im, which proves[(33). This completes the proof of Theofém 5.

B. Proof of Propositiori6

(i) Since the rv(Ké"), G"), with nearly independent components, constitutes an ASKMbwith
side informationZ as in [22), it is clear that

H(G) + €9 (M; Zag) < C (M Zg). (34)

In order to prove the reverse df {34), we show thatM; Z,,) — H(G) is an achievable ASK rate
for K, that additionally satisfief (5). First, note that in thegfrof Theorenib, the assertiorlsS{26)
and [29) mean that for all sufficiently large there exists a public communicatid,, say, such that
I(Fpm ANG™) < €, and X} is e,-recoverable from( X[, Fiq, Z]') for everyi € M, with lime,, = 0.
Fix 0 < T < 6, whered is as in the proof of Theorefd 5. Apply LemrhalC2, choosing !

U=U'=XY, U=2XY, V=G" h=Fy, d=exp [n (H (X G) — %)} . (35)
whereby the hypothesiE (€3) of LemihalC2 is satisfied fonadufficiently large. Fixing

o= oo (o320 + ]

by LemmaCR a randomly chosenof rate
1
~logr = H(X|G) = Reo (Mi Za) = 7 = C (M Z) = H(G) =

will yield an ASK K, = K_(S”) = ¢ (X},) which is nearly independent ¢f'r(, G™) (and, in particular,
satisfies[(2b)) with positive probability, for all sufficiently large.

(i) The proof can be completed as that of part (i) upon shgvitmat for a securely computabide for
all > 0 andn sufficiently large, there exists a public communicatibf), that meets the following
requirements: its rate does not excedo(A) + 7; I(F), A G™) < €,; and X7}, is ¢,-recoverable
from (X', F'\,) for everyi € A. To that end, forRy( = (R1, ..., Rmn) € R(M; Zpr) as in the proof



15
of TheorenTd, consideR/,, = (R}, ..., R.,,) € R(A) that satisfies?; < R; for all i € M and

S"R; < Roo(A) +,

i=1
noting thatR (M; Zx) € R(A). Further, forJy and 7y as in that proof, define a (map-valued) rv
J! that is uniformly distributed on the family/ of all mappings from
{1,...,Jexp(nR;)]} to {1,...,[exp(nR})]}, i € M. The random variables, ..., J,,,
Ji, . Jl,, X, are taken to be mutually independent. Defifig, as the set of mappingsu € Jam
for which there exists g/, € J,, such thatX}, is ¢,-recoverable from
(X7, i (Gm (XRy))) for everyi € A. By the general source network coding theorem [3, Lemmd3.1.
and Theorem 3.1.14], applied to the random mappifig(Jr4), it follows that for all sufficiently large
n,

Pr(JMEJ?Vl) >1—e.

This, together with[(26) and_(R9) in the proof of Theorem 5pliynthat for a securely computable
there existjr € Juv andjh, € Ji, for which the public communicatiod’y, = 5, (jr) satisfies
the aforementioned requirements. Finally, apply Lerimh @& W, U’, U, V andd as in [35) but with
h = F}, and
" T
= o[ (oo )]

As in the proof above of part (i), a SK = K;(") of rate
1
Elogr: H(Xm|G)—Rco(A)—1=C(A) —H(G)—T1

which is nearly independent ¢f', ,, G") (and, hence, satisfies {25)) exists for rlbufficiently large.
O

V. DISCUSSION

We obtain simple necessary and sufficient conditions fourgecomputability involving function
entropy and ASK capacity. The latter is the largest rate df &8 a new model in which side information
is provided for use in only the recovery stage of SK genenatichis model could be of independent
interest. In particular, a function is securely computabies entropy is less than ASK capacity of an
associated secrecy model. The difference is shown to gamnelsto the maximum achievable rate of an
ASK which is independent of the securely computed functind, dogether with it, forms an ASK of
optimum rate. Also, a function that is securely computed4dygan be augmented to form a SK far
of maximum rate.

Our results extend to functions defined on a block of symbbfxedlength in an obvious manner
by considering larger alphabets composed of supersymlaisah length. However, they do not cover
functions of symbols of increasing length (ir).

In our proof of Theoreni]5, g was securely computed from onimime at all the terminals in
A C M that was attained using noninteractive public commuracatiowever, as Example 1 illustrates,
omniscience is not necessary for the secure computatio @id it is possible to make do with



communication of rate less tha®xo (M) using an interactive protocol. A related unresolved goesti
is: what is the minimum rate of public communication for secaomputation?

A natural generalization of the conditions for secure cotapllity of ¢ by A C M given here
entails a characterization of conditions for the securemaability of multiple functionsys, ..., g by
Aq, ..., A of M, respectively. This unsolved problem, in general, will petmit omniscience for any
A;,i=1,..., k. Forinstance withn = 2, A; = {1}, A2 = {2}, andX; and X being independent, the
functionsg; (z;) = =;, i = 1,2, are securely computable trivially, but not through omieisce since, in
this example, public communication is forbidden for theuseccomputation ofj;, go.

APPENDIX A

The proof of Lemmal3 is based [8, Lemma, Section 4], whigbaimphrased first. Let the rvs
@ and R take values in the finite se@ and R, respectively. For a stochastic matik : @ — O,
let {D1, ..., D;} be the ergodic decomposition (into communicating clasgesk.g., [12]) of Q based
on W. Let D™ denote a fixed ergodic class @f* (the n-fold Cartesian product o®) on the basis
of W (the n-fold product of W). Let D) and R(™ be any (nonempty) subsets of™ and R",
respectively.
Lemma GK. [B] For D), D) R(") as above, assume that

Pr (Q" eD™ |R" e R(”)) > exp[—ne,],
Pr (R" eRM™ | Q" e D(”)) > exp|—ney), (AL)
wherelim e, = 0. Then (as stated i [8, bottom of p. 157]),

Pr(Q™ € D)

~ > exp[_n’ien 10g2 En]v (AZ)
Pr (Qn e D(n))

for a (positive) constank that depends only on the pmf @, R) and onW/.

A simple consequence ¢f{A2) is that for a given ergodic cl2€8 and disjoint subset@gn), cny Dt(")
of it, and subset§€§"), ...,R§"> (not necessarily distinct) oR™, such that’DEfl),REfl),t’ =1,..,t,
satisfy [A1), then

t < exp[nke, log® €,). (A3)
Note that the ergodic decomposition @' on the basis ofV’™ for the specific choice

Wi(glq)=> Pr(@=q|R=r)Pr(R=r|Q=¢q), ¢qd€Q
reR

corresponds to the set of values w&£"(Q, R) defined by [(I7) [[B]. Next, pickQ = Q.,, R =
(@1, ..., Qm—1), and define the stochastic matiiX : Q — Q by

W(glg') = > Pr(Q=q|mct(Q1,..,Qm-1) = ©)Pr (mct(Q1, ..., Q1) = | @ = ¢'),

.4 €9. (Ad)

16
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The ergodic decomposition @” on the basis of#/™ (with W as in [A2)) will correspond to the set

of values ofmct™(Q1, ..., Q.,), recalling [I6). Since&(™ is e-recoverable fronQ?,i = 1, ...,m, note
that

¢ = (£, mef"(Q, s Q)

also ise-recoverable in the same sense, recalling definffion 7. Fhgies the existence of mappings
¢ i =1,...,m, satisfying

Pr(6"(Q1) = . = €(Qa) =) 21—, (AS)
For each fixed value = (¢, c2) of €™, let
D = {qi € Qi & (ah) = cf
R = {(q?, 1) € QT X . x Q1 gg(n)(q?) =ci=1,...,m-— 1}.
Let C(¢) denote the set of's such that
Pr (Q" e D™ | R" e Rﬁ")) >1— /e,
Pr (R" eRM | Q" e D§">) >1- e (A6)
Then, as in[[B, Proposition 1], it follows frori_(A5) that
Pr (§’<”> e C(e)) >1-4ye (A7)

Next, we observe for each fixed, that the disjoint set§)Cl e, lie in a fixed ergodic class 0©"
(determined by:,). Since [[AB) are compatible with the assumptibnl(A1) forraBufficiently large, we
have from [(A3) that

[[{c1: (c1,c2) € Cle)}]| < exp[nke, log? €nls (A8)

wherer depends on the pmf @, ..., @,,) andW in (A4), and wherdime,, = 0. Finally,

lH (5'(71)) - %H (g("),mcf"(Ql, ---7Qm)

< H (met(Qr, s Q) + ~H (€. 1 (¢ € 0(9) I met" (@1, ... Qu)

= H (mcf(Q1, ..., Qm)) +
%H (5<n> | mef™(Q1, ooy Q) 1 (g’<"> e O(e)))
< Hmctf(Q1, o, Qm)) + 0,

3|=3

_|_

wherelim §,, = 0 by (A7) and [A8). O
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APPENDIX B
Considering first the achievability part, fix> 0. From the result for a general source netwark [3,

Theorem 3.1.14] it follows, as in the proof &fi [6, Proposgitid], that for Ry € R (A’, Z4 ) and alln
sufficiently large, there exists a noninteractive commaitiin F (™) = (Fl("), . F,(n")) with

1 m
—log |[F™| <Y R; 40
~log|[F™)] < ; +9,
such that¥'y, is e,-recoverable from X7, Z1*, F™) ;i € A'. Therefore {mct (X rt¢, Zit)icar) iy
is ¢,,-recoverable from{ X[, Z, F®™) i € A'. The last step takes recourse to Lenimé C2 in Appendix
C. Specifically, choos&/ = U’ = {mct ((Xau, Zit)icar)} 1oy, Uo = U, V = constanth = F™),
d =n[H (mcf (X, Zi)icar)) — 0], whereby the hypothesiE{C3) of Lemihal C2 is satisfied fonall

sufficiently large. Fixing
T/ - ’Vexp |j71 <ZR1 +5> —‘ 7
1=1

Lemmal[C2 implies the existence of¢ga and thereby an ASKX (™) = ¢ ({mcf (X ae, Zit)icar) 1ey),
of rate

1 m
- logr = H (mct (X, Zi)icar)) — Zl R; — 34.

In particular, we can choose

N

Y Ri < Roo (A Za) +

=1
Sinced was arbitrary, this establishes the achievability part.
We prove the converse part under either of the weaker congiflf) or[(B). Letk’ = K (™) (Upy, XV Zv)

be ane,-ASK for A’, achievable using observations of lengthrandomizatiorlU/,, public communi-
cationF = F (Un, X}) and side informatiorZ’y. Then,

1 1
H(K) < ~H(K | F)+ 0. (1)

Let K, = K (u, X}, Z},) denote the random value of the ASK for a fixgd, = u. Since(X},, K)
is €,,-recoverable from the rvei,(, X, Z7") for eachi € A’,

Py, (u: (X3, Ky) is y/€,-recoverable fromUxq = u, X, Z1") for eachi € A’ })

>1— e,
(B2)
Also, for eachUn; = u

1 1
—H (XY, K |Um =u)=—H (X}, Ky)
n n



by independence diin( and (X7}, Z},), and therefore, by Lemnid 3, farin the set in [BR),

1

EH (X0 K | Upm = u) < H (mef (X, Zi)icar)) + On,s (B3)
for all n sufficiently large and wherém ¢,, = 0. Then,

1 1

SH(Upm, X, K) < —H (Uns) + H (et (X, Zidiear)) + 0n + Ven log (|XmllZml), - (B4)
by (B2) and [BB). The proof is now completed along the lines[@&fLemma 2 and Theorem 3].
Specifically, denoting the set of positive integéis...,} by [1,],

1 1 i 1
~H X" K)=_—H(K|F E/ ~H
n (UMv M ) n ( | )+ Rz+n (UM)v

=1

1
Ri=— > HE|Fuyy)+-H (Ui,Xi" |F, K, U[M,l],Xﬁyif”) — H(U;). (B5)

viv=i mod m

ConsiderB ¢ M, A" ¢ B. Forj € A'N B¢, we have

1 1 1
EH(UB) +—H (Xp | X3, 2}) = ~H (U, X5 | Upe, X35, Z7)
1
=—H (Fr, .o, Fom, K, U, X}y | Uge, Xpoe, Z7) .
Furthermore, sincé’ is e, -recoverable from{F, Upe, X3., Z7) and H (F), | Upe, Xj5.) = 0 for v =
mod m with 7 € B¢,

1
“H (Fy, oo, Fyn, K, Up, X3 | Upe, X e, Z7)
n

1 < 1
= > H(F,| Fuy-1.Up, Xpe, Z') + ~H (K | Upe, X}, 7}, F)
v=1
1 n n n n
+ E ZH (UzaXz | UBCﬁ[i+l,m]7Xch[i+1)m], Z7 ,F, K, U[lvifl]’X[l,i—l])
i€B

1
S_E
niGB

<> R+ H(Up), (B6)
i€B

enlog |K| + 1
n

> H(F | Fup)+H (UL X[ | F K, Uu,l-u,Xﬁ,“])] +

v:iv=t mod m

where

. 1
Riﬁ<R§+7€ og K + ) ie M.
n



It follows from (B1)) and [B#){(Bb) that

m

1 enlog |l + 1
LH() < H (not ((Xan Z0iea) = 3 R (e 0+ 2B 4 iog (2.
=1
(B7)
where Ry € R (A, Z 4/) from (BE), and therefore
> Ri > Reo (A, Za). (B8)

=1
Then, [BT), [B8) imply

! ol |
H(K) < C(A, Za) + <En P %

 Vartos (A Zu) ).

The proof is completed using the second par{df (8) directlfthe second part of{7) in the manner of
[6l Theorem 3]. This completes the converse part. O

APPENDIX C

Our proof of achievability in Theorefd 4 and sufficiency in ©hem[® rely on a “balanced coloring
lemma” in [1]; we state below a version of it frornl [6].

Lemma CL1. [1} Lemma 3.1] LetP be any family ofN pmfs on a finite set/, and letd > 0 be such

that P € P satisfies
P ({u : P(u) > é}) <, (C1)

for some0 < e < (1/9). Then the probability that a randomly selected mapping/ — {1,...,r}
fails to satisfy

T

D

i=1

< e,

> Pt

w:p(u)=1i

simultaneously for eacl? € P, is less thare Nr exp (—E;—:’).
In contrast to the application of Lemnia]C1 in [6, Lemma B.2ly anentioned proofs call for
a balanced coloring of a set corresponding to a rv that diffesm another rv for which probability
bounds are used. However, both rvs agree with high probabitien conditioned on a set of interest.
Consider rvdJ, U’, V' with values in finite set&/, /', V), respectively, wheré&’ is a function ofU,
and a mappind : U — {1,...,7'}. For A > 0, let U, be a subset off such that
(i) Pr(U € Up) > 1—\%;
(i) given U € Uy, h(U) = j,U" = ',V = v, there existu = u(u’) € Uy satisfying

Pr(U=u|h(U)=j4V=0U€cUy) =Pr (U =u"|WU) =34V =0v,U€cly),
1<j<r veV. (C2
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Then the following holds.
Lemma C2. Let the rvsU, U’, V and the set/, be as above. Further, assume that

Py ({(u,v):Pr(U:u|V:v)>$}) < A2 (C3)

Then, a randomly selected mappitig &/’ — {1,...,r} fails to satisfy

T

SN Pr(wU) =4V =0)) > Pr(U’:u’|h(U):j,V:v)—% <14\, (C4)

j=1lvey i=1 |ueU’: p(u')=i

r

Proof: Using the condition (i) in the definition a@ffy, the left side of[(CH) is bounded above by

with probability less thar2r’|V| exp (— Ckg,d) for a constantc > 0.

A2+ DN " Pr(h(U) =4,V =v,U € Up)
j=lvey

™

1
> Yoo Pr(U=d |WU) =4V =0Ucly) - ~|.
=1 |u el :p(u')=i "

Therefore, it is sufficient to prove that

SN Pr(h(U) =4,V =0,U €U
j=1lvey
. 1
> > Pr(U =d |h(U) =4V =0vUcly) — =| <12},
=1 | el :p(u')=1 "

(C5)
with probability greater than — 277/ |V| exp (— Cj:,d) for a constant: > 0.
Let g = Py ({v eV:Pr(UelhlV=u)< %}) Then, since
1-XN<Pr(Uel) < > Pr(Uelp|V=0v)Py(v)+(1-q)
VeV Pr(Uelo|V=v)< 122
)2
1—
<—g—at+(1-a),
we get from the extremities above that
3\?
q< = (C6)
2
Foru € Uy andv € V satisfying
P(U6U|V—)>1_/\2 Pr(U =ulV =v,U €Uy) > 5 (C7)
T 0 =v) = ) r =u =, 0 d(l—)\Q)’
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we have that

1
Pr(U=ulV =v)> 7
Therefore, by[[CB) and {C3), it follows that
52
> Pr(Uzu,Vzv)g)\2+q<T,
(u,v):uEUo,Pr(U:u\V:v,UEUo)>ﬁ
which is the same as
SN Pr(h(U) =4,V =v,U €U
j=1vey
. 52
> Pr(U = ulh(U) =5,V =v,U €Up) < =~ (C8)

u€Uy: Pr(U:u|V:v,U€Mo)>d(1+ﬂ)

The bound in[{CB) will now play the role of][6, inequality (5. 3059] and the remaining steps of
our proof, which are parallel to those inl [6, Lemma B.2], arevided here for completeness.
Setting

5\
D=1 (j,v): > Pr(U=ulh(U) =35,V =v,U €l) < 5, (C9)
u€M:Pr(U:u\V:u,U€Mo)>ﬁ
we get that
> Pr(h(U) =4V =0Ucl) <\ (C10)
(4,v)eDe
Next, defining
B={(.0) P =3V =0 U ew) 2 3Pr(v —vU e b, €1
it holds for (j,v) € E,
/
Pr(U = ulh(U) = j,V = v,U € Up) < %Pr U =ulV =0,U €ly). (C12)
Also,
. A
S Pr(MU) =4V =v,Uelly) < FZZPr(V:v,UGL{O)
(j)U)EEC Jj=1lveVy
<A (C13)
Further, for(j,v) € E, if
) 3r!
Pr(U=ulh(U) =34V =0v,U €lyp) > (C14)

Ad(1—22)



then from [CIR), we have

3

Therefore, recalling the conditions that defidg in (C2), we have for(j,v) € £ N D that

Y Pr(U =u|hU) =4V =v,U €U
u' eU’:

Pr(U’:u’|h(U):j,V:v,Ueuo)>#fm
= > Pr(U=u@)|h(U) =34V =v,U € U)
u' e’ ,

Pr(U:u(u')\h(U):j,V:v,UGZ/{o)>#Z}\2)

= > Pr(U=ulh(U)=jV =0vU €U
ueU: ,

Pr(U:u\h(U):j,V:v,Ueuo»ﬁ

< % (C16)

where second equality is by (IC2), and the previous inegquialiby (C14), [CIb) and (Q9). Also, using
(C10), [C13), we get

> Pr(h(U) =5V =0Ucl)>1-2\ (C17)

(4,v)€END

Now, the left side of[{Cb) is bounded, usidg (C17), as

iZPr(h(U):j,V:v,UEUO)

j=1vey
. 1
> S Pr(U=d|hU)=34V=0Ucly) — -
=1 |u' €U :p(u')=1i "
<4h+ > Pr(h(U) =4V =0vU €l
(4,v)eEND
. 1
> > Pr(U=u|WU)=jV =0Ucly)—=|. (C18)
=1 |u' €U :p(u')=1i "
Using [CI8), the family of pmf§Pr (U’ = ()|h(U) = 4,V =v,U € Uy), (j,v) € EN D} satisfies
the hypothesis{G1) of Lemnia 1 withreplaced byL’\z)d ande replaced by5)\/2; assume that

3r!

0 < X < 2/45 so as to meet the condition following(IC1). The mentionedilfarronsists of at most
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r'|V| pmfs. Therefore, using Lemnia1C1,

SN Pr(h(U) =4,V =v,U € Up)

j=lvey
_ 1| 23\
> > Pr(U' =u' | W(U) =,V =v,U €lUp) -~ < ==
=1 |ueU :p(u')=1i "
with probability greater than
252%(1 — A?)d 3d
1—2rr"|V]exp _BA = AT)d >1—2rr'|V|exp _A :
36rr! rr!
for a constant. This completes the proof of {C5), and thereby the lemma. O
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