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Abstract

This paper considers the optimum single cell power-controinaximizing the aggregate (uplink)
communication rate of the cell when there are peak power consints at mobile users, and a
low-complexity data decoder (without successive decodip@t the base station. It is shown, via
the theory of majorization, that the optimum power allocation is binary, which means links are
either “on” or “off”. By exploiting further structure of the optimum binary power allocation,
a simple polynomial-time algorithm for finding the optimum transmission power allocation
is proposed, together with a reduced complexity near-optiral heuristic algorithm. Sufficient
conditions under which channel-state aware time-divisiormultiple-access (TDMA) maximizes
the aggregate communication rate are established. Finallya numerical study is performed to
compare and contrast the performance achieved by the optimm binary power-control policy
with other sub-optimum policies and the throughput capaciy achievable via successive decoding.
It is observed that two dominant modes of communication arie, wideband or TDMA, and that
successive decoding achieves better sum-rates only undegan perfect interference cancellation

efficiency.
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I. INTRODUCTION

Next generation 4G wireless communication systems areiregtjto support all-IP services
including high data rate multimedia traffic! [1], with bit eatargets as high ak Gbit/s for low
mobility, and100 Mbit/s for high mobility [2]. Transmission at such high ratis certainly achiev-
able today on point-to-point links, using the great advanoede in wireless communications
over the past couple of decades. But in wireless networkdyding 4G systems, interference
between links remains as a fundamental bottleneck thatsnetle overcome [3]. Part of the
challenge arises from the broadcast nature of the sharedeas medium: transmission power
has to be allocated to each link, but this allocation has kiwoc effects on other links in the
network. Much progress has been made on this problem wheettaates are specified for
each user and the objective is to minimize total transmiteyoinw the network[[4]. However,
solving for optimum power allocations that maximize theatdBhannon-theoretic sum-rate in
the presence of interfering links seems to be much hardes. dienerally anon-linear, non-
convexconstrained optimization problem![5]. This motivates arcledor structure leading to
simplifications in the power allocation problem for sumerataximization.

In this paper, we focus on the optimum allocation of transioispowers to mobile terminals in
order to maximize the total communication sum-rate whemadomplexity single-user decoder
(without successive decoding) is used at the base statiois. i$ the conventional single cell
matched filter detection based uplink model: All mobiles imr¢he same cell and must all be
decoded at the same base station. Even though this optiomzatoblem is non-convex, we
solve it by identifying an underlyin@chur-convestructure in the objective sum-rate function.
We show that the optimum power allocation bgary, i.e., a user either transmits with full
power or does not transmit at all. By utilizing the binaryusture of the sum-rate maximizing
optimum power allocation, we observe two dominant modesoafiraunication: either the best
user transmits with full power, which can be considered anobhquality based time-division-
multiple-access (TDMA) mode, or all users transmit withl fubwer, which can be considered
a wideband (WB) mode. This result has implications for impating joint power-control and
scheduling, and helps to theoretically justify existinggeeering approaches, such as code-
division-multiple-access (CDMA), and scheduling basedcbannel quality.

We also compare sum-rates achieved by the optimum poweret@olicy with throughput
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capacity limits that can be achieved by successive deco@ungresults indicate that gains over
the simple optimum binary power-control due to advancedriatence cancellation techniques

can be harvested only if the cancellation efficiency is rpEafect.

Il. RELATED WORK

In this paper, we are motivated by recent work on interfeeametworks that shows that binary
power-control is often close to optimal when interferers&éated as Gaussian noise, links have
maximum (peak) power constraints, and the objective is taimiae the sum-rate, even if it
is not necessarily optimal in general [6]. “Binary” heretjmseans that a link is either “on” or
“off”, either at zero power, or maximum power, without tagiany value in the continuum of
possible values betwedghand the peak power level.

In addition to [6], some other works such as [7], [8] and [$aaimotivate us to investigate the
optimality of binary power-control. Both [7] and![8] considjointly optimal allocation of rates
and transmission powers in CDMA networks under alternaibjectives such as maximization of
the sum of signal-to-interference-plus-noise-ratitisNR) [7] and the packet success probability
[8]. Both approaches convert the problem into a convex dp#tion problem, and show that the
optimum power-control is indeed binary under such appratioms. In [9], the authors proved
the optimality of analmostbinary power-control strategy, up to one exceptional tmr@esion
power level in the continuum betweé@nand the peak power level, maximizing the total uplink
communication rate.

The results reported in_[6] as well as in other works raise ftivther question: When is
“binary” power-control exactly optimal? It has been shownvery recent work [10] that binary
power-control is optimal when there is total symmetry ansiiige links,i.e., all direct link gains
have one particular value, and all the cross-link gains leenather particular value (possibly the
same value as the direct link gain, but not necessarily). Btagesting feature of the result is
that it is as if the sum-rate function of the powers were either Schur-cqgnve Schur-concave
(even though it is neither), leading to the observed resadt either all links should be “on”
or just one link should be “on” at the optimal solution. A twok Schur-convex/Schur-concave
structure is observed and used, but it does not generalis®te than two links.

In the present paper, we study the sum-rate maximizatiohlgmo for the classical multiple

access channel, where all the links terminate in a commagivecnode, but the link gains can
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be arbitrary. In this setting, we show that the power-cdntroblem can be solved quite easily
via an underlying Schur-convex structure. In contrast ® siimmetric network of interfering
links, it is no longer necessarily an all-or-one resultsipossible for the chosen set of links that
are “on” to be larger than a singleton, but smaller than thetall users, but it always consists
of users with the best channels. On the other hand, we wikmesfrom numerical results that
the dominant modes, in terms of probability, corresponchtodll-on or one-on solutions.

Majorization theory and Schur-convex/concave structuvese also successfully utilized in
some previous works, including [11], [12], [13] and [14], &amswer important questions in
communications theory. This paper is another successfllcapion of majorization theory to
prove the optimality of binary power-control.

In [11], the authors focus on the transceiver design for fpmifpoint multiple-input-multiple-
output (MIMO) communication systems. By using extra degrefefreedoms provided by multi-
ple transmitter and receiver antennas, and assuming efiménum mean-square error (MMSE)
receiver or zero-forcing receiver, they show that the optiminear precoder at the transmitter
is the one diagonilazing the channele( independent noise at all channels and no interference
among them) when the cost function to be minimized is Scbuacave (or, the objective function
to be maximized is Schur-convex). Their results do not diyempply to the our problem since
we consider the sum-rate maximization in the presence effaring links in this paper. In fact,
we solve a special case of an open problem posed_ in [11] inteh&pon the optimum design
of transceivers for the MIMO multiple-access channel.

In [12], the authors focus on the design of capacity achgwpreading code sequences for
the CDMA multiple-access channel without fading. They wllmulti-user detection for joint
processing of users. Even though the performance figure of we are interested in this paper
is also related to the information capacity, our problemugeis different than the set-up in
[12]. In this paper, we look at the capacity achieving traission power allocations, rather than
the optimum spreading code sequence design, for Fadings@aushannels in the presence
of interfering links. For example, our objective sum-ratmdtion is Schur-convex whereas it
is Schur-concave in_[12]. In_[13], the same authors extered &halysis in[[12] to the case
of colored noise. In[[14], they analyze theser capacity which is defined as the maximum
number of users that can be admitted to the system by allacatireading code sequences

and transmission powers optimally without violating mimim SINR requirements, of CDMA
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systems. In this work, we focus on achieveable sum-ratberdhan on user capacity.

Our results are different from the corresponding classsalte in [15]. In [15], the maximum
Shannon-theoretic sum-rate is considered, whereas inrdsem paper, we treat interference
as pure Gaussian noise. Although our assumption simplifiesréceiver, it complicates the
power optimization problem. We note that the capacity negibthe Gaussian multiple-access
channel is well understood, and it is known that all pointshaf boundary of the rate region can
be achieved by successive decoding [16]. The optimal peeetrol for the Fading Gaussian
multiple-access channel with channel state informatidhetransmitters is also well understood
[17]. In the present paper, we arrive at the problem from &eift angle, where our interest
is in understanding the structure of power-control proldeim which interference is treated
as Gaussian noise (very relevant for general interferest@anks), which excludes successive
decoding or other multi-user decoding techniques.

From a practical perspective, treating interference ass&an noise is the approach taken
in most existing systems, including cellular systems. Nbtg the uplink of a cell is indeed a
multiple-access channel. Successive decoding is more leanp implement, and suffers from
error propagation, which is mainly a problem if channelsntdarbe estimated very reliably. We
note that Qualcomm has recently produced a chip for suseessicoding([18], so we cannot
be sure that successive decoding will not be used in pradtideed, we believe it will be. In
the present paper, we provide a comparison between therpenfice of the optimum binary
power-control scheme with that of successive decodingeundrious assumptions about the
efficiency of the cancellation process. We expect that, actice, successive decoding will be
combined with user scheduling, to reduce the potential foorepropagation, and the present
paper provides insight into the problem of combined povwertol and user scheduling, as will

be shown.

[Il. NETWORK MODEL, MAJORIZATION AND NOMENCLATURE

In this section, we will introduce the network model and sdrasic concepts from the theory

of majorization.
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A. Network Model

We focus on the uplink communication scenario whermobile users communicate with a
single base station. At time-slatthe received signal at the base station is given by the baseb

discrete-time Gaussian multiple-access channel as
Y(t) =Y Vhi(t)X;(t) + W(t),
=1

where X;(t) andh;(t) are the transmitted signal and the channel fading coefficitthe:** user,
respectively, andV (¢) is white Gaussian noise with varianeé at the base station. We assume
that W (¢) represents the cumulative effect of the thermal noise aneratell interference at the
base station. Without loss of generality, we assume thaisadls are subject to the same peak
transmission power constraint &f, i.e., E [| X;(¢)|*] < P for all tH We call a power allocation
vector (at time-slot) P = (P, - - - ,Pn)T binary if P; is either P or 0 for all zg The signal-to-

noise-ratio §NR) of the communication system under consideration is deftoelde the ratio

_ P
pP= 5z

In Sectior IV-A, we will solve the optimum power allocationgblem for time-invariant (slow
fading) channels characterized by a fixed channel vdetare., h;(t) = h; for all t. Extensions

to time-varying (fast fading) channels are straightforvar

B. Majorization and Nomenclature

R™ and R represent the set of: dimensional column vectors with real and real non-
negative coordinates, respectively. For a vestan R™, we denote its ordered coordinates by
T(1) > -+ > Ty, anddiag (x) represents the diagonal matrix with entrieskadt the diagonal.
When we writel (in boldface), we mean the vector of ones. koandy in R™, we sayx
majorizesy and write it asx =y y if we have>F x> SF  yi whenk =1,--- m — 1,
and i,z = 221 Y-

LIf the users in the original rate maximization problem haiféetent peak transmission power constraints given by thakp
power vectorP = (P, - -- ,Pn)T, then solving the modified optimization problem having théfarm peak power constraint
P and the fading processes that are scaled versions of tharottes original problem by a factor o% foralli e {1,--- ,n},
will be enough to find the optimal transmission power allarafor the original problem.

2If there is a minimum transmission powé},i, requirement to maintain some level of control traffic in thework, then

P is defined to be binary iP; is either P or Pnin for all 4.
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A function g : R™ — R is said to beSchur-convexf x =y, y implies g (x) > ¢(y); g is
said to bestrictly Schur-convexf ¢ is Schur-convex, and >y, y implies g (x) > ¢ (y) for all
x andy which are not a permutation of each othgiis Schur-concave it-g is Schur-convex.
Intuitively, a Schur-convex function increases when thepdision among the components of its
argument increases.

Schur-convex/concave functions frequently arise in nmattecal analysis and engineering
applications,e.g., [11], [12], [13], [14] and [19]. For example, every functidhat is convex
and symmetric is also a Schur-convex function. Another irtgst example of a Schur-convex
function is a separable-convex function. A functigpn Z™ +— R, whereZ C R is an interval,
is said to be aseparable-convex functioifi g is of the formg(x) = > f (x;), where f is
a convex function orf. Then, any separable-convex function is also a Schur-cofwection.
(See [20] or([21].)

IV. MAIN RESULTS
A. Optimality of Binary Power-control

In this section, we will prove the optimality of binary powesntrol for single cell communi-
cation systems without successive decoding at the baserstéfe begin by assuming that the
channel is time-invariant and characterized by a fixed célamectorh € R’} given at time0.
The vectorh can be generated according to a probability distributiart,dnce it is generated,
it is fixed and known by the base station. For this case, we thegime index, and write the

sum-rate per slot as

1o hi P,
Ra(P)==) log |1+ — , (1)
2 ; o? + Ej:l hiPilijza
whereP = (P, -- ,Pn)T is the vector of transmission powers. The base of the |dgarit

function in (1) is equal to the natural numherand therefore communication rates in this paper
are measured in terms of nats per time-slot.

The sum-rate in[{1) can be achieved using Gaussian inputhdisbns and random coding
arguments, and this is the focus of the present paper. Inrgletleese rates are not optimal, and
higher rates in the multi-user capacity region are knowndaaobhievable [22]. In fact, there is
nothing inherently suboptimal about using Gaussian codlefioThe suboptimality of (1) comes

from a failure to exploit the information content in the irfegence, which can be removed via
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cancellation. Nevertheless, we will treat the interfeeeas Gaussian noise in the present paper,
and in this context the relevant achievable rates are gved)i
We are interested in solving the followingpn-convexoptimization problem.
maximize Ry (P)
subjectto P < P1 '
Even thoughi, (P) is a non-convex function of transmission powers, it is a&#yriSchur-convex

(2)

function of receivedpowers at the base station, which will enable us to obtairsttetions for
the non-convex optimization problem inl (2).
Lemma 1l:LetD = Q) [0, h;P], x = diag (P)-h (i.e., x changes a® changes), and write

Ru(x) as a function ofx = (zy,--- ,z,)" as

1 o T
Ru(x)==) log |1+ — . (3)
2 ; 0%+ 3 Tl
Then, Ry, (x) is a strictly Schur-convex function of on D.
Proof: Fix B > 0, and defineDy = {x e R*: x € D and )}, z; = B}. OnDg # ), we

can write Ry, (x) as

1 o>+ B
Mo =3 3 ()
1 (2

=

We defineg (y) = 3 >.1, log <0;’jj§?yi) on [0, B]". Note thatg (y) is a separable-convex

function on|0, B]" sincelog <U;’iﬁy) is a strictly convex function of?, B]. Thus, we conclude
thatg (y) is strictly Schur-convex of0, B]". SinceR;, = g on Dy, we also conclude thag, is
a strictly Schur-convex function o for any B > 0 such thatDp # (). SinceD = UBZO Dg,
this last observation further implies th&, is a strictly Schur-convex function oP. [ |

Note thatx is in D if and only if P < P1. Therefore, maximizingz,(x) on D is equivalent
to solving the optimization problem inl(2). This observatimgether with the Schur-convexity
of Ry, will be the key for characterizing the optimum power allacatvectors.

The following are two simple facts about an optimum poweodcdtion vectorP* solving
(2). At P*, there must exist at least one user transmitting with pasifiower, and if there
is only one user transmitting with positive power, this usaist transmit with full power. It
also directly follows from the Schur-convexity ak, that if there are more than one users

transmitting with positive power, one of them must transmwith full powerH Otherwise, we can
3This can also bee seen by using simple scaling argumients [6].
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majorize the received power vecter= diag (P*) - h, and obtain a strictly better sum-rate by
re-adjusting transmission powers without violating thentmission power constraint. The next
theorem establishes the binary naturePsfand its structural properties.

Theorem 1:Any P* solving the problem((?2) is hinary power allocation vector at which the
users transmitting with full power correspond to the onedgritathe best channel gains.

Proof: : See AppendiXA. [

We now address the issue of uniqueness.Réh) = (P;(h),---, P,(h))" be any optimal
binary power allocation. Note that this definition extenldls inodel to allow fading, and we can
considerP (h) as providing a power control policy, adaptive to changingrofel conditions.
Then the following theorem provides uniqueness.

Theorem 2:Any optimal power-control policyP*(h) assigns the channel to the best users
for almost all fading states. If the stationary distribatiof the fading process is absolutely
continuous, theP*(h) is unique up to a set of measure zero.

Proof: See See Appendix|B. [

We note that the set of optimum power allocation vectorsisgl\{2) is not necessarily a
singleton. However, Theorefd 2 establishes uniguenes®ithiannel state vector is generated
by an absolutely continuous distribution, which is a vakd@amption for most practical systems.
Therefore, when we refer to an optimum power allocationaeat power-control policy for the
rest of the paper, we will usP*-notation without any ambiguity.

Finally, it is important to consider what the constraint ) (neans in the case of a fading
channel. We can interpret this constraint apemk power constraint. IfP were an average
power constraint on the powers modulating Gaussian codsljdd@], then we would replace the
constraint that’(h) < P1 for all h € R’} with the less onerous constraint tH&P (h)] < P1.
The reason for interest in peak power constraints is thatractjge it is necessary to operate
within the linear range of a power amplifier, and this may fuée bursts of power that may be

required if only the average power is constrained.

B. Polynomial-time Algorithm for Findind?*

In this section, we provide a polynomial-time algorithm fiinding the optimum power
allocation vectorP*(h) for a given channel state vectdr. One of the consequences of the

structure of the optimum power-control policy establislabdve is that it is piecewise constant:
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There exists a partition of the fading state space R&ite- 1 regions upon each of which the
optimum power-control policy is constant:
P*(h) = Z Pslinensy,
SQ{;;éan}»

wherePs = (P, - -- ,Pn)T is a transmission power profile such thdt = Plycs;, and the
Ds is the region on which only the users & transmit with full power, and the rest are not
scheduled for transmission. Even though it is possible v gxact characterizations of these
optimum power-control regions when there are only a fewsuéen., see the two-user example
in Section YY), it becomes prohibitively complex to determitiem when there are many users.

On the other hand, the structure of the optimum binary poulecation established above
allows us to construct a simple, polynomial-time algorithoncompute the optimum power
profile for any realized fading state and any number of usertheé cell, which can be hard-
coded into a scheduler circuit, without the need for any iekptharacterization of the optimum
power-control regions. The suggested algorithm takes iadagtateh as an input, computes the
sum-ratesRy(h) at which the besk, 1 < k < n, users transmit with full power, and returns
the optimum sum-rate maximizing transmission power pratl@vhich only the besk* users
are scheduled for transmission with full power. The pseadedor this simple polynomial-time

algorithm is shown below.

V. WHEN ISTDMA OPTIMAL?

In this section, we will establish the conditions under whibe channel-state aware TDMA
policy, in which the channel is allocated to the best useopismal for maximizing sum-rate in
single cell wireless communication systems. Optimalitytto§ TDMA policy was established
(under symmetric fading distributions) in previous workscls as [[17] and[[15] when even
successive decoding for interference cancellation isvalth and users are subject to arerage
power constraint. On the other hand, as Theoréins 1[and 2 stigbess TDMA policy is
not always optimal in the communication scenario consdienethis paper where successive
decoding is not allowed, and users are subject to peak pawstraints. The following two-user
example further illustrates this point quantitively.

Example 1:When there are two users in the system, the sum-rate marignimwer allocation
P* (h) is either (P,0)', (0,P)", or (P,P)" for any given fading statdh = (hy,hy)' by
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Algorithm 1 Algorithm for computing optimum power allocation
Input: Fading stateh € R"

Output: Max. sum-rateRy, (P*) and opt. power profild* € R’}
Initialization: Ry (h) := 1log (1 + ph(1)), k* := 1, Ru(P*) := R, (h)
for k =2ton do

Ri(h) = %Ele log (1 + p1+25f1(if)l<k>1{j¢i})
if Rp(h) > R,(P*) then
Rn(P*) = Ri(h), k* =k

end if

end for
return (i) Max. sum rate:R,(P*). (i) P*: allocate TX powerP to the bestt* users, and

zero to the rest.

Theorem[R. Writing down the aggregate communication ragressions for all three cases
separately, and comparing them, one can derive the follpwonditions for the optimal power

allocation for the two-user communication scenario:

(P, O)T if hy > p_l\/l + hgp and hi > hs
P*(h)" =¢ (0,P)" if hy > p~'\/T+ hup andhy > hy : (4)

(P,P)" if hy < p~'\/TF hap andhy < p~ T hip
These three optimum power allocation regions are illusttan Fig.[1. For any fading stale
lying inside the shaded region in Fig. 1, the TDMA policy beas suboptimal, and the sum-rate
is maximized by allocating the full transmission power tdtbosers. This situation occurs when
both users experience similar and severe channel consliiien /; < p—“+2\/5,z‘ =1,2. On
the other hand, if the channel conditions experienced bysum® relatively different from each

other, or any of them is good enougte., h; > p—“*T\/g, then the TDMA policy maximizes the
sum-rate.

Note that the shaded region on which the TDMA policy is sulmoak shrinks to a point in
the highSNR regime wherp grows to infinity. Therefore, in the highNR regime, we see one
mode of communication with very high probability: Only thesb user transmits with full power.

On the other hand, in the lo&NR regime wherep goes to zero, the shaded region grows and
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p p p) hi

Fig. 1. Optimum power allocation regions for the two-usemoaunication scenario. For fading states lying in the shaated,

the TDMA policy is not optimal, and the sum-rate is maximizelen both users transmit with full power.

covers the whole positive orthant in tfi&-plane. Therefore, in the lo#NR regime, we again
see only one mode of communication with very high probabil&ll users transmit with full
power.

When there are more than just two users, and for mode&fste values, other modes of
communication in which the best, 1 < k < n, users transmit with full power can arise.
Roughly speaking, the present discussion implies that énfopnance loss arising from the use
of the TDMA policy for scheduling the best user criticallypdads on the relative strength of
the peak transmission power with respect to the total notseep including the background
noise and other-cell interference, present in the systdrasd observations will be the guiding
principles for the proof of the optimality of the TDMA policyx the next theorem, and they
will be further supported through numerical results in 8edi/l

Figure[1 also illustrates wh¥?* is uniqgue when the fading process has a continuous distri-
bution. Whenh lies on the boundary where any two of these three regionssitg there are
more than one power profile maximizing the sum-rate. For gteyrall three power profiles
(0,P)",(P,0)" and (P,P)" perform equally well for sum-rate maximization at the point

-
h = (p_lHT\/g,p_lH—z\/g) . However, the probability of such a pathological case happue
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is zero, andP* can be almost surely uniquely determined if the joint sty distribution of
the fading process is absolutely continuous.

Theorem 3:For alln > 1, if hyy > (e —1) p~' for a fading stateh, then the channel-state
aware TDMA policy in which the channel is assigned to the wsih the best channel state
maximizes the sum-rate at this fading state.

Proof: See Appendix_C. [

VI. NUMERICAL RESULTS AND DISCUSSIONS
A. Optimal modes: WB and TDMA

In spite of the relative simplicity of Algorithni]1, we noteahits worst case complexity
is O (n?) when there arex users, due to the ordering of the channel states of usershend t
summations involved. In this section, we examine the suenarformance of the heuristically
derived scheme that simply takes the best of two choicekeE#ll users on at full power, which
we call the wideband strategy (WB), or, exactly one user dinlapower (the best user), which
we call the TDMA strategy. To test out how well this suboptirarategy works, we use the
following simulation model.

We consider a circular cell centered at the base station amthdy radius5 [unit distance]
(usually in kilometers). We focus on low, moderate and higmgity networks, and vary the
SNR parameter between30dB and30dB to identify the performance of the power-controlled
single cell communication systems for a broad spectrum ofor& parameters. The users are
uniformly distributed over the network domain with node sién \ [nodes per unit area]. The

fading model includes both slow-fading, modeled by meanthefbounded path-loss function

1
14ax

for o > 2 [23], and Rayleigh fast-fading, modeled by means of inddpahunit exponential
random variableB].All simulations are performed in C over at least' independent network
realizations to obtain average aggregate communicatienfigures.

We begin by examining the empirical distribution/of, the number of users scheduled in any
fading state by Algorithni]1 (the optimal algorithm). In Fig and[8, we show the empirical

distribution obtained fork* over 107 independent network realizations whea (A ~ 1) and

4The same conclusions continue to hold for different celesjalifferent path-loss models including the unboundeti-fusts

model and generalized fading models including log-nornmaldewing and other possible random factors.

DRAFT



14

=
(@}
]
3
=
(@}

-1 : _
10* : * SNR =-10dB 10 ¢ * SNR =-10dB [ ]
: ® SNR=0dB ; ® SNR=0dB
o SNR =10dB 102k o SNR =10dB

Prob. Density of k
=
o,

Prob. Density of k

10 | | | | | | | | | | | | |
1 10 20 30 40 50 60 70 80 50 100 150 200 250 300 350 400
No. of Users Scheduled for Transmission No. of Users Scheduled for Transmission

Fig. 2. Empirical probability density function of the optim  Fig. 3. Empirical probability density function of the optimm
number of users scheduled for transmissiona(1) number of users scheduled for transmissiona{(5)

400 (X ~ 5) users are uniformly distributed over the network domainSdR values—10dB,
0dB and10dB. Similar conclusions continue to hold for different vaduof node density and the
SNR parameter.

In all cases, even though other modes of communication date passible, TDMA and WB
modes predominantly arise. The reason for such behavidnat when the channel state of
the best user is good enough, we schedule just this user tomzaxthe communication rate;
otherwise, the channels of the remaining users are alsodp fé&les, creating a domino effect
and all users are scheduled together to maximize the conmation rate. Similar observations
were also made in_[10], and proven to hold for the symmetriovak of interfering links.
Similarly, here, we can prove that scheduling a single useoimes certain as we scale up the
node density. To see why this is so, consider first a model aftked number,n, of users, that
we place uniformly at random in the cell. Since we have.iach model for the user locations, we
can letF'(h) be the cumulative distribution function of the channel ohadomly selected user.
Then the probability thaall the users fail the condition of Theordrh 3A% ((e — 1) p~!) which
decays exponentially im, irrespective of the SNR. Thus, for a large number of usersmile

almost certainly just schedule the best user, although timeber of users required to observe
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Fig. 4. Comparison of sum-rates achieved by the optimum biFig. 5. Comparison of sum-rates achieved by the optimum
nary power-control and the heuristic algorithm choosirtbezi  binary power-control and the heuristic algorithm choosing
the TDMA mode or WB mode for transmissiom &€ 0.5) either the TDMA mode or WB mode for transmissioA.=£ 1)

this phenomena will be larger for lower SNR. It is a straightfard extension from this fixed
n model to the above numerical model, where the probabilityobeesE [FV ((e — 1) p~1)],
whereN is the Poisson number of users with intensifyand one can show that this also decays
exponentially in\. This phenomena is illustrated in Figlide 3 where only the bser is selected
at SNR = 10 dB.

In Figs.[4,[5[6 and]7, we compare the sum-rates achieved bfahestic algorithm that
simply chooses the best of the two extreme modes (WB or TDMAh whe rates achieved
by the optimum binary power-control policy. As illustratéd these figures, the performance
achieved by the heuristic algorithm almost perfectly teathe performance achieved by the
optimum power-control, and therefore it can be implemeedaximize communication rates in
single cell communication systems for all practical pugsoithout any noticeable performance
degradation. Especially, for systems with large numberssefs, the proposed heuristic algorithm
will run an order of magnitude faster than Algorittiin 1. Weoatmote that the knee of the sum-
rate curves (more apparent for high density networks) athlvthiey become non-differentiable
corresponds to a phase transition from the WB mode to the TDivAe for scheduling users
[10].
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B. Benefits from successive decoding

In this section, we compare the aggregate communicatian aahieved by the optimum
binary power-control policy with the throughput capaciimits that can be achieved through
successive decoding. When the receiver is capable of sieelsdecoding the received signals
with cancellation efficiency € [0, 1], which represents the amount of cancelled signal power,

the throughput capacity can be given by

1 & R
Csic(B) = zEn [ log (1 + — — )] : %)
2 ; P Y b Lz — B Y5 he)

In (§), we used the usual decoding order in which the strangsers are decoded first and

subtracted from the composite signal (se€ [18]] [24] and)[2¥ote that we obtain the classical
throughput capacity equatio@sic(1) = 3En [log (1 + p>_", hy)] if the interference can be
cancelled perfectlyd = 1) [17]. Thus, there is no need for user scheduling when cenisig
successive decoding under peak power constraints, anecpetfannel state information at the
base station. However, in practical implementatighgs usually bounded away from one due to
imperfect channel and signal estimations. In these casasyi pay to do some user selection, but
in the numerical results below, we assume that all usersciiedsiled for successive interference

cancellation, as in_{5).
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In Figs.[8[9[ 1D and 11, we depict the sum-rates achievedebggtimum power-control policy
and the throughput capacity limits achieved through sigieeslecoding. As it must, the perfect
successive signal decoding capability increases the odtesmmunication that can be achieved
in single cell communication systems. In particular, fogthidensity networks with moderate
SNR values, the performance increase achieved by the perfecessive decoding can be as
much as two times the average sum-rate achieved by the dgiinay power-control treating
all signals as noise. On the other hand, if the interferermeeallation is not perfect and some
residual signal power remains after each cancellation, siepsum-rate achieved by successive
decoding saturates &\R increases, and the optimum binary power-control can aehayher
communication rates. Therefore, practical successivwfearence cancellations at the chip level
(e.g., QUALCOMM CSM6850) require near-perfect cancetiatefficiency to harvest potential
gains due to complex successive decoding process.

In its favour, successive decoding does provide more fagrte users, as it enables all users
to transmit and achieve sustainable data rates simultahediuis particularly well suited to the
multiple cell context, as discussed in the conclusionsigedf [26], but we do not investigate
that scenario in the present paper. Nor do we consider thadtmgd average power constraints,

which may be very important in practice [17].

DRAFT



18

10' f f ‘ ‘ ‘ 10' f f

10" ¢

)
<)
T
¥Ox 0O
x -0
x 0O
o
x\ 'O
x a
x u]
3 o
x a
x
x
i

Sum-rate [Nats per Slot]

R EF K KK KK

—— Opt. Bin. Power-control
B #* Successive Decodin@(= 0.5)

— Opt. Bin. Power—-control
- * Successive Decoding(= 0.5)
Successive Decodin3(=0.7) |
/ : | x Successive Decodin@(= 0.9) / : ©| x Successive Decoding(= 0.9)
/ o Successive Decodind(= 1) ! O Successive Decoding(= 1)
‘ ] : ‘ 10° ‘ ] : ‘

20 30 -30 -20 -10 0 10
SNR Parameter (dB)

=
o
5
T

=1
10+ li/ : Successive Decodin@®(= 0.7)

Sum-rate [Nats per Slot]

102 ‘
30 -20

-10 0 10 20 30
SNR Parameter (dB)

Fig. 10. Comparison of the sum-rate achieved by thé&ig. 11. Comparison of the sum-rate achieved by the
optimum binary power-control and the throughput capacityptimum binary power-control and the throughput capacity

limits achieved by successive decoding.= 5) limits achieved by successive decoding.=£ 10)

VIlI. CONCLUSIONS

This paper exploits the Schur-convexity property of the sate function of received powers,
to show that binary power-control is optimal for the mulggdccess channel, when interference
is treated as Gaussian noise, and there are peak poweraotsstn the users. If the fading
distribution is absolutely continuous, then the optimumaloy power-control policy is unique.
We provide an algorithm to find the optimum power allocatias a function of the channel state,
that is polynomial in the number of users in the cell. Howewer also present numerical results
for a realistically dimensioned single cell system whiclggest that there is essentially no loss
in restricting attention to the best of two possible allamas in each channel state: (i) The best
user transmits at peak power with other users switched sffnahannel-state aware TDMA,
(ii) all users transmit simultaneously at peak power. Thisstically reduces the complexity of
the power allocation problem. Finally, we compared all sschemes with successive decoding.

Our main conclusions regarding successive decoding at@ashi@ar as sum-rate maximization
is concerned, successive decoding can gain up to about @ faicR over the optimal binary
power-control scheme for the single cell model considerethe present paper, provided that
the interference cancellation is perfect, and the SNR isaraid (not high or low). However,

at high or low SNR, the gain is much less than that, and if thecelation efficiency is less
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than 1 (.e., some small fraction of the interference remains) then themym binary power-
control approach is superior, as it is not interferencetiuohi It must be noted that this analysis
pertains to only a single cell system, and to sum-rate mastiun under peak power constraints.
With multiple cells, and different objectives (such as nmaiziation of logarithmic utilities) the

conclusions are likely to be very different.

APPENDIX A

PROOF OFTHEOREM[I

We will first show that alP*, there cannot be two different userand; with 0 < P < P and
0 < P; < P.To obtain a contradiction, suppose there exist such twsuketx = diag (P*)-h,

r; = h; P andx; = h;P;. SinceP* is a solution for [(2), we havéi,(x) > Ry(y) for all
yeD=Q,.,[0,hP].

Without loss of generality, assumg > z,. But now, we can re-adjust transmission power
levels to achievé) < y; = z; + ¢ < h,P and0 < y; = z; — € < h;P for somee > 0 small
enough. Then, the received power vecjoformed asy; = x; + ¢, y; = z; — e andy;, = x;,
for k # 4, j, belongs toD and majorizeSXH By Lemmall,Ry(y) > Rn(x), which produces a
contradiction. As a result, iP* is a solution for[(R), there can be at most one exceptional use
with transmission powet in (0, P). Others either transmit with full power, or do not transmit
at all.

We will now show that this exceptional case does not happepp&ec € (0, P). Let m be

the index of the user with powet, andS be the subset of users transmitting with full power.

Let H =}, s hi. Then, Ry(x) on Q),.4[0, hi P} Q)[0, h,, P] can be written as
Rp(x) L S log [ 1+ L + liog (14 o
X = = (0] — 10 =
h 2 Py g Uz_"xm_‘_ZjESx]l{J?él} 2 g 0‘2_|_Zjes.flfj
1 hi 1 e
= =) log|1+ - +-log |1+ —£—].
2;%( ,0—1+H+%7”—hi> 2°g< p—1+H>

5y >=wm x if and only if there exists a doubly-stochastic matfx such thatx = Ay. We can construcA as follows. For
k 75 i,j, let Ak,[ = 1{l:k}7l S {1,~~~ ,n}. Let Ai,l = al{l:i},Ai_yl = (1 — a)l{Ll:j}7Aj’l = (1 — a)l{l:i} andAj,l =

. a XT; —Ti+2 T —¢€
alg—jy,l€{1,---,n}. Tofinda, we solve for = ’ !
{1=3} 1

Ti—xT;+e
cvifcvj+2e "

i , which produces: =

T;—x; —2 x;i+e€ xj
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We define the following function ofp, A, ].

1 h; 1 T
= - 1 1 . —1 1+ —
) 2;%( +P—1+H—hi+$>+2 og( +P_1+H)7

whose derivative with respect tois

1 1 h;
"2)=c———+—|1— ‘ .
g'(w) 2p—1+H+:c< Zp_1+H—hi+x>

€S

g has to be maximized at = < becauseP* solves [2). Sincef(z) =1 -, ¢ W’;i_hﬂ
is a strictly increasing function of, we haveg'(z) > 0 for z > 0 if f(0) > 0. Thus,g(h,,) >
g (%), which is a contradiction. Iff(h,,) < 0, we havey/(z) < 0 for z < h,,. Thus,g(0) >
g (%), which is a contradiction. Similarly, iff(h.,) > 0 and f(0) < 0, we haveg (%=) <
max {¢(0), g(h)}, which is another contradiction. As a resulinust be either zero @P, which
proves thatP* is binary, and it strictly dominates any non-binary powédodtion vector.

To see why the users with the best channel states transrhitwilipower, assume that; > h;,
Py =0 andP; = P. We can achieve the same aggregate communication rate tirygstte
transmission power of thé&® user toPh—}:j < P and that of the;*® user to zero. However,
such a transmission power allocation can be strictly dotethédy a binary transmission power
allocation as proven above. Therefore, users transmittitig full power correspond to the ones

with the best channel states when transmission powers laagdd according t@*.

APPENDIX B

PROOF OFTHEOREM[2

Binary structure ofP*(h) directly follows from Theoreni]l and some measure theoretic
arguments. Therefore, we focus on the uniquened3*dh). We define the sum-rate at a fading
stateh when the best users transmit with full power as

1< h
Ry(h) = 3 ; log (1 + = h(j>1{#i}> .
We want to show tha§ = {h € R" : 3k, m such thatk # m and Ry (h) = R,,(h)} has prob-
ability zero with respect to the stationary distribution tbe fading process. To this end, it

is enough to show that has zero volume since the stationary fading distributioabisolutely
continuous. Suppose not. Then, we can find> k£ such thatS; ,,, = {h € R" : Ry(h) = R,,,(h)}

has positive volume. First, leb = k£ + 1. This means that we can find a pomte S; ;41 and
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a smallR*"-ball B(y,e) C Sy 111 centered aroung. This implies that as a function of its
largest(k + 1) component (keeping other coordinates constant;atl < i < k), Ry1(h)
is constant over(y.+1) — €, yu+1) + €). One can show that this cannot happen by taking the
partial derivative ofR;(h) with respect toh1).

Similarly, if m > k + 2, we can find a poiny € Si,, and a smalR™-ball B (y,¢) C Si.m
centered aroungt such thatRz,,(h) is constant over this ball as a function of its larg@st- j)',
j=1,---,m — k, components. However, by following the same steps in Leminia i% not
hard to show that?,,(h) is a strictly Schur-convex function as a function of the é&sign
elements ofh. Therefore,R,,(h) cannot be constant ové? (y,e) as a function of its largest
(k+ )%, j=1,--- ,m — k, components since we can obtain a differantfrom a givenhs,,
both in B (y, ¢), such thath, =\ h, by only perturbing the largesk +;)**, j = 1,--- ,m —k,

components.

APPENDIX C

PROOF OFTHEOREM[3

From a given fading statk, we derive another fading stage= 1/, by making the channel

conditions of all users the same and equahtg. For these two fading states, we have
Rg (P7) > Bn (P7), (6)

since any set of received powers that can be achieved undan be achieved undegy. Now,
note that ifP* schedules only one user for transmission with full poweg,athen it schedules
only the best user for transmission with full powerhasince the maximum sum-rate gtforms
an achievable upper bound for the maximum sum-rafie fatr this case.

By using the structural properties & established in Theoref 1, we can writg (P*) as

k*
1 h(l)
R, (P*) = = E 1 14
s (P7) 2= o8 ( p~t+ (k* = 1) hy

1 pha) )
= —k¥log |1+
2" %% < L+ (b — 1) phqyy

for some optimak* € {1,---,n}. Our aim is to find a condition oA, under which we can
show thatk* = 1.

A similar problem was addressed [n [10] but for a differentd®lo the symmetric network of

interfering links. This is a model in which there aidinks, each with a different receiver node,
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and each link interferes with all the others. The symmetfgreeto the fact that the direct link
gain is unity for all links, and the cross-link gain {gc between any pair of links. See figure 1
in [10] for an illustration of this model. In_[10] the reced@ower is denoted by,,.. but if

we replace that byh;) then the sum-rate in this model, withlinks on, is given by

ph()
R, (e) =nlog [ 1 .
(e) n0g< +1+e(n—1)ph(1))

Note that ife = 1 then this gives the same raterainks on in the model of the present appendix,

under fading statg, and indeed the symmetric network model degenerates iffaxtigely, a
symmetric multiple access model in the special casel.

We can use results from [10], Section IV B, to obtain the cbadion /) that we need.
Section IV B examines the special case of binary power cbimrarhich a link is either on at
full power or switched right off. First, it is shown thdt,(¢) is a decreasing function ef and

it crosses the constant valug at a unique value of, namely,

_ (1+phay) — (L+ phy)n
En,l — 1 (7)
(n — 1)phay((1 4 phy)= —1)

(see (36) in[[10]). Thus, it > ¢, 4, then having one link on beats havinglinks on. Further,

it is shown in Lemma 4.3 in_[10] that, ; increases im, and approaches a limiting value of
¢ := (log(1 + ph(1)))~" asn tends to infinity. Thus, ife > ¢*, having one link on must be
optimal in the class of binary power control schemes.

If we can show thatl > ¢* then it will follow that having one link on is optimal in our
multiple access model under fadigg But if i) > (e — 1)p~! then indeedl > ¢*, so we
conclude that a sufficient condition for scheduling just best link ish) > (e — 1)p™!, as
stated in the theorem.
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