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Abstract

This paper considers the optimum single cell power-controlmaximizing the aggregate (uplink)

communication rate of the cell when there are peak power constraints at mobile users, and a

low-complexity data decoder (without successive decoding) at the base station. It is shown, via

the theory of majorization, that the optimum power allocation is binary, which means links are

either “on” or “off”. By exploiting further structure of the optimum binary power allocation,

a simple polynomial-time algorithm for finding the optimum t ransmission power allocation

is proposed, together with a reduced complexity near-optimal heuristic algorithm. Sufficient

conditions under which channel-state aware time-division-multiple-access (TDMA) maximizes

the aggregate communication rate are established. Finally, a numerical study is performed to

compare and contrast the performance achieved by the optimum binary power-control policy

with other sub-optimum policies and the throughput capacity achievable via successive decoding.

It is observed that two dominant modes of communication arise, wideband or TDMA, and that

successive decoding achieves better sum-rates only under near perfect interference cancellation

efficiency.
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I. INTRODUCTION

Next generation 4G wireless communication systems are required to support all-IP services

including high data rate multimedia traffic [1], with bit rate targets as high as1 Gbit/s for low

mobility, and100 Mbit/s for high mobility [2]. Transmission at such high rates is certainly achiev-

able today on point-to-point links, using the great advances made in wireless communications

over the past couple of decades. But in wireless networks, including 4G systems, interference

between links remains as a fundamental bottleneck that needs to be overcome [3]. Part of the

challenge arises from the broadcast nature of the shared wireless medium: transmission power

has to be allocated to each link, but this allocation has knock-on effects on other links in the

network. Much progress has been made on this problem when target rates are specified for

each user and the objective is to minimize total transmit power in the network [4]. However,

solving for optimum power allocations that maximize the total Shannon-theoretic sum-rate in

the presence of interfering links seems to be much harder: Itis generally anon-linear, non-

convexconstrained optimization problem [5]. This motivates a search for structure leading to

simplifications in the power allocation problem for sum-rate maximization.

In this paper, we focus on the optimum allocation of transmission powers to mobile terminals in

order to maximize the total communication sum-rate when a low-complexity single-user decoder

(without successive decoding) is used at the base station. This is the conventional single cell

matched filter detection based uplink model: All mobiles arein the same cell and must all be

decoded at the same base station. Even though this optimization problem is non-convex, we

solve it by identifying an underlyingSchur-convexstructure in the objective sum-rate function.

We show that the optimum power allocation isbinary, i.e., a user either transmits with full

power or does not transmit at all. By utilizing the binary structure of the sum-rate maximizing

optimum power allocation, we observe two dominant modes of communication: either the best

user transmits with full power, which can be considered a channel quality based time-division-

multiple-access (TDMA) mode, or all users transmit with full power, which can be considered

a wideband (WB) mode. This result has implications for implementing joint power-control and

scheduling, and helps to theoretically justify existing engineering approaches, such as code-

division-multiple-access (CDMA), and scheduling based onchannel quality.

We also compare sum-rates achieved by the optimum power-control policy with throughput
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capacity limits that can be achieved by successive decoding. Our results indicate that gains over

the simple optimum binary power-control due to advanced interference cancellation techniques

can be harvested only if the cancellation efficiency is near-perfect.

II. RELATED WORK

In this paper, we are motivated by recent work on interference networks that shows that binary

power-control is often close to optimal when interference is treated as Gaussian noise, links have

maximum (peak) power constraints, and the objective is to maximize the sum-rate, even if it

is not necessarily optimal in general [6]. “Binary” here just means that a link is either “on” or

“off”, either at zero power, or maximum power, without taking any value in the continuum of

possible values between0 and the peak power level.

In addition to [6], some other works such as [7], [8] and [9] also motivate us to investigate the

optimality of binary power-control. Both [7] and [8] consider jointly optimal allocation of rates

and transmission powers in CDMA networks under alternativeobjectives such as maximization of

the sum of signal-to-interference-plus-noise-ratios (SINR) [7] and the packet success probability

[8]. Both approaches convert the problem into a convex optimization problem, and show that the

optimum power-control is indeed binary under such approximations. In [9], the authors proved

the optimality of analmostbinary power-control strategy, up to one exceptional transmission

power level in the continuum between0 and the peak power level, maximizing the total uplink

communication rate.

The results reported in [6] as well as in other works raise thefurther question: When is

“binary” power-control exactly optimal? It has been shown in very recent work [10] that binary

power-control is optimal when there is total symmetry amongst the links,i.e.,all direct link gains

have one particular value, and all the cross-link gains haveanother particular value (possibly the

same value as the direct link gain, but not necessarily). Oneinteresting feature of the result is

that it is as if the sum-rate function of the powers were either Schur-convex, or Schur-concave

(even though it is neither), leading to the observed result that either all links should be “on”

or just one link should be “on” at the optimal solution. A two-link Schur-convex/Schur-concave

structure is observed and used, but it does not generalize tomore than two links.

In the present paper, we study the sum-rate maximization problem for the classical multiple

access channel, where all the links terminate in a common receiver node, but the link gains can
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be arbitrary. In this setting, we show that the power-control problem can be solved quite easily

via an underlying Schur-convex structure. In contrast to the symmetric network of interfering

links, it is no longer necessarily an all-or-one result: It is possible for the chosen set of links that

are “on” to be larger than a singleton, but smaller than the set of all users, but it always consists

of users with the best channels. On the other hand, we will observe from numerical results that

the dominant modes, in terms of probability, correspond to the all-on or one-on solutions.

Majorization theory and Schur-convex/concave structureswere also successfully utilized in

some previous works, including [11], [12], [13] and [14], toanswer important questions in

communications theory. This paper is another successful application of majorization theory to

prove the optimality of binary power-control.

In [11], the authors focus on the transceiver design for point-to-point multiple-input-multiple-

output (MIMO) communication systems. By using extra degrees of freedoms provided by multi-

ple transmitter and receiver antennas, and assuming eitherminimum mean-square error (MMSE)

receiver or zero-forcing receiver, they show that the optimum linear precoder at the transmitter

is the one diagonilazing the channels (i.e., independent noise at all channels and no interference

among them) when the cost function to be minimized is Schur-concave (or, the objective function

to be maximized is Schur-convex). Their results do not directly apply to the our problem since

we consider the sum-rate maximization in the presence of interfering links in this paper. In fact,

we solve a special case of an open problem posed in [11] in chapter 5 on the optimum design

of transceivers for the MIMO multiple-access channel.

In [12], the authors focus on the design of capacity achieving spreading code sequences for

the CDMA multiple-access channel without fading. They allow multi-user detection for joint

processing of users. Even though the performance figure of merit we are interested in this paper

is also related to the information capacity, our problem set-up is different than the set-up in

[12]. In this paper, we look at the capacity achieving transmission power allocations, rather than

the optimum spreading code sequence design, for Fading Gaussian channels in the presence

of interfering links. For example, our objective sum-rate function is Schur-convex whereas it

is Schur-concave in [12]. In [13], the same authors extend the analysis in [12] to the case

of colored noise. In [14], they analyze theuser capacity, which is defined as the maximum

number of users that can be admitted to the system by allocating spreading code sequences

and transmission powers optimally without violating minimum SINR requirements, of CDMA
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systems. In this work, we focus on achieveable sum-rates rather than on user capacity.

Our results are different from the corresponding classic results in [15]. In [15], the maximum

Shannon-theoretic sum-rate is considered, whereas in the present paper, we treat interference

as pure Gaussian noise. Although our assumption simplifies the receiver, it complicates the

power optimization problem. We note that the capacity region of the Gaussian multiple-access

channel is well understood, and it is known that all points ofthe boundary of the rate region can

be achieved by successive decoding [16]. The optimal power-control for the Fading Gaussian

multiple-access channel with channel state information atthe transmitters is also well understood

[17]. In the present paper, we arrive at the problem from a different angle, where our interest

is in understanding the structure of power-control problems in which interference is treated

as Gaussian noise (very relevant for general interference networks), which excludes successive

decoding or other multi-user decoding techniques.

From a practical perspective, treating interference as Gaussian noise is the approach taken

in most existing systems, including cellular systems. Notethat the uplink of a cell is indeed a

multiple-access channel. Successive decoding is more complex to implement, and suffers from

error propagation, which is mainly a problem if channels cannot be estimated very reliably. We

note that Qualcomm has recently produced a chip for successive decoding [18], so we cannot

be sure that successive decoding will not be used in practice. Indeed, we believe it will be. In

the present paper, we provide a comparison between the performance of the optimum binary

power-control scheme with that of successive decoding, under various assumptions about the

efficiency of the cancellation process. We expect that, in practice, successive decoding will be

combined with user scheduling, to reduce the potential for error propagation, and the present

paper provides insight into the problem of combined power-control and user scheduling, as will

be shown.

III. N ETWORK MODEL, MAJORIZATION AND NOMENCLATURE

In this section, we will introduce the network model and somebasic concepts from the theory

of majorization.
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A. Network Model

We focus on the uplink communication scenario wheren mobile users communicate with a

single base station. At time-slott, the received signal at the base station is given by the baseband

discrete-time Gaussian multiple-access channel as

Y (t) =

n
∑

i=1

√

hi(t)Xi(t) +W (t),

whereXi(t) andhi(t) are the transmitted signal and the channel fading coefficient of theith user,

respectively, andW (t) is white Gaussian noise with varianceσ2 at the base station. We assume

thatW (t) represents the cumulative effect of the thermal noise and other-cell interference at the

base station. Without loss of generality, we assume that allusers are subject to the same peak

transmission power constraint ofP , i.e., E [|Xi(t)|2] ≤ P for all t.1 We call a power allocation

vector (at time-slott) P = (P1, · · · , Pn)
⊤ binary if Pi is eitherP or 0 for all i.2 The signal-to-

noise-ratio (SNR) of the communication system under consideration is definedto be the ratio

ρ = P
σ2 .

In Section IV-A, we will solve the optimum power allocation problem for time-invariant (slow

fading) channels characterized by a fixed channel vectorh, i.e., hi(t) = hi for all t. Extensions

to time-varying (fast fading) channels are straightforward.

B. Majorization and Nomenclature

R
m and R

m
+ represent the set ofm dimensional column vectors with real and real non-

negative coordinates, respectively. For a vectorx in R
m, we denote its ordered coordinates by

x(1) ≥ · · · ≥ x(m), anddiag (x) represents the diagonal matrix with entries ofx at the diagonal.

When we write1 (in boldface), we mean the vector of ones. Forx and y in R
m, we sayx

majorizesy and write it asx �M y if we have
∑k

i=1 x(i) ≥
∑k

i=1 y(i) whenk = 1, · · · , m− 1,

and
∑m

i=1 x(i) =
∑m

i=1 y(i).

1If the users in the original rate maximization problem have different peak transmission power constraints given by the peak

power vectorP = (P1, · · · , Pn)
⊤, then solving the modified optimization problem having the uniform peak power constraint

P and the fading processes that are scaled versions of the onesin the original problem by a factor ofPi

P
, for all i ∈ {1, · · · , n},

will be enough to find the optimal transmission power allocation for the original problem.

2If there is a minimum transmission powerPmin requirement to maintain some level of control traffic in the network, then

P is defined to be binary ifPi is eitherP or Pmin for all i.
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A function g : Rm 7→ R is said to beSchur-convexif x �M y implies g (x) ≥ g (y); g is

said to bestrictly Schur-convexif g is Schur-convex, andx �M y implies g (x) > g (y) for all

x andy which are not a permutation of each other.g is Schur-concave if−g is Schur-convex.

Intuitively, a Schur-convex function increases when the dispersion among the components of its

argument increases.

Schur-convex/concave functions frequently arise in mathematical analysis and engineering

applications,e.g., [11], [12], [13], [14] and [19]. For example, every functionthat is convex

and symmetric is also a Schur-convex function. Another important example of a Schur-convex

function is a separable-convex function. A functiong : Im 7→ R, whereI ⊆ R is an interval,

is said to be aseparable-convex functionif g is of the formg(x) =
∑m

i=1 f (xi), wheref is

a convex function onI. Then, any separable-convex function is also a Schur-convex function.

(See [20] or [21].)

IV. M AIN RESULTS

A. Optimality of Binary Power-control

In this section, we will prove the optimality of binary power-control for single cell communi-

cation systems without successive decoding at the base station. We begin by assuming that the

channel is time-invariant and characterized by a fixed channel vectorh ∈ R
n
+ given at time0.

The vectorh can be generated according to a probability distribution, but once it is generated,

it is fixed and known by the base station. For this case, we dropthe time index, and write the

sum-rate per slot as

Rh(P) =
1

2

n
∑

i=1

log

(

1 +
hiPi

σ2 +
∑n

j=1 hjPj1{j 6=i}

)

, (1)

whereP = (P1, · · · , Pn)
⊤ is the vector of transmission powers. The base of the logarithm

function in (1) is equal to the natural numbere, and therefore communication rates in this paper

are measured in terms of nats per time-slot.

The sum-rate in (1) can be achieved using Gaussian input distributions and random coding

arguments, and this is the focus of the present paper. In general, these rates are not optimal, and

higher rates in the multi-user capacity region are known to be achievable [22]. In fact, there is

nothing inherently suboptimal about using Gaussian codebooks: The suboptimality of (1) comes

from a failure to exploit the information content in the interference, which can be removed via
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cancellation. Nevertheless, we will treat the interference as Gaussian noise in the present paper,

and in this context the relevant achievable rates are given in (1).

We are interested in solving the followingnon-convexoptimization problem.

maximize Rh(P)

subject to P � P1
. (2)

Even thoughRh(P) is a non-convex function of transmission powers, it is a strictly Schur-convex

function of receivedpowers at the base station, which will enable us to obtain thesolutions for

the non-convex optimization problem in (2).

Lemma 1:Let D =
⊗n

i=1 [0, hiP ], x = diag (P) ·h (i.e.,x changes asP changes), and write

Rh(x) as a function ofx = (x1, · · · , xn)
⊤ as

Rh(x) =
1

2

n
∑

i=1

log

(

1 +
xi

σ2 +
∑n

j=1 xj1{j 6=i}

)

. (3)

Then,Rh(x) is a strictly Schur-convex function ofx on D.

Proof: Fix B ≥ 0, and defineDB = {x ∈ R
n : x ∈ D and

∑n

i=1 xi = B}. OnDB 6= ∅, we

can writeRh (x) as

Rh (x) =
1

2

n
∑

i=1

log

(

σ2 +B

σ2 +B − xi

)

.

We defineg (y) = 1
2

∑n

i=1 log
(

σ2+B
σ2+B−yi

)

on [0, B]n. Note thatg (y) is a separable-convex

function on[0, B]n sincelog
(

σ2+B
σ2+B−y

)

is a strictly convex function on[0, B]. Thus, we conclude

thatg (y) is strictly Schur-convex on[0, B]n. SinceRh ≡ g on DB, we also conclude thatRh is

a strictly Schur-convex function onDB for anyB ≥ 0 such thatDB 6= ∅. SinceD =
⋃

B≥0 DB,

this last observation further implies thatRh is a strictly Schur-convex function onD.

Note thatx is in D if and only if P � P1. Therefore, maximizingRh(x) on D is equivalent

to solving the optimization problem in (2). This observation together with the Schur-convexity

of Rh will be the key for characterizing the optimum power allocation vectors.

The following are two simple facts about an optimum power allocation vectorP∗ solving

(2). At P∗, there must exist at least one user transmitting with positive power, and if there

is only one user transmitting with positive power, this usermust transmit with full power. It

also directly follows from the Schur-convexity ofRh that if there are more than one users

transmitting with positive power, one of them must transmitwith full power.3 Otherwise, we can

3This can also bee seen by using simple scaling arguments [6].

DRAFT



9

majorize the received power vectorx = diag (P∗) · h, and obtain a strictly better sum-rate by

re-adjusting transmission powers without violating the transmission power constraint. The next

theorem establishes the binary nature ofP∗ and its structural properties.

Theorem 1:Any P∗ solving the problem (2) is abinary power allocation vector at which the

users transmitting with full power correspond to the ones having the best channel gains.

Proof: : See Appendix A.

We now address the issue of uniqueness. LetP (h) = (P1(h), · · · , Pn(h))
⊤ be any optimal

binary power allocation. Note that this definition extends the model to allow fading, and we can

considerP (h) as providing a power control policy, adaptive to changing channel conditions.

Then the following theorem provides uniqueness.

Theorem 2:Any optimal power-control policyP∗(h) assigns the channel to the best users

for almost all fading states. If the stationary distribution of the fading process is absolutely

continuous, thenP∗(h) is unique up to a set of measure zero.

Proof: See See Appendix B.

We note that the set of optimum power allocation vectors solving (2) is not necessarily a

singleton. However, Theorem 2 establishes uniqueness if the channel state vector is generated

by an absolutely continuous distribution, which is a valid assumption for most practical systems.

Therefore, when we refer to an optimum power allocation vector or power-control policy for the

rest of the paper, we will useP∗-notation without any ambiguity.

Finally, it is important to consider what the constraint in (2) means in the case of a fading

channel. We can interpret this constraint as apeak power constraint. IfP were an average

power constraint on the powers modulating Gaussian codebooks [17], then we would replace the

constraint thatP(h) � P1 for all h ∈ R
n
+ with the less onerous constraint thatE[P(h)] � P1.

The reason for interest in peak power constraints is that in practice it is necessary to operate

within the linear range of a power amplifier, and this may preclude bursts of power that may be

required if only the average power is constrained.

B. Polynomial-time Algorithm for FindingP∗

In this section, we provide a polynomial-time algorithm forfinding the optimum power

allocation vectorP∗(h) for a given channel state vectorh. One of the consequences of the

structure of the optimum power-control policy establishedabove is that it is piecewise constant:
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There exists a partition of the fading state space into2n − 1 regions upon each of which the

optimum power-control policy is constant:

P∗(h) =
∑

S⊆{1,··· ,n},
S6=∅

PS1{h∈DS},

wherePS = (P1, · · · , Pn)
⊤ is a transmission power profile such thatPi = P1{i∈S}, and the

DS is the region on which only the users inS transmit with full power, and the rest are not

scheduled for transmission. Even though it is possible to give exact characterizations of these

optimum power-control regions when there are only a few users (e.g., see the two-user example

in Section V), it becomes prohibitively complex to determine them when there are many users.

On the other hand, the structure of the optimum binary power allocation established above

allows us to construct a simple, polynomial-time algorithmto compute the optimum power

profile for any realized fading state and any number of users in the cell, which can be hard-

coded into a scheduler circuit, without the need for any explicit characterization of the optimum

power-control regions. The suggested algorithm takes a fading stateh as an input, computes the

sum-ratesRk(h) at which the bestk, 1 ≤ k ≤ n, users transmit with full power, and returns

the optimum sum-rate maximizing transmission power profileat which only the bestk∗ users

are scheduled for transmission with full power. The pseudocode for this simple polynomial-time

algorithm is shown below.

V. WHEN IS TDMA OPTIMAL?

In this section, we will establish the conditions under which the channel-state aware TDMA

policy, in which the channel is allocated to the best user, isoptimal for maximizing sum-rate in

single cell wireless communication systems. Optimality ofthis TDMA policy was established

(under symmetric fading distributions) in previous works such as [17] and [15] when even

successive decoding for interference cancellation is allowed, and users are subject to anaverage

power constraint. On the other hand, as Theorems 1 and 2 suggest, this TDMA policy is

not always optimal in the communication scenario considered in this paper where successive

decoding is not allowed, and users are subject to peak power constraints. The following two-user

example further illustrates this point quantitively.

Example 1:When there are two users in the system, the sum-rate maximizing power allocation

P∗ (h) is either (P, 0)⊤, (0, P )⊤, or (P, P )⊤ for any given fading stateh = (h1, h2)
⊤ by
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Algorithm 1 Algorithm for computing optimum power allocation
Input: Fading stateh ∈ R

n

Output: Max. sum-rateRh(P
∗) and opt. power profileP∗ ∈ R

n
+

Initialization: R1 (h) :=
1
2
log
(

1 + ρh(1)

)

, k∗ := 1, Rh(P
∗) := R1 (h)

for k = 2 to n do

Rk(h) =
1
2

∑k

i=1 log

(

1 +
h(i)

ρ−1+
∑k

j=1 h(k)1{j 6=i}

)

if Rk(h) > Rh(P
∗) then

Rh(P
∗) = Rk(h), k∗ = k

end if

end for

return (i) Max. sum rate:Rh(P
∗). (ii) P∗: allocate TX powerP to the bestk∗ users, and

zero to the rest.

Theorem 2. Writing down the aggregate communication rate expressions for all three cases

separately, and comparing them, one can derive the following conditions for the optimal power

allocation for the two-user communication scenario:

P∗ (h)⊤ =



















(P, 0)⊤ if h1 > ρ−1
√
1 + h2ρ andh1 ≥ h2

(0, P )⊤ if h2 > ρ−1
√
1 + h1ρ andh2 > h1

(P, P )⊤ if h1 ≤ ρ−1
√
1 + h2ρ andh2 ≤ ρ−1

√
1 + h1ρ

. (4)

These three optimum power allocation regions are illustrated in Fig. 1. For any fading stateh

lying inside the shaded region in Fig. 1, the TDMA policy becomes suboptimal, and the sum-rate

is maximized by allocating the full transmission power to both users. This situation occurs when

both users experience similar and severe channel conditions, i.e., hi ≤ ρ−1 1+
√
5

2
, i = 1, 2. On

the other hand, if the channel conditions experienced by users are relatively different from each

other, or any of them is good enough,i.e.,hi > ρ−1 1+
√
5

2
, then the TDMA policy maximizes the

sum-rate.

Note that the shaded region on which the TDMA policy is suboptimal shrinks to a point in

the highSNR regime whenρ grows to infinity. Therefore, in the highSNR regime, we see one

mode of communication with very high probability: Only the best user transmits with full power.

On the other hand, in the lowSNR regime whereρ goes to zero, the shaded region grows and
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h1

h2

h

h

h

h

h

ρ−1 1+
√
5

2

ρ−1 1+
√
5

2
ρ−1

ρ−1

P
∗(h) = (P, P )⊤

P
∗(h) = (0, P )⊤

P
∗(h) = (P, 0)⊤

h2 = ρ−1
√
1 + h1ρ

h1 = ρ−1
√
1 + h2ρ

h2 = h1

Fig. 1. Optimum power allocation regions for the two-user communication scenario. For fading states lying in the shadedarea,

the TDMA policy is not optimal, and the sum-rate is maximizedwhen both users transmit with full power.

covers the whole positive orthant in theR2-plane. Therefore, in the lowSNR regime, we again

see only one mode of communication with very high probability: All users transmit with full

power.

When there are more than just two users, and for moderateSNR values, other modes of

communication in which the bestk, 1 < k < n, users transmit with full power can arise.

Roughly speaking, the present discussion implies that the performance loss arising from the use

of the TDMA policy for scheduling the best user critically depends on the relative strength of

the peak transmission power with respect to the total noise power, including the background

noise and other-cell interference, present in the system. These observations will be the guiding

principles for the proof of the optimality of the TDMA policyin the next theorem, and they

will be further supported through numerical results in Section VI.

Figure 1 also illustrates whyP∗ is unique when the fading process has a continuous distri-

bution. Whenh lies on the boundary where any two of these three regions intersect, there are

more than one power profile maximizing the sum-rate. For example, all three power profiles

(0, P )⊤ , (P, 0)⊤ and (P, P )⊤ perform equally well for sum-rate maximization at the point

h =
(

ρ−1 1+
√
5

2
, ρ−1 1+

√
5

2

)⊤
. However, the probability of such a pathological case happening
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is zero, andP∗ can be almost surely uniquely determined if the joint stationary distribution of

the fading process is absolutely continuous.

Theorem 3:For all n ≥ 1, if h(1) ≥ (e − 1) ρ−1 for a fading stateh, then the channel-state

aware TDMA policy in which the channel is assigned to the userwith the best channel state

maximizes the sum-rate at this fading state.

Proof: See Appendix C.

VI. NUMERICAL RESULTS AND DISCUSSIONS

A. Optimal modes: WB and TDMA

In spite of the relative simplicity of Algorithm 1, we note that its worst case complexity

is O (n2) when there aren users, due to the ordering of the channel states of users and the

summations involved. In this section, we examine the sum-rate performance of the heuristically

derived scheme that simply takes the best of two choices: Either all users on at full power, which

we call the wideband strategy (WB), or, exactly one user on atfull power (the best user), which

we call the TDMA strategy. To test out how well this suboptimal strategy works, we use the

following simulation model.

We consider a circular cell centered at the base station and having radius5 [unit distance]

(usually in kilometers). We focus on low, moderate and high density networks, and vary the

SNR parameter between−30dB and30dB to identify the performance of the power-controlled

single cell communication systems for a broad spectrum of network parameters. The users are

uniformly distributed over the network domain with node density λ [nodes per unit area]. The

fading model includes both slow-fading, modeled by means ofthe bounded path-loss function
1

1+xα for α > 2 [23], and Rayleigh fast-fading, modeled by means of independent unit exponential

random variables.4 All simulations are performed in C over at least104 independent network

realizations to obtain average aggregate communication rate figures.

We begin by examining the empirical distribution ofk∗, the number of users scheduled in any

fading state by Algorithm 1 (the optimal algorithm). In Figs. 2 and 3, we show the empirical

distribution obtained fork∗ over 107 independent network realizations when80 (λ ≈ 1) and

4The same conclusions continue to hold for different cell sizes, different path-loss models including the unbounded path-loss

model and generalized fading models including log-normal shadowing and other possible random factors.
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Fig. 2. Empirical probability density function of the optimum

number of users scheduled for transmission. (λ ≈ 1)
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Fig. 3. Empirical probability density function of the optimum

number of users scheduled for transmission. (λ ≈ 5)

400 (λ ≈ 5) users are uniformly distributed over the network domain for SNR values−10dB,

0dB and10dB. Similar conclusions continue to hold for different values of node density and the

SNR parameter.

In all cases, even though other modes of communication are quite possible, TDMA and WB

modes predominantly arise. The reason for such behavior is that when the channel state of

the best user is good enough, we schedule just this user to maximize the communication rate;

otherwise, the channels of the remaining users are also in deep fades, creating a domino effect

and all users are scheduled together to maximize the communication rate. Similar observations

were also made in [10], and proven to hold for the symmetric network of interfering links.

Similarly, here, we can prove that scheduling a single user becomes certain as we scale up the

node density. To see why this is so, consider first a model witha fixednumber,n, of users, that

we place uniformly at random in the cell. Since we have ani.i.d. model for the user locations, we

can letF (h) be the cumulative distribution function of the channel of a randomly selected user.

Then the probability thatall the users fail the condition of Theorem 3 isF n ((e − 1) ρ−1) which

decays exponentially inn, irrespective of the SNR. Thus, for a large number of users wewill

almost certainly just schedule the best user, although the number of users required to observe
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Fig. 4. Comparison of sum-rates achieved by the optimum bi-

nary power-control and the heuristic algorithm choosing either

the TDMA mode or WB mode for transmission. (λ = 0.5)
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Fig. 5. Comparison of sum-rates achieved by the optimum

binary power-control and the heuristic algorithm choosing

either the TDMA mode or WB mode for transmission. (λ = 1)

this phenomena will be larger for lower SNR. It is a straightforward extension from this fixed

n model to the above numerical model, where the probability becomesE
[

FN ((e − 1) ρ−1)
]

,

whereN is the Poisson number of users with intensityλ, and one can show that this also decays

exponentially inλ. This phenomena is illustrated in Figure 3 where only the best user is selected

at SNR = 10 dB.

In Figs. 4, 5, 6 and 7, we compare the sum-rates achieved by theheuristic algorithm that

simply chooses the best of the two extreme modes (WB or TDMA) with the rates achieved

by the optimum binary power-control policy. As illustratedin these figures, the performance

achieved by the heuristic algorithm almost perfectly tracks the performance achieved by the

optimum power-control, and therefore it can be implementedto maximize communication rates in

single cell communication systems for all practical purposes without any noticeable performance

degradation. Especially, for systems with large numbers ofusers, the proposed heuristic algorithm

will run an order of magnitude faster than Algorithm 1. We also note that the knee of the sum-

rate curves (more apparent for high density networks) at which they become non-differentiable

corresponds to a phase transition from the WB mode to the TDMAmode for scheduling users

[10].
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Fig. 6. Comparison of sum-rates achieved by the optimum

binary power-control and the heuristic algorithm choosing

either the TDMA mode or WB mode for transmission. (λ = 5)
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Fig. 7. Comparison of sum-rates achieved by the optimum bi-

nary power-control and the heuristic algorithm choosing either

the TDMA mode or WB mode for transmission. (λ = 10)

B. Benefits from successive decoding

In this section, we compare the aggregate communication rate achieved by the optimum

binary power-control policy with the throughput capacity limits that can be achieved through

successive decoding. When the receiver is capable of successively decoding the received signals

with cancellation efficiencyβ ∈ [0, 1], which represents the amount of cancelled signal power,

the throughput capacity can be given by

CSIC(β) =
1

2
Eh

[

n
∑

i=1

log

(

1 +
h(i)

ρ−1 +
∑n

j=1 h(j)1{j 6=i} − β
∑i−1

j=1 h(j)

)]

. (5)

In (5), we used the usual decoding order in which the strongest users are decoded first and

subtracted from the composite signal (see [18], [24] and [25]). Note that we obtain the classical

throughput capacity equationCSIC(1) = 1
2
Eh [log (1 + ρ

∑n

i=1 hi)] if the interference can be

cancelled perfectly (β = 1) [17]. Thus, there is no need for user scheduling when considering

successive decoding under peak power constraints, and perfect channel state information at the

base station. However, in practical implementations,β is usually bounded away from one due to

imperfect channel and signal estimations. In these cases, it may pay to do some user selection, but

in the numerical results below, we assume that all users are scheduled for successive interference

cancellation, as in (5).
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Fig. 8. Comparison of the sum-rate achieved by the opti-

mum binary power-control and the throughput capacity limits

achieved by successive decoding. (λ = 0.5)
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Fig. 9. Comparison of the sum-rate achieved by the opti-

mum binary power-control and the throughput capacity limits

achieved by successive decoding. (λ = 1)

In Figs. 8, 9, 10 and 11, we depict the sum-rates achieved by the optimum power-control policy

and the throughput capacity limits achieved through successive decoding. As it must, the perfect

successive signal decoding capability increases the ratesof communication that can be achieved

in single cell communication systems. In particular, for high density networks with moderate

SNR values, the performance increase achieved by the perfect successive decoding can be as

much as two times the average sum-rate achieved by the optimal binary power-control treating

all signals as noise. On the other hand, if the interference cancellation is not perfect and some

residual signal power remains after each cancellation step, the sum-rate achieved by successive

decoding saturates asSNR increases, and the optimum binary power-control can achieve higher

communication rates. Therefore, practical successive interference cancellations at the chip level

(e.g., QUALCOMM CSM6850) require near-perfect cancellation efficiency to harvest potential

gains due to complex successive decoding process.

In its favour, successive decoding does provide more fairness to users, as it enables all users

to transmit and achieve sustainable data rates simultaneously. It is particularly well suited to the

multiple cell context, as discussed in the conclusions section of [26], but we do not investigate

that scenario in the present paper. Nor do we consider the impact of average power constraints,

which may be very important in practice [17].
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Fig. 10. Comparison of the sum-rate achieved by the

optimum binary power-control and the throughput capacity

limits achieved by successive decoding. (λ = 5)
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Fig. 11. Comparison of the sum-rate achieved by the

optimum binary power-control and the throughput capacity

limits achieved by successive decoding. (λ = 10)

VII. CONCLUSIONS

This paper exploits the Schur-convexity property of the sum-rate function of received powers,

to show that binary power-control is optimal for the multiple-access channel, when interference

is treated as Gaussian noise, and there are peak power constraints on the users. If the fading

distribution is absolutely continuous, then the optimum binary power-control policy is unique.

We provide an algorithm to find the optimum power allocation,as a function of the channel state,

that is polynomial in the number of users in the cell. However, we also present numerical results

for a realistically dimensioned single cell system which suggest that there is essentially no loss

in restricting attention to the best of two possible allocations in each channel state: (i) The best

user transmits at peak power with other users switched off, as in channel-state aware TDMA,

(ii) all users transmit simultaneously at peak power. This drastically reduces the complexity of

the power allocation problem. Finally, we compared all suchschemes with successive decoding.

Our main conclusions regarding successive decoding are that as far as sum-rate maximization

is concerned, successive decoding can gain up to about a factor of 2 over the optimal binary

power-control scheme for the single cell model considered in the present paper, provided that

the interference cancellation is perfect, and the SNR is moderate (not high or low). However,

at high or low SNR, the gain is much less than that, and if the cancellation efficiency is less
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than 1 (i.e., some small fraction of the interference remains) then the optimum binary power-

control approach is superior, as it is not interference limited. It must be noted that this analysis

pertains to only a single cell system, and to sum-rate maximization under peak power constraints.

With multiple cells, and different objectives (such as maximization of logarithmic utilities) the

conclusions are likely to be very different.

APPENDIX A

PROOF OFTHEOREM 1

We will first show that atP∗, there cannot be two different usersi andj with 0 < P ∗
i < P and

0 < P ∗
j < P . To obtain a contradiction, suppose there exist such two users. Letx = diag (P∗)·h,

xi = hiP
∗
i and xj = hjP

∗
j . SinceP∗ is a solution for (2), we haveRh(x) ≥ Rh(y) for all

y ∈ D =
⊗n

i=1 [0, hiP ].

Without loss of generality, assumexi ≥ xj . But now, we can re-adjust transmission power

levels to achieve0 < yi = xi + ǫ ≤ hiP and 0 ≤ yj = xj − ǫ < hjP for someǫ ≥ 0 small

enough. Then, the received power vectory formed asyi = xi + ǫ, yj = xj − ǫ and yk = xk

for k 6= i, j, belongs toD and majorizesx.5 By Lemma 1,Rh(y) > Rh(x), which produces a

contradiction. As a result, ifP∗ is a solution for (2), there can be at most one exceptional user

with transmission powerc in (0, P ). Others either transmit with full power, or do not transmit

at all.

We will now show that this exceptional case does not happen. Supposec ∈ (0, P ). Let m be

the index of the user with powerc, andS be the subset of users transmitting with full power.

Let H =
∑

i∈S hi. Then,Rh(x) on
⊗

i∈S[0, hiP ]
⊗

[0, hmP ] can be written as

Rh(x) =
1

2

∑

i∈S
log

(

1 +
xi

σ2 + xm +
∑

j∈S xj1{j 6=i}

)

+
1

2
log

(

1 +
xm

σ2 +
∑

j∈S xj

)

=
1

2

∑

i∈S
log

(

1 +
hi

ρ−1 +H + chm

P
− hi

)

+
1

2
log

(

1 +
chm

P

ρ−1 +H

)

.

5y �M x if and only if there exists a doubly-stochastic matrixA such thatx = Ay. We can constructA as follows. For

k 6= i, j, let Ak,l = 1{l=k}, l ∈ {1, · · · , n}. Let Ai,l = a1{l=i}, Ai,l = (1 − a)1{l=j}, Aj,l = (1 − a)1{l=i} andAj,l =

a1{l=j}, l ∈ {1, · · · , n}. To finda, we solve for





a

1



 =





xi − xj + 2ǫ xj − ǫ

xj − xi − 2ǫ xi + ǫ





−1 



xi

xj



, which producesa =
xi−xj+ǫ

xi−xj+2ǫ
.
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We define the following function on[0, hm].

g(x) =
1

2

∑

i∈S
log

(

1 +
hi

ρ−1 +H − hi + x

)

+
1

2
log

(

1 +
x

ρ−1 +H

)

,

whose derivative with respect tox is

g′(x) =
1

2

1

ρ−1 +H + x

(

1−
∑

i∈S

hi

ρ−1 +H − hi + x

)

.

g has to be maximized atx = chm

P
becauseP∗ solves (2). Sincef(x) = 1 −∑i∈S

hi

ρ−1+H−hi+x

is a strictly increasing function ofx, we haveg′(x) > 0 for x > 0 if f(0) ≥ 0. Thus,g(hm) >

g
(

chm

P

)

, which is a contradiction. Iff(hm) ≤ 0, we haveg′(x) < 0 for x < hm. Thus,g(0) >

g
(

chm

P

)

, which is a contradiction. Similarly, iff(hm) > 0 and f(0) < 0, we haveg
(

chm

P

)

<

max {g(0), g(hm)}, which is another contradiction. As a result,c must be either zero orP , which

proves thatP∗ is binary, and it strictly dominates any non-binary power allocation vector.

To see why the users with the best channel states transmit with full power, assume thathi > hj ,

P ∗
i = 0 andP ∗

j = P . We can achieve the same aggregate communication rate by setting the

transmission power of theith user to Phj

hi
< P and that of thejth user to zero. However,

such a transmission power allocation can be strictly dominated by a binary transmission power

allocation as proven above. Therefore, users transmittingwith full power correspond to the ones

with the best channel states when transmission powers are allocated according toP∗.

APPENDIX B

PROOF OFTHEOREM 2

Binary structure ofP∗(h) directly follows from Theorem 1 and some measure theoretic

arguments. Therefore, we focus on the uniqueness ofP∗(h). We define the sum-rate at a fading

stateh when the bestk users transmit with full power as

Rk(h) =
1

2

k
∑

i=1

log

(

1 +
h(i)

ρ−1 +
∑k

j=1 h(j)1{j 6=i}

)

.

We want to show thatS = {h ∈ R
n : ∃k,m such thatk 6= m andRk(h) = Rm(h)} has prob-

ability zero with respect to the stationary distribution ofthe fading process. To this end, it

is enough to show thatS has zero volume since the stationary fading distribution isabsolutely

continuous. Suppose not. Then, we can findm > k such thatSk,m = {h ∈ R
n : Rk(h) = Rm(h)}

has positive volume. First, letm = k + 1. This means that we can find a pointy ∈ Sk,k+1 and
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a smallRk+1-ball B (y, ǫ) ⊆ Sk,k+1 centered aroundy. This implies that as a function of its

largest(k + 1)th component (keeping other coordinates constant aty(i), 1 ≤ i ≤ k), Rk+1(h)

is constant over
(

y(k+1) − ǫ, y(k+1) + ǫ
)

. One can show that this cannot happen by taking the

partial derivative ofRk+1(h) with respect toh(k+1).

Similarly, if m ≥ k + 2, we can find a pointy ∈ Sk,m and a smallRm-ball B (y, ǫ) ⊆ Sk,m

centered aroundy such thatRm(h) is constant over this ball as a function of its largest(k+j)th,

j = 1, · · · , m − k, components. However, by following the same steps in Lemma 1, it is not

hard to show thatRm(h) is a strictly Schur-convex function as a function of the largest m

elements ofh. Therefore,Rm(h) cannot be constant overB (y, ǫ) as a function of its largest

(k + j)th, j = 1, · · · , m − k, components since we can obtain a differenth1 from a givenh2,

both inB (y, ǫ), such thath1 �M h2 by only perturbing the largest(k+ j)th, j = 1, · · · , m− k,

components.

APPENDIX C

PROOF OFTHEOREM 3

From a given fading stateh, we derive another fading stateg = 1h(1) by making the channel

conditions of all users the same and equal toh(1). For these two fading states, we have

Rg (P
∗) ≥ Rh (P

∗) , (6)

since any set of received powers that can be achieved underh can be achieved underg. Now,

note that ifP∗ schedules only one user for transmission with full power atg, then it schedules

only the best user for transmission with full power ath since the maximum sum-rate atg forms

an achievable upper bound for the maximum sum-rate ath for this case.

By using the structural properties ofP∗ established in Theorem 1, we can writeRg (P
∗) as

Rg (P
∗) =

1

2

k∗
∑

i=1

log

(

1 +
h(1)

ρ−1 + (k∗ − 1)h(1)

)

=
1

2
k∗ log

(

1 +
ρh(1)

1 + (k∗ − 1) ρh(1)

)

for some optimalk∗ ∈ {1, · · · , n}. Our aim is to find a condition onh(1) under which we can

show thatk∗ = 1.

A similar problem was addressed in [10] but for a different model: the symmetric network of

interfering links. This is a model in which there aren links, each with a different receiver node,
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and each link interferes with all the others. The symmetry refers to the fact that the direct link

gain is unity for all links, and the cross-link gain is
√
ǫ between any pair of links. See figure 1

in [10] for an illustration of this model. In [10] the received power is denoted byPmax but if

we replace that byρh(1) then the sum-rate in this model, withn links on, is given by

Rn(ǫ) = n log

(

1 +
ρh(1)

1 + ǫ (n− 1) ρh(1)

)

.

Note that ifǫ = 1 then this gives the same rate asn links on in the model of the present appendix,

under fading stateg, and indeed the symmetric network model degenerates into, effectively, a

symmetric multiple access model in the special caseǫ = 1.

We can use results from [10], Section IV B, to obtain the condition on h(1) that we need.

Section IV B examines the special case of binary power control in which a link is either on at

full power or switched right off. First, it is shown thatRn(ǫ) is a decreasing function ofǫ, and

it crosses the constant valueR1 at a unique value ofǫ, namely,

ǫn,1 =
(1 + ρh(1))− (1 + ρh(1))

1
n

(n− 1)ρh(1)((1 + ρh(1))
1
n − 1)

(7)

(see (36) in [10]). Thus, ifǫ > ǫn,1, then having one link on beats havingn links on. Further,

it is shown in Lemma 4.3 in [10] thatǫn,1 increases inn, and approaches a limiting value of

ǫ∗ := (log(1 + ρh(1)))
−1 as n tends to infinity. Thus, ifǫ > ǫ∗, having one link on must be

optimal in the class of binary power control schemes.

If we can show that1 > ǫ∗ then it will follow that having one link on is optimal in our

multiple access model under fadingg. But if h(1) > (e − 1)ρ−1 then indeed1 > ǫ∗, so we

conclude that a sufficient condition for scheduling just thebest link ish(1) > (e − 1)ρ−1, as

stated in the theorem.
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