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Abstract

Precoding for multiple-input, multiple-output (MIMO) arina systems is considered with perfect
channel knowledge available at both the transmitter andebeiver. For 2 transmit antennas and QAM
constellations, an approximately optimal (with respectthie minimum Euclidean distance between
points in the received signal space) real-valued precodsed on the singular value decomposition
(SVD) of the channel is proposed, and it is shown to offer a imarn-likelihood (ML)-decoding
complexity of O(v/M) for squareM-QAM. The proposed precoder is obtainable easily for aabytr
QAM constellations, unlike the known complex-valued ogimrecoder by Collin et al. for 2 transmit
antennas, which is in existence farQAM alone with an ML-decoding complexity of(M+/M)
(M = 4) and is extremely hard to obtain for larger QAM constellatio The proposed precoder’s
loss in error performance for 4-QAM in comparison with thengdex-valued optimal precoder is only
marginal. Our precoding scheme is extended to higher numbgansmit antennas on the lines of the
E-d..in precoder for4-QAM by Vrigneau et al. which is an extension of the compledwed optimal
precoder forl-QAM. Compared with the recently propos&d- andY —precoders, the error performance
of our precoder is significantly better. It is shown that owegoder provides full-diversity for QAM
constellations and this is supported by simulation plotshef word error probability foR x 2, 4 x 4

and8 x 8 systems.

Index Terms

Diversity gain, low ML-decoding complexity, MIMO precodgrsingular values, word error proba-
bility.

. INTRODUCTION AND BACKGROUND

Multiple-input, multiple-output (MIMO) antenna systemauve evoked a lot of research interest pri-

marily because of the enhanced capacity they provide, coedpaith that provided by the single antenna
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point to point channel. Moreover, for a system withtransmit antennas and. receive antennasy{ x n,
system), the maximurdiversity gain(refer Sectiori_ 1l for a definition of diversity gain) achidka with
coherent detection has been shown torbe,. For MIMO systems with the channel state information
available only at the receiver (CSIR), suitably designedcsgtime block codes (STBCs) [1] provide
full-diversity. Full-rate transmission is said to occurrif,;, = min(ns,n,) independent information
symbols are transmitted in every channel use. Full-rate GTBchieving full-diversity have also been
proposed [2], [3]. However, all full-rate, full-diversitg TBCs are characterized by a high ML-decoding
complexity (refer Sectiofilll for a formal definition of ML-deding complexity). In general, decoding
full-rate STBCs requires jointly decodingn,,;, symbols.

MIMO systems with full channel state information at the wanitter (CSIT) or partial CSIT have
been extensively studied in literature. From an infornraticeoretic perspective, capacity is an important
parameter for MIMO systems and waterfilling [4] can be emptbyto achieve the capacity with a
Gaussian codebook. From a signal processing point of viesvetror performance of MIMO systems
using finite constellations is one of the important paramsei@nd several precodﬂ@chemes have been
proposed in this regard. Maximal ratio transmission waaiced in [5] to achieve full-diversity while
maximizing the signal-to-noise ratio (SNR) by precodinghat transmitter and equalizing at the receiver
for transmission of a single symbol per channel use. Sulesetythe use of precoding and equalizing
matrices at the transmitter and the receiver, respectivedg proposed in [6] to maximize the SNR at
the receiver, but this scheme resulted in low-rate trarsions Several works on optimal linear precoders
and decoders have been done for thmimum mean square errqiMMSE) criterion [7]-[10]. Since
these precoders are linear and optimal for the MMSE decodiregdecoding complexity is very low
and full-diversity is also achieved, but the error perfonce is worse than that for the ML-decoding.
Other non-ML-decoding techniques include lattice-reaucbased techniques [11] which provide full-
rate transmission with possibly full-diversity, but latireduction itself involves a high complexity for
large MIMO systems. Extensive research has also been domél@® systems with limited feedback
to the transmitter about the channel from the receiver f@eeexample, [12] and references therein). In
this paper, we consider MIMO systems with full CSIT. The amelnstate information could be either
sent to the transmitter by the receiver (when there are aepfrequency bands for uplink and downlink
transmission) or the transmitter could estimate the cHarini is reciprocal (like in a time division

duplexing (TDD) system), by receiving pilot signals frometheceiver. In literature, to the best of our

Iprecoding is also referred to as “transmit beamforming”.

June 27, 2018 DRAFT



knowledge, there is no known precoding technique to achadvéhe three attributes - full-rate, full-
diversity and low ML-decoding complexity (“low ML-decodinrcomplexity” is a relative term and in this
paper, it is used to mean the joint decoding of at most 2 coxgpjenbols).

Almost all the popular precoding techniques with ML-decapat the receiver use the singular value
decomposition (SVD) of the MIMO channel [13]. Theds;;, precoder ford-QAM [14], an extension
of the complex-valued optintalprecoder [15] to higher number of transmit antennas, has Baewn
to perform very well for4-QAM, beating all other linear precoding and decoding scbefmased on the
MMSE criterion, and ML-decoding involves jointly decodibgo complex symbols only. However, this
precoder exists in literature for 4-QAM alone and is verychtar obtain for larger QAM constellations,
since it involves a numerical search over 3 parameters.rRgc&’- andY - precoders have been proposed
in [16] as rivals for the Ef,,;, precoder. TheX-precoder has been shown to offer an ML-decoding
complexity of O(M) (this can be brought down t®(v/M) by the same decoding scheme as for our
precoder, which is explained in Subsection 1\-D), while #herecoder has an ML-decoding complexity
which is invariant with respect to the constellation size The disadvantage with th& -precoder is
that it loses out to the H;,;, precoder in error performance fdrQAM and it is not known if an
explicit expression for the precoding matrix can be obtdif@ larger QAM constellations. Th& -
precoder (which uses a two-dimensional constellationfoagh explicitly obtainable for constellations
of any sizeM, loses out in error performance to thedk;, precoder, since it has not been optimized
for error performance. In literature, all the aforemengidiow ML-decoding complexity precoders have
been claimed to offer a diversity gain 0f; — n,in/2 + 1)(n, — nmin/2 + 1) by the authors (but the
simulation results in this paper indicate that thé€,E; precoder has full-diversity fot-QAM). Concerned
by the limitations of each of the low ML-decoding complexjtsecoders, we first propose a real-valued,
approximately optimal precoder (we explain in Secfioh IV\wthe precoder is “approximately optimal”)
based on the SVD of the channel foy = 2 and then extend it to higher number of transmit antennas,
an approach similar to that in [14]. The ML-decoding comjilenffered by our precoder is shown to be
O(v/'M) for M-QAM. For 4-QAM, the proposed precoder has only a marginally poorergrerformance
than the Ed,,;, precoder, but has lower ML-decoding complexity. For lar@&M constellations, it is
easily obtainable, unlike the &;,;, precoder. When compared with tBé- and Y-precoders, it has a

much better error performance. The main contributions efgghper are -

2Throughout this paper, unless otherwise stated, optiynialiith respect to the minimum Euclidean distance betwesintp
in the received signal space.
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1) we propose a novel scheme to obtain an SVD-based, rasdjahpproximately optimal precoder
for 2 transmit antennas and afdy-QAM. The method of obtaining this precoder is differentnfro
the one taken to obtain the complex-valued optimal precéate? transmit antennas [15], and is
easily applicable for any/-QAM, unlike that in [15].

2) We extend this real-valued precoder to higher number arisimit antennas and show that our
precoding scheme offers full-diversity with ML-decodinihis is a new result as the existing low
ML-decoding complexity precoders have been claimed torcadfediversity gain of only(n; —
Nmin/2 + 1)(ny — nmin /2 + 1). The simulation plots of the word error probability f2rx 2, 4 x 4
and8 x 8 systems support our claims about full-diversity.

3) The ML-decoding complexity of the proposed precoder iswshto be O(v/M) for squareM-
QAM, in general. However, for a considerable number of clehrealizations, no search is required
over theM signal points. Specifically fot-QAM and 2 transmit antennas, simulations reveal that
for more than50% of the channel realizations, no search is needed over artyeo$ignal points.

This aspect is elaborated in Subsecfion Iv-D.

The rest of the paper is organized as follows. Sedfibn ligthe system model, the relevant definitions
and some known results which are needed for our precodegrdesibrief review of existing low ML-
decoding complexity precoders is given in Secfion Il Thethod to obtain the proposed precoder is
presented in Sectiopn_ 1V and its ML-decoding complexity islgmed in Subsectiop TVD. In Section
V] we show how this precoding scheme can be extended to higimaber of transmit antennas while
Section[V] deals with the achievable diversity gain with fveposed precoder. Simulation results are
given in Secio VIl and concluding remarks constitute SedWIII]

Notations Throughout, bold, lowercase letters are used to denotrgeand bold, uppercase letters
are used to denote matrices. For a complex mafrixhe Hermitian, the transpose and the Frobenius
norm of X are denoted bX”, XT and||X||, respectively. The'* element of a vectox is denoted byx];,
the (i, /)" entry of X is denoted byX (i, j), tr(X) denotes the trace of, andX = diag(z1, 2, - - ,2n)
implies thatX is a diagonal matrix withr;, x5, - - - , z,, as the diagonal entries. The set of all real numbers,
complex numbers and integers are denoted®Rby¥ andZ, respectively. The real and the imaginary part
of a complex-valued vector are denoted by; andxg, respectively|z| denotes the absolute value of a
complex number: and|S| denotes the cardinality of the s8t TheT" x T' identity matrix and thex x m
sized null matrix are denoted dy and O,,«,,,, respectively. For a complex random variatle E[X]

denotes the expectation &f, while X ~ N (0,1) implies thatX has the complex normal distribution
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with zero mean and unit variance. Unless used as a subscript @enote indices; represents/—1
and for a functionf(x), argminf(z) and argmaxf(x) denote that value of which minimizes and
maximizesf(zx), respectivel;. For any real namber, |m| denotes the largest integer smaller than
[m] denotes the smallest integer larger thanrnd|m] denotes the operation that rounds offto the
nearest integer angsn(m) gives the sign ofn, both of which can be expressed as

lm], if [m]—m>m—|m]| 1, ifm>0

rnd[m] = _ , sgn(m) = _
[m], otherwise —1, otherwise

The Gamma function and the Q-function ofare denoted by'(x) andQ(x), respectively, and given as

[ee] [ee] 1 .2
I'(z) = =L, = / T dt.
@=[ Q) = [ —=e

Let f(z) and g(x) be two functions. Thenf(z) = O (g (x)) if and only if there exists a positive

constantc < oo such that

im M =
A g(a)

and f(z) = o(g(x)) asxz — a if and only if

im M =
:}:—m g(x) 0.

For a real variable, the unit step function(t) is defined asu(¢t) = 1, if ¢ > 0, andu(t) = 0, if ¢ < 0.

II. SYSTEM MODEL

We consider am; x n, MIMO system with full CSIT and CSIR. The channel is assumed¢o
guasi-static and flat with Rayleigh fading. The channel islelled as

y— VB )
g

wherey € C™ 1! is the received vectoH € C"*™ js the channel matrixs € C"*! is the precoded

symbol vector andh € C"*! is the noise vector. The entries Bf andn are i.i.d. circularly symmetric
complex Gaussian random variables with zero mean and ari@rb per real dimension. Ial(1), the
scalarSN R is the average SNR at each receive antennasasaonstrained such tha@tr(ss?)] = n,.

The precoded symbol vectsrcan be defined as

[1>

Sl

Mx,
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whereM € Cn*mmin s the precoding matrix, withM||? = n;, andx £ [z1,29, -+ ,2,,, |7 is the
symbol vector, with its entries taking values independefittm a signal constellation denoted by,
having an average energy 6éf units. The rate of transmissionig,;, independent symbols per channel
use. Note that in this model, the variable scalar which defthe average SNR at each receive antenna
is SN R, while E is a constant. For example, for a standafdQAM, with M = 22 for some positive
integera, E = 2(M —1)/3.

LetH = UDV#, obtained on the SVD dfl, with U € C*>*" andV € C™*™ being unitary matrices.
D € R"™>*™ is such thatD = [D; O, x(n,—n,)] if ¢ > n, @andD = [D1 O, x(n.—nn]” if ne < 1,
whereD; € R"min*"min s @ diagonal matrix given b, = diag(o1,092, -+ ,0n,.. ), With 01,09, -+,
on,.. being the non-zero singular valuestdf placed in the descending order on the diagonal. Let the
precoding matrixM be given as

M = VP, (2)

whereP € C"*"=i=_Now, (I) can be written as

y = ,/SNRDPXJr n’, (3)
TLtE

wherey’ = Uy andn’ = U'n, with the distribution ofn’ being the same as that of

The ML-decoding rule seeks to find thatc .A™~*1 which minimizes the metric given by

y_ [SNE

DPx
ntE

(4)

Clearly, the error performance of the system depends onhbiee of P and . A. From [2), it is evident
that the design of the precoding mathk amounts to designinB. Henceforth in this papeR is referred
to asprecoderand the constellation is assumed to be drQAM, where M = 22¢ for some positive
integera.

Definition 1: (Full-diversity precoderIn a MIMO system, if at a high SNR, the average probability

P, that a transmitted symbol vector is wrongly decoded is gien
P, ~ (G..SNR)™ %,

where~ stands for “is approximately equal to”, theiy andG. are called theliversity gain(or diversity
order) and theoding gainof the system, respectively. For a MIMO system with precgdihG; = nyn..,

then, we call the precoder a full-diversity precoder.
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Definition 2: (ML-Decoding complexilyThe ML decoding complexity is measured in terms of the
number of computations involved in minimizing the ML-deaaygl metric given in[(#) and is a function
of the constellation sizé/. If at mostk symbols are required to be jointly decoded, the ML-decoding
complexity is said to be(M*).

Note that the above definition of the ML-decoding complexitywith respect to thevorst-caseML-
decoding complexity. The use of a sphere decoder [17] cact@fély result in a much loweaverage
ML-decoding complexity that depends on the dimension oftiteere decoder and not on the constellation
size [18]. For a complex lattice constellation of sizg if the ML-decoding complexity isD (M’“) the
dimension of the real-valued sphere decoder to be used vb@24. As a result, a precoding scheme with
higher worst-case ML-decoding complexity than anothec@ding scheme will also have higher average
ML-decoding complexity. Hence, throughout this paper, wasider only the worst case ML-decoding
complexity.

We make use of the following known results, which are neededatir purpose.

Theorem 1:[19] For a scalar channel modelled py= v'SN RSz +n, wheren ~ N¢ (0,1), E[|z]?] =
1 anda = |3|? is a nonnegative random variable whose probability derfsitgtion (PDF)f,(«) is such
that

fala) = ca' +o(a'), asa — 0",
the average symbol error probability (SEPR), which is given by
P.=E[P.,] = / 0 (\/k:@zSNR) fada,
0

is such that a§ NR — oo,

P 2tel(t + 3)
Vr(t+1)

wherek is a fixed positive constant depending on the constellatias, another constant defining the

marginal PDF ofx and P, , = @ (x/kaSNR) is the « dependent instantaneous SEPE|&| = 1, then,

(k.SNR)~tD 4, (SNR_(”l)) :

SNRis the average SNR at the receiver and the diversity ggiand the coding gai. can be defined

as
2tel(t+3)\ !
Gyg=t+1, G.=k|——22
@it ¢ < Ut +1)
Given thato;, i = 1,2, , i, are the non-zero singular valuesidf it is known thato? are the
non-zero eigenvalues diH®, which are denoted in the descending orderXpyi = 1,2, , nmin.
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The following theorem gives the expression for the first orebgpansion of the marginal PDF of as
i — 0T,

Theorem 2:[20] Let the entries of the:, x n, matrix H be i.i.d. complex Gaussian with zero mean
and unit variance. The first order expansion of the margiiaF Bf the k*" largest eigenvalue,, of
the complex central Wishart matridH 7 is given by fy (\x) = ak)\z" +o (Ai’f), as)\, — 0%, k =
1,2, ymin, With d = (ny — k+ 1)(n, — k+ 1) — 1 anday being positive constants.

In @), if P=1,, or P=[l,, On xn_n]", depending on whethet,,;;, = n; Of nmin = n,,
respectively, each of the symbatg, i = 1,2,--- | n,:, Will experience a diversity gain given by, =
(ng — i+ 1)(n, — i+ 1). This is evident from Theoreinl 1 and Theoréin 2. The above tperaf
premultiplying the symbol vector byP, with P = I,,, (for n; < n,) or P = [l,,, Ou, xn,—n,|" (for
ny > n,) can be viewed to result im,,;, virtual subchannelsSo, the overall diversity gain for the
symbol vector ismin{Gg,,i = 1,2, -+ , Nmin} = (Mmaz — Nmin + 1), Wheren,,,, = max(ns, n,). This
is the least diversity order one can obtain in a precoded MI8§&tem with ML-decoding. However,
assuming that the symbols take values from an arbitraryasigimstellation of sizé/, the ML-decoding
complexity isO(M), since each symbol can be decoded independently from tlegsoth

Let Ax £ x — X/, wherex, X’ € Amminx1,

Theorem 3:[21] For P such thaPAXx]; # 0 for any non-zero value oAx € {x-x'|x,x’ € A"minX11
the diversity gain of the system ign,..

Proof: The instantaneous probability that a transmitted symbolore is falsely decoded to some

other vectorx’ is given by

SNR

Prix —x1=0Q ( m“DP(x-x’)H) ) (5)

Let €5, = minax {|[PAX]1]}, with Ax # O,,,... x1. S0, the probabilityP,.(x) that a transmitted vector

X is falsely decoded is upper bounded as

/SN
Pe(X) < (’A’"m" — 1) Q ( ;l—tERalemm> , (6)

whereD(1,1) = o1, the largest singular value &f. Assuming that all the symbol vectors taking values
from Am=»*1 are equally likely to be transmitted, the average instardasword error probability

(WEP), dependent ob is given by

1
o= 2 RO, ()
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Using [6) in [7),

Nomi SNR Nmin E?m’n
Po < (1A —1)@( zntEalemm> = (AP - 1)@ (\/ (52 A1SNR>7

where\; = o?. So, from Theoreri]1 and Theorémh 2, the average WERS SN R — oo is given by

P, < C.SNR™™" 40 (SNR™™"™), (8)

where

C = (|A" — 1) a1 (2niny — 1)(2ngny —3)--- 1 < e >—an |

20y, 2n: B

with a; being a positive constant such that (A1) = a1 A"~ + o (\*"~!) asA; — 0F. Note that

in obtainingC, we have used the fact thB{t + 1) = tI'(t) andI'(1/2) = /7. Sinceéypin > 0, C' < 0o
and from [8), the diversity gain achieved by the system;is,. |
An alternative proof of Theorei 3 has been presented in Rihice the steps of our proof are used in
Section[V] of this paper, and also for the sake of complet®nes have provided our version of the
proof.

Note The condition thafPAXx]; # 0 for any non-zero value ofAx € {x-X'|x,x' € A"=»*11 is only
sufficientto guarantee full-diversity. There might be several precedvhich do not satisfy this condition
but still give full-diversity. This will be elaborated in 8gon [Vl Also note that in Theorerl 3, the
constraint is only on the first entry &#Ax. The other entries are allowed to be zeros.

ObtainingP such thate,,;, # 0 is not difficult. ChoosingP to be [G Onrx(m_nr)]T (for ny > n,) or
G (for ny < n,) for QAM constellations, wher& < R"»*"min is the rotatedZ™~ lattice generator
matrix with a non-zero product distance, as presented ify Bt%&sures that the diversity gainiqisn,.. If

Mmin

A is a square QAM constellation of sizZd, the ML-decoding complexity i€£) (M 2 ) since all the

nmin iNdependent symbols are entangled in the decoding metricthle real part of the symbol vector
can be independently decoded from the imaginary part. Bhi®ssible becausg is real-valued. In [21],
complex-valued precoders are used to achieve full-diyeesid they offer an ML-decoding complexity
of O (M™min),

1. REVIEW OF LOW ML-DECODING COMPLEXITY PRECODERS

This section gives a brief overview of existing low-comptgxprecoders. The first precoder is called
the Ed,;, precoder [14], which is an extension of the MIMO precoderipr= 2 [15], developed for
4-QAM.
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10

A. E-d,.;, precoder

The precodeP of sizenin X nmin (fOr ny > n,., the remaining:; — n,. rows of P are zeros) has the

following structure

M1(1,1) M1 (1,2)
Ma(1,1) M2(1,2)

M rmin (1,1 M nmin (1,2
o g (L1) Mg (1,2 e
M min (2,1) M min (2,2)

M2(2,1) M2(2,2)
L M1(2,1) M1(272) h

where, ify; £ tan~! (%) is such thab < v; < 7, then,
o2 [3+V3 | [3=V3 jjm/12
M=/ = | VO ‘ (10)

and if v, < v < /4,

ngT2 | cosp; 0 1 ein/4

Mmin 0  singy —1 eI/t

where,

~ 0.3016

T,Z)z':tan_l <E> Yo = tan—l 3\/3—2\/64—2\/__3
cosvy; ) 53— Vo4 1

—1

(= ety £0< <,
6(v;) = (4=2v2)cosy;sin?y;  Gihanvise

1+(2—2v2) cos2y; ’
The precoder essentially entangles the virtual subchanmgh indexi and n,;, —i+ 1, i = 1,2,
-, Nmin /21, Such a scheme will have an ML-decoding complexil}(b(MVM). It has been shown

that the scheme guarantees a diversity gain equalte- 5= + 1)(n, — 5= + 1). Also, the precoder

is optimal among precoders based on the SVD of the channel fgr = 2 and 4-QAM [15].

Sfor odd valuedn,., “mix is replaced by “zix | and the(| “ziz | + 1) subchannel is left unpaired.
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11

B. X-precoder

The X-precoder has the same structure agn (9), with the matkitegiven as

Ty cost; —sinb;
Mi - ] ’
Mmin | ¢in@;  cos0;
where, for4-QAM,
/4, if v >m/3
0; = 2
1—tan? v; —+/1+tan* v; —3 tan? v; .
tan—? an® i~/ HanT TSNt ) otherwise
tan® y;

This scheme has also been shown to guarantee a diversitegaa to(n; — “5= + 1)(n, — “5= + 1),

but has an ML-decoding complexity @ (x/ﬂ) only (refer Subsection IV-D for details). However, it

is expected to lose out in performance IBQAM when compared with the B;,;,, precoder, since it is

not optimal. Also, an explicit expression for the precodéew) > 4 does not exist.

C. Y-precoder

The Y-precoder [16] has th& -structure but it uses a displacement vector and its pretsgimbol
vectors can be written as
s=V(Px+u), (12)

where,u is the displacement vector. The precoded vector can alsxfressed as
S = Vpeferff,

where,Px +u = P.ssX.rp, With P.sr andx.¢y being the effective precoder and the effective symbol

vector, respectively. These are defined as

Peff = dlag ((11,612,"' 7a7"";i">b"m7i"7"' 7b2>b1)

<\/% 0)7 it 52 > M-

\/m> Bi JW) otherwise

where,

(ai,bi) =

June 27, 2018 DRAFT



12

and M’ = M =1 and g; = —-—— - The constellationd € 7**! of size M is two-dimensional with

ag P
Mmin "

the signal vectors (not to be confused with the symbol vektoy) z;, I = 1,2,--- , M defined as

20— M —1
(—1)!
and the symbol vector that is associated with the:,,;, — i + 1) subchannel pairing is; = v; +

IV —it1s with ViV, in—itl € Ai=1,2,--- 7nmin/2- Hence,

T
Xeff = [si)1, [S2]1, - 7[3%]17[3%]2,'“ ,[52]2,[31]2} .

So, the effective precoder of the-precoder is a diagonal matrix, while, as given in[(1ll), has the
'Y" structure. TheY -precoder has been shown to have better error performaiacetiie X -precoder
for “ill-conditioned” channels, i.e., for low values 0?%07*“ i=1,2,--+ ,nmin/2, while for well-
conditioned channels, th&-precoder has better error performance. HoweverYth@ecoder has lower
ML-decoding complexity, which i€)(1). Hence, among all existing precoders, tfieprecoder has the

least ML-decoding complexity while the &g, precoder has the best performance 46DAM.

IV. SVD-BASED, APPROXIMATELY OPTIMAL, REAL-VALUED PRECODER FORn; = 2

In this section, we propose a real-valued precoder for Ztrétrantennas and QAM constellations. The
precoder is approximately optimal among the SVD basedva&lalked precoders for QAM constellations.
The primary advantage of this precoder over the complededabptimal precoder [15] is that it is much
easier to find the entries of the precoder for larger coradiefis, since it has only 2 parameters that need
to be searched for, while the complex-valued precoder hasr@npeters. Without loss of generality, we

consider 2 receive antennas and 2 transmit antennas, feh\hin (3) can be expressed as

oS 0
D=p ! )
0 sinvy

wherep = /o7 + o3 andy = tan~'(2). Clearly,0 < v < /4. Let

Epin(P) £ A%n {IIDPAX|]?, Ax € {x—X | x, X € AZ*!}. (12)
X 2x1

From [B), the optimal precoder is given B§*" = argmax{E,,;,(P)}, which may or may not be unique.
P

In [15], P?* ¢ C?>*? was obtained for-QAM as follows. Using SVD,P € C?*2? can be written as
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P = AXBH, whereA is a unitary matrix of siz& x 2 and

cos 0 cosf) —sinf 1 0
¥ =12 v , B = . (13)
0 sin ) sin cos 0 el?

For QAM constellations, because of the symmetry associaiéu the constellationp) < 6 < 7/4,

0 <y <7/2and0 < ¢ < /2. It was shown in [15] thaA can be taken to be identity without affecting
the optimality. Using numerical search, the optimal valtesf, 1) and ¢ were found out ford-QAM.
However, there are two major obstacles when this methodead t@ larger QAM constellations. Firstly,
numerical search becomes practically hard for larger etlatibns due to the fact that there are three
parameters to be searched for. Secondly, numerical seagicheot give a closed form expression for the
optimal angles and the method employed in [15] to obtaineddsrm expressions for the optimal angles
for 4-QAM is not amenable for application to larger QAM constidias. Due to these limitations, we
look for a real-valued optimal precoder which also natyraffers lower ML-decoding complexity (this
is elaborated in SubsectiGn TWD). A real-valued precodsr be expressed &1, #) = AXBT where

A can be taken to be identity without affecting optimality and

cos 0 cos@ sin6
> =2 v , B=

0 sin —sinf cosf

Note that there are only two parameters to be searched farafuroach towards finding the optimal
precoders is also based on numerical search, but the metholtdin closed form expressions for the
optimal angles is novel and easily applicable for adyQAM. However, since this method is based on
numerical search, it is not known if the angles are exactljnegd. Finding the exactly optimal values of
# and+ as a function ofy involves anexhaustivesearch over the range 6fand, which is practically
impossible. However, a numerical search, witand« varying in very small increments, gives the values
of # and+, which we denote by* and*, respectively, such thak,,;,(P(y¥*,0*)) is nearly equal to
Enmin(PPY), with P°P* being the optimal real-valued precoder. For this reason.caleour precoder
approximately optimal.

A square QAM signal set (not necessarily Gray coded) of 8izés given by

Av—gam ={a+37b | a,b €A 57 _pants (14)

whereA 77 pay = {20 — VM —1,i=1,2,--- v/ M} is a PAM constellation of size/M. Let
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cosy O cosy 0 cosf) —sinf
F(v,9,0) = ,
0 siny 0 sin® sinf  cosf

and
§ = i F O)AX|%, Ax e {xX | xx e A%*! 15
() =max{ | min {IFOL 07 Axe fux [xx e L as)
where, for our numerical search, we take= Ak, k=1,2,---, | %], 0 =Ak, k=1,2,--,[ %]

with A being the increment size, taken to be 0.001 radians for canckes. Let

(6*,6%) = argmax{ i {IIF(%T/J,@)AXIIZ}}- (16)

(1,0) AX,AXF#O2x 1

We note that forM-QAM, Ein(P(4*,0%)) = 20*6 (v, Avi—qam) = 20%6 (v, A /37— panr)- HeNce,
we only need to search fér andy* for which (v, A 77_p 4,,) is obtained. Note that this simplification
of the search to only & M-PAM is possible sinc& (v, 1, ) is real-valued. This is another huge advantage
over the complex-valued precoder, which does not enjoylbigefit. Henceforthg* and+«* are used to
denote the approximately optimal anglesfofnd . Due to our choice of the increment size, one can
safely say that{ Ein (P") — Epin(P(6%,¢%))) < k.Emin(P?"), wherer is a very small fraction of
the order of1073.

The search results reveal tht as a function ofy can be written as
Z% uly = k) — uly — % — wp)) (17)

wheref;, k =1,--- ,n, are constants; is the finite number of different values takes,yl"C is the value
of v at which#* changes fron®;_, to 0}, with 41 = 0, 5 = 0, wx = 7}, — 7, and~,, ., = 7/4. The
search results also reveal that cannot be expressed as a weighted sum of shifted step fosdciod
hence a closed form expression needs to be obtained aadllytito obtain this, we first obtaid* as

follows.

A. Calculating#*

For M-QAM, in order to obtaind* and«*, as given by[(16), the entries dfx take values from
{2 (—\/M+z') =12, 2V M — 1}. Letp,ge {—vM+ii=1,2,---,2/M —1} be such that

4F (v, 0%, 6%) [p a1 = 6(v, Anr—gam) = 6(v, A /az_pans)- (18)
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The numerical searches done for 5 QAM constellatiods 16-/64-/256-/1024-QAM reveal that

1) there are two distinctp, ¢q) pairs for which [(IB) is satisfied wheh < v < 44, where~} is as
defined in [(1F). These ar®, 1) and (1, v M — 1). Also ¢* = 0 in this range ofy.
2) There are three distin¢p, ¢) pairs for which [IB) is satisfied wheyf <~y <+, , k=2,--- ,n.

Let
e(p,q, 0%, y*) = cos? 7 cos? (") (pcos (0*) — gsin ((9*))2 + sin? 5 sin? (") (g cos (6%) + psin (9*))2.

So, for0 < v < ~4, we have
£(0,1,07,0) =e(1,vM — 1,67,0),

solving which we obtai} = tan—! . The other solution, which ig; = tan™! (\/Ml ) is ruled out

0,tan"" (1/VA1))) > Epin (P (0, tan"? (1;2\/M -2))))

2,---,n, we have

=

o
/N

since it has been observed that,;,, (

=~
I

for 0 <y <. Forv, <+ <7.1,
e(p1,q1,05,0%) = e(p2, q2, 05, V") = €(p3, g3, 05, 0"),

where(p1,q1), (p2,92) and(ps, g3) are the three pairs for which (18) is satisfied. Solving them arrive

at

pi+ai— s —a (19)
(p2g2 — p1an) sin (207) + (3 — q3) cos? (6;) + (p3 — p}) sin® (6;)

tan® ytan? (¢*) = 1 +

Pi+a-ri-a @0
(p3q3 — p1q1) sin (205) + (¢3 — q3) cos? (65) + (p3 — p?) sin® (6;)

Equating [(IP) and_(20), we obtain

tan® ytan® (¢*) = 1 +

(a1d2 — agdl) tan2 (9;:) + 2((11()2 — a2b1) tan (9;:) + ajcyg —agcy =0, (21)

wherea; = p? + ¢ — p3 — ¢3, by = page — P11, &1 = ¢3 — ¢}, di = p3 — P}, a2 = P+ af — P} — ¢}
by = p3q3s — P1q1, ¢2 = ¢3 — ¢4 andds = p% — p}. Equation [(2I1) has been observed to have only one

solution in the rangg0, 7/4). This solution giveg);.

B. Calculatingv*

As mentioned before)* = 0 for 0 < vy < ~5. In order to obtain)* for v, <~ < 7,’€+1, k=2,---,n,

we note from[(IB) and(20) thatn? v tan? (1)*) is constant in that range of and hence,
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Y* = tan ™! < Ak) , (22)
tan vy
where A;, is given by the R.H.S of(19) (of(20)).
C. Calculating~;,
Having obtained?* and v¢*, we proceed to find the exact values gf, & = 2,--- ,n as follows.

For convenience, let*(6;,v) £ ¢* (given by [22)) fory, < v < 7}, k = 1,--- ,n. Sinced* is

discontinuous aty,;, where it makes a transition frofj_, to 0}, k > 2, we have
€ (pk—h qk—1, 9;;—17 ¢*(91§_17 ’Y]{;:)) =€ (pk7 Ak, 9;::7 1/}*(9;;7 ’Yllg)) )

where the pairgp;,_1, qr—1) and(py, qr) satisfy [I8) fory, ; < <, andy;, <~ < 45,4, respectively.

So, we have

/ *x/nx _/ A d
cos? (7/)*(9;:—17%)) = cos” (7/) (ek,Vk)) <aC++T;:1b> > (23)
/ . * [Nk / A — A d
sin? (1/1*(9;;_17%)) = sin? (¢ (Qka’)’k)) < j;) <ac++Aklilb> ) (24)

wherea = (pk—1 cos (9,’;_1) — @j—1sin (91’;_1))2, b= (%-1 cos (0,’;_1) + pr_1 sin (91’;_1))2,

¢ = (prcos (6F) — qrsin (07))%, d = (qx cos (05) + prsin (67))%, and as explained in Subsection 1V-B,
Ai—1 and 4, are constants given byl,_; = tan?~tan? (¢*(65_;,7)) for v,_; < v < 7}, Ax =

tan? v tan? (¥*(65,7)) for v;, < v < v,,,. Solving [23) and[(24), we obtain,

Ap_ a4 Ap_ib
xinx 1N o —1 k—1 o k—1 .
gy = () (2 ) @)
Using [22) and[(25),
Ve = tan ! A
' tan (v (07.77))

The value ofd(v, Ay—gan) as defined in[(D5) fory, <y <+, is given by

(26)

. c+ Apd
5(v, Anr—gan) = sin®y < k > ;

Ap +tan?~y

wherec = (pg cos (6) — g sin (65))?, d = (qx cos (8%) + py sin (6%))?, with (pg, ¢x) any of the(p, q)
pairs satisfying[(18).
Table[l presents the values 6f for different values ofy for 4-QAM, 16-QAM, 64-QAM, 256-QAM
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and 1024-QAM. The value of the constantan « tan (1)*) and the corresponding pai(g, ¢) for which
(@I8) is satisfied are also tabulated. Except for the case @AM, the values presented in Talile | are
the approximately optimal values rounded off to the fourgitichal. This has been done since it is very
cumbersome to express them in the exact form. All angles xgreessed in radians. Noting the values
of 6* for 4-QAM, it is natural to believe that the angles tabulated gvéneal for 4-QAM. Also, it can

be noted that for every subsequent larger constelladbmiffers from its corresponding values for the
lower-sized constellation only at low valuesof meaning which the numerical search need not be done
over the entire range of as the size of the constellation increases. The plot&(9fAy—_gan) as a
function of v for the different unnormalized QAM constellations are give Fig.[1. The curves fo256-

and 1024-QAM appear to coincide, since they differ only at extremiely values of~. In Fig.[2, the
plots] of §(v,.A4) for the Ed,,;, precoder, the proposed precoder, tkieprecoder and th& -precoder
are given forM = 4 with the same power constraint for all the precoders as forpoeicoder. As was
expected, the K;,;, precoder has the best valuesi¢f, .A) over the entire range of while our precoder
has better values af(~, .4) than theX- andY-precoders. Fid.]3 and Figl 4 show the plotsi¢f, .A)

for our precoder, theX-precoder and th& -precoder forM = 16 and M = 64, respectively. For theX-
precoder, the plots were obtained using numerical seatohastain the approximately optimal angle for
each value ofy in the rang€g(0, 7/4), with ~ increasing in step sizes of 0.001. Note that for low values of
~, our precoder and th¥-precoder have identical~, .4), which is because both transmission schemes
are effectively the same in this range~fWith an increase in the constellation size, Higrecoder has
increasingly lower values of(~, .A) than that of our precoder and tli&-precoder at higher values of

It is also clear from the plots that theé-precoder is expected to have better error performancettiean

X-precoder only for ill-conditioned channels, i.e., for ls&lues of~.

D. ML-decoding complexity
We make use of the following lemma to analyze the ML-decodiagplexity of our precoder.
Lemma 1:For symbolsr; andx, taking values from4y;_gans, the symbolaz; + bx, takes values
from App_gan if a=+vVM,b=1o0rb=+vM, a=1.
Proof: Firstly, Ay/—gan represents the standard, unnormaliaddQAM constellation, as given in
@4). Letv/M Ap;—gan denote thel/-QAM constellation scaled by/M. So, the distance between any

“In all the plots, the E#,.;, precoder, our precoder and tBé-precoder usel/-QAM, while the Y-precoder uses a two-
dimensional codebook of siz&/, as defined in [16].
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two adjacent signal points on the same vertical or horiddimta of v M Axr—_ganr is 2v M. Now, the
constellation given by

A= {\/Mém +x2 | 21,72 € AM—QAM} (27)

can be viewed to be obtained by replacing every elemem’HAM_QAM by the entire constellation
Anr—ganm such that the origin ofdy;—gaar is the signal point being replaced. HengkhasM? signal
points and a QAM structure, and the distance between adjpoémts on the same vertical or horizontal
line is 2. Therefore A is an M2-QAM. [
The following theorem gives the ML-decoding complexity bétprecoder.
Theorem 4:For the proposed precoder, the following claims hold.
1) The ML-decoding complexity i€)(v/'M), when~;, < v < Vis1r B =2,3,--- ,n.
2) The ML-decoding complexity is the same as that of a redbsadannel wher) < v < 4, with
no exhaustive search over all the signal points required.
Proof: These claims are proved below.
Case 1. v, <v <41, k=23, ,n.

In this case, the decoded signal veckois

2
|SNR ISNR
l_ [ l/_ e
y 5Ey, DPx y 5Ey, Rx

wherey’, D andP are as defined il 13)F), = 2(M — 1)/3 is the average energy of aW-QAM and

X = argmin
xe AV g anr

= argmin
xe A3t QAM

2
‘ : (28)

y" = Q'Y with Q andR obtained on the QR-decomposition BP. SinceD and P are real-valued,
(28) can be written a% = X; + jXg, where

2 2

5 . " SNR y ) ,, SNR
X; = argmin Y7 — 1/ ==—RX; , Xg = argmin Yo — 1\ 55— RXq ,
s 2F 42 2F
XICA /S —panm XQEA T _panm
with
. . . T Ao . y . . .
Y =YY = (W + 3o, v +ivho) . XE X+ ko = [E1r + jFiq, For + jiag]”

To obtainX;, instead of using a 2-dimensional real sphere decoder, wiheldollowing. For each

possible value ofto; € ‘A\/M—PAM' the corresponding value afi; is evaluated as

217 = min <max <2.rnd [“"2”} 1, VM + 1>,\/M—1>, (29)
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where

oyl — R(1,2)aar

R(1,1)

andx; is given by that(zy, zor) pair that minimizes

2
SNR
/! _ [t
Y=\ 25, RXt

So, there are only/ M searches (for/M possibilities forzo;) involved in minimizing the ML-metric.

f(xp) =

The operation shown on the R.H.S 6f29) quantizgs to its nearest possible value for a fixegd;.
This is made possible due to the structure dEQAM which is a Cartesian product of twe/M-
PAM constellations. The same method can be applied to oktairSo, the ML-decoding complexity is
O(VM).
Case 2:0 < vy < 4.

From Tabldll and also as was pointed out earlier(fer v < +4, ¢»* = 0 and#* = tan! (ﬁ) This
means that transmission is made only on the first virtual Isaicel and the received signal of interest,
with regard to[(B), can be expressed as

/ / /
Y1 = ax + nq,

wheren/ is the first element off, a = \/o]SNR/((M + 1)Ey;) andz’ = Mz + x5, wherex; and
xo take values fromd_ganr. From Lemmdlly’ takes valugfrom Anz—gam- S0, in the first step,

a’ is decoded to obtait’ = ¥ + jig, by quantizing, wherer; andiy, are given by

i min (max (2.rnd —-1,—-M + 1) , M — 1) ,
a?b = min (max <2.rnd —-1,—-M + 1) , M — 1) .

From &', z; is decoded to obtaitt; = @17 + j#1¢, With Z;7 and ;¢ given by

11 = sgn(i7) (2 [;jj%w - 1) . T1g = sgn(ip) (2 {%w - 1) (30)

SErom a bit error rate point of view, it is advisable to transmisymbolz; alone on the first virtual subchannel, wiih
taking values from a Gray codeld >—QAM. This is because the constellation given byl (27) will betGray coded. However,
with a view of minimizing the word error rate, transmissidnid = /M z; + 2, with z; andz. taking values from\/ —QAM,
is as good a strategy as transmitting alone, withz; taking values from a Gray codetf/>—QAM.

<

/11+1

a

5
~
Il

/

Y

)

+1

a
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andz, is decoded to obtaitty = @5 + jZ2g, With Zo7 andiag given by
o1 = & — VMiny, @aq =iy — VMig. (31)
Note that the operations shown [n130) ahdl (31) togetheop®rthe inverse of the function given by
f(dE11, 210, Fa1, F2g) = VM (F17 + jF1q) + (F21 + jT20)

for Z17,Z1Q, 21, T2 € Am_PAM. Therefore, decoding; andz, requires no exhaustive search over
the M signal points of the constellation. |

It has to be pointed out that the advantage of not having tockeaver any of the signal points when
0 < v < % is unique to the proposed real-valued precoder and notradiibs for the case of the complex-
valued optimal precoder [15] for 4-QAM, for which the effivet constellation whe®) < ~ < 0.3016
appears like ar/12 rotated QAM constellation (it is not exactly a rotated QAMnstellation, however.
Hence, when( < v < 0.3016, even the sphere decoder cannot be used, since the effectigéellation

is not a lattice).

V. EXTENSION FORn; > 2

For the case of two transmit antennas, it is possible to b®/D-based, approximately optimal
precoders (complex-valued precoder 46QAM, real-valued precoder for amy/-QAM). Such precoders
are defined by two or three parameters, depending on whétbgprecoder is real-valued or complex-
valued, respectively. However, such an approach cannakemntfor the case of; > 2, since, even for
n; = 3, an optimal precoder would be defined by as many as 5 parasneting out the possibility of
a computer search even f&fQAM. So, a more practical way of obtaining a precoder witleasonable
error performance is to pair thé" and the(n,.:, — i + 1) subchannels along with th#" and the
(Nmin — i + 1) symbols,i = 1,2--- ,n,,,/2 and use the precoding scheme for 2 transmit antennas
for this pair. This method of pairing has been shown to be th& b [14] and has also been adopted

in [16]. The precoder would then have aX” structure, as in[{9). For th&"” subchannel pairing,
vi £ tan" Yoy, —it1/0i), pi = \/02 + o2 ., and

. ¢ + Apid;
§(Yis Avi—qgan) = sin?; ( b > ,

_—— 32
Ay + tan® y; (32)

wherec;,b; and A;; are as defined in the previous section without the subsér{ptfer to [26)) and
depend ony, and M. Proceeding on the lines of the proof of Theorlgm 3, the inat@ous WEPP, p

is upper bounded as
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. SNR
P.p < (M"m—-1)Q (\/ mdmzn> ) (33)

whereEy; = 2(M —1)/3 anddy;, = minay ax£0 |IDPAX||, with Ax € {x—x’\x,x’ € A’Z(;_“ng}

Tmin X1

andP being the precoder with thé&" andn,,;,, —i+ 1"* subchannels paired using the proposed precoding

scheme described in Sectibnl IV. So,

) 2040 (Vi AM—QAaM
dmin = IIliln pz\/ (2 9 )

Nomin

with §(v;, Av—qganr) given by [32). Observe that the scaling factor2ef /n.,;, has been used to take
into account the constraint thP||> = n,. Since the values 06 (i, Av—gan) are known, we can

enhance the error performance of the precoder by pre-ryifiipthe precoding matrix with a power

control matrix X = diag(71, 72, -+ , Tn,.... /2> Tnpuin /25 ** » T2, T1) SUCh that
. N
Tz'2p225(7i7~’4]\/[—QAM) :7727 Vi € {1727 7%}7 (34)

wheren is a constant and the power constraint¥ris such that|Y||? = 2 Z?j{"ﬂ 72 = Nin. DUE tO

this power constraint, froni_(34), we obtain

MNmin /2 _1

Nmin 1
T = E

2070(vi, Av—qanm) \ = 70(7;, Avi—qam)

whered(v;, Apr—gan) is obtainable from[(32). Hence, the proposed precoder teastthcture given in

@), where
M 2n,7? | costpicosf; —cosy;sind;
i =\ ,
Mmin | sin; sin 6; sin 1; cos 6;

with 1; and 6; being the approximately optimal values obtainable frém) (2ad [22), respectively,
both depending on; and M. For example, for al x 4 system usingt-QAM signalling, if, for some
channel realizationy; = tan~! (g-;*) = > andy, = tan™! (ﬁ) = tan~! <\/§> then, from Table

02

M 6, = tan='(1/2), Y1 = 0, O3 = 7/4, ¢ = tan~! (m) and i, = ,/%, Ty =
)

(143 tan? v-)n? 2 9 5 + 1+3tan? v,
2(c2+03)sin® 2’ n= (0%403) cos® 7, 2(c2+02) sin® v
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The upper bound on the instantaneous WEP is now given as

SNR
Pep < (M"m—1)Q (\/ mﬁ) ; (35)

where
n Pin/2 1 -
! 2 ; P70(v5> Ani—qanm) o

It can easily be checked that

SNR SNR
I Ye) Py i
@ ( 2ni By dmm) =@ ( nminEMT]>

and hence, the upper boundlinl(35) is lower than that ih (I&rdfore, the use of the power control matrix

enhances error performance. Note that the symbols of eamsysiem can be decoded independently
from the symbols of the other subsystems. Hence, the MLdlagaomplexity offered by our precoding
scheme isO(v/M).

A similar approach of using a power control matrix has bedwnain [14] for 4-QAM, but since
we need to have explicit values 6€v;, Ar/—ganr), applying this scheme for the &g, precoder with
larger constellations is not feasible. Structurally, thé, 5, precoder and th& -precoder differ from[{9)
in that for the Ed,,;, precoderM; is optimized using an additional parametgr(as shown in[{113)),
while for the X-precoderM; is optimized withr; = 1 and; = =/4. Table[dl gives a comparison of

the various low ML-decoding complexity precoding schemes.

VI. DIVERSITY GAIN

The Ed,;, precoder, theX-precoder and th& -precoder have all been shown to guarantee a diversity
gain equal to(ny — 2z + 1) (n, — 2z 4 1). Recall that the condition in Theordh 3 is only a sufficient
condition for achieving full-diversity gain equal ton,.. It is not necessary th&be such thaPAXx]; # 0,
for Ax € {x-x/, x,x' € A"==>*11 This can be seen by noting that foy = 2 and4-QAM, our precoder
does not satisfy the condition whéh = /4, but still gives full-diversity. This is proved in the foliing
lemma.

Lemma 2:The proposed precoder offers full-diversity, i.e., a ddgrgain equal t®n,. for n, = 2.

Proof: Consider the precoder given by

cos (0.5 tan~1 2) —sin (0.5 tan—! 2)
sin (0.5 tan—1 2) cos (0.5 tan—! 2)
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which is the full-diversity rotation matrix [22] in 2 dimeimms and has the highest non-zero product
distance among a x 2 sized orthogonal matrices. This precoder, which we calll#tiéce precoder
for n, = 2, has full-diversity from Theorern] 3. Clearly(~, Ay—ganr) for any value ofy is greater
for our precoder than that for the lattice precoder, sincepracoder is approximately optimal among
real-valued precoders. So, our precoder has better errfarpance than the lattice precoder. Hence, our
precoder too offers full-diversity, like the lattice pre&y forn, = 2. |
From Lemma_R, Theorern 2 and Theoréi 3, one would be inclineoetieve that forn, > 2, a
subsystem with index, for which the:*” and then,,;, — i + 1*" virtual subchannels are paired and the
it" and then,,;, — i + 1" symbols precoded by the scheme proposed in Seciibn IV, hagsity gain
of (ng—i+1)(n,—i+1), withi =1,2,--- ,n,/2, in which case the diversity gain of the whole system
would be the minimum of the diversity gains of all the subeyss, i.e.{n;—nin/24+1) (ny —Nmin/2+1).
In fact, the diversity gains of systems using thé k5, precoder and th& -precoder have been claimed to
be (nt—nmin/2+1)(n, —nmin/2+1) due to this reason. It must be noted that the power contraixmat
plays an important role in the error performance of our pdecdalso the E2,,;, precoder fori-QAM), as
explained in Section V. Before we analyze the achievablerdity gain of the system with the proposed
precoding scheme, the following important observationdseie be made abouty;, Axr—ganr). Since

O Nmin +1

01> 09> 0y, We haveTize < Tmino L 2

— g2 T min
2

— g min — (o2 ’m,z'n,_l _ U"7nin,+1
tan~! [ Zmin ) <tan ! 2w ) <...tanT? 2
71 02 O "min
2

and thereforeg; < 42--- < 1, .. /2- From Fig.[1, except for the case ¢fQAM, we can conclude

. Consequently,

that §(;, Arv—gam) < 6(vj, Am—ganm), for i < j. Due to this fact, although it is expected that for
1 <i<j < nmn/2 p? > p?, it is not guaranteed tha#?6(v;, Ay—gan) > p?é(’}/j,AJ\/[_QAM),
due to which even without the use of, the overall diversity gain of the system might be highemtha
(ng — Nmin /2 + 1) (ny — npmin/2+ 1) (this holds true even for th& -precoder). With the use of for our
proposed precoder, the channel dependent instantaneoBsis\ependent on, as seen in(35). Let

n
p1/0(1, Avi—ganm)

¢ &

and P; be the probability thaf < 1.
In Table[Il, we tabulate the values @f,;,, which is the minimum value of obtained on simulations
for 107 channel realizations, ang, which is again calculated by simulating” channel realizations,

for different MIMO systems. In the table, we observe that/pr= 16,32 and for M > 64, ( is always
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greater that 1. This can be attributed to the fact that fonéigralues ofn,,,;,, the ratio ofo,,, . to o;

is very low and the corresponding value &fy;, Ay —ganr) is also very low. For such systems, we can
safely say that the full-diversity gain equal tgn, is achieved (since? is associated with a diversity
gain of nyn,). For other systems, the simulations results in Table Iénsd¢o indicate that there exists a

Cmin > 0 such that(,,;, < ¢, i.e., ¢ is lower bounded by,,;,. So, from [35),

SNR.C2..p30 (1, Avi—gam)

P.p < (M" —1)Q \/
Let s = min{d(y1, Am—gan)}, Which is a constant depending dd. Then,

2 2 2 2
A 10 \/ SNR.Giutor | _ aprn 1) \/ SNR.C,, 0%0u

PeD

)

IN

_ e 1) W (Lhute) MSNR) |

where, as used throughout the papar= o?. From Theorenf]l, we obtain, &V R — oo,

Pe S C.SNR_ntnr + o0 (SNR—mn,‘) )

where

C = (M™ — 1)

al(2ntnr - 1)(2ntnr — 3) e 1 < 5MC727”n >—TLtTLr 7 (37)

2ntnr nminEM

with a; being a constant in the expression for the marginal PDk pés defined in Theorenl 2. Therefore,
the overall diversity gain of the systemyign,.. Note that in[(3l)0,, and(,,;, define the coding gain

- the higher the value of,.;, andd,;, the better the error performance. It is not knowr,jf;,, can be
obtained analytically. The values in Talplel Il are only wative of what the actud,,;, is likely to be.
For example, for thd6 x 16 system with64-QAM, (..., IS likely to be greater than 1. Thus, we have
shown that our precoding scheme provides full-diversityisTclaim is supported by the WEP plots for

different MIMO systems, shown in the following section.

VIl. SIMULATION RESULTS

For all simulations, we consider the Rayleigh fading chémiiid prefect CSIT and CSIR. We consider
three MIMO systems 2 x 2, 4 x 4 and8 x 8 MIMO systems. For the x 2 MIMO system, the rival
precoders for our precoder are thelk;, precoder and th& -precoder. We have left out tié-precoder

since it has been shown in [16] to have an error performano®acable with that of the-precoder for
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4-QAM, while for 16-QAM, it is not expected to beat th€-precoder, as can be inferred from Hig. 3. The
constellations employed areQAM and 16-QAM. For 16-QAM, the E<,,;, precoder is not considered
since it is very hard to obtain and not explicitly stated terature. For theX-precoder, we have obtained
the approximately optimal angles fo6-QAM using a numerical search for=k.A, k =1,2,--- , | 7],

A = 0.001, and have used a look-up table to obtain the appropriateedoglthe corresponding value
of v during simulations. A look-up table is necessary since ther@imately optimal angle for thé&-
precoder is not a weighted sum of shifted step functionsthies for our precoder. Fi§] 5 shows the plots
of the word error probability (WEP) as a function of the aggeré&ENR at each receive antenna for the
2 x 2 system. As expected, the &;;,, precoder has the best error performance4f@AM, marginally
beating our precoder, which in turn significantly beats ¥@recoder. Fon6-QAM, our precoder beats
the X -precoder by about.5dB at an SNR of30dB.

For4 x 4 and8 x 8 systems, we also consider the Lattice precoder, which iottiedgonal matrix
with the largest known non-zero product distancerfgy;,, = n; real dimensions, and given explicitly in
[22]. This precoder has been shown in Theofdm 3 to offerdiviérsity. The plots of the WEP for the
4 x 4 system and th& x 8 system are given in Fi@l 6 and F[d. 7, respectively. The piaticate that the
E-d,.;» precoder and our proposed precoder offer full-diversitcethey beat the full-diversity achieving
Lattice precoder (even th&-precoder appears to offer full-diversity, losing out irdotg gain only. The
explanation for this has already been given in Sedfioh VDr @recoder significantly outperforms the
X-precoder while having lower expected ML-decoding comipye¢as shown in Theoreml 4), while the
E-d...n precoder has the best error performance4@AM, marginally beating our precoder, but this
is at the expense of ML-decoding complexity. In Tablé IV, ligugating 10° channel realizations, we
have tabulated the probability that ML-decoding can be deiteout searching over any of the signal
points for 4- and 16-QAM. It can be noted that for the x 2 MIMO system with 4-QAM, for more
than 50% of the channel realizations, no search over any of the sigoaits is required, while for the
4 x 4 and the8 x 8 MIMO systems, half the number of subsystems do not requiyesaarch over the
constellation points for more thai9% of the channel realizations. This advantage, however,nignées

with the increase in constellation size.

VIIl. DISCUSSION

For systems with full CSIT, we have proposed a real-valuextqaer forn, = 2, which, for QAM
constellations, is approximately optimal among all regllsed precoders based on the SVD of the channel

matrix and has an expected ML-decoding complexity lowen i%,/1/). The advantage of the proposed
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precoder over the Hr,;, precoder is that it is much easier to obtain for larger QAMstelations and

it also has lower ML-decoding complexity, while the loss imoe performance ford-QAM is only
marginal. The proposed precoder handsomely beatsKt#peecoder in error performance while having
lower expected ML-decoding complexity. A precoding schdame:; > 2 is also given and this scheme is
shown to offer full-diversity with QAM constellations. Itauld be interesting to design low ML-decoding
complexity, full-rate, full-diversity precoders for morealistic scenarios, like for systems with imperfect
CSIT or partial CSIT.
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| M | ~ 0* tan v tan ¢* (p,q) |

4, | 0~ tan™! (%) tan~! (1) 0 (0,1), (1,1)
tan ! (%) — T — (0,1), (1,1), (1,0)

0 —0.1018 tan! (1) 0 (0,1), (1,3)
1 | 0-1018 — 0.1567 0.3474 0.1096 (0,1), (1,3), (1,2)
0.1567 — 0.3479 0.4914 0.2277 (0,1), (1,1), (1,2)
0.3479 — T z 7 (0,1), (1,1), (1,0)

0 —0.0273 tan' (§) 0 (0,1), (1,7)
0.0273 — 0.0354 0.5450 0.0335 (1,2), (2,3), (3,5)
0.0354 — 0.0415 0.3766 0.0393 (1,2), (1,3), (2,5)
64 | 0.0415 — 0.0519 0.6325 0.0433 (1,1), (2,3), (3,4
0.0519 — 0.0735 0.2640 0.0620 (0,1), (1,3), (1,4)
0.0735 — 0.0975 0.5763 0.0872 (1,1), (1,2), (2,3)
0.0975 — 0.1567 0.3474 0.1096 (0,1), (1,3), (1,2)
0.1567 — % same ad6-QAM same ad6-QAM same ad6-QAM

0 —0.0071 tan! () 0 (0,1), (1,15)
0.0071 —0.0139 0.5103 0.0098 (1,2), (4,7), (5,9)
256 | 0.0139 — 0.0278 0.1501 0.0197 (0,1), (1,6), (1,7)
0.0278 — 0.0494 0.2114 0.0394 (0,1), (1,4), (1,5)
0.0494 — 0.0735 0.2640 0.0620 (0,1), (1,3), (1,4)
0.0735 — % same a$4-QAM | same a$4-QAM same a$4-QAM

0 —0.0018 tan ! (35) 0 (0,1), (1,31)
0.0018 — 0.0027 0.1301 0.0022 (1,8), (2,15), (3,23
1024 | 0-0027 — 0.0042 0.2300 0.0035 (1,4), (3,13), (4,17
0.0042 — 0.0065 0.7304 0.0053 (1,1), (8,9), (9,10)
0.0065 — 0.0086 0.3509 0.0079 (1,3), (3,8), (4,11)
0.0086 — % same a256-QAM | same a256-QAM same a256-QAM
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ML-decoding
Precoder complexity Existence for|A| = M Error performance
for |A| =M
the best
E-d,nin, precoder| O (M\/M> exists only for4-QAM for M = 4 among
known precoders
not possible without worse than the E,,;,
X-precoder (@) (x/ﬂ) the use of a look-up precoder and the
table for M > 4 proposed precoder
closed form expression better thanX -precoders
Y -precoder o) exists for anyM, with A for ill-conditioned channels
a 2-dimensional constellation [16] only
The proposed easy to obtain much better than
precoder © (\/M) for any M-QAM X-,Y-precoders

*wheny| < v < 44, for the Ed,,;,, precoder, a full search over all the signal points is needed,

while for the proposed precoder, no search over signal pagnheeded.
¥ amounts to storing the near-optimal angle valuesifer kA, k = 1,2, | lia), Where A is a

suitable step size.

TABLE I
COMPARISON OF LOWML-DECODING COMPLEXITY PRECODING SCHEMES

MIMO M = M =16 M =64 M = 256 M = 1024
SyStem Cmm | PC Cmm | PC szn | PC szn | PC Cmm | P(
4x4 1011710791 0.33 0.10 0.45 | 0.09 | 0.40 0.09 0.45 [ 0.09
8x8 [0.28 [0.99 | 0.59 0.01 076 | 10731 0.77 [ 1.1x 1072 | 0.75 | 1073
16x16 035 1 [072]91x107%|116| 0 | 1.17 0 1121 0
32x32[041 ] 1 |08 [ 4x103% [ 187 ] 0 | 1.75 0 1.9 0
TABLE Il

CHARACTERISTICS OF¢ FOR DIFFERENTMIMO SYSTEMS

June 27, 2018 DRAFT



30

| MIMO system | | M=4 | M =16 |
2 x 2 Pr{% <tanvy}" 05780 | 0.0612
Pr{Z <tan~4} | 0.9942 0.3286
4 x4 gl 7 —0
Pr{%: <tanvy} | 0.0620 | 8 x 10
Pr{Zs <tanys} 1 0.8582
8% 8 Pr{Z <tanyy} | 0.9969 0.0112
Pr{Zs <tanyy} | 0.2179 0
Pr{g—z <tan~} [ 4 x107° 0
T4 =tan™! %) for M =4 and~} ~ 0.1018 for M =
16.
TABLE IV

PROBABILITY THAT NO SEARCH IS REQUIRED FOR EACH SUBSYSTEM OF IBFERENTMIMO SYSTEMS

14

Fig. 1. (v, Am—oanm) as a function ofy for the proposed precoder for various QAM constellations
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