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Abstract—We present and study linear programming based
detectors for two-dimensional intersymbol interference bannels.
Interesting instances of two-dimensional intersymbol inérference
channels are magnetic storage, optical storage and Wyner’s
cellular network model.

We show that the optimal maximum a posteriori detection
in such channels lends itself to a natural linear programmirgy
based sub-optimal detector. We call this the Pairwise linea
program detector. Our experiments show that the Pairwise
linear program detector performs poorly. We then propose two
methods to strengthen our detector. These detectors are bed
on systematically enhancing the Pairwise linear program. e
first one, the Block linear program detector adds higher orde
potential functions in an exhaustive manner, as constraints, to
the Pairwise linear program detector. We show by experimerg
that the Block linear program detector has performance clos
to the optimal detector. We then develop another detector by
adaptively adding frustrated cycles to the Pairwise linear program
detector. Empirically, this detector also has performanceclose to
the optimal one and turns out to be less complex then the Block
linear program detector.

I. INTRODUCTION

loopy BP detector performed poorly due to the presence of
many small loops. Using a joint detection and coding (turbo
equalization), loopy BP provided noise thresholds [15]1I7]

a generalized belief-propagation (GBP) channel detector i
shown, experimentally, to have near-optimal bit-errderay
considering regions of siz& x 3.

A. Our Contributions

In this work we propose linear programming (LP) based
channel detectors. As was observed in papers mentioned be-
fore, the detection problem can be formulated as an inferenc
problem on graphical models. We first formulate the natuRal L
based on the pairwise potentials of the factor graph. We show
by experiments that (similar to loopy BP detector) this LP
performs poorly. We then propose two methods to improve the
detector based on enhancing the LP. The first one, the Block
LP detector adds higher order potential functions in an egha
tive manner, as constraints, to the Pairwise LP detectae. Th
second detector identifies frustrated cycles (see SeEtflon V
when the Pairwise LP produces a fractional solution, and

In this paper we consider detection of binary data in thedaptively adds them to the LP, which then enables us to
presence of two-dimensional intersymbol interference-(2Decover the correct information word. We show empirically
ISI). Many important systems like magnetic and optical stothat the new detectors have a block-error performance close
age are modeled as 2D-1SI channel models. With an increastaghe optimal one. Furthermore, the second detector tuihs o

demand for larger storage in smaller sizes, the traditionat

to be less complex than the Block LP detector.

dimensional storage devices fall short. Thus there is a need

for considering 2D storage devices.

II. CHANNEL MODEL AND OPTIMAL DETECTION

2D systems will naturally suffer from 2D ISI. One such

2D storage system is the TwoDOS (two-dimensional opti
storage) [1], [2]. Detection in TwoDOS reduces to detection

cAt Channel Model: Uncoded Transmission

We begin by describing the channel model. Consider an

a 2D lattice or grid. A detailed survey of the 2D ISI detectio®v x N grid. Let each point(i,j) 1 < i,57 < N, on the

(and coding techniques) is given in [3], [4].

grid represent an information bit taking value {1, —1}.

It is known that the Vitterbi decoder achieves maximurie consider uncoded transmission. Thus the informatiomwor

likelihood sequence detection [5] for detection in 1D 1Sbr F

belongs is{+1, —1}"". We denote by: the transmitted word

finite memory channels one can thus achieve optimal detectiandy as the received sequence. Both have length equsiPto

in 1D ISl in linear time. In general, it is known that the 2DThe information bit is first observed through a 2-dimensiona
ISI detection problem (with additive Gaussian noise) is NRinear filter and then additive white Gaussian nois&(, 02))
complete [6]. As a consequence, there has been a lot of wiskadded to get the final noisy observation of the bit. More

in reducing the complexity of detectors. There has been a
of work on developing low-complexity trellis-based detest
[71-[12]. In [13]-[17] belief propagation (BP) based detes

are used for the 2D ISI channel. It was observed that the

[oecisely, the 2D ISI channel model, we consider, is given by

Ykt = kit wpi+ Y 1)

(i,7)€0(k,l)

hi ji
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where ISl interaction strength is given Iy ; (strength less
than 1) andd(k,!) denotes the neighborhood ¢, 7). Also

notice that the central bit;;, ;, has coefficient equal to 1 so
that the bit under detection has the dominant contribution.

whereR = H"H, h= H"y (see [17] for details).
Therefore the optimal detection problem reduces to solving
the Integer program (IP),

B. Interference pattern min Z Rijxiz; — Z hiz;. )
We consider the nearest-neighbor interaction, specified by ze{£1}V* {7 f
a 4-neighborho<ﬂ:i Furthermore, we will consider a periodic
boundary. Let us illustrate the ISI interactions with anraxa
ple.
Example 1:Figure[1 shows & x 5 square grid with circles

Remark 2: The matrixR introduces next-to-neighbor inter-
actions. Hence the above model is not planar. Above we have
repIac_:ed the notati_o@:vi_,j}(@j)e[LN]X[LN] by {zi}ien, N2
denoting the bits. The bit at3,2) interacts with four of The figure on the right in Figuig 1 shows the factor graph of

its neighbors a{2,2), (4,2), (3,3),(3,1). Also shown is the @.
periodic nature of our interactions. The bit on the boundary
(5,4), interacts with(5,5), (5,3), (4,4), (1,4). Similar peri-

odic interactions are also present (but not shown in thedjgur An advantage of LP detectors over GBP detectors is that
for information bits which belong to the top-most row (theyhe LP provides a MAP certificate. More precisely, if the LP
have one interaction with a bt on the bottom-most row). Weltputs an integer solution, then it must also be a solution
consider periodic grid interaction so that we can rule oyt at® the IP and hence LP does MAP decoding in this case.

boundary effects which would influence the LP detector. However, in general, the IP is NP-hard and the output of the
LP can be fractional. This implies that there is a gap in the

LP approximation. In this situation the LP relaxation pans
a lower bound (if we are considering the minimization of the
objective function) to the value of the IP.

We now provide an LP based on the pairwise potential
functions and call this the Pairwise LP. This is analogous to

applying loopy BP.

IIl. MAIN RESULTS. LP BASED DETECTORS

A. Pairwise LP
We can relax the above IP to

Hlblnz Z Rijxiijij(:zri,:cj) - Z Z hlxzbz(xz)

Ti>) x4,y

Fig. 1. The figure on the left shows the bit @, 2) interacting with its 4 s.t. Vi>j: Z bij(iﬂi, xj) =1,
neighbors,(2, 2), (4, 2), (3, 3), (3,1). Also shown is the interaction of a bit
in the boundary. The figure on the right shows the factor gfaplthe 2D ISI
detection problem with 9 bits and 36 potential functionsaled by squares. Vi>j Va,xic bi(z) = Z bij (i, x5)
Each potential function is a pairwise interaction with sgth between the : : :
nodes: and j given by R;;x;x;. Although we do not shown them, to each T
there is a singleton potential function associated to edch b b (%) _ Z bij(iﬂi, xj)_
Ty

ZTi,Tj

In our experiments we will consider uniform ISl coefficients
i.e.,h; ; is same for alk, j to illustrate our methods. We further
assume that the channel is perfectly known at the recewer.Here bi(z;) and b;(z;,x;) represent the beliefs of; and
vector form the ISI channel can be written gs= Hz + w, z;2; respectively. See [18] on how to derive the LP in terms
where X is the ISI matrix of allh; ;. Different Z can model of beliefs.

different applications. If the ISI coefficients are takeonfr

a Gaussian distribution, then we can model Wyner’s ceIIuI%r' Experiments with Pairwise LP

network [17].

Throughout the paper we will consider only low interference

C. Optimal Detection and the Integer Program regime, i.e./; ; are low. Consider & x 9 grid andh;,; = 0.2
We denote by(y|z) the transition pdf of the channel. Let usunlfo][mly (f)olr tallllogtz,j _StN‘ \lNeanlllon; the n;)(l)soeoaé _tol
consider the optimal or maximum a posteriori (MAP) detactio aY oMY+ 10 1.0 at an intervat ob. 1. Ve run rais
on the 2D ISI channel. We have for each value ofs. In each trial an information word is
1 picked u.a.r from{+1}%! and is combined with a random
& = argmax, .~ exp( - 2—2(2 Rijawiv; — > hixi)), noise configurationw, to generate the observatiops Then
7" s i y and H are fed to the Pairwise LP. If the output equals the
IAlthough it seems the hexagonal interaction is the desigricehfor the transmltted information word, then we declare success, els
TwoDOS system because of its higher density [1] we performegperiments there is an error. We plot the word-error-rate (WER) versus

on the 4-neighborhood for demonstrating our methods. SNR= 101log;,((4 - 0.22 +1)/0?).



Figure[2 shows WER versus SNR. The WER is qt
high and the Pairwise LP performs poorly. We observe 1
whenever the Pairwise LP fails, it is because the LP could
close the duality gap. l.e., the output of the Pairwise LF
fractional (and hence we declare an error).

1.0 —T—
Pairwise LP
0sl quck.LP i
Pairwise LP-FC
@
W06 : . . . .
< Fig. 3. Figure on left shows a 5-clique. The figure on the rigfidws all the
5-cliques with center on the second row. Boundary 5-cliqu@ge the node
0.4+F at the opposite end present as the fifth node.
02 N\0 e
""""" Vi > g V,Ti,.%'j : bi(xi) = Z bij (l‘i,.%'j)

00 2 4 6 8 10 12 14 16 18 20

SNR (in dB) (2)) = Zbij (i, 2;5).
Fig. 2. Figure shows simulation results for the performaate&arious LP ;o .
detectors. We plot WER versus SNR foy; = 0.2V1 <4,j < N ando = VC Wi, j el bi(wi,x) Z be(zc)
{0.1,...,1.0}. The dashed curve depicts the performance of the Pairwise LP To\Ti,T;
The Pairwise LP performs quite poorly. Also, whenever PaieviP fails, it is 0<bi(r)<1 Vi 0<biil(z: x:) <1 Vi i
because the LP could not close the duality gap (LP gave draattisolution). < bi(wi) <1, ’ - i (T, _J) = s
The solid curve corresponds to Block LP. The Block LP performuch better, 0<be(zc) <1, VC, Cis a 5-clique

especially in the high SNR regime. For all simulations thedRI LP output

was integral, implying that Block LP did MAP decoding forshiase. The ~ When we add all the 5-cliques to the LP, we have to
curve in gray denotes the Pairwise LP-FC detector (see (®dBEA). We ; inalizati o
observe that the Pairwise LP-FC curve sits right on the tothefBlock LP make sure that they _are CODSIStent (mgrglnallza_tlon c It
curve and also gave an integer solution every trial. across any intersections with other cliques. It is not hard t

see that any two 5-cliques intersect along an edge of the
Remark 3:An important remark at this juncture is thatclique. Thus the intersections are pairwise cliques. Alke,
when we solve the Pairwise LP (and any other LPs whidhcliques include the already present pairwise potentals
will follow), we always add a very small random perturbatio§ub-cliques. Hence, we have the above consistency conditio

to the potential functions. This allows us to break ties wheietween a 5-clique and all of its constituent pairwise @ju
there are multiple integer solutions. This relaxation resembles the GBP approach of [17].

IV. IMPROVED LP DETECTORS B. Experiments with Blockwise Linear Program

From the above experiments it seems clear that Pairwise LPAVe consider the same setup as in Sedfion]II-B but with the
performs poorly. Most of the failure is because the LP owpuBlock LP. Figurd 2 shows the WER versus the SNR (in dB) for
a fractional solution. In the high SNR regime we expect thabth the Pairwise LP and Block LP. We see that the WER for
MAP decoder should perform reasonably well. Hence, we natve Block LP is much better than Pairwise LP for high SNR
focus on improving the LP relaxation so that, at least in thregime. In fact, in the high SNR regime every simulationltria
high SNR regime, we recover the transmitted word. In otharas correctly solved by the Block LP. We also observe that

words, we aim to reduce the duality gap. for every simulation (i.e., for every SNR), the LP outputs an
integral solution for each of the 2000 simulations. However
A. Block Linear Program the output information word is not always the transmittedavo

An immediate observation we make is that the pairwigg 2 when WER is non-zero). We conclude that, for this case
P e Block LP is doing MAP decoding.

interactions are not the most natural cliques present in the
factor graph. It is not hard to see that the next-to-neighbor
interactions (cf. Sectioh 1[4C) introduces a 5-clique asveh

in Figure[3. Thus the first enhancement, is to add all suchAlthough the Block LP served our purpose of providing an
5-cliques to the LP. E.g., in & x 9 grid, there are 81 such optima low complexity detector, it seems adding all the 5-
5-cliques which sit on each information bit. More precisehgliques is unnecessary. In this section we investigatesfeth

V. LP DETECTORS USINGFRUSTRATED SUBGRAPHS

we now have the following Block LP, are “smaller” optimal LPs.
Our approach is to adaptively add constraints to the LP
mmz Z Rijix;bij(z:, ;) Z Z hizibi(x;) which, simultaneously, reduce the duality gap and arealdet
T i) T ' (i.e., the number of such additional constraints are small a
st Vi>j: Z bij(zi, ) =1, also each constraint involves only a small number of vari-

T35 ables). Such approaches, which try to get rid off the fraetio



solution (or make the LP polytope tighter), have been usedttmat subgraph as beliefs to the LP.
improve the LP decoding of LDPC codes [19]-[21]. In [20], The main challenge that remains is to find a frustrated
the LP is enhanced by eliminating the facet containing tleaibgraph (with low tree-width) in tractable time. In gergera
fractional solution. In [19], [21], extra constraints arédad it is hard to find an arbitrary subgraph which is frustrated.
by combining parity checks which correspond to violateds a result, we focus on finding frustrated cycles of the
constraints to improve the LP performance. Although owraph. This is a tractable problem and uses the implication
approach is in the same spirit, the main ideas have theiingriggraph method (to solve 2SAT problem) of [22], [26]. We
in [22] and [23]. Similar ideas have been independently useéscribe it briefly here, for details see Appendix B in [22].
in [24], [25]. Before we describe the basic idea let us firs€onsider all the two-projections of all the potential fuoos.
define the notion of drustrated graph le., for anybc(zc) consider all theb;;(z;,z;) Vi,j € C.
Definition 4 (Frustrated Graph):Consider a constraint sat-In the implication graph each node is present asiy
isfaction problem (CSP) defined onbinary (boolean) vari- (for z; = 0) and i_ (for z; = 1). There is a directed
ables,z, andm check nodes. For each constraint nodihere edge present betweenand ; which represents the logical
are only certain configurations af, which satisfy it. Then, implication obtained from the potentiab;;(z;,z;). To
we say that the graph iffustratedif and only if there is generate this logical implication, consider the sEt of
no assignment ofc which satisfies all the constraint nodesonfigurations of(z;, z;) which renderb;;(x;,z;) > 0 and
simultaneously. m can introduce inconsistency. Thug,is any of the following
Let us now define a frustrated graph for our set-up. Assunfiel, 10), (01, 10, 11), (01, 10, 00), (00,11), (00,11,10)  and
that the output of Pairwise LP is a fractional solution,,ivee (00,11,01). Now one can draw the directed edges using
have a duality gap. Consider all the potential functionsi¢wh this 7". E.g., suppose that LP outputs beliefs such that
have at least two variables) and their LP beliefs. E.g.,ic@ns b;(0,1) > 0,b;;(1,0) > 0,b;;(1,1) > 0,b;;(0,0) = 0 then
one of the 5-cliques, sag, and its beliefshc(zc). We say 7' = (01,10,11) which would imply a directed edge from
that a configuration ofr~ satisfiesC, if it has a non-zero i+ — j— andj; — i_. Then a frustrated cycle is defined
belief, i.e.,bc(zc) > 0. If the corresponding belief is zero,to be a directed cycle or path which visits bath andi_
then we say that it does not satigfy In other words, the set of for any ¢ and one can find all such cycles and paths in linear
configurations which satisfy the potential function copmsd time.
to the support set of the belief.
Lemma 5:If there exists a frustrated subgraph, then them® Experiments using Frustrated Cycles

is a duality gap. The set-up is exactly same as previous two experiments.

Proof: Indeed, suppose on the contrary there was Rghe detector, which we call it Pairwise LP-FC, is as follows.
duality gap. This implies that the output of the LP is integer

l.e., all the beliefs (on singleton potentials as well ashkig

order potentials) have only one configuration with belief 1) Run the Pairwise LP. Go to step 4).

equal to 1 (rest being equal to zero). Consider any subset  2) If the output is fractional, find all frustrated
of potential functions¢ = {C1, Cs,...,C,}. Letz}, denote cycles (FC). For every FCs, add all the max|-
the configuration such thatc, (z, ) = 1.0. We claim that mal cliques of its Junction tree to the LP. This
Usay, satisfies the CSP represented (yThis follows from ensures that we only add triangles.

the consistency imposed by the LP (between any higher order ~ 3) Rerun the Pairwise LP.

potential function and singleton potential functions)u$mo 4) If output is integral, stop else go to 2).
subgraph is frustrated. [ |

Now if we add a frustrated subgraph as a constraint in o\
LP, then we ensure that this subgraph cannot be frustral e
when we resolve the LP. In [22] it was found empirically th
the random field ising model could typically be solved (dtyali
gap closed) by adding frustrated cycles (cycles with o
number of frustrated interactions) arising in the LP soluti
It is also known from Barahona'’s work (see references with
[24]) that adding cycles is sufficient to solve the zero-fiel
planar ising model.

To ensure that the subgraph we add as a constraint to the . L .

LP becomes consistent (or is not frustrated), we need to a dCompIexny of Block LP versus Pairwise LP with Cycles
all its maximal cliques and their intersections to the LP.rtlo We measure the complexity of the LP by the number of

precise|y' we add the maximal C|iques of thejunctionﬁreb nonzero entries in the LP constraint matrix. In Table |, the
Pairwise LP-FC entries correspond to the average (over 2000
2 See [22] for a discussion on Junction trees. It can be shoainrtimning ~ Simulations) number of nonzero entries in the matrix. Frben t
LP on the junction tree 0f_agraph is optimal (equal to theTFh)e co_mp]exity Table[] we see that, on an average, the Pairwise LP-FC has
of the LP grows exponentially in the size of the maximal afigwhich is the . .
tree-width of the graph. Hence we focus on finding frustregetgraphs of around half the number of nonzero entries in the matrix when
small tree-width which keeps the LP tractable. compared to the same in Block LP. Thus, the Pairwise LP-FC

observe in Figurel2 that Pairwise LP-FC performs much
ter than the Pairwise LP and has the same performance as
e Block LP. Furthermore, Pairwise LP-FC gave an integer
q%g[put on every occasion. Thus in this case, Pairwise LP-
does MAP decoding. We also remark that the number of
triangles added is roughly 500 for each trial. This is muds le
fflan the total triangles present in the graph&5320). Also,
e step 2) above is run only once, if it is required.



SNR Block LP | Pairwise LP-FC (avg)| Pairwise LP-FC (max)
20.6446 | 4 x 107 1.0966 x 10% 4.3578 x 107 2
14.6240 | 4 x 10* 1.2163 x 10* 4.2258 x 10*

11.1022 | 4 x 10* 1.4887 x 10* 4.1202 x 10*
8.6034 4 x 10% 1.8523 x 10* 4.1070 x 10*
6.6652 | 4 x 10" 2.1440 x 10* 3.9618 x 10* 3]
5.0816 4 x 10% 2.2250 x 10* 4.2258 x 10*
3.7426 | 4 x 10% 2.2162 x 10* 3.6758 x 10*
2.5828 | 4 x 10* 2.1622 x 10* 3.9618 x 10* [4]
1.5597 | 4 x 10% 2.0143 x 10* 3.4558 x 10*
0.6446 | 4 x 10* 1.9363 x 10* 3.5350 x 10*
TABLE |

(5]

COMPLEXITY COMPARISON OFBLOCK LP AND PAIRWISELP-FC

[6]
is a “smaller” (more sparse), on average, when compared to
the Block LP, with the same performance. Also, the maximurr[\n
nonzero entries (happens when step 2) is called) for Parwis
LP-FC is close to the Block LP one. (8]

VI. DISCUSSION )

In this paper we develop channel detectors for the 2D ISI
channel based on LP. Although the Pairwise LP perfornLi’sol
poorly, both the Block LP and Pairwise LP-FC do MAP decod11]
ing. As we mentioned before, the advantage of LP detectdtgl
over GBP based detectors is that the LP detectors provid
MAP certificate. Another advantage is that one can formulate
a systematic framework for improving the performance of LP
detectors. As mentioned in [17], to date no systematic nubthg®!
of choosing regions (for the GBP algorithm) in a general
graph exists in order to improve the performance. We effigh]
with possible open questions.

(i) In this work we consider only the low interference regime
of h; ; = 0.2. It will be interesting to study the performancdl6]
of the detectors when we vary the interference strength.

(i) An interesting research direction is to combine coding
(or precoding) with channel detection and to develop a joifi7]
decoder and detector based on LP.

(iii) Another open question is to study LP detectors when
there is non-linear ISI [15]. This would introduce higheder [18]
interactions in the factor graph.

(iv) LP is also used to decode LDPC codes when transmitting
over binary-input memoryless channels [27]. An interegtin
guestion is to see if the LP decoder [18] enhanced using fryss
trated cycles/subgraphs can lead to improvement in degodin

thresholds.
[21]
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