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Abstract—The paper establishes the capacity region of
the Gaussian interference channel with many transmitter-
receiver pairs constrained to use point-to-point codes. The
capacity region is shown to be strictly larger in general
than the achievable rate regions when treating interference
as noise, using successive interference cancellation decod-
ing, and using joint decoding. The gains in coverage and
achievable rate using the optimal decoder are analyzed in
terms of ensemble averages using stochastic geometry. In a
spatial network where the nodes are distributed according
to a Poisson point process and the channel path loss
exponent is β > 2, it is shown that the density of users
that can be supported by treating interference as noise
can scale no faster thanB2/β as the bandwidthB grows,
while the density of users can scale linearly withB under
optimal decoding.

Index Terms—Network information theory, interference,
successive interference cancelation, joint decoding, stochas-
tic geometry, coverage, ad hoc network, stochastic network,
performance evaluation.

I. INTRODUCTION

Most wireless communication systems employ point-
to-point codes with receivers that treat interference as
noise (IAN). This architecture is also assumed in most
wireless networking studies. While using point-to-point
codes has several advantages, including leveraging many
years of development of good codes and receiver design
for the point-to-point AWGN channel and requiring
no significant coordination between the transmitters,
treating interference as noise is not necessarily the op-
timal decoding rule. Motivated by results in network
information theory, recent wireless networking studies
have considered point-to-point codes with successive
interference cancellation decoding (SIC) (e.g., see [8]),
where each receiver decodes and cancels the interfering
codewords from other transmitters one at a time before
decoding the codeword from its tagged transmitter, and
joint decoding [2] (JD), where the receiver treats the
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network as a multiple access channel and decodes all
the messages jointly.

In this paper, we ask a more fundamental question:
given that transmitters use point-to-point codes, what
is the performance achievable by the optimal decoding
rule? The context we consider is a wireless network of
multiple transmitter-receiver pairs, modeled as a Gaus-
sian interference channel. The first result we establish in
this direction is the capacity region of this channel when
all the transmitters use Gaussian point-to-point codes.
We show that none of the above decoding rules alone is
optimal. Rather, a combination of treating interference
as noise and joint decoding is shown to be capacity-
achieving. Second, we show that this result can be
extended to the case when the transmitters are only
constrained to use codes that are capacity-achieving for
the point-to-point and multiple access channels, but not
necessarily Gaussian-like.

We then specialize the results to find a simple for-
mula for computing the symmetric capacity for these
codes. Assuming a wireless network model with users
distributed according to a spatial Poisson process, we use
simulations to study the gain in achievable symmetric
rate and coverage when the receivers use the optimal
decoding rule (OPT) for point-to-point Gaussian codes
as compared to treating interference as noise, successive
cancellation decoding, and joint decoding. We then use
stochastic geometry techniques to study the performance
in the wideband limit, where a high density of users
share a very wide bandwidth. Under a channel model
where the attenuation with distance is of the formr−β

with β > 2, it is shown that the density of users that
can be supported by treating interference as noise can
scale no faster thanB2/β as the bandwidthB grows,
while the density of users can scalelinearly with B
under optimal decoding. For an attenuation of the form
(k+r)−β, the density of users scales linearly withB, but
when the distance between the tagged transmitter and its
receiver tends to infinity, the rate for OPT scales like the
wideband capacity of a point-to-point Gaussian channel
without interference.

http://arxiv.org/abs/1102.2868v1
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II. CAPACITY REGION WITH GAUSSIAN

POINT-TO-POINT CODES

Consider a Gaussian interference channel withK +
1 transmitter-receiver pairs, where each transmitterj ∈
[0 : K] wishes to send an independent messageMj ∈
[1 : 2nRj ] to its corresponding receiverj at rateRj (in
the unit of bits/s/Hz). The signal at receiverj when the
complex signalsX = (X0,X1, . . . ,XK) are transmitted
is

Yj =

K∑

l=0

gjlXl + Zj for j ∈ [0 : K],

where gjl are the complex channel gains andZj ∼
CN (0, 1) is a complex circularly symmetric Gaussian
noise with an average power of1. We assume each
transmitter is subject to the same power constraintQ
(in the unit of Watts/Hz). Define the received power
from transmitter l at receiver j as Pjl = |gjl|

2Q.
Without further constraints on the transmitters’ codes,
the capacity region of this channel is not known even for
the two transmitter-receiver pair case (see [6] for known
results on this problem). In this section we establish the
capacity region using Gaussian generated point-to-point
codes for an arbitrary number of transmitter-receiver
pairs.

We define an(n, 2nR0 , . . . , 2nRK ) Gaussian point-to-
point (G-ptp) code1 to consist of a set of randomly
and independently generated codewordsxnj (mj) =

(xj1 , xj2 , . . . , xjn)(mj), mj ∈ [1 : 2nRj ], j ∈ [0 : K],
each according to an i.i.d.CN (0, σ2) sequence, for
some 0 < σ2 ≤ Q. We assume each transmitter in
the Gaussian interference channel uses such a code
with each receiverj ∈ [0 : K] assigning an estimate
m̂j(y

n
j ) ∈ [1 : 2nRj ] of messagemj to each received

sequenceynj . We definethe probability of error for a
G-ptp codeas

pn =
1

K + 1

K∑

j=0

P{M̂j 6= Mj}.

We denote the average of this probability of er-
ror over G-ptp codes as̄pn. A rate tuple R =
(R0, R1, . . . , RK) is said to be achievable via a sequence
of (n, 2nR0 , . . . , 2nRK ) G-ptp codes if p̄n → 0 as
n → ∞. The capacity region with G-ptpis the closure
of the set of achievable rate tuples(R0, R1, . . . , RK).
Remarks:

1) Our definition of codes precludes the use of time
sharing and power control (although in general
one can use time sharing with ptp codes). The

1By a code here we just mean the message set and the codebook.

justification is that time sharing (or the special
cases of time/frequency division) require addi-
tional coordination.

2) Note that if a rate tuple is achievable via a se-
quence of G-ptp codes then there exists a sequence
of (deterministic) codes that achieves this rate
tuple. We use the definition of achievability via the
average probability of error over codes to simplify
the proof of the converse. The results, however,
can be shown to apply to sequences of G-ptp codes
almost surely, and to an even more general class
of (deterministic) codes in Section III.

Let S be a nonempty subset of[0 : K] and Sc =
[0 : K] \ S be its complement. DefineXS to be the
vector of transmitted signalsXl such thatl ∈ S, and
define the sumXj(S) =

∑
l∈S gjlXl. Similarly define

Pj(S) =
∑

l∈S Pjl, RS , andR(S) =
∑

l∈S Rl.
Consider a Gaussian multiple access channel (MAC)

with transmittersXS , receiverYj, where j ∈ S, and
additive Gaussian noise powerPj(S

c) + 1. Recall that
the capacity regionAj(S) of this MAC is
{
RS : R(T ) ≤ C

(
Pj(T )

1 + Pj(Sc)

)
for everyT ⊆ S

}
,

whereC(x) = log(1 + x) for x ≥ 0. All logarithms are
base2 in this paper.

Now, define the rate regions

Cj = {R : RS ∈ Aj(S) for someS containingj}.

and

C =

K⋂

j=0

Cj. (1)

One of the main results in this paper is establishing the
capacity region of the Gaussian interference channel with
G-ptp codes.

Theorem 1:The capacity region of the GaussianK+
1 transmitter-receiver pair interference channel with G-
ptp codes isC.

By symmetry of the capacity expression, we only need
to establish achievability and the converse for the rate
regionC0, which ensures reliable decoding of transmitter
0’s message at receiver0. Hence from this point onward,
we focus on receiver0. We will refer to this receiver and
its corresponding transmitter0 as tagged. We also refer
to other transmitters asinterferers. We relabel the signal
from the tagged receiver, its gains, and additive noise as

Y =

K∑

l=0

glXl + Z.

We also relabel the received power from the tagged trans-
mitter 0 as P0 and the received power from interferer
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j, j ≥ 1, as Ij (for interference). For any subset of
interferersT , we denoteI(T ) as the sum of the received
power from these interferers. We will also drop the index
0 from the notationsA0(S) andX0(S).

For clarity of presentation, first consider the case of
K = 1. Here the signal of the tagged receiver is

Y = g0X0 + g1X1 + Z.

For this receiver, there are two subsets to consider,S =
{0} andS = {0, 1}. The regionA({0}) is the set of rate
pairs (R0, R1) such that

R0 ≤ C

(
P0

1 + I1

)
,

and the regionA({0, 1}) is the set of rate pairs(R0, R1)
such that

R0 ≤ C(P0),

R1 ≤ C(I1),

R0 +R1 ≤ C(P0 + I1).

Hence, the regionC0 for the tagged receiver is the union
of these two regions.

It is interesting to compareC0 to the achievable rate
regions for other schemes that use point-to-point codes.
Define the rate regions:

RIAN = A({0}),

RSIC =

{
(R0, R1) : R0 ≤ C(P0), R1 ≤ C

( I1
1 + P0

)}
,

RJD = A({0, 1}) .

The regionRIAN is achieved by a receiver that decodes
the tagged transmitter’s message while treating interfer-
ence as Gaussian noise. The regionRSIC is achieved
by the successive interference cancellation receiver; the
interferer’s message is first decoded, treating the tagged
transmitter’s signal as Gaussian noise with powerP , and
then the message from the tagged receiver is decoded
after canceling the interferer’s signal. The regionRJD is
the two transmitter-receiver pair Gaussian MAC capacity
region. It is the set of achievable rates when the receiver
insists on correctly decoding both messages, which is
the achievable region using joint decoding in Blomer
and Jindal [2].

It is not difficult to see that the following relationships
between the regions hold (see Figure 1):

RIAN ⊂ C0,

RSIC ⊂ RJD ⊂ C0,

C0 = RIAN ∪RJD.

Note that the last relationship above says that the

(i) (ii)

(iii) (iv)
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Fig. 1. C0 is the shaded region in Figure (i). TheRJD region
is depicted on Figure (ii).RSIC is on Figure (iii) andRIAN is on
(iv). C0 = C(P0), C1 = C(I1), C01 = C(P0/(1 + I1)), C10 =
C(I1/(1 + P0)).

receiver can do no better than treating interference as
Gaussian noise or jointly decoding the messages from
the tagged transmitter and the interferer.

In the following, we first establish the capacity region
for the caseK = 1, and then extend the result to arbitrary
K. In Section III, we also show that our results extend
to the class ofMAC capacity-achieving codes.

A. Proof of Theorem 1 forK = 1

Proof of Achievability.The prove the achievability of any
rate pair in the interior ofC0, we use Gaussian ptp codes
with average powerQ(1− δ) and joint typicality decod-
ing as in [4]. Further, we use simultaneous decoding [6]
in which receiver0 declares that the messagem̂0 is sent
if it is the unique message such that(xn0 (m̂0), y

n) is
jointly typical or (xn0 (m̂0), x

n
1 (m̂1), y

n) is jointly typical
for somem1 ∈ [1 : 2nR1 ]. A straightforward analysis of
the average probability of error shows thatp̄ → 0 as
n → ∞ if either

R0 < C

(
P0

1 + I1

)
, (2)

or

R0 < C(P0),

R0 +R1 < C(P0 + I1).
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The first constraint (2) isA({0}), the IAN region.
Denote the region defined by the second set of con-
straints byF({0, 1}); it is the same as the MAC region
A({0, 1}) but with the constraint onR1 removed. Hence,
the resulting achievable rate region̄C0 = A({0}) ∪
F({0, 1}) appears to be larger thanC0 = A({0}) ∪
A({0, 1}). It is easy to see from Figure 1, however,
that it actually coincides withC0. Hence, receiver0 can
correctly decodeM1 if treating interference as noise fails
but simultaneous decoding succeeds even though it does
not require it. We establish the converse for the original
characterization ofC0, hence providing an alternative
proof that the two regions coincide.
Remark:Although we presented the decoding rule as a
two-step procedure, since the receiver knows the trans-
mission rates, it already knows whether to apply IAN or
simultaneous decoding.
Proof of the converse.To prove the converse, suppose
we are given a sequence of random G-ptp codes and
decoders with rate pair(R0, R1) and such that the
average probability of error approaches0 asn → ∞. We
want to show that(R0, R1) ∈ C0. Consider two cases:

1) R1 < C(I1): Under this condition and by the
assumption that the tagged receiver can reliably de-
code its message, the tagged receiver can cancel off
the received signal from the tagged transmitter and
then reliably decode the message from transmitter
1. Hence(R0, R1) is in the capacity region of the
MAC with transmitters(X0,X1) and receiverY ,
and hence inC0.

2) R1 ≥ C(I1): Fix an ǫ > 0, and letZ = U + V ,
whereU and V are independent Gaussian noise
components with variancesN and1−N , respec-
tively, such that

C
(I1
N

)
= R1 + ǫ.

Consider the AWGN channel

W = g1X1 + U. (3)

Since we are assuming G-ptp codes andR1 <
C(I1/N), the average probability of decoding er-
ror over this channel approaches zero asn → ∞.
Hence, by Fano’s inequality, the mutual informa-
tion over a block ofn symbols, averaged over G-
ptp codes, is

Ī(Xn
1 ;W

n) = h̄(Xn
1 )− h̄(Xn

1 | W n)

≥ nR1 − nδn,

where δn → 0 as n → ∞. Denoting byh̄(W n)
the differential entropy ofW n averaged over the

G-ptp codes, this implies that

h̄(W n) ≥ nR1 − nδn + h(Un)

= nR1 − nδn + n log(πeN)

= nC
(I1
N

)
− nǫ− nδn + n log(πeN)

= n log(πe(I1 +N))− nǫ− nδn.

Now, let W̃ n = W n + V n. By the conditional
entropy power inequality, we have

2
1

n
h̄(W̃n) ≥ 2

1

n
h̄(Wn) + 2

1

n
h(V n)

≥ 2log(πe(I1+N))−δn−ǫ + πe(1−N)

= πe(I1 +N)2−δn−ǫ + πe(1−N).

Hence,

h̄(W̃ n) ≥ n log
(
πe(I1 +N)2−δn−ǫ + πe(1 −N)

)
.

The fact thath̄(Y n) ≤ n log(πe(P0 + I1 + 1))
and the last lower bound give an upper bound
on the average mutual information for the tagged
transmitter-receiver pair

Ī(Xn
0 ;Y

n) = h̄(Y n)− h̄(W̃ n)

≤ n log(πe(P0 + I1 + 1))

− n log(πe(I1 +N)2−δn−ǫ + πe(1−N)).

Since this is true for allǫ > 0, we have

Ī(Xn
0 ;Y

n) ≤ n log(πe(P0 + I1 + 1))

− n log
(
πe(I1 +N)2−δn + πe(1−N)

)

≤ nC
( P0

1 + I1

)
+ nδ̃n.

Since we assume the tagged receiver can decode
its intended message,R0 < C(P0/(1 + I1)), and
hence(R0, R1) ∈ C0. This completes the proof of
Theorem 1 forK = 1.

Remarks:

1) What the above proof showed is that if the message
of transmitter0 is reliably decoded, then either: (1)
the interferer ’s message can be jointly decoded
as well, in which case the rate vectorR is in
the 2-transmitter MAC capacity region, or (2) the
interference plus the background noise is close to
i.i.d. Gaussian, in which case decoding transmitter
0’s message treating transmitter1’s interference
plus background noise as Gaussian is optimal.

2) One may think that since the interferer uses a
Gaussian random code, the interference must be
Gaussian and hence the interference plus back-
ground noise must also be Gaussian. This thinking
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is misguided, however, since what is important
to the communication problem are the statistics
of the interference plus noiseconditional on a
realization of the interferer’s random code. Given a
realization of the code, the interference is discrete,
coming from a code, and hence it is not in general
true that the interference plus noise is close to
i.i.d. Gaussian. What we showed in the above
converse is that this holds when the message from
the interferer cannot be jointly decoded with the
message from transmitter0.

B. Proof of Theorem 1 for arbitraryK

Now, consider the general case withK+1 transmitter-
receiver pairs.
Proof of achievability.The proof is a straightforward
generalization of the proof forK = 1, and the condition
for the probability of error to approach0 is that the rate
vectorR lies in the region:

C̄0 := {R : RS ∈ F(S) for some subsetS with 0 ∈ S},
(4)

where

F(S) =

{
R : R(T ∪ {0}) < C

(
P0 + I(T )

1 + I(Sc)

)

for everyT ⊆ S \ {0}}

is theaugmentedMAC region for the subset of transmit-
tersS treating the transmitters inSc as Gaussian noise.

As in the K = 1 case, the region̄C0 appears to be
larger thanC0. We again establish the converse for the
original characterization ofC0, hence showing that̄C0
coincides withC0.
Proof of the converse.The proof for theK = 1 case
identifies, for a given a rate vector, amaximal set of
interferers whose messages can be jointly decoded with
the tagged transmitter’s message. This set depends on
the given rates of the interferer; ifR1 < C(I1), the
set is {1}, otherwise it is∅. The key to the proof is
to show that whichever the case may be, the residual
interference created by the transmitters whose messages
are not decoded plus the background noise must be
asymptotically i.i.d. Gaussian. We generalize this proof
to an arbitrary number of interferers. In this general
setting, however,explicitly identifying a maximal set of
interferers whose messages can be jointly decoded with
the tagged transmitter’s message is a combinatorially
difficult task. Instead, we identify itexistentially.

Suppose the transmission rate vector isR and the
average probability of error for the tagged receiver

approaches zero asn → ∞. Consider the set of subsets
of interferers

D = {T : 0 6∈ T , RT ∈ A(T )}.

Intuitively, these are all the subsets of interferers whose
messages can be jointly decoded after decodingM0

while treating the other transmitted signals as Gaussian
noise. LetT ∗ be a maximal set in D, i.e., there is no
larger subsetT ∈ D that containsT ∗. Since the message
M0 is decodable by the assumption of the converse, the
tagged receiver can cancel off the tagged transmitter’s
signal. Next, the messages of the interferers inT ∗ can
be decoded, treating the interference from the remaining
interferers plus the background noise as Gaussian. This is
because by assumptionRT ∗ ∈ A(T ∗) and all interferers
are using G-ptp codes. After canceling off the signals
from the interferers inT ∗, the tagged receiver is left
with interferers in(T ∗∪{0})c. Since no further messages
can be decoded treating the rest as Gaussian noise (by
the maximality ofT ∗), it follows that for any subset
S ⊂ (T ∗ ∪ {0})c, RS is not in the capacity region of
the MAC with transmitters inS and Gaussian noise with
powerI((T ∗ ∪ {0})c \ S) + 1. Let

W = X((T ∗ ∪ {0})c) + Z.

In the K = 1 scenario,T ∗ is either{1} or ∅. In the
first case, both messages are decoded, hence the power
of the residual interference plus that of the background
noise is automatically Gaussian. In the second case,
the interferer’s message is not decoded, and our earlier
argument shows the interferer must be communicating
above the capacity of the point-to-point Gaussian channel
to receiver0. Hence the aggregate interference plus noise
must be asymptotically i.i.d. Gaussian. In the general
scenario withK interferers, there may be more than one
residual interferer left after decoding a maximal setT ∗.
The following lemma, which is proved in the following
subsection, shows that this situation generalizes appro-
priately.

Lemma 1:Consider ak-transmitter MAC

Y =

k∑

j=1

gjXj + Z,

where the received power from transmitterj is Pj and
Z ∼ CN (0, 1). Let

B = {R : RS ∈ A(S) for some nonemptyS}. (5)

If the transmitters use G-ptp codes at rate vectorR and
R /∈ B, then

lim
n→∞

1

n
h̄(Y n) = log



πe




k∑

j=1

Pj + 1







 ,
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that is, the received sequenceY n is asymptotically i.i.d.
Gaussian.

Lemma 1 shows that the interference after decoding
the interferers inT ∗ ∪ {0} plus the background noise
is asymptotically i.i.d. Gaussian. Hence,RT ∗∪{0} ∈
A(T ∗ ∪ {0}), and we can conclude thatR ∈ C0. This
completes the converse proof of Theorem 1 for arbitrary
K.

C. Proof of Lemma 1

The proof needs the following fact aboutB. Recall
that the boundary of the MAC capacity region consists
of multiple faces. We refer to the one corresponding to
the constraint on the total sum rate as thesum rate face.

Fact 1: Let R be a rate vector such thatRS is on the
boundary ofA(S) for someS but not on its sum-rate
face. ThenR cannot be on the boundary ofB. In other
words, the non-sum-rate faces of the MAC regionsA(S)
are never exposed on the boundary ofB.

Figure 2 depictsB for K = 2. Here, the boundary of
B consists of three segments, each of which is a sum-
rate face of a MAC region. The two non-sum-rate faces
of A({1, 2}) are not exposed.

Proof of Fact 1:Let R be a rate vector such that
RS is on the boundary ofA(S) for someS but not on
its sum rate face. Then there is a subsetT of S such
that

R(T ) = C

(
P (T )

1 + P (Sc)

)
(6)

and for all subsetsV strictly containingT and insideS,

R(V) < C

(
P (V)

1 + P (Sc)

)
. (7)

Subtracting (6) from (7) implies that for all such setsV,

R(V \ T ) < C

(
P (V \ T )

1 + P (T ) + P (Sc)

)
.

This implies thatRS\T is in the strict interior ofA(S \
T ), Hence,R cannot be on the boundary ofB. This
completes the proof of Fact 1.

Proof of Lemma 1:The proof is by induction on
the number of transmittersk.

k = 1: this just says that for a point-to-point Gaussian
channel, if we transmit at a rate above capacity using a
G-ptp code, then the output is Gaussian. This is a well-
known fact.

Assume the lemma holds for allj < k. Consider the
case withk transmitters.

ExpressZ = U +V , whereU andV are independent
Gaussians with variancesN and 1 − N , respectively,

whereN is chosen such thatR is on the boundary of̃B
for the MAC

W̃ =

k∑

j=1

gjXj + U.

Here, B̃ is the same asB except that the background
noise power1 is replaced byN . Let E be the collection
of all subsetsS ⊂ [1 : k] for which RS ∈ Ã(S) (Ã(S)
is the same asA(S) except that the background noise
power 1 is replaced byN ). Pick a maximal subsetS
from that collection. By Fact 1,RS must be on the sum-
rate face ofÃ(S). The MAC can be decomposed as

W̃ = X(S) +X(Sc) + U.

By the maximality ofS, no further transmitted messages
can be decoded beyond the ones for the transmitters
in S (otherwise, there would exist a bigger subsetS ′

containingS and for whichRS′ ∈ Ã(S ′)). This implies
in particular that for any subsetT ⊂ Sc, the rate vector
RT cannot be in the regioñA(T ); otherwise if such aT
exists, the receiver could have first decoded the messages
of transmitters inS, cancelled their signals, and then
decoded the messages of the transmitters inT , treating
the residual interference plus noise as Gaussian. Hence
if we consider the smaller MAC

W = X(Sc) + U,

we can apply the induction hypothesis to show thatW n

is asymptotically i.i.d. Gaussian. So now we have a
Gaussian MAC for transmitters inS

W̃ = X(S) +W

and since the rate vectorRS lies on the sum rate
boundary of this MAC, we now have a situation of a
super-transmitter, i.e., a combination of all transmitters
in S, sending at the capacity of this Gaussian channel.
Using a very similar argument as in theK = 1 proof,
one can show thatW n is asymptotically i.i.d. Gaussian.
Adding back the removed noiseV yields the desired
conclusion. This completes the proof of Lemma 1.

III. C APACITY REGION WITH

MAC-CAPACITY-ACHIEVING CODES

The converse in Theorem 1 says that if the trans-
mitters use Gaussian random codes, then one can do
no better than treating interference as Gaussian noise
or joint decoding. The present section shows that this
converse result generalizes to a certain class of (deter-
ministic) “MAC-capacity-achieving” codes, to be defined
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Fig. 2. The boundary ofB for K = 2 has three segments, all of which are sum-rate faces. A rate-tuple on the boundary ofB can lie on
one of them.

precisely below. We first focus on the two-transmitter-
receiver pair case and then generalize to theK + 1-
transmitter case.

An (n, 2nR) (deterministic) single-user code satisfying
the transmit power constraintQ is said to achieve a rate
R over a point-to-point Gaussian channelY = gX + Z
if the probability of errorpn → 0 as the block length
n → ∞. An (n, 2nR) code is said to bepoint-to-
point (ptp) capacity-achievingif it achieves a rate ofR
overeverypoint-to-point Gaussian channel with capacity
greater thanR.

Now consider the two transmitter-receiver pair Gaus-
sian interference channel. A rate-pair(R0, R1) is said
to be achievable over the interference channel via a
sequence of ptp-capacity-achieving codes if there exists
a sequence of such codes for each transmitter such that
the probability of error

pn =
1

2

(
P{M̂0 6= M0}+ P{M̂1 6= M1}

)

approaches0 as n → ∞. The capacity region with
ptp-capacity-achieving codes is the closure of the set of
achievable rates. The theorem below is a counterpart to
the converse in Theorem 1 for G-ptp codes.

Theorem 2:The capacity region of the two
transmitter-receiver pair interference channel with
ptp-capacity achieving codes is no larger thanC, as
defined in (1) forK = 1.

Proof: The result follows from the observation that
in the proof of the converse for Theorem 1, the only
property we used about the G-ptp codes is that the aver-
age decoding error probability of the interferer’s message
after canceling the message of the intended transmitter
goes to zero wheneverR1 < C(I1). This property re-
mains true if the interferer uses a ptp-capacity-achieving
code instead of a G-ptp code.

Theorem 2 says that as long as the codes of the
transmitters are designed to optimize point-to-point per-
formance, the regionC is the fundamental limit on their

performance over the interference channel. This is true
even if the codes do not “look like” randomly generated
Gaussian codes.

Now let us consider theK+1-transmitter interference
channel for generalK. Is C still an outer bound to the
capacity region if all the transmitters use ptp-capacity-
achieving codes? The answer is no. A counter-example
can be found in [3] (Section IIB), which considers
a 3-transmitter many-to-one interference channel with
interference occurring only at receiver0. There, it is
shown that if each of the transmitters uses a lattice
code, which is ptp-capacity-achieving, one can do better
than both joint decoding all transmitters’ messages and
decoding just transmitter0’s message treating the rest
of the signal as Gaussian noise at receiver0. The key
is to use lattice codes for transmitter1 and2, and have
themalign at receiver0 so that the two interferers appear
as one interferer. Hence, it is no longer necessary for
receiver0 to decode the messages ofboth interferers in
order to decode the message from transmitter0; decoding
the sumof the two interferers is sufficient. At the same
time, treating the interference from1 and2 as Gaussian
noise is also strictly sub-optimal.

In this counter-example, the transmitters’ codes
are ptp-capacity-achieving but not ”MAC capacity-
achieving” in the sense that receiver0 cannot jointly
decode the individual messages of the interferers. A
careful examination of the proof of the converse in
Theorem 1 for generalK reveals that the converse in
fact holds whenever the codes of the transmitters satisfy
such a MAC-capacity-achieving property.

Consider ak-transmitter Gaussian MAC

Y =

k∑

j=1

gjXj + Z

and a subsetS ⊂ [1 : k]. A (n, 2nR1 , . . . , 2nRk) (de-
terministic) code for this MAC, where each transmitter
satisfies the same transmit power constraintQ, is said to
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achieve the rate-tupleRS over the MAC if the probability
of error

pn(S) =
1

|S|

∑

j∈S

P{M̂j 6= Mj}

approaches0 asn → ∞. An (n, 2nR1 , . . . , 2nRk) code
is said to beMAC-capacity-achievingif for every S ⊂
[1 : k], it achieves a rateRS over everyGaussian MAC
whose capacity regionA(S) containsRS . Recall that
the regionA(S) is the capacity region of the MAC
with transmittersXS and the signals from the rest of
the transmitters treated as Gaussian noise. Thus this
definition says that a MAC capacity-achieving code is
good enough to achieve this performance for any subset
S of transmitters.

Now consider theK+1 transmitter-receiver pair Gaus-
sian interference channel. A rate-tupleR is said to be
achievable on the interference channel via a sequence of
MAC-capacity-achieving codes if there exists a sequence
of MAC-capacity-achieving codes for every subset con-
tainingK transmitters such that the probability of error

pn =
1

K + 1

K∑

j=0

P{M̂j 6= Mj}

approaches zero asn → ∞. The capacity region with
MAC-capacity-achieving codes is the closure of all such
rates.

Theorem 3:The capacity region of the GaussianK+
1-transmitter interference channel with MAC-capacity
achieving codes is no larger thanC, as defined in (1).

Proof:
The result follows from the observation that in the

proof of the converse in Theorem 1, the only property
that was used about the G-ptp codes of the transmitters is
precisely the MAC-capacity-achieving property defined
above.

The counter-example above shows that one can indeed
do better than the regionC, for example using inter-
ference alignment. Interference alignment, however, re-
quires careful coordination and accurate channel knowl-
edge at the transmitters. On the other hand, one can
satisfy the MAC-capacity-achieving property without the
need of such careful coordination. So, if one takes the
MAC-capacity-achieving property as a definition of lack
of coordination between the transmitters, then the above
theorem delineates the fundamental limit to the perfor-
mance on the interference channel if the transmitters are
not coordinated.

IV. SYMMETRIC RATE

We specialize the results in the previous sections to
the case when all messages have the same rateR.

This will help us compare the network performance
of the optimal decoder to other decoders for Gaussian
ptp codes. Throughout the section, we assume that
I1 ≥ I2 · · · ≥ IK , and defineI[j : k] =

∑k
i=j Ii and

I =
∑K

i=1 Ii. WhenK = ∞, we will assume thatI is
finite, henceIi → 0 as i → ∞.

A. Optimal Decoder

Focusing again on the tagged receiver0, define the
symmetric rateRsym as the supremum overR such that
(R,R, . . . , R) ∈ C0. We can express the symmetric rate
Rsym as the solution of a simple optimization problem.

Lemma 2:The symmetric rate under G-ptp codes is

Rsym = max
k∈[0:K]

min
l∈[0:k]

1

l + 1
C

(
P0 + I[k − l + 1 : k]

1 + I[k + 1 : K]

)
.

(8)
Proof: From the reduced characterization ofC0

in (4), we have

Rsym = max
S:0∈S

Rsym(S) = max
k∈[0:K]

Rsym([0 : k]),

whereRsym(S) is the symmetric rate of the regionF(S).
The second equality follows from the observation that the
reduced MAC regionF(S) is monotonically increasing
in the received powers from the transmitters inS and
decreasing in the interference power from transmitters
in Sc. Hence, among all subsetsS of sizek+1, the one
with the largest symmetric rate is[0 : k] (the one with
the highest powered transmitters and lowest powered
interferers).

Taking into account all2k constraints of the region
F([0 : k]), we have

Rsym([0 : k])

= min
T ⊂[1:k]

1

|T |+ 1
C

(
P0 + I(T )

1 + I[k + 1 : K]

)

= min
l∈[0:k]

min
T ⊂[1:k],|T |=l

1

l + 1
C

(
P0 + I(T )

1 + I[k + 1 : K]

)
.

The desired result (8) now follows from the fact that
among all the subsetsT of size l, the one with the
smallest total powerI(T ) is [k − l + 1 : k].

B. Other Decoders

We will use the following nomenclature for the rest
of the paper:

• IAN refers to treating interference as noise decod-
ing. The condition for IAN is

R < C

(
P0

1 + I

)
.
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• SIC(k) refers to successive interference cancellation
in which the tagged receiver sequentially decodes
and cancels the signals from thek strongest trans-
mitters treating other signals as noise and then
decodes the message from the tagged transmitter
while treating the remaining signals as Gaussian
noise. The conditions for SIC are

R < C

(
Il

1 + P0 + I[l + 1 : K]

)
for l ∈ [1 : k],

R < C

(
P0

1 + I[k + 1 : K]

)
.

• JD(k) refers to joint decoding of the messages of
the first k + 1 transmitters and treating the rest as
Gaussian noise. The conditions for JD(k) are

R <
1

l + 1
C

(
P0 + I[k − l + 1 : k]

1 + I[k + 1 : K]

)
for l ∈ [0 : k].

(9)
The JD(k) conditions are not monotonic ink, that is,
the fact that JD(k) holds neither implies that JD(k′)
holds fork′ < k nor for k′ > k in general.

• OPT(k) refers to the optimal decoder used in the
proof of Theorem 1 if there were onlyk interferers.
OPT(K) or simply OPT refers to the optimal decod-
ing rule. The conditions for OPT(K) areR < Rsym

with Rsym given by (8). Since the condition for OPT
is the union of the JD(l) conditions for0 ≤ l ≤ k,
if OPT(k) holds, so does OPT(k′) for all k′ > k.

C. Number of Interferer Messages Decoded

Lemma 2 shows that, forK finite, the optimal decod-
ing strategy is to useJD(kopt) with

kopt = argmaxk∈[0:K]ξ(k), (10)

where

ξ(k) = min
l∈[0:k]

1

l + 1
C

(
P0 + I[k − l + 1 : k]

1 + I[k + 1 : K]

)
(11)

provided the argmax in question is uniquely defined.
The following lemma is focused on the caseK = ∞,

which will be considered in the next sections, and where
one may fear that the maximum is not defined in (8), i.e.,
the argmax in (10) is not defined. Fortunately, this is not
the case.

Lemma 3: If K = ∞, P0 > 0 and I < ∞, then
kopt < ∞.

Proof: We have

0 ≤ ξ(k) ≤ min
l∈[0:k]

1

l + 1
C(P0 + I) =

1

k + 1
C(P0 + I).

Hencek → ξ(k) is a positive function bounded from
above by a function that tends to 0 whenk tends to

infinity. The values whereξ is maximal are then all finite
unless it is 0 everywhere. But this is not the case since
our assumptions onP0 andI imply that ξ(0) > 0.

The following lemma will be used later.
Lemma 4:Let

k = min{k ≥ 1 such thatIk < P0}.

Then, a sufficient condition for achievability by OPT at
rateR is that

kR < C

(
kP0

1 + I[k : ∞]

)
. (12)

Further, if this condition holds, then the conditions for
JD(k − 1) are met.

Proof: We can derive a lower bound for the sym-
metric rate in (8) in terms ofk:

max
k∈[0:K]

min
l∈[0:k]

1

l + 1
C

(
P0 + I[k − l + 1 : k]

1 + I[k + 1 : K]

)

≥ min
l∈[0:k−1]

1

l + 1
C

(
P0 + I[k − l : k − 1]

1 + I[k : K]

)

≥ min
l∈[0:k−1]

1

l + 1
C

(
(l + 1)P0

1 + I[k : K]

)

=
1

k
C

(
kP0

1 + I[k : K]

)
.

The first inequality is obtained by choosingk = k −
1 in the outer maximization; the second inequality is
obtained by lower bounding the received powers of all
the interferers with index≤ k by P0; the last equality
follows from the fact thatC(x)/x is a monotonically
decreasing function ofx. The sufficient condition (12)
for achievability is now obtained by requiring the target
rateR to be less than this lower bound.

Lemma 4 gives a guideline on how to select the set of
interferers to jointly decode: under the condition (12),
the success of joint decoding at rateR is guaranteed
when decoding all interferers with a received power
larger than that of the tagged transmitter. This is only
a bound, however, and as we will see in the simulation
section, one can often succeed in decoding more than
k − 1 transmitters.

V. SPATIAL NETWORK MODELS AND SIMULATION

RESULTS

The aim of the simulations we provide in this section
is to illustrate the performance improvements of OPT
versus IAN and JD. The framework chosen for these
simulations is a spatial network with a denumerable
collection of randomly located nodes. In the following
section we also use this spatial network model for
mathematical analysis.



10

A. Spatial Network Models

All the spatial network models considered below fea-
ture a set of transmitter nodes located in the Euclidean
plane. The channel gains defined in Section II, or equiv-
alently the received signal powerP0 and the interference
powers Ij, j ∈ [1 : K], at the tagged receiver are
evaluated using a path loss functionl(r), where r is
distance. Here are two examples used in the literature
(and in some examples below):

• l(r) = r−β, with β > 2 (case with pole),
• l(r) = (k+r)−β, with β > 2 andk a constant (case

without pole); it makes sense to takek equal to the
wavelength.

More precisely, if we denote the locations of the
transmitters byTj , j ∈ [0 : K] and that of the tagged
receiver byy and if we assume that the tagged receiver
selects the interferers with the strongest received powers
to be jointly decoded, then|g00|2 = l(|T0 − y|) and
|g0j |

2 = l(|Tj − y|), or equivalentlyP0 = l(|T0 − y|)Q
andIj = l(|Tj−y|)Q for j ∈ [1 : K]. HereQ denotes the
transmit power. Since we assume thatI1 ≥ I2 . . . ≥ IK ,
the strongest interferer is the closest one toy (excluding
the tagged transmitter). LetI(y) be the total interference
at the tagged receiver, namelyI(y) =

∑
j 6=0 Ij .

The simulations also consider the following extensions
of this basic model:

• The fading case, where the channel gain is further
multiplied by Fj(y), where Fj(y) represents the
effect of fading from transmitterj to y. In this case,
the strongest interferer is not necessarily the closest
to y.

• The case where the power constraint is not the same
for all transmitters. ThenP0 = l(|T0 − y|)Q0 and
Ij = l(|Tj − y|)Qj for j ∈ [1 : K], with Qj the
power constraint of transmitterj.

B. IAN, SIC(1), JD(1), and OPT(1) Cells

1) Definitions: Fix some rateR. For each decoding
rule A (i.e., IAN, . . . ) as defined above, letΞA be the
set of locations in the plane where the conditions for
rule A are met with respect to the tagged transmitter
and forR. We refer to this set as theA cell for rateR.
The main objects of interest are hence the cellsΞIAN,
ΞSIC(1), ΞJD(1) andΞOPT(1).

2) Inclusions: Rather than looking at the increase of
rate obtained when moving from a decoding rule to
another, we fixR and compare the cells of the two
decoding rules. In view of the comparison results in

Section II, we have

ΞIAN ⊂ ΞOPT(1),

ΞSIC(1) ⊂ ΞJD(1) ⊂ ΞOPT(1),

ΞOPT(1) = ΞIAN ∪ ΞJD(1).

For all pairs of conditionsA andB, we defineΞA\B to
be the set of locations in the plane where the condition
for A is met but the condition forB is not met. For
instance,

ΞSIC(1)\IAN = ΞSIC(1) \ ΞIAN.

3) Simulations: In the simulation plots below, the
transmitters are randomly located according to a Poisson
point process. The attenuation function is of the form
l(r) = (1 + r)−β or l(r) = r−β.

Figure 3 comparesΞSIC(1) andΞOPT(1). Notice that
SIC does not increase the region that iscoveredcom-
pared to IAN, whereas OPT(1) does.

Figure 4 compares OPT(1) to JD(1) and IAN. Note
that there is no gain moving from JD(1) to OPT(1)
outside the IAN cell. Also, in such a spatial network,
one of the practical weaknesses of JD(1) is its lack of
coverage continuity (the JD(1) cell has holes and may
even lack connectivity as shown in the plots). These
holes are due to the unnecessary symmetry between the
tagged transmitter and the strongest interferer, which
penalizes the former.

C. SIC(1) versus OPT(1)

There are interesting differences between SIC(1) and
OPT(1). Let

ΘA =
⋃

j

ΞA
j ,

whereΞA
j is the cell of transmitterj using decoding rule

A (IAN, OPT(1), SIC(1)). Also let

νA(y) =
∑

j

1y∈ΞA
j

denote the number of transmitters covering locationy
under conditionA. Consider the following observations.

1) We have
ΘSIC(1) = ΘIAN, (13)

that is, the region of in the plane covered when
treating interference as noise isidentical to that of
successive interference cancellation. This follows
from the condition for SIC(1), which implies that
the location under consideration is included in the
cell of another transmitter in the symmetrical rate
case. The gain of SIC(1) is hence only in the
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Fig. 4. Figure (i) depictsΞJD(1) for the tagged transmitter, located at[5, 5], and Figure (ii)ΞJD(1)
∩ΞIAN. Figure (iii) showsΞJD(1)\IAN

and Figure (iv)ΞOPT(1). The path loss exponent isβ = 2.5, the power constraint isQ = 100 for all users; the threshold isR = 0.2
bits/s/Hz, and the user density isλ = 0.3. The attenuation isl(r) = (1 + r)−β.

diversityof transmitters that can be received at any
locationy, i.e.,

νSIC(1)(y) ≥ νIAN(y) for everyy. (14)

2) We have

ΘOPT(1) ⊃ ΘIAN. (15)

As we see in Figure 3, this inclusion is strict for
some parameter values, that is,optimal decoding
increases global coverage, whereas successive in-
terference cancellation does not. We also have

νOPT(1)(y) ≥ νIAN(y). (16)

3) Finally, we have

ΘOPT(1) ⊃ ΘSIC(1). (17)

There is no general comparison betweenνSIC(1)(y)
andνOPT(1)(y), however.

D. The OPT(k) Cell

We now explore the performance of OPT(k), that
is, when the tagged receiver jointly decodes up to the
strongestk interferers and treats the rest as noise. In
Figure 5, we give samples of the regionΞOPT(2)\OPT(1),
which is the additional area covered by moving from
OPT(1) to OPT(2).

SinceΞOPT(k) ⊂ ΞOPT(k+1) for all k, there exists
a limit set ΞOPT(∞), which is the set of locations
where the tagged receiver can decode the message of
the tagged transmitter jointly with some set of other
interferers messages at rateR (the existence follows
from monotonicity and a boundedness argument using
the assumption that the noise power is positive).

E. Optimal Number of Interferer Messages Decoded

We now illustrate the optimal number of jointly de-
coded interferer messageskopt defined in (10). Consider
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Fig. 5. On (i) and (iv), the dashed region isΞIAN for the tagged transmitter. The dashed regions of (ii) and (v) give ΞOPT(1)\IAN for
the tagged transmitter; those of (iii) and (vi) giveΞOPT(2)\OPT(1) for the tagged transmitter. The spatial user density is 0.5 and the power
constraints are constant and all equal toQ = 100. Here β = 3. The tagged transmitter is at the center of the plot. The attenuation is
l(r) = (1 + r)−β . The top plots are forR = 0.03 bits/s/Hz and the bottom ones are forR = 0.015 bits/s/Hz.

transmitters distributed according a spatial Poisson pro-
cess with intensityλ = 10. Assume there is no fading. In
Scenario I, the attenuation function is that with a pole
and we assume that the path loss exponent isβ = 3.
Each transmitter has a power constraint ofQ = 100
and P0 = 5 (this means that the distance between the
tagged transmitter and its receiver is appr. 2.71.). Figure
6 plots the functionk → ξ(k) defined in (11) for a
sample of a Poisson point process of interferers. The
maximum is reached forkopt = 230 (we just plot
the informative part of the curve here) andRsym is
approximately 0.00595. The number of interferers with
power larger thanP0 is 229. Scenario IIis the same but
for the attenuation function without pole. In this case,
the number of transmitters with a power larger thanP0

is 90 andkopt = 90.

F. Single Hop in Ad Hoc Networks

In order to further illustrate the differences between
IAN and OPT, we consider a simulation setting ex-
tending that considered above. We assume a tagged
transmitter and its receiver and a collection of other
transmitters located according to a Poisson point process
of intensity λ that represent the nodes of an ad hoc
network that interfere with the tagged transmission. We
wish to compare the largest distance between the tagged
transmitter and its receiver under IAN and OPT.

To do so, we first fix a distance between the tagged
transmitter and its receiver, which determinesP0 (as in
the last subsection). We use a Monte Carlo simulation
to determine the optimal number of decoded transmitters
kopt for a sample of the Poisson point process of inter-
ferers. We then use (8) to determine the largest possible
achievable rateR under OPT.

We then consider the largest distancer between the
tagged transmitter and receiver such that the rateR is
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Fig. 3. The top plot is forΞOPT(1)\IAN and the bottom plot is for
ΞSIC(1)\IAN for the tagged transmitter. The transmitters are denoted
by crosses. The contours denote the boundaries of the IAN cells
of different transmitters. The spatial user density is 0.1.The power
constraintsQi are here randomly chosen according to a uniform
distribution over [0, 2000]. Variable transmission powers show up
when devices are heterogeneous or power controlled.R = 0.73
bits/s/Hz andβ = 3. The tagged transmitter is at the center of the
plot (at [5, 5]). The attenuation isl(r) = (1 + r)−β .

achievable using IAN, i.e., such thatR < C(Qr−β/(1+
I)), for the interferenceI created by the same point
process of interferers as above.

Figure 7 shows the locations of the interferers (ob-
tained by sampling a Poisson point process), the tagged
receiver (located at the center) and the tagged transmitter
(at the other end of the long segment). The setting is that
of Scenario I of Subsection V-E.

The long segment represents the distance between
the tagged transmitter to its receiver (tagged link) un-
der OPT. Its length is approximately 2.71. The short
segment (displayed here for comparison) is the longest
possible IAN link to the same receiver for the same rate
R = 0.00595 of the OPT link. The length of the latter
link is 0.543. Hence, for this setting, about five times
longer single hops can be supported at rateR when
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Fig. 6. A sample of the functionk → ξ(k) for a Poisson collection
of interferers. Thex-axis is that of thek variable. The maximum of
this function provideskopt. Left: the attenuation isl(r) = (1+r)−β .
Right: l(r) = r−β.

moving from IAN to OPT.

VI. A SYMPTOTIC ANALYSIS IN THE WIDEBAND

REGIME

This section is devoted to the analysis of the gain
offered by using the optimal decoder OPT(K) compared
to IAN in large networks using the stochastic geometry
approach [1]. The setting is that of Section IV, namely
we consider a tagged transmitter-receiver pair and a
denumerable collection of interferers. We assume here
that these interferers are located according to some
homogeneous Poisson process in the plane. We focus
on the wideband regime, where all users share a large
bandwidth and the density of users is large.

More precisely, the wideband limit is the regime where
the bandwidthB → ∞, the average transmit power
is fixed at Q̄ Watts, and the target data rate for each
transmitter is fixed atR̄ bits/s. This means that the
transmit power per HzQ = Q̄/B and the data rate
per Hz R = R̄/B both tend to zero asB → ∞. We
also assume that the tagged transmitter and receiver are
at a fixednon-randomdistancer0 from each other, so
that the receivedpower from the tagged transmitter at
the tagged receiver is fixed at̄P0 = l(r0)Q̄ Watts. On
the other hand, the received power from interfererj,
Īj = l(Tj−y)Q̄, is random. The noise power is assumed
to be1 Watt/Hz, as before.

As the bandwidthB increases, we would like the
network to support an increasing user densityλB so
that the spectral efficiency of the system is kept non-
vanishing. The following two theorems compare the
performance of the IAN decoder and the OPT decoder
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Fig. 7. Comparison of IAN and OPT in an ad hoc network. The
receiver is at the center of the plot (at [5,5]). The long segment is
a link of fixed length using OPT. The rateR is the largest rate that
Rsym can be sustained on this link. The short segment gives the
longest link that can be sustained at the same rateR under IAN at
this receiver. The same thermal noise at the receiver, the transmission
power at the transmitters and the set of interferers are the same in
the two cases. The set of red points (inside the circle) is theoptimal
set of transmitters that are jointly decoded by the receiverunder
OPT, whereas the set of blue points (outside the circle) features the
other transmitters that the tagged receiver considers as noise. The
attenuation isl(r) = r−β .

in terms of how fast the densityλB can scale with the
bandwidthB while still reliably decoding the tagged
transmitter’s message.

Theorem 4:Consider the path loss modell(r) = r−β.
If λB = κBp with p > 2

β andκ > 0, then for every target
rate R̄ > 0, the IAN decoding condition for the tagged
receiver cannot be satisfied almost surely asB grows.

Theorem 5:Consider the path loss modell(r) = r−β.
If λB = κB for κ > 0 and if

ρR̄ < C

(
ρP̄0

1 + 2ρP̄0/(β − 2)

)
= C



 ρP̄0

1 + 2πκQ̄

rβ0 (β−2)



 ,

(18)
then almost surely the OPT decoding condition is sat-
isfied as the bandwidthB grows. Here,ρ = κπr20 is
the expected number of interferers per Hz within the
communication radiusr0 from the tagged receiver.

Theorem 4 says that one needs asub-linear scaling
of the user density to guarantee a positive rateR̄ under
the IAN decoder. In particular, the classical strong law
of large numbers shows that for allκ > 0, the linear
scalingλB = κB leads to a zero achievable rate under

PSfrag replacements

interferers

interferers

weak

strong

receiver 0

transmitter 0

r0

Fig. 8. The tagged transmitter and the tagged receiver are ata
distancer0 from each other. The strong interferers are within a
distance ofr0 from the tagged receiver.

IAN. This implies that the network spectral efficiency
in terms of total bits per second per Hz per unit area
goes to zero under IAN. For the OPT decoder, on the
other hand, Theorem 5 says that a linear scaling of user
density can be supported and hence a positive spectral
efficiency can be achieved in the wideband limit.

Before proving the above theorems, we provide some
intuition as to why the user density scalings of these
two decoders differ quite dramatically. The situation is
depicted in Figure 8. The received interference power
from each of the strong interferers inside the circle is
larger than the signal powerP0. In fact, as the user
density increases, there will be more and more interferers
very close to the tagged receiver with much larger
received powers thanP0. Their effect is fatal to the IAN
decoder, which treats all interference as noise. The OPT
decoder, on the other hand, can take advantage of these
interferers’ high received powers to jointly decode their
messages together with that of the tagged transmitter.
This effectively turns their interference power into useful
signal energy. The proof of Theorem 5 shows that the
total useful received power from these strong interferers
is at least comparable to the total harmful received
power of the interferers outside the disk; hence reliable
communication at a positive ratēR bits/s for the tagged
receiver (and for everyone else). In fact, the termρP̄0 in
(18) is a lower bound on the total power per Hz received
from the strong interferers, and the term2ρP̄0/(β−2) is
the total power per Hz received from the weak interferers
outside the disk.

We are now ready to prove the above theorems.
Proof of Theorem 4:The feasibility of the rateR̄

is equivalent to

C

(
P̄0

B + Ī

)
≥

R̄

B
, (19)
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where Ī denotes the total interference power at the
tagged receiver (in Watts) in a Poisson network of
intensityλB. The last condition is equivalent to

BP̄0

B + Ī
=

P̄0

1 + (κ/λB)1/pĪ
≥ B

[
2R̄/B − 1

]
.

Let n = ⌊λB⌋. We have Ī >
∑n

j=1 Īj with Īj a
collection of i.i.d. shot noise processes of intensity 1.
The random variablēIi has a stable distribution with
parameter2/β [7], and hence its moments of orderp
are infinite forp > 2/β. The Marcinkievicz-Siegmund
strong law of large number [5] then implies that for all
p > 2/β,

lim sup
n→∞

1

n1/p

n∑

j=1

Īj = ∞

in an almost sure sense. SinceB
(
2R̄/B − 1

)
→

R̄ ln 2 > 0, this shows that the condition (19) cannot
hold true for sufficiently largeB.

Proof of Theorem 5:With the notation of Lemma
4, recall thatk is the index of the first interferer whose
received power at receiver0 is less than the received
signal powerP0. Equivalently,k − 1 is the number of
interferers in a disk of radiusr0 from receiver0.

From Lemma 4, for the ratēR to be feasible, it is
enough to show that

kR̄

B
< C

(
kP̄0

B + Ī[k : ∞]

)
. (20)

Now, almost surely, whenB tends to infinity,

k

B
→ κπr20 (21)

and

lim
B→∞

1

B
Ī[k : ∞] = κm(P̄0) < ∞, (22)

with

m(P̄0) =
2πr20P̄0

β − 2
.

In order to show (22), we representĪ[k : ∞] as the sum
of n i.i.d. random variables̃I1, . . . , Ĩn, where Ĩ1 is the
shot noise for the attenuation functionrβ and for a spatial
Poisson point process with intensity 1 outside a disk of
radiusr0 and 0 inside. SinceE(Ĩ1) < ∞, (22) follows
from the strong law of large numbers. From Campbell’s
formula [1], we obtain

m(P̄0) = E(Ĩ1) = Q̄2π

∫ ∞

r0

1

rβ
rdr =

2πr20P̄0

β − 2
,

using the fact thatP̄0 = Q̄r−β
0 . Substituting (22) and

(21) into (20) and simplifying yields the condition (18)

for OPT to decode successfully almost surely forB large
enough.

Note that the linear user density scaling achieved by
OPT cannot be achieved by the decoder OPT(k) for any
fixed k. One has to jointly decode the messages from an
increasing number of interferers as the bandwidth and
the user density increase.

When the distancer0 between the tagged transmitter
and its receiver tends to infinity, the received power
P0 → 0, and (18) readsR̄ < P̄0 log e, which is the
wideband capacity of a point-to-point Gaussian channel
without interference.

Remark:This result may seem surprising at first glance.
In the ad hoc network setting of Section V-F, this result
suggests that when OPT(k) of high orderk is used in
a wideband system, one can maintain a channel from a
tagged transmitter to a tagged receiver, say at distance
r0, with a positive rate (determined by Theorem 5) when
the user density tends to infinity. For instance, in the ad
hoc setting of the simulation section, this means that
one can maintain simultaneous single hop channels that
”jump” over a very large number of nodes of the ad
hoc network. In contrast, in the IAN case, in order
to maintain the same rate, one has to set a multihop
route over a number of relay nodes that tends to infinity
as the user density tends to infinity. However, this is
perhaps not so surprising since in this setting, one could
in principle organize some sort of TDMA or FDMA IAN
scheme (which silences a large collection of nodes when
the tagged transmission takes place) that has asymptotic
performance of the same kind as that exhibited by OPT.
So, OPT can in fact be seen as a way of obtaining good
performance without a priori partitioning the users into
different time or frequency slots.

Notice that the last comparison results rely on the
assumption that the loss function is the one with a
pole. In the case without a pole, we can obtain the
following results using very similar arguments based
on the classical strong law of large numbers (and are
easily extended to general attenuation functions such that∫
R+ l(r)rdr < ∞).

Theorem 6:Consider the path loss modell(r) = (k+
r)−β. WhenλB = κB, and the bandwidthB tends to
infinity, the IAN decoding condition is satisfied almost
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surely iff

R̄ < C




P̄0

1 + 2ρP̄0

∫∞
0

(
k+r0
k+r

)β
r
r20
dr




= C




P̄0

1 + 2πκQ̄
∫∞
0

(
1

k+r

)β
rdr


 , (23)

and the OPT condition almost surely if

ρR̄ < C




ρP̄0

1 + 2ρP̄0

∫∞
r0

(
k+r0
k+r

)β
r
r20
dr




= C




ρP̄0

1 + 2πQ̄
∫∞
r0

(
1

k+r

)β
rdr


 , (24)

where againρ = κπr20.
As a direct corollary of the last formulas, when the dis-
tancer0 between the tagged transmitter and its receiver
tends to infinity so that the received powerP0 → 0, the
right hand side of (24) tends to zero likēP0 log e, which
is the wideband capacity of a point-to-point Gaussian
channel without interference. On the other hand, the
effect of interference never disappears for IAN. Hence, in
this limiting regime, for the case without a pole and with
a given linear user growth rate, a positive rate is feasible
for both IAN and OPT in the limit, but with different
values. When the tagged transmitter and receiver are far
away from each other, the scaling of this feasible rate
under OPT is as though there were no interferers.
Remark:Above, we focused on the case where the node
density tends to infinity. For the finite density case, the
performance of the decoding strategies considered can
be evaluated from the joint distributions of the total
interference and of the order statisticsI1, I2, . . . using
the tools described in [1].

VII. C ONCLUSION

In this paper, we studied the optimal performance
achievable in a Gaussian interference network when
the transmitters are constrained to use uncoordinated
point-to-point codes. While recent results have shown
that to achieve theultimate capacity of such networks,
techniques such as superposition coding and interference
alignment are needed, such techniques require signifi-
cantly more complex codes and coordination between
the transmitters. What our results suggest is that using
simple point-to-point codes and no coordination between
the transmitters, one can achieve quite significant gains.

Moreover, since many existing wireless networks already
use near-capacity-achieving point-to-point coding, our
results also point to the possibility of significant perfor-
mance gain from just upgrading the receivers and not the
transmitters. This provides an evolutionary path to im-
proving the performance of existing wireless networks.
It would also be interesting to extend our results to es-
tablish the capacity region for MAC-capacity-achieving
codes with limited coordination, such as frequency/time
partitioning and power control.

An interesting future direction is to explore how
to design a distributed medium-access protocol when
receivers employ optimal decoding. There would be
two important components to such a protocol. The
first component isinterferer sensingby the receivers.
Each receiver senses the powers and the identities of
its interferers. This can be implemented through some
beaconing scheme. The second component is abackoff
procedure by the transmitter. Each user, when it has
data to transmit, needs to sense when its receiver can
accommodate its transmission. This in turn depends on
the number and powers of the interferers who are trans-
mitting. In conventional protocols such as Carrier Sense
Multiple Access (CSMA), transmission occurs when
the level of interference is below a certain threshold.
This makes sense for an IAN receiver. However, under
optimal decoding, sometimes having a strong interferer
is advantageous as it enables joint decoding. Hence, the
backoff procedure will have to be more elaborate.

Another interesting direction is to explore the imple-
mentation of optimal decoding. When the number of
interferers whose messages are jointly decoded becomes
large, one might fear an exponential growth of the
combination of codewords to be tested by each decoder
when decoding. However, it is not completely clear that
this exponential growth is necessary to achieve capacity.
For example, at the corner points, SIC, with a complexity
that only grows linearly with the number of decoded
interferers, is sufficient. It may be possible to reduce the
complexity of decoding for the points in the interior of
the sum rate face as well.
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