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Abstract—The paper establishes the capacity region of network as a multiple access channel and decodes all
the Gaussian interference channel with many transmitter- the messages jointly.
receiver pairs constrained to use point-to-point codes. Té
capacity region is shown to be strictly larger in general
than the achievable rate regions when treating interferene ~ In this paper, we ask a more fundamental question:
as noise, using successive interference cancellation ddeo given that transmitters use point-to-point codes, what
ing, and using joint decoding. The gains in coverage and is the performance achievable by the optimal decoding
achievable rate using the optimal decoder are analyzed in ryle? The context we consider is a wireless network of
terms of ensemble averages using stochastic geometry. In &y tiple transmitter-receiver pairs, modeled as a Gaus-
spatial n.Etwork Where the nodes are distributed according sian interference channel. The first result we establish in
to a Poisson point process and the channel path loss, . . . . . .
exponent is 8 > 2, it is shown that the density of users this direction is the capacity region of t_h|s chan_nel when
that can be supported by treating interference as noise all the transmitters use Gaussian point-to-point codes.
can scale no faster thanB2/# as the bandwidth B grows, \We show that none of the above decoding rules alone is
while the density of users can scale linearly withB under optimal. Rather, a combination of treating interference
optimal decoding. as noise and joint decoding is shown to be capacity-
Index Terms—Network information theory, interference, achieving. Second, we show that this reSUIt can be
successive interference cancelation, joint decoding, stoas- €xtended to the case when the transmitters are only
tic geometry, coverage, ad hoc network, stochastic network constrained to use codes that are capacity-achieving for
performance evaluation. the point-to-point and multiple access channels, but not
necessarily Gaussian-like.

. INTRODUCTION

Most wireless communication systems employ point- We then specialize the results to find a simple for-

to-point codes with receivers that treat interference Jil@ for computing the symmetric capacity for these

noise (IAN). This architecture is also assumed in moSpdes- Assuming a wireless network model with users

wireless networking studies. While using point-to-poirff!Stributed according to a spatial Poisson process, we use
codes has several advantages, including leveraging m3ifjuiations to study the gain in achievable symmetric

years of development of good codes and receiver deslgie @nd coverage when the receivers use the optimal
for the point-to-point AWGN channel and requirin ecoding rule (OPT) for point-to-point Gaussian codes

no significant coordination between the transmitter@,s compared to treating interference as noise, successive
\ncellation decoding, and joint decoding. We then use

treating interference as noise is not necessarily the (ﬂ?‘ : :
timal decoding rule. Motivated by results in networ'0Chastic geometry techniques to study the performance
information theory, recent wireless networking studid@ the wideband limit, where a high density of users

have considered point-to-point codes with successivgare & very wide bandwidth. Under a channel model

interference cancellation decoding (SIC) (e.g., sée [g)y"ere the attenuation with distance is of the form?
81 B > 2, it is shown that the density of users that

where each receiver decodes and cancels the interferl o= >
codewords from other transmitters one at a time befot@" P€ supported by;rﬁeatmg interference as noise can
decoding the codeword from its tagged transmitter, afi§a/€ No faster thal™/” as the bandwidth5 grows,

joint decoding [[2] (JD), where the receiver treats th¥nile the density of users can scdlieearly with 5
under optimal decoding. For an attenuation of the form
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[I. CAPACITY REGION WITH GAUSSIAN justification is that time sharing (or the special
POINT-TO-POINT CODES cases of time/frequency division) require addi-
tional coordination.

2) Note that if a rate tuple is achievable via a se-
guence of G-ptp codes then there exists a sequence
of (deterministic) codes that achieves this rate
tuple. We use the definition of achievability via the
average probability of error over codes to simplify

Consider a Gaussian interference channel with+
1 transmitter-receiver pairs, where each transmijter
[0 : K] wishes to send an independent messagjec
[1:27%] to its corresponding receiverat rate R; (in
the unit of bits/s/Hz). The signal at receivewhen the

complex signalX = (Xo, X1,..., Xx) are transmitted
is the proof of the converse. The results, however,
K can be shown to apply to sequences of G-ptp codes
Y; = ZgﬂXl +Z; forje[0: K], almost surely, and to an even more general class
1=0 of (deterministic) codes in Sectign]lIl.

where g;; are the complex channel gains aofj ~ Let S be a nonempty subset ¢f : K| and S¢ =
CN(0,1) is a complex circularly symmetric Gaussia0 : K] \ S be its complement. Defin&s to be the
noise with an average power df We assume eachvector of transmitted signalX; such that/ € S, and
transmitter is subject to the same power constrgnt define the sumX;(S) = >, .59, X;. Similarly define

(in the unit of Watts/Hz). Define the received poweP;(S) =>",cs Pji» Rs, andR(S) = 3,5 Ri-

from transmitter! at receiverj as P; = |g;|°Q. Consider a Gaussian multiple access channel (MAC)
Without further constraints on the transmitters’ codeWith transmittersXs, receiverY;, wherej € S, and
the capacity region of this channel is not known even f@dditive Gaussian noise powgt(S¢) + 1. Recall that
the two transmitter-receiver pair case (dee [6] for knowiRe capacity regiom4;(S) of this MAC is

results on this problem). In this section we establish th{ Pi(T)

capacity region using Gaussian generated point-to-poifitfts : R(7) < C <1+T(Sc)> for every T C 5}7
J

codes for an arbitrary number of transmitter-receive _
whereC(z) = log(1 + x) for = > 0. All logarithms are

pairs. -\
We define ar(n, 2*fo, ... 27fix) Gaussian point-to- 02S€2 in this paper. _
point (G-ptp) codell to consist of a set of randomly NOw, define the rate regions
and independently generated codeword(m;) = C; ={R: Rs € A;(S) for someS containing;}.
(Tjy, gy, xj)(my), my € [1:2MY], 5 € [0: K], and
each according to an i.i.dCA(0,02) sequence, for K
some(0 < o2 < Q. We assume each transmitter in C = ﬂcj. (1)
the Gaussian interference channel uses such a code =0

with each receivey € [0 : K] assigning an estimateq,q of the main results in this paper is establishing the

S (™ . onk; . i : . L :
mj(y;) € [L: 2"7] of messagen; to each received ., it region of the Gaussian interference channel with
sequencey;. We definethe probability of error for a G-ptp codes.

G-ptp codeas Theorem 1:The capacity region of the Gaussian+-
1 K X 1 transmitter-receiver pair interference channel with G-
Pn=——Y P{M; +# M;}. ptp codes i<.
K+1¢4 . .
j=0 By symmetry of the capacity expression, we only need

We denote the average of this probability of ofl0 establish achievability and the converse for the rate
ror over G-ptp codes ag,. A rate tuple R regionCy, which ensures reliable decoding of transmitter

(Ro, R1, ..., Ri) is said to be achievable via a sequeanéS message at receiver Hence from this point onward,
of (n,2Fo ") G-ptp codes ifp, — 0 as we focus on received. We will refer to this receiver and
7 PR n

n — co. The capacity region with G-ptps the closure its corresponding transmittér astagged We also refer
of the set of achievable rate tupléBy, Ry, ..., Ri) to other transmitters aaterferers We relabel the signal
R from the tagged receiver, its gains, and additive noise as

Remarks:
1) Our definition of codes precludes the use of time K
sharing and power control (although in general Y= ZQIXH'Z'

one can use time sharing with ptp codes). The (=0
We also relabel the received power from the tagged trans-

!By a code here we just mean the message set and the codebsnkter 0 as Py and the received power from interferer



Ry
J,» j = 1, asI; (for interference). For any subset of 4

interferersT, we denote (7") as the sum of the received
power from these interferers. We will also drop the indgx
0 from the notations4(S) and X(S). '

For clarity of presentation, first consider the case 0] 1
K = 1. Here the signal of the tagged receiveris ¢}

Y =goXo+ g1 X1+ Z. > Ry
For this receiver, there are two subsets to consiflet,
{0} andS = {0, 1}. The regionA({0}) is the set of rate Jj’;l
pairs (Ry, R1) such that
P
Ry <C
0= <1 + [1) ’
and the regiond({0, 1}) is the set of rate pair§Ry, R1)
such that Cho ‘
» R, > R
Ry < C(Py), Co Con ’
Ry < C(I), (iii) (iv)

Ro+ Ry < C(Py + ). . . o . .
Fig. 1. (o is the shaded region in Figure (i). THe;p region
Hence, the regiof, for the tagged receiver is the unioris depicted on Figure (ijjRsic is on Figure (iii) andRiax is on
of these two regions ('V()' 7(0 - C()fo)' G = C(h), Co = C(B/(1 + 1)), Cro =
A _ ' ) C(I1/(1+ P)).
It is interesting to comparé, to the achievable rate ' ’

regions for other schemes that use point-to-point codes.

Define the rate regions: receiver can do no better than treating interference as
Rian = A({0}), Gaussian noise or jointly decopllng the messages from
I } the tagged transmitter and the interferer.

TP In the following, we first establish the capacity region
+ o for the casd{ = 1, and then extend the result to arbitrary
Rip = A({0,1}) . K. In Section 1], we also show that our results extend

The regionR;ax is achieved by a receiver that decodd® the class oMAC capacity-achieving codes
the tagged transmitter’'s message while treating interfer-

ence as Gaussian noise. The regipic is achieved A proof of Theorerflll foK = 1

by the successive interference cancellation receiver; the

interferer's message is first decoded, treating the tagde@©' of AchievabilityThe prove the achievability of any

transmitter's signal as Gaussian noise with pofegand 'ate pair in the interior of, we use Gaussian ptp codes

then the message from the tagged receiver is decoddli! @verage powe(1—¢) and joint typicality decod-
after canceling the interferer’s signal. The regipp is N9 @s in [4]. Further, we use simultaneous decoding [6]
the two transmitter-receiver pair Gaussian MAC capaci] ,Wh'Ch recelyero declares that the messa}@@ IS sent
region. It is the set of achievable rates when the receiykyt IS the unique message such thatf (1), y") is
insists on correctly decoding both messages, whichIntly typical or (x5 (1), 27 (77n1), ") is jointly typical

. onR, H i
the achievable region using joint decoding in BlomdP’ SOMem1 € [1:2"]. A straightforward analysis of
and Jindal[[2]. the average probability of error shows that— 0 as

J1— 0 if either

Rsic = {(Ro,Rl) LRy < C(Ry) By < O

It is not difficult to see that the following relationship

between the regions hold (see Figlie 1): Ro < C <1 JJ:()h) ’ B
Rian C Co,
Rsic € Ryp C Co, or
Co = RiaN URJD. Ry < C(P),

Note that the last relationship above says that the Ro + Ry < C(Py + L)



The first constraint[{2) is4({0}), the IAN region.
Denote the region defined by the second set of con-
straints byF ({0, 1}); it is the same as the MAC region
A({0,1}) but with the constraint o, removed. Hence,
the resulting achievable rate regiatty = A({0}) U
F({0,1}) appears to be larger thaty = A({0}) U
A({0,1}). It is easy to see from Figurel 1, however,
that it actually coincides witl€y. Hence, received can
correctly decodé/; if treating interference as noise fails
but simultaneous decoding succeeds even though it does
not require it. We establish the converse for the original
characterization ofCy, hence providing an alternative
proof that the two regions coincide.

Remark:Although we presented the decoding rule as a
two-step procedure, since the receiver knows the trans-
mission rates, it already knows whether to apply IAN or
simultaneous decoding.

Proof of the converselo prove the converse, suppose
we are given a sequence of random G-ptp codes and
decoders with rate paifRy, R;) and such that the
average probability of error approactteasn — co. We
want to show that Ry, R1) € Cy. Consider two cases:

1) Ry < C(I1): Under this condition and by the
assumption that the tagged receiver can reliably de-
code its message, the tagged receiver can cancel off
the received signal from the tagged transmitter and
then reliably decode the message from transmitter
1. Hence(Ry, R;) is in the capacity region of the
MAC with transmitters(Xy, X;) and receiverY’,

and hence irCy.

Ry > C(L): Fixane > 0, and letZ = U + V,
whereU and V' are independent Gaussian noise
components with variance§ and1 — N, respec-
tively, such that

2)

C(%) =Ry +e

Consider the AWGN channel

G-ptp codes, this implies that

h(W"™) > nRy — nd, + h(U™)
=nRy —nd, + nlog(meN)
I
= nC’(N> — ne — ndy, + nlog(meN)
= nlog(me(l; + N)) — ne — noy.

Now, let W = W™ 4 V™. By the conditional
entropy power inequality, we have

Q%B(W") > 95 h(W™) + 97 h(V™)
> 2log(7re(ll+N))—6n—e + 7T€(1

= me(I; + N)27% ¢ + 7e(1

_ N)
—N).
Hence,

h(W™) > nlog (71‘6([1 + N)27% ¢ 4 1e(1 — N)) .

The fact thath(Y") < nlog(me(Py + I + 1))
and the last lower bound give an upper bound
on the average mutual information for the tagged
transmitter-receiver pair
I(X;Y™) = h(Y"™) = h(W™)

< nlog(me(Po+ 1 +1))

— nlog(me(I, + N)Z_(S“_E + me(1 — N)).
Since this is true for alt > 0, we have

(X3 Y™ <nlog(me(Py + I + 1))
—nlog (7‘(’6([1 + N)27% 4 e(1 — N))

Py
<
- nC(l + Il
Since we assume the tagged receiver can decode
its intended messag&, < C(Fy/(1+ 1)), and
hence(Ry, R1) € Cy. This completes the proof of
Theoren!ll forK = 1.

) —I—ngn.

Remarks:

W=gX1+U. 3)

Since we are assuming G-ptp codes aRd <
C(I;/N), the average probability of decoding er-
ror over this channel approaches zeronas ~c.
Hence, by Fano’s inequality, the mutual informa-
tion over a block ofn symbols, averaged over G-
ptp codes, is

1)

I(XT;W™) = h(XT])— (X |W")
> an - "I’L(Sn, 2)

where§,, — 0 asn — oo. Denoting by h(W")
the differential entropy ofi¥’™ averaged over the

What the above proof showed is that if the message
of transmitter0 is reliably decoded, then either: (1)
the interferer 's message can be jointly decoded
as well, in which case the rate vect®& is in

the 2-transmitter MAC capacity region, or (2) the
interference plus the background noise is close to
i.i.d. Gaussian, in which case decoding transmitter
0’'s message treating transmittéis interference
plus background noise as Gaussian is optimal.
One may think that since the interferer uses a
Gaussian random code, the interference must be
Gaussian and hence the interference plus back-
ground noise must also be Gaussian. This thinking



is misguided, however, since what is importardpproaches zero as— oo. Consider the set of subsets

to the communication problem are the statistiasf interferers

of the interference plus noiseonditional on a

realization of the interl?‘erer’s random cod@iven a D=AT:0&T, Ry € A(T)}-

realization of the code, the interference is discretituitively, these are all the subsets of interferers whose

coming from a code, and hence it is not in generflessages can be jointly decoded after decodiifg

true that the interference plus noise is close twhile treating the other transmitted signals as Gaussian

i.i.d. Gaussian. What we showed in the aboweoise. Let7* be amaximalset inD, i.e., there is no

converse is that this holds when the message frd@iger subsel € D that containg . Since the message

the interferer cannot be jointly decoded with thd/y is decodable by the assumption of the converse, the

message from transmittér tagged receiver can cancel off the tagged transmitter’s

signal. Next, the messages of the interferergihcan
be decoded, treating the interference from the remaining
B. Proof of Theorerall for arbitrarys interferers plus the background noise as Gaussian. This is
because by assumptidty- € A(7*) and all interferers
are using G-ptp codes. After canceling off the signals
from the interferers in7*, the tagged receiver is left
with interferers in(7*U{0})¢. Since no further messages
can be decoded treating the rest as Gaussian noise (by
the maximality of 7%), it follows that for any subset
S C (T*U{0})¢ Rs is not in the capacity region of
Co := {R : Rs € F(S) for some subses with 0 € 5}, he MAC with transmitters i5 and Gaussian noise with
(4) powerI((7*U{0})¢\S)+ 1. Let

Now, consider the general case witht-1 transmitter-
receiver pairs.
Proof of achievability.The proof is a straightforward
generalization of the proof foK” = 1, and the condition
for the probability of error to approadhis that the rate
vectorR lies in the region:

where W =X((T"u{0})°) + Z.
- ' Py + I(T) In the K = 1 scenario,7* is either{1} or (. In the
F(§) = {R PR(TU{0h <C < 1+ 1(8°) ) first case, both messages are decoded, hence the power
for everyT € S\ {0}} of the residual interference plus that of the background

noise is automatically Gaussian. In the second case,

is theaugmentedIAC region for the subset of transmit-the interferer's message is not decoded, and our earlier
ters S treating the transmitters i§¢ as Gaussian noise.argument shows the interferer must be communicating
As in the K = 1 case, the regioid, appears to be above the capacity of the point-to-point Gaussian channel
larger thanC,. We again establish the converse for th® receivei0. Hence the aggregate interference plus noise

original characterization of,, hence showing thaf, must be asymptotically i.i.d. Gaussian. In the general
coincides withC. scenario withK interferers, there may be more than one

Proof of the converseThe proof for thek = 1 case residual interferer left after decoding a maximal get
identifies, for a given a rate vector, maximal set of The following lemma, which is proved in the following
interferers whose messages can be jointly decoded wat#Psection, shows that this situation generalizes appro-
the tagged transmitter's message. This set dependsPHAtely.

the given rates of the interferer; ik, < C(I;), the ~ Lemma 1:Consider ak-transmitter MAC

set is {1}, otherwise it is(). The key to the proof is k
to show that whichever the case may be, the residual Y = Zngj + Z,
interference created by the transmitters whose messages j=1

are not decoded plus the background noise must behere the received power from transmitters P; and
asymptotically i.i.d. Gaussian. We generalize this prodf ~ CN(0,1). Let
to an arbitrary number of interferers. In this general ,, .
setting, howeverexplicitly identifying a maximal set of B={R:Rs € A(S) for some nonempts}.  (5)
interferers whose messages can be jointly decoded wlftfihe transmitters use G-ptp codes at rate vetoand
the tagged transmitter's message is a combinatorial®y¢ B, then
difficult task. Instead, we identify iexistentially 1 k

Suppose the transmission rate vectorRsand the lim —h(Y™) =log | me ZP]- +1 ,

n—o0 M,

average probability of error for the tagged receiver j=1



that is, the received sequenk@ is asymptotically i.i.d. whereN is chosen such that is on the boundary oB

Gaussian. for the MAC
Lemmall shows that the interference after decoding k
the interferers in7* U {0} plus the background noise W = Zngj +U.

is asymptotically i.i.d. Gaussian. Henc&r. o €
A(T*U{0}), and we can conclude th& € Cy. This ~
completes the converse proof of Theorlem 1 for arbitraljere, B is the same a#3 except that the background
K. noise powerl is replaced byN. Let £ be the collection

of all subsetsS c [1 : k] for which Rs € A(S) (A(S)
is the same asA(S) except that the background noise
C. Proof of Lemmall power 1 is replaced byN). Pick a maximal subse§
The proof needs the following fact abofit Recall from that collection. By Fadil1?s must be on the sum-
that the boundary of the MAC capacity region consistate face ofA(S). The MAC can be decomposed as
of multiple faces. We refer to the one corresponding to
the constraint on the total sum rate as fluen rate face

Fact 1. Let R be a rate vector such th&ls is on the gy the maximality ofS, no further transmitted messages

boundary ofA(S) for someS but not on its sum-rate .an pe decoded beyond the ones for the transmitters
face. ThenR cannot be on the boundary &t In other ;, g (otherwise, there would exist a bigger subsét

words, the non-sum-rate faces of the MAC regiot(sS) containingS and for whichRs: € A(S")). This implies

are never exposed on the boundarysof in particular that for any subsét C S¢, the rate vector
Figure[2 depicts5 for K = 2. Here, the boundary of .~ cannot be in the regiod (7); otherwise if such &

B consists of three segments, each of which is a sugists, the receiver could have first decoded the messages

rate face of a MAC region. The two non-sum-rate facgg transmitters inS, cancelled their signals, and then

of A({1,2}) are not exposed. decoded the messages of the transmitter§ jirreating

‘Proof of Fact 1:Let R be a rate vector such thathe residual interference plus noise as Gaussian. Hence
Rs is on the boundary ofA(S) for someS but not on it we consider the smaller MAC

its sum rate face. Then there is a sub%ebf S such

J=1

W =X(S)+ X(S°) +U.

that W =X(8%+U,
o _P(T)
R(T) = 1+ P(S°) (6) we can apply the induction hypothesis to show thét
is asymptotically i.i.d. Gaussian. So now we have a
and for all subset¥ strictly containing7 and insideS, Gaussian MAC for transmitters i§
PY) i
R Cl————). 7 W=X(S)+W
W) < <1+p<5c>> 7) (S)

and since the rate vectoRs lies on the sum rate
boundary of this MAC, we now have a situation of a
PV\T) super-transmitter, i.e., a combination of all transmdtter
1+ P(T) + p(gc)) in S, sending at the capacity of this Gaussian channel.

o o S Using a very similar argument as in thé = 1 proof,
This implies thatRs 7 is in the strict interior ofA(S\  gne can show that/™ is asymptotically i.i.d. Gaussian.
T), Hence,R cannot be on the boundary @&. This

Adding back the removed noisg yields the desired
completes the proof of Fact 1. _ B conclusion. This completes the proof of Lemhia 1m
Proof of Lemmdll1:The proof is by induction on

the number of transmitters.

k = 1: this just says that for a point-to-point Gaussian
channel, if we transmit at a rate above capacity using a
G-ptp code, then the output is Gaussian. This is a well-The converse in Theorefd 1 says that if the trans-

Subtracting[(6) from[{7) implies that for all such sats

R(V\T)<C(

[1l. CAPACITY REGION WITH
MAC-CAPACITY-ACHIEVING CODES

known fact. mitters use Gaussian random codes, then one can do
Assume the lemma holds for ajl< k. Consider the no better than treating interference as Gaussian noise
case withk transmitters. or joint decoding. The present section shows that this

ExpressZ = U +V, whereU andV are independent converse result generalizes to a certain class of (deter-
Gaussians with varianced and 1 — N, respectively, ministic) “MAC-capacity-achieving” codes, to be defined



Co |-+ Co |-+ Co |-+

(R, R2)

: =R i =R : =R
c, ! c, ! c !

Fig. 2. The boundary oB for K = 2 has three segments, all of which are sum-rate faces. A upte-bn the boundary o8 can lie on
one of them.

precisely below. We first focus on the two-transmitteperformance over the interference channel. This is true
receiver pair case and then generalize to thet 1- even if the codes do not “look like” randomly generated
transmitter case. Gaussian codes.
An (n, 2"%) (deterministic) single-user code satisfying Now let us consider thé& + 1-transmitter interference
the transmit power constrai@ is said to achieve a ratechannel for generak’. Is C still an outer bound to the
R over a point-to-point Gaussian chaniél= gX + Z capacity region if all the transmitters use ptp-capacity-
if the probability of errorp, — 0 as the block length achieving codes? The answer is no. A counter-example
n — oo. An (n,2"%) code is said to bepoint-to- can be found in[[3] (Section 1IB), which considers
point (ptp) capacity-achieving it achieves a rate o2 a 3-transmitter many-to-one interference channel with
overeverypoint-to-point Gaussian channel with capacitinterference occurring only at receivér There, it is
greater thank. shown that if each of the transmitters uses a lattice
Now consider the two transmitter-receiver pair Gaugode, which is ptp-capacity-achieving, one can do better
sian interference channel. A rate-p&iRy, R;) is said thanboth joint decoding all transmitters’ messages and
to be achievable over the interference channel viadacoding just transmitted’s message treating the rest
sequence of ptp-capacity-achieving codes if there exisfSthe signal as Gaussian noise at recetveiThe key
a sequence of such codes for each transmitter such tigao use lattice codes for transmitterand 2, and have

the probability of error themalign at receivei so that the two interferers appear
1 ~ . as one interferer. Hence, it is no longer necessary for
Pn =73 (P{MO # Mo} + P{M: # Ml}) receiver( to decode the messageshudth interferers in

approached) asn — oo. The capacity region with order to decode the message from transmittelecoding
ptp-capacity-achieving codes is the closure of the sett§e sumof the two interferers is sufficient. At the same
achievable rates. The theorem below is a counterpartti®e, treating the interference fromand2 as Gaussian
the converse in Theorel 1 for G-ptp codes. noise is also strictly sub-optimal.

Theorem 2:The capacity region of the two In this counter-example, the transmitters’ codes
transmitter-receiver pair interference channel witAre ptp-capacity-achieving but not "MAC capacity-
ptp-capacity achieving codes is no larger th@nas achieving” in the sense that receivercannot jointly
defined in[(1) forK = 1. decode the individual messages of the interferers. A

Proof: The result follows from the observation thatareful examination of the proof of the converse in
in the proof of the converse for Theordm 1, the onfyheorem[]l for generak reveals that the converse in
property we used about the G-ptp codes is that the aviact holds whenever the codes of the transmitters satisfy
age decoding error probability of the interferer's messagegch a MAC-capacity-achieving property.
after canceling the message of the intended transmitteConsider ak-transmitter Gaussian MAC
goes to zero wheneveR; < C(I;). This property re- i
mains true if the interferer uses a ptp-capacity-achieving y — Zngj +Z
code instead of a G-ptp code. =
[ |

Theorem[2 says that as long as the codes of thed a subseS C [l : k]. A (n,2"F ... 2n8) (de-
transmitters are designed to optimize point-to-point paerministic) code for this MAC, where each transmitter
formance, the regiod is the fundamental limit on their satisfies the same transmit power constrgints said to



achieve the rate-tuplBs over the MAC if the probability This will help us compare the network performance

of error of the optimal decoder to other decoders for Gaussian
1 ~ ' ptp codes. Throughout the section, we assume that
Pa(S) = @;P{MJ # M;} Iy > Iy--- > Ik, and definel[j : k] = Zf:j I; and
J

I=YFE I, WhenK = oo, we will assume thaf is
approache$ asn — co. An (n, 2" . 2nf) code  fiite hencel, — 0 asi — oo,

is said to beMAC-capacity-achievingf for every S C

[1: k], it achieves a ratd?s overeveryGaussian MAC )

whose capacity regiond(S) containsRs. Recall that A Optimal Decoder

the region A(S) is the capacity region of the MAC Focusing again on the tagged receiverdefine the
with transmittersXs and the signals from the rest ofsymmetric rateRy,, as the supremum ovet such that
the transmitters treated as Gaussian noise. Thus this R,..., R) € Cy. We can express the symmetric rate
definition says that a MAC capacity-achieving code 8., as the solution of a simple optimization problem.
good enough to achieve this performance for any subsetemma 2: The symmetric rate under G-ptp codes is
S of transmitters.

Now consider thé{+1 transmitter-receiver pair Gaus- Rey;y = max  min ! C (PO Ikl k]> .
sian interference channel. A rate-tudie is said to be R0k E(0R] L+ 1 L+1k+1: K] @)
achievable on the i_ntgrference (_:hannel vigasequence of Proof: From the reduced characterization 6f
MAC-capacity-achieving codes if there exists a sequenﬁzle@), we have
of MAC-capacity-achieving codes for every subset con-

taining K transmitters such that the probability of error  Rgym = Dnax. Reym (S) = knf(?)fq Reym ([0 : k]),
: €0:

K
Pn = L ZP{]\Z/j # M;} whereRg,, (S) is the symmetric rate of the regiof(S).
K+1 =0 The second equality follows from the observation that the
approaches zero as — co. The capacity region with "€duced MAC region(S) is monotonically increasing
MAC-capacity-achieving codes is the closure of all sudf the received powers from the transmittersdnand
rates. decreasing in the interference power from transmitters
Theorem 3:The capacity region of the Gaussian+ 1N S Hence, among all subsefsof sizek +1, the one
1-transmitter interference channel with MAC-capacity/ith the largest symmetric rate {6 : k] (the one with
achieving codes is no larger than as defined in[{1). the highest powered transmitters and lowest powered
Proof: interferers).
The result follows from the observation that in the Taking into account al* constraints of the region
proof of the converse in Theorel 1, the only property ([0 : k]), we have
that was used about the G-ptp codes of the transmitters isR ([0 : k])
precisely the MAC-capacity-achieving property defined =~ ™

above. - I < Po+I(T) )

The counter-example above shows that one canindeed 7c#] [T]+1 " \1+I[k+1: K]
do better than the regiod, for example using inter- . =~ . 1 C( Py+I(T) )
ference alignment. Interference alignment, however, re-  ic[o:k] Tc[1:k],|T|=t | + 1 1+1k+1: K]

quires careful coordination and accurate channel knovsflhe desired resul18) now follows from the fact that

edge at the transmitters. On the other hand, one C%ong all the subset® of size /. the one with the

satisfy the MAC-capacity-achieving property without thg llest total 7 is [ — 1k -
need of such careful coordination. So, if one takes thr[)na est total power (7)) is [k — 1+ 1: k.

MAC-capacity-achieving property as a definition of lack

of coordination between the transmitters, then the abdge Other Decoders

theorem delineates the fundamental limit to the perfor- We will use the following nomenclature for the rest
mance on the interference channel if the transmitters afethe paper:

not coordinated. « IAN refers to treating interference as noise decod-

V. SYMMETRIC RATE ing. The condition for IAN is

We specialize the results in the previous sections to R < C< i ) )
the case when all messages have the same Rate 1+1




« SIC(k) refers to successive interference cancellationfinity. The values wher€ is maximal are then all finite
in which the tagged receiver sequentially decodesless it is 0 everywhere. But this is not the case since
and cancels the signals from tlestrongest trans- our assumptions oy and I imply that{(0) >0. =
mitters treating other signals as noise and thenThe following lemma will be used later.
decodes the message from the tagged transmittetemma 4:Let
while treating the remaining signals as Gaussian

noise. The conditions for SIC are k = min{k > 1 such thatl, < I}

I ' Then, a sufficient condition for achievability by OPT at
R<C(1+PO+I[Z+1:K]>fOHG[l'k]’ rate R is that
Py k Py
C . k — . 12
< <1+I[k+1:K]> —R<C<1+I[@:oo]> (12)

« JD(k) refers to joint decoding of the messages dfurther, if this condition holds, then the conditions for
the firstk + 1 transmitters and treating the rest agD(k — 1) are met.
Gaussian noise. The conditions for dpare Proof: We can derive a lower bound for the sym-

R< L & (Po + Ik —1+1: k:]) for L€ [0: K metric rate in[(B) in terms of:
I+1 1+Ik+1: K] '(9)' e i 1 C<P0+I[k—l+1:k]>

ke[0:K]le[0:k] [ + 1 1+1k+1: K

The JD¢) conditions are not monotonic i that is, <lo:K] Se[0:A] 1 Py+ Ik [—l ke 1]]

the fact that JO() holds neither implies that JB) > min 7 C( 0 ——— >

holds fork’ < k nor for k¥’ > k in general. lefok-1] L+ 1 1+ 1k K]

« OPT() refers to the optimal decoder used in the — ~ .. 1 < (I+1)hR )

proof of Theorenf]1 if there were onlyinterferers. Teok-1 1+ 1 \1+ Ik K]

OPT(K) or simply OPT refers to the optimal decod- 1 kP,

ing rule. The conditions for OP) are R < Rgym B E 1+1Ik:K])"

with Rsym given by [8). Since the condition for OPTT
is the union of the JOJ conditions for0 <[ < k,
if OPT(k) holds, so does OPF() for all ¥’ > k.

he first inequality is obtained by choosikg= k —

1 in the outer maximization; the second inequality is
obtained by lower bounding the received powers of all
the interferers with index< k by Fy; the last equality

C. Number of Interferer Messages Decoded follows from the fact thatC(x)/x is a monotonically
Lemmal2 shows that, foK finite, the optimal decod- decreasing function of. The sufficient condition[(12)
ing strategy is to usdD(kqpt) With for achievability is now obtained by requiring the target

P I 10 rate R to be less than this lower bound. u
opt = argMaxXe(o: 1S (), (10) Lemma[2 gives a guideline on how to select the set of
where interferers to jointly decode: under the conditidn](12),
1 Po+1Ik—1+1:k the success_of joint_ decoding at raig is gu_aranteed
(k) = < I+ 1: K] ) (11) when decoding all interferers with a received power

_ _ o _ ) larger than that of the tagged transmitter. This is only
provided the argmax in question is uniquely defined. 5 hound, however, and as we will see in the simulation

The following lemma is focused on the cae= oo, gection, one can often succeed in decoding more than
which will be considered in the next sections, and wheke_ 1 transmitters.

one may fear that the maximum is not definedn (8), i.e.,

the argmax in[(Zl0) is not defined. Fortunately, this is notV SPATIAL NETWORK MODELS AND SIMULATION

the case.
RESULTS
Lemma 3:If K = oo, Py > 0 and I < oo, then _ _ _ o .
kopt < 00. The aim of the simulations we provide in this section
Proof: We have is to illustrate the performance improvements of OPT
1 1 versus IAN and JD. The framework chosen for these
0<¢(k)< min —C(Py+1)=-——C(Py+1). simulations is a spatial network with a denumerable
lefo:k] L+ 1 kE+1

collection of randomly located nodes. In the following
Hencek — ¢(k) is a positive function bounded fromsection we also use this spatial network model for
above by a function that tends to 0 whéntends to mathematical analysis.
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A. Spatial Network Models Section1l, we have

—IAN —=OPT(1)

I

All the spatial network models considered below fea- -
ture a set of transmitter nodes located in the Euclidean =SIC(1) ~ =ID(1) ~ EOPT(1)7
plane. The channel gains defined in Secfidn Il, or equiv-
alently the received signal powé} and the interference

powersl;, j € [l : K], at the tagged receiver are For || pairs of conditionst and B, we definee4\5 to

evaluated using a path loss functiéfr), wherer is pe the set of locations in the plane where the condition

distance. Here are two examples used in the literatyf 4 is met but the condition fo3 is not met. For
(and in some examples below): instance,

=OPT(1) IAN | =JD(1)

—_
=
—

o I(r) =78, with 8 > 2 (case with pole), —SIC(\IAN _
e I(r) = (k+r)78, with 8 > 2 andk a constant (case B B
without pole); it makes sense to takeequal to the ~ 3) Simulations: In the simulation plots below, the
wavelength. transmitters are randomly located according to a Poisson
More precisely, if we denote the locations of th@oint process. The attenuation function is of the form
transmitters byl’;, j € [0 : K] and that of the tagged!(") = (1+r)7 or l(r)sé(f) g —oPT() _
receiver byy and if we assume that the tagged receiver Figure[3 compare& and = . Notice that
selects the interferers with the strongest received powsf$ does not increase the region thatcsveredcom-
to be jointly decoded, thefyoo|? = I(|Ty — y|) and par(_ad to IAN, whereas OPT(1) does.
190,12 = (T} — y)), or equivalentlyPy = I(|Tp — y)Q FlgureIZ_compare_s OP]I)( to JD(1) and IAN. Note
andZ; = I(|T;—y|)Q for j € [1 : K]. Here@ denotes the that_there is no gain moving from JD( tq OPT()
transmit power. Since we assume that> I . .. > Iy, outside the IAN cell. Also, in such a spatial network,

the strongest interferer is the closest one {@xcluding ©N€ Of the practical weaknesses of IDi its lack of

the tagged transmitter). Léty) be the total interference coverage continuity (the JDY cell hgs holes and may
at the tagged receiver, namely) = 3. I, even lack connectivity as shown in the plots). These
' J#0 I holes are due to the unnecessary symmetry between the

tagged transmitter and the strongest interferer, which
penalizes the former.
o The fading case, where the channel gain is further
multiplied by F;(y), where F;(y) represents the
effect of fading from transmittef to y. In this case, C. sicl) ver'sus OP_T‘O _
the strongest interferer is not necessarily the closestlhere are interesting differences between $)@nd

—_
=
—

SIC(1) \ EIAN

The simulations also consider the following extensio
of this basic model:

to y. OPT(1). Let

« The case where the power constraint is not the same 04 = U th
for all transmitters. Ther?y = I(|Ty — y|)Qo and J
I = I(|T; —y|)Q; for j € [1 : K], with Q; the

_ o WhereEj‘ is the cell of transmittej using decoding rule
power constraint of transmittef. A (IAN, OPT(1), SIC(1)). Also let

VA(Z/) = Z lyEEj‘
J

denote the number of transmitters covering location
under conditionA. Consider the following observations.

1) We have

B. IAN, SIC(), JD(1), and OPT() Cells

1) Definitions: Fix some rateR. For each decoding
rule A (i.e., IAN, ...) as defined above, &4 be the
set of locations in the plane where the conditions for

_ _ SIC(1) _ @IAN
rule A are met with respect to the tagged transmitter 6 S (13)
and for R. We refer to this set as thé cell for rate R. that is, the region of in the p|ane covered when
The main objects of interest are hence the cgli8", treating interference as noiseigenticalto that of

=SIC(1) =JD(1 =OPT(1 L . X
=8I, =/PM) and= ), successive interference cancellation. This follows

2) Inclusions: Rather than looking at the increase of from the condition for SIC(1), which implies that
rate obtained when moving from a decoding rule to  the location under consideration is included in the
another, we fixR and compare the cells of the two cell of another transmitter in the symmetrical rate
decoding rules. In view of the comparison results in case. The gain of SIC(1) is hence only in the
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*

=

F

(i)

(iv)

Fig. 4. Figure (i) depict&’P™") for the tagged transmitter, located [at 5], and Figure (ii)y='P™ N =N, Figure (jii) showsz’P(V\IAN
and Figure (ivV)=°F"™ . The path loss exponent {$ = 2.5, the power constraint i§) = 100 for all users; the threshold i® = 0.2
bits/s/Hz, and the user density Js= 0.3. The attenuation ig(r) = (1 + )~ *.

diversityof transmitters that can be received at any. The OPTk) Cell

locationy, i.e.,

I (1)) > VIAN(y) for everyy.

2) We have

(_)OPT(I) ) (_)IAN )

We now explore the performance of ORTJ,( that
is, when the tagged receiver jointly decodes up to the
strongestk interferers and treats the rest as noise. In
Figure[B, we give samples of the regigRPT(2\OPT(1),
which is the additional area covered by moving from
OPT(1) to OPTQ).

As we see in Figur&l3, this inclusion is strict for Since Z0FT*) ¢ ZOPTE+Y for all k, there exists
some parameter values, that éntimal decoding @ limit set ZOPT(>) " which is the set of locations
increases global coverage, whereas successive Moere the tagged receiver can decode the message of

terference cancellation does ndte also have

VOPT(I) (y) > VIAN (y)

3) Finally, we have

(_)OPT(l) S (_)SIC(l) )

There is no general comparison betwe€lt () (y)

andv°PT(M) (y), however.

the tagged transmitter jointly with some set of other
interferers messages at rate (the existence follows
from monotonicity and a boundedness argument using
the assumption that the noise power is positive).

E. Optimal Number of Interferer Messages Decoded

We now illustrate the optimal number of jointly de-
coded interferer messagks,: defined in[(ID). Consider
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(iv) (vi)

Fig. 5. On (i) and (iv), the dashed region BN for the tagged transmitter. The dashed regions of (i) andgive Z°TTWMAN for

the tagged transmitter; those of (iii) and (vi) gi#"T\OPT() for the tagged transmitter. The spatial user density is Acbthe power
constraints are constant and all equal@o= 100. Here 8 = 3. The tagged transmitter is at the center of the plot. Thena#gon is
I(r) = (1+7)~". The top plots are foRR = 0.03 bits/s/Hz and the bottom ones are fBr= 0.015 bits/s/Hz.

transmitters distributed according a spatial Poisson piie- Single Hop in Ad Hoc Networks
cess with intensity\ = 10. Assume there is no fading. In

Scenario J the attenuation function is that with a pol In order to further illustrate the differences between

ﬁAN and OPT, we consider a simulation setting ex-

and we assume that the path loss exponent is 3. : :
Each transmitter has a power constraint(@f= 100 tendmg_ that cor_13|dered_ above. We assume a tagged
ransmitter and its receiver and a collection of other

and Py = 5 (this means that the distance between ttire nsmitters located rding to a Poisson boint br.
tagged transmitter and its receiver is appr. 2.71.). Figur 'St ! e’ts)\oir?? accoral tgtho a ?;SSO pr' %or::ess
plots the functionk — &(k) defined in [(I1L) for a of Intensity at represent the nodes of an ad hoc

sample of a Poisson point process of interferers. Tplgtwork that interfere with the_ tagged transmission. We
maxinum i reache fok, — ) (ve Jus pot |0 SOTPE e es dares s e e
the informative part of the curve here) amly,, is ) i _ '
approximately 0.00595. The number of interferers with 10 d0 S0, we first fix a distance between the tagged
power larger tharP, is 229. Scenario llis the same but ransmitter and its receiver, which determings(as in -
for the attenuation function without pole. In this casdn€ 1ast subsection). We use a Monte Carlo simulation
the number of transmitters with a power larger than to determine the optimal number of d_ecoded transmltters
is 90 and kopy = 90. kopt for a sample of the Poisson pomt process of mtt_ar-

ferers. We then usé](8) to determine the largest possible

achievable raté? under OPT.

We then consider the largest distancdetween the
tagged transmitter and receiver such that the rates
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67 / Right: I(r) =+
y2 54
moving from IAN to OPT.
4]
3 VI. ASYMPTOTIC ANALYSIS IN THE WIDEBAND
REGIME
2 3 4 5 6 7 8

This section is devoted to the analysis of the gain
offered by using the optimal decoder OKTY compared
to IAN in large networks using the stochastic geometry

Fig. 3. The top plot is fo and the bottom plot is for : :
ESICINIAN for the tagged transmitter. The transmitters are denoteacpproa(:hml]' The setting is that of Sectior IV, namely

by crosses. The contours denote the boundaries of the IAN céVe consider a tagged transmitter-receiver pair and a
of different transmitters. The spatial user density is Gie power denumerable collection of interferers. We assume here

constraints(); are here randomly chosen according to a uniforfthat these interferers are located according to some
dlstrlbutlor_l over [0, 2000]. Variable transmission powers show uDhomogeneous Poisson process in the plane. We focus
when devices are heterogeneous or power controlfed= 0.73 . :
bits/s/Hz and3 = 3. The tagged transmitter is at the center of th@n the wideband regime, where all users share a large
plot (at[5, 5]). The attenuation ig(r) = (1 + ). bandwidth and the density of users is large.
More precisely, the wideband limit is the regime where
the bandwidthB — oo, the average transmit power
achievable using IAN, i.e., such th&t< C(Qr—?/(1+ s fixed atQ Watts, and the target data rate for each
I)), for the interferencel created by the same pointtransmitter is fixed atR bits/s. This means that the
process of interferers as above. transmit power per HZ) = Q/B and the data rate
Figure[T shows the locations of the interferers (olper Hz R = R/B both tend to zero a$ — oco. We
tained by sampling a Poisson point process), the taggsgo assume that the tagged transmitter and receiver are
receiver (located at the center) and the tagged transmit¢ra fixednon-randomdistancer, from each other, so
(at the other end of the long segment). The setting is thhat thereceivedpower from the tagged transmitter at
of Scenario | of Subsectidn VIE. the tagged receiver is fixed & = I(ro)Q Watts. On
The long segment represents the distance betwdbe other hand, the received power from interfejer
the tagged transmitter to its receiver (tagged link) ud; = [(T; —y)Q, is random. The noise power is assumed
der OPT. lIts length is approximately 2.71. The shott bel Watt/Hz, as before.
segment (displayed here for comparison) is the longestAs the bandwidthB increases, we would like the
possible IAN link to the same receiver for the same rateetwork to support an increasing user density so
R = 0.00595 of the OPT link. The length of the latterthat the spectral efficiency of the system is kept non-
link is 0.543. Hence, for this setting, about five timesanishing. The following two theorems compare the
longer single hops can be supported at r&ewhen performance of the IAN decoder and the OPT decoder

[EOPT(L\IAN
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Fig. 7.
receiver is at the center of the plot (at [5,5]). The long segiris
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~ weak
interferers e

strong

R interferers

Fig. 8. The tagged transmitter and the tagged receiver ai® at
distancero, from each other. The strong interferers are within a
distance ofrg from the tagged receiver.

IAN. This implies that the network spectral efficiency

Comparison of IAN and OPT in an ad hoc network. Thi terms of total bits per second per Hz per unit area

goes to zero under IAN. For the OPT decoder, on the

Rsym Can be sustained on this link. The short segment gives t

longest link that can be sustained at the same Ratender IAN at

Heensity can be supported and hence a positive spectral

this receiver. The same thermal noise at the receiver, amstnission €fficiency can be achieved in the wideband limit.

power at the transmitters and the set of interferers are dhgesn
the two cases. The set of red points (inside the circle) iofitanal
set of transmitters that are jointly decoded by the receiveder
OPT, whereas the set of blue points (outside the circleufeatthe
other transmitters that the tagged receiver considers &s®.n®he
attenuation id(r) = r~°.

Before proving the above theorems, we provide some
intuition as to why the user density scalings of these
two decoders differ quite dramatically. The situation is
depicted in Figurd]8. The received interference power
from each of the strong interferers inside the circle is
larger than the signal poweP,. In fact, as the user
density increases, there will be more and more interferers

in terms of how fast the densityp can scale with the yery close to the tagged receiver with much larger
bandwidth B while still reliably decoding the taggedyeceived powers thaf,. Their effect is fatal to the IAN

transmitter’'s message.
Theorem 4:Consider the path loss modgt) = r—5.

decoder, which treats all interference as noise. The OPT
decoder, on the other hand, can take advantage of these

If \p = kBP with p > 2 andx > 0, then for every target interferers’ high received powers to jointly decode their
rate R > 0, the IAN decoding condition for the taggednessages together with that of the tagged transmitter.

receiver cannot be satisfied almost surelyRagrows.
Theorem 5:Consider the path loss modgt) = r—-.
If \g =«xB for x >0 and if

_ pPy PPO
R<C < — ) = _ ],
g 1+ 20P/(3 - 2) 1+ 20

(18

This effectively turns their interference power into ugefu
signal energy. The proof of Theordm 5 shows that the
total useful received power from these strong interferers
is at least comparable to the total harmful received
power of the interferers outside the disk; hence reliable
communication at a positive rate bits/s for the tagged
receiver (and for everyone else). In fact, the terRy in

then almost surely the OPT decoding condition is sd8) is @ lower bound on the total power per Hz received

isfied as the bandwidttB grows. Here,p = rmr3 is

from the strong interferers, and the tepi /(8 —2) is

the expected number of interferers per Hz within iHie total power per Hz received from the weak interferers

communication radius, from the tagged receiver.
Theorem[# says that one needsub-linear scaling
of the user density to guarantee a positive r&tender

outside the disk.
We are now ready to prove the above theorems.
Proof of Theorenil4The feasibility of the rateR

the IAN decoder. In particular, the classical strong laly eauivalent to

of large numbers shows that for all > 0, the linear

scalingAp = B leads to a zero achievable rate under

P, R
_ ) > =
C<B+I>—B’ (19)
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where I denotes the total interference power at thier OPT to decode successfully almost surely Blarge

tagged receiver (in Watts) in a Poisson network @nough. [ |
intensity Ap. The last condition is equivalent to
BP, _ Py >~ B [QR/B B 1} Note that the linear user density scaling achieved by
B+1 1+ (k/Ap)Y/PI ~ ’ OPT cannot be achieved by the decoder G Tgr any

fixed k. One has to jointly decode the messages from an
jncreasing number of interferers as the bandwidth and
e user density increase.

Let n = [Ap]. We havel > Y%  I; with I; a
collection of i.i.d. shot noise processes of intensity
The random variabld; has a stable distribution with
parameter2/3 [[7], and hence its moments of ordgr
are infinite forp > 2/5. The Marcinkievicz-Siegmund When the distance, between the tagged transmitter
strong law of large numbel [5] then implies that for alhnd its receiver tends to infinity, the received power

p>2/B, Py — 0, and [IB) readsk < Pyloge, which is the
| 1 <« - wideband capacity of a point-to-point Gaussian channel
LY > Li=oc without interference.

in an almost sure sense. Sindg (2R/B - 1) — Remark:This result may seem surprising at first glance.
RIn2 > 0, this shows that the conditiof ([19) cannolnh the ad hoc network setting of Sectibn V-F, this result
hold true for sufficiently largeB. B suggests that when OPi)(of high orderk is used in
Proof of Theoreni]5With the notation of Lemma a wideband system, one can maintain a channel from a
[, recall thatk is the index of the first interferer whosetagged transmitter to a tagged receiver, say at distance
received power at receiver is less than the receivedr,, with a positive rate (determined by TheorEm 5) when
signal powerF,. Equivalently,k — 1 is the number of the user density tends to infinity. For instance, in the ad

interferers in a disk of radiug, from receivero. hoc setting of the simulation section, this means that
From Lemma4, for the rat&k to be feasible, it is one can maintain simultaneous single hop channels that
enough to show that "jump” over a very large nhumber of nodes of the ad
= - hoc network. In contrast, in the IAN case, in order
kR kP N .
— < <_7> . (20) to maintain the same rate, one has to set a multihop
B B+ Ik - o] route over a number of relay nodes that tends to infinity
Now, almost surely, whe® tends to infinity, as the user density tends to infinity. However, this is
k , perhaps not so surprising since in this setting, one could
B R (21) in principle organize some sort of TDMA or FDMA IAN

scheme (which silences a large collection of nodes when

and 1. _ the tagged transmission takes place) that has asymptotic
Jim Ik - 0o] = km(Fp) < oo, (22) performance of the same kind as that exhibited by OPT.
_ So, OPT can in fact be seen as a way of obtaining good
with o2 P performance without a priori partitioning the users into
m(Py) = 3 : 20- different time or frequency slots.
In order to show[(222), we represeﬂfi : 00| as the sum _ _
of n i.i.d. random variablesfl,...,ln, wherel; is the Notice that the last comparison results rely on the

shot noise for the attenuation functiefi and for a spatial @SSumption that the loss function is the one with a
Poisson point process with intensity 1 outside a disk BP'€- In the case without a pole, we can obtain the
radiusro and 0 inside. Sinc&(I;) < oo, (22) follows following results using very similar arguments based

from the strong law of large numbers. From Campbelld the classical strong law of large numbers (and are
formula [1], we obtain easily extended to general attenuation functions such that

_ L(r)rdr < c0).
27T7“(2]P0 fR+

-2 ’
4 Theorem 6:Consider the path loss modét) = (k+
using the fact thathy = Qr,”. Substituting [2R) and »)~?. When A = xB, and the bandwidttB tends to
(23) into [20) and simplifying yields the condition_{18)infinity, the IAN decoding condition is satisfied almost

m(Py) = E(I,) = QQTI’/ Tiﬁrdr =
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surely iff Moreover, since many existing wireless networks already
use near-capacity-achieving point-to-point coding, our
_ =) results also point to the possibility of significant perfor-
_ mance gain from just upgrading the receivers and not the
1+2pF fooo (Zﬁrf) %dr transmitters. This provides an evolutionary path to im-
- proving the performance of existing wireless networks.
P It would also be interesting to extend our results to es-
b2 5 (k) o o a0ty et
: quency/time
and the OPT condition almost surely if partitioning and power control.
An interesting future direction is to explore how
oPy to design a distributed medium-access protocol when
- 3 receivers employ optimal decoding. There would be
L+2pP [ (%) Tz dr two important components to such a protocol. The
first component isinterferer sensingoy the receivers.
Each receiver senses the powers and the identities of
its interferers. This can be implemented through some
beaconing scheme. The second componentbackoff
procedure by the transmitter. Each user, when it has

As a direct corollary of the last formulas, when the didat@ to ransmit, needs to sense when its receiver can
tancer, between the tagged transmitter and its reCeiV@pcommodate its transmlssmn.. This in turn depends on
tends to infinity so that the received powgf — 0, the th_e _number and pc_)wers of the interferers who _are trans-
right hand side of[{24) tends to zero i log e, which mlttlng. In conventional protocols s_uch as Carrier Sense
is the wideband capacity of a point-to-point GaussidfiUltiPle Access (CSMA), transmission occurs when
channel without interference. On the other hand, tﬁl@e level of interference is below a certain threshold.
effect of interference never disappears for IAN. Hence, iHIS Makes sense for an IAN receiver. However, under
this limiting regime, for the case without a pole and wit@Ptimal decoding, sometimes having a strong interferer
a given linear user growth rate, a positive rate is feasiffie@dvantageous as it enables joint decoding. Hence, the
for both IAN and OPT in the limit, but with different Packoff procedure will have to be more elaborate.
values. When the tagged transmitter and receiver are fafnother interesting direction is to explore the imple-
away from each other, the scaling of this feasible rafgéntation of optimal decoding. When the number of
under OPT is as though there were no interferers. interferers whose messages are jointly decoded becomes
Remark:Above, we focused on the case where the nof9€, one might fear an exponential growth of the
density tends to infinity. For the finite density case, tféombination of codewords to be tested by each decoder
performance of the decoding strategies considered ¢4pen decoding. However, it is not completely clear that
be evaluated from the joint distributions of the totdhis exponential growth is necessary to achieve capacity.

interference and of the order statistiég I», ... using For example, at the corner points, SIC, with a complexity
the tools described i [1]. that only grows linearly with the number of decoded

interferers, is sufficient. It may be possible to reduce the
complexity of decoding for the points in the interior of

. ] , the sum rate face as well.
In this paper, we studied the optimal performance

achievable in a Gaussian interference network when
the transmitters are constrained to use uncoordinated
point-to-point codes. While recent results have shown
that t(.) achieve thaitimate Capf‘iCIty Of. such ngtworks,r[llé F. Baccelli and B. Btaszczyszyn. Stochastic Geometry and
te_chnlques such as superposition co_dmg and mterfe_re 1C€\ireless Networks, Volume 1: Theorffoundations and Trends
alignment are needed, such techniques require signifi- in Networking. NOW Publishers, 2009. Web version available
cantly more complex codes and coordination between at:http:/hal.inria.r/inra-00403039. _ _
the transmitters. What our results suggest is that usiigh J- Blomer and N. Jindal. Transmission capacity of wissle

. . . .. ad hoc networks: successive interference cancellatiorjoirst
simple pomt—to-pomt codes an_d no co_ordmat!qn betwgen detection. InProceedings of the IEEE International Conference
the transmitters, one can achieve quite significant gains. on Communications2009.

: (23)

pR < C

pPo
_ B
14 27Q frzo (k_lw> rdr

where agairp = r7rg.

=C

;o (24)

VIl. CONCLUSION
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