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Abstract—The effective PAPR of the transmit signal is the
standard metric to capture the effect of nonlinear distortion in
OFDM transmission. A common rule of thumb is the log(N)
barrier where N is the number of subcarriers which has been
theoretically analyzed by many authors. Recently, new alternative
metrics have been proposed in practice leading potentiallyto
different system design rules which are theoretically analyzed in
this paper. One of the main findings is that, most surprisingly,
the log(N) barrier turns out to be much too conservative: e.g.
for the so-called amplifier-oriented metric the scaling is rather
log [log (N)]. To prove this result, new upper bounds on the PAPR
distribution for coded systems are presented as well as a theorem
relating PAPR results to these alternative metrics.

I. I NTRODUCTION

The peak-to-average power ratio (PAPR) problem is a well-
established problem in OFDM literature and has entailed nu-
merous research papers since the mid nineties [1]. Nowadays,
even though OFDM has become the predominant wireless
technology in the downlink, there are still many concerns
about the application of OFDM in the uplink. This is mainly
due to the fact that the PAPR reduction capabilities of state-
of-the-art algorithms and their respective impact on relevant
performance measures such as power efficiency, error proba-
bility, and spectral regrowth are not easy to track and mostly
presented in terms of simulations. This situation is indeed
dissatisfactory for system design, where provable performance
limits are required. Another important driving factor within
the context ofGreen Information Technologyis the growing
energy cost of network operation setting standards beyond
capabilities of current PAPR reduction algorithms [2]. Hence,
it becomes more and more apparent that the problem can not
be considered as solved yet and that the PAPR metric itself has
to be carefully reviewed overthrowing some of the common
understanding and results particularly in the context of MIMO
[3], [4], [5].

This paper revisits the PAPR problem and analyzes new
performance metrics in terms of their effective behaviour.
Standard results suggest that power amplifier backoff is to
be adjusted along thelog (N) rule of thump whereN is the
number of subcarriers [6], [7]. However, high but very narrow
peaks obviously cause spectral regrowth but the effect on e.g.
symbol error probability might be negligible which suggests
that amplifier backoff and PAPR of the transmit signal can
indeed fall apart while, still, zero symbol error probability
can be achieved. This motivates the analysis of alternative

performance measures recently proposed in practice [8]. The
detailed contributions are as follows:

Contributions: First, we provide a new analytical upper
bound on the PAPR distribution for coded OFDM systems
generalizing some known results in the literature. The theo-
rems are used to bound some given alternative performance
metric introducing the so-called balancing method. In this
context we prove that even though PAPR is of orderlog (N)
with high probability, the amplifier backoff can be adjusted
according to a much lower value. Specifically, for the so-called
amplifier oriented metric the scaling turns out to be of order
log [log (N)] which is almost a constant in practical terms and
suggests new system design rules.

II. T HE COMMUNICATION MODEL

Let us introduce coded OFDM systems. We adopt the
system model introduced by [9]: Let C be a code that
mapskb input bits into blocks ofN constellation symbols
c0, . . . , cN−1, from a complex constellationQ forming the
codewordc. We assume hereQ := {−1, 1} = BPSK. The
rateR of this code is defined to beR = kb/N such thatC
hasM1 = 2RN codewords.

Given a codewordc, a single OFDM baseband symbol can
be described by

Sc (t) =
1√
N

N−1
∑

k=0

cke
2πjk∆ft, 0 ≤ t ≤ Ts, j =

√
−1 (1)

whereN is the number of subcarriers,∆f = 1/Ts is the
subcarrier frequency offset andTs is the symbol duration. For
mathematical convenience the time axis can be normalized by
Ts, i.e. we substituteθ (t) = 2πt/Ts and writeSc (θ) , 0 ≤
θ ≤ 2π. Furthermore, for later reference defineSc (θ, α) :=
ℜe
(

Sc (θ) e
jα
)

with sampling points

θl,L :=
2πl

2LN
,αl,K :=

l2π

K
,

which are collected in the two-dimensional lattice

ΩL,K := {(θl1,L, αl2,K) , 0 ≤ l1 < LN, 0 ≤ l2 < K} ,
of the square[0, 2π)×[0, 2π). Here,L > 1 is the oversampling
factor andK > 2 is some auxiliary variable. The Nyquist-rate
samples areθl := θl,1. In the baseband model the OFDM
symbols undergo a nonlinear transformation denoted as

Φ : Sc (θ) →֒ Φ [Sc (θ)]
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representing some high power amplifier (HPA) model. In the
sequel, we assume for simplicity that the nonlinearity acts
solely on the samples obtained with some oversampling factor
L.

III. HPA M ODELS

A. Soft envelope limiter model

The soft envelope limiter (SEL) model is given by

Φsel (Sc (θ)) =

{

Sc (θ) , |Sc (θ)| ≤ λ

λej arg(Sc(θ)), |Sc (θ)| > λ
,

whereλ is the saturation level of the non-linearity and the
event{|Sc (θ)| > λ} is commonly described as clipping. The
samples after the SEL nonlinearity can be decomposed as

Φ (Sc (θl,L)) = Sc (θl,L) +Dc (θl,L)

and obviouslyDc (θl,L) = 0 ∀l when no clipping occurs.
The SEL model is a standard model when there are additional
predistortion techniques.

B. Cubic polynomial model

Particular in the 3GPP context [8], [4] the cubic model has
become popular and is given by

Φcu (Sc (θ)) = a · Sc (θ) + b · Sc (θ) |Sc (θ)|2 , a, b > 0.

The advantage is in most cases a simpler analytical treatment.

IV. F IGURES OFMERIT

A. Crest-factor

The crest-factor (CF)1 of eqn. (1) is defined by

CFL (Sc) := max
0≤l<LN

|Sc (θl,L)| (2)

with 1 ≤CFL (Sc) ≤
√
N . A first choice to assess the impact

of a nonlinearity in the transmitter path would be the maximum
CF taken over all codewords (that we call the CF of a code)
defined by

CFL (C) := max
c∈C

CFL (Sc) .

It was shown in [10], [11] that for spherical codes the CF of
a code can be computed with arbitrary accuracy provided that
the code supports minimum-distance decoding. On the other
hand, the occurrence of this ,,worst-case“ codeword may be
extremely unlikely. In this case, the distribution of the CF
must be taken into account. The complementary cumulative
distribution function (CCDF) of (2) is defined by

BL (x) := Pr ({CFL (Sc) > x; c ∈ C}) .
(Pr denotes probability). Using the CCDF a more appropriate
measure can be defined such as the ,,effective“ CF defined
by the CF of which the probability of occurrence may be
considered negligible in practice, i.e.

BL (CFeff (C)) = ǫ

where CFeff (C) is the effective CF andǫ is some small
number, say10−3...10−8 (outage probability). Our aim is to
bound this term for codes.

1We consider CF instead of PAPR.

B. Amplifier-oriented metric

The definition ofDc (θ) suggest the following metric

AOML (Sc) :=
1

LN

LN−1
∑

l=0

|Dc (θl,L)|2

In the following we will see how we can relate this metric to
BL.

V. FUNDAMENTALS ON CF DISTRIBUTION

The general approach is as follows: suppose the probabilities

Pr (Sc (θ, α) > x)

are given where the tuple(θ, α) runs throughΩL,K . By the
method of projections and union bound we have

BL (x) ≤ min
K>2

∑

(θ,α)∈ΩL,K

Pr

(

Sc (θ, α) >
x

CK

)

whereCK := cos−1
(

π
K

)

,K ≥ 3. Thus, all we have to do is
to bound the distribution of the instantaneous envelope forthe
different modulation schemes. Thus, we replace the probability
terms with the Chernoff (or any other Marcov style) bound,
i.e.

Pr (Sc (θ, α) > x) ≤ E

(

e̺(Sc(θ,α)−x)
)

(3)

for any (real)̺ > 0 (E (·) is the expectation operator). We
call the bound (3) a union bound on the CCDF of the CF.

We also need some elements from coding theory. Let
d (c′, c′′) be theHamming distancebetween codewordsc′, c′′,
i.e. the number of positions where the codewords differ. The
distance distribution is then given by

W
◦

k :=
|{c′, c′′ ∈ C : d (c′, c′′) = k}|

M1
.

Note that since for a linear code it does not matter which
individual codeword we pick when calculating the distance to
another codeword, the distance distribution coincides with the
weight distributionWk for linear codes, i.e.

Wk := |{c : w (c) = k, c ∈ C}|
wherew (·) denotes the weight of a codeword. Furthermore,
if the code contains the all-one codeword (i.e. all components
are negative under our identification of constellation symbols)
we haveWk = WN−k and the weight distribution becomes
symmetric.

The main purpose of the following derivations is to prove an
interesting connection between CF distributions and distance
distributions. Since many results require symmetric weight
and distance distributions we start with the following lemma.
It says that the CF distribution can be estimated by its
symmetrized version.

Lemma 1:SupposeCA is a binary code. Then, for any set
A := {c ∈ CA : CF (Sc) > x} the probability that this occurs
is upperbounded by

|A|
|CA|

≤ 2
|A ∪ B|
|CA ∪ CB|

≤ 4
|A|
|CA|

,



where CB is the binary code constructed by adding the
all-one codeword to any codeword ofCA and B :=
{c ∈ CB : CF (Sc) > x}.

Proof: First, observe that|CA| = |CB| and |A| = |B|.
Furthermore we have

|CA ∪ CB| ≤ 2 |CA|
so that we get

|CA| ≥
|CA ∪ CB|

2
.

Hence, we have

|A|
|CA|

≤ |A ∪ B|
|CA|

≤ 2
|A ∪ B|
|CA ∪ CB|

.

The converse is
|A ∪ B|
|CA ∪ CB|

≤ 2 |A|
|CA ∪ CB|

≤ 2 |A|
|CA|

proving the claim.
Now, we are ready for our first theorem which generalizes

[1, Thm. 6.16].
Theorem 1:For any binary codeC the CCDF of the CF is

upperbounded by

BL (x) ≤ min
̺>0

√

√

√

√

√

N
∑

k=0

f∗ (̺, x)W
◦

k cosh
(

̺N
1

4 (N − 2k)
)

M1

where

f∗ (̺, x) := min
K>2

2LNK exp

(

−̺
√
Nx

CK

)

√

cosh
(

̺N
3

4

)

.

Proof: We first assume codes with symmetric weight
distributions. For ease of presentation let us define

b
(j)
i

:=
j!

i0!i1! · · · iN−1!

and

ki (θ, α) :=
(

cosi0 (α) , . . . , cosiN−1 ((N − 1) θ + α)
)

,

as well as the code moments

Mi := E

(

ci00 ci11 . . . c
iN−1

N−1

)

.

Fixing ̺ > 0, L > 1,K > 2, N1 > 1, and expanding the
exponential function in the Chernoff bound yields

BL (x) .
∑

(θ,α)∈ΩL,K

e
− ̺

√
Nx

CK

N1
∑

j=0

̺j

j!

∑

i∈Ij

b
(j)
i

ki (θ, α)Mi

where we have omitted the error term (indicated by.) on the
right hand side which depends on the natural numberN1 >
0 and is given by Taylor’s theorem. Applying the Cauchy-
Schwartz’s inequality yields

BL (x) .
∑

(θ,α)∈ΩL,K

e
− ̺

√
Nx

CK

N1
∑

j=0

̺j

j!





∑

i∈Ij

b
(j)
i

k2
i
(θ, α)





1

2





∑

i∈Ij

b
(j)
i

M2
i





1

2

.

Observing that

∑

i∈Ij

b
(j)
i

k2i (θ, α) =

(

N−1
∑

k=0

cos2 (kθ + α)

)j

=: Ψj
N (θ, α)

we have

BL (x) .
∑

(θ,α)∈ΩL,K

e
− ̺

√
Nx

CK

N1
∑

j=0

̺jΨ
j
2

N (θ, α)

j!





∑

i∈Ij

b
(j)
i

M2
i





1

2

.

Next, we can replace the squared moments in terms of the
distance distribution of the (in general nonlinear) code [12],
[1, Proof of Thm. 6.16], i.e.

∑

i∈Ij

b
(j)
i

(

∑

c∈C

N−1
∏

k=0

cikk

)2

= M1

N
∑

k=0

(N − 2k)
j
W

◦

k ,

and therefore

BL (x) .
∑

(θ,α)∈ΩL,K

e
− ̺

√
Nx

CK

N1
∑

j=0

̺2jΨj
N (θ, α)

(2j)!

(

1

M1

N
∑

k=0

(N − 2k)
2j
W

◦

k

)

1

2

since the distance distribution is symmetric. Again applying
Cauchy-Schwartz’s inequality yields

N1
∑

j=0

̺2j [ΨN (θ, α)]
3j
4

(2j)!

(

[ΨN (θ, α)]
j
2

M1

N
∑

k=0

(N − 2k)2j W
◦

k

)

1

2

≤







N1
∑

j=0

̺2j
(

[ΨN (θ, α)]
3

4

)2j

(2j)!







1

2





N1
∑

j=0

̺2j

M1 (2j)!

N
∑

k=0

(

[ΨN (θ, α)]
1

4

)2j

(N − 2k)2j W
◦

k





1

2

.

SinceN1 is arbitrary, we have

N1
∑

j=0

̺2j
(

[ΨN (θ, α)]
3

4

)2j

(2j)!
→

N1→∞
cosh

(

̺ [ΨN (θ, α)]
3

4

)

,

and
N1
∑

j=0

̺2j

M1 (2j)!

N
∑

k=0

(

[ΨN (θ, α)]
1

4

)2j

(N − 2k)
2j
W

◦

k →
N1→∞

1

M1

N
∑

k=0

cosh
(

̺ [ΨN (θ, α)]
1

4 (N − 2k)
)

W
◦

k

for any ̺ > 0, L > 1,K > 2. The final result follows from
Ψj

N (θ, α) ≤ N j and invoking Lemma1 to lift the proof to



the non-symmetric case. The additional factor1
2 is due to the

real BPSK symbols where|Sc (θ) | = |Sc (2π − θ) |.
We can improve on the result by assuming linearity of the

code. The following theorem relies on the fact that moments
of linear codes are non-negative which generalizes [12], [1,
Thm. 6.13].

Theorem 2:Let C be a linear, binary code. Then the CCDF
of the CF is upperbounded by

BL (x) ≤ min
̺>0

N
∑

k=0

f∗∗ (̺, x)Wk cosh (̺ (N − 2k))

M1

where

f∗∗ (̺, x) := min
K>2

2LNK exp

(

−̺
√
Nx

CK

)

.

Proof: The proof uses Lemma1 and invokes the same
proof steps as in [12] which are omitted.

The applicability of the latter theorems is ensured by the
following result.

Theorem 3:Suppose that for allW
◦

k there is a constantCw

independent ofk so that

W
◦

k ≤ (1 + Cw)
1

2N−kb

(

N

k

)

. (4)

Then the CF is upperbounded by:

BL (x) ≤ 2 (1 + Cw)LKN exp
(

− x2

2C2

K

√
N

)

nonlinearC
BL (x) ≤ 2 (1 + Cw)LKN exp

(

− x2

2C2

K

)

linear C

Proof: We omit the proof for the linear part which follows
directly from from [12]. In the nonlinear case by Theorem1
and by virtue of
√

√

√

√

√

N
∑

k=0

(

N

k

)cosh
(

̺N
1

4 (N − 2k)
)

2N
≤
(

cosh
(

N
1

4 ̺
))

N
2

≤ exp

(

̺2N
3

2

4

)

,

and since
√

cosh
(

̺N
3

4

)

≤ exp

(

̺2N
3

2

4

)

,

we obtain

BL (x) ≤ 2 (1 + Cw)LNK exp

(

−̺x
√
N

CK

)

exp

(

̺2N
3

2

4

)

.

Setting̺ = 2x
CKN

yields

F̄ C
cf (x) ≤ 2 (1 + Cw)LNK exp

(

− x2

C2
K

√
N

)

.

The asymptotics follow immediately then.

VI. A LTERNATIVE METRICS: UPPERBOUNDS

In this section we use Theorems1, 2 to obtain upper bounds
for the alternative metrics. Let us define the random variable

N (L)
c (λ) := |{l : |Sc (θl,L)| > λ, l = 0, . . . , LN − 1}| (5)

counting the number of samples which exceed a levelλ. In
the following theorem we apply a balancing technique between
the CCDF of the CF and the number of samples that exceed
a given level. For ease of presentation we setL = 1.

We start with the uncoded BPSK case where a tighter bound
can be obtained. Note that BPSK is a linear code withCw = 0
in Theorem3.

Theorem 4:AssumeQ := {−1, 1} = BPSK and suppose
Sc is clipped at the levelλ. For any given performance metric
h which is increasing in its argument, the average distortion
is upperbounded by

Pr

(

N−1
∑

l=0

h (|Dc (θl)|) > x

)

≤ min
µ>λ

[

B1 (µ) +
[

B1 (λ) +B2
1 (λ)

] h2 (µ− λ)

x2

]

.

Proof: Define the event

A :=

{

LN−1
∑

l=0

h (|Dc (θl)|) > x

}

.

A can be partioned into disjoint eventsA ∩ {CFL (Sc) > µ}
or A ∩ {CFL (Sc) ≤ µ}. Thus

Pr (A) ≤ B∗
L (µ) + Pr (A ∩ {CFL (Sc) ≤ µ}) . (6)

Next we need to calculate the termPr (A ∩ {CFL (Sc) ≤ µ}).
Clearly the eventA∩{CFL (Sc) ≤ µ} is contained in the event
{{

N (L)
c (λ) · max

0≤l<LN
h (|Dc (θl,L)|) ≥ x

}

∩ {CFL (Sc) ≤ µ}
}

which itself is within the event
{

N (L)
c

(λ) · h (µ− λ) ≥ x
}

.

Hence, we take the unconstrained number of points exceeding
λ but lift up the level that is needed for a countable event.
Writing

Nc (λ, L) =

LN−1
∑

l=0

I {|Sc (θl,L)| > λ}

≤
∑

(θ,α)∈ΩL,K

I

{

Sc (θ, α) >
λ

CK

}

and by Markov’s inequality applied to the squared term and
evaluating the exponential moments thereby using the inherent
structure ofSc (θ, α) [13] yields

Pr
(

N2
c (λ, L) > x2

)

≤ NKe
̺2N
2

− ̺λ
√

N
CK +N (N − 1)K2e

2̺2N
2

− 2̺λ
√

N
CK

x2
.
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Fig. 1. Illustration of bounding method: the shaded area is the set of which
the probability measure is to be bounded. The upper bound is by adjusting
the µ level. The bold encircled area is the set where a sufficient number of
points crosses theλ level.

Due to lack of space we omit the details.
The following theorem holds for any binary code.
Theorem 5:SupposeSc is clipped at the levelλ. For

any given performance metrich which is increasing in its
argument, the average distortion is upperbounded by

Pr

(

N−1
∑

l=0

h (|Dc (θl)|) > x

)

≤ min
µ>λ

[

B1 (µ) +B1 (λ)
h (µ− λ)

x

]

.

VII. A PPLICATIONS

In this section we relate the theoretical results obtained so
far to get scaling result for alternative metrics. Suppose that
we use a binary code and that condition (4) is satisfied. Note
that the condition holds for uncoded transmission as well as
many families of codes (such as the BCH familiy [1, pp. 158
ff.]). Suppose further we apply the AOM metric in case of the
SEL amplifier model. Setting

h (|Dc (θl)|) :=
|Dc (θl)|2

N

then by Theorem5 we have (omitting constants which have
no effect on the asymptotic results)

Pr

(

LN−1
∑

l=0

h (|Dc (θl,L)|) > x

)

≤ min
µ>λ

[

B1 (µ) +B1 (λ)
(µ− λ)

2

N · x

]

≤ min
µ>λ

[

NKe
− µ2

2C2
K +NKe

− λ2

2C2
K
(µ− λ)

2

N · x

]

,

and setting

λ = λN =
√

(1 + ε) log [log (N)]

µ = µN =
√

(1 + ε) log (N)

whereε > 0 is a arbitralily small constant yields

Pr

(

LN−1
∑

l=0

|Dc (θl,L)|2
LN

> x

)

→ 0, N → ∞

for any fixedx > 0. Hence we have the remarkable result
that the clipping level of the amplifier can be almost set to
a constant and still the AOM metric can be made arbitralily
small.

VIII. C ONCLUSIONS

In this paper we show that the standard design rule for
the power amplifer in OFDM transmission might be too
conservative if alternative metrics are considered. It is worth
emphasizing that we do not claim that this is the ultimate
scaling as in practice other metrics might be important (e.g.
spectral regrowth). We provided an example and considered
the amplifier oriented metric recently proposed in practice.
We have not yet considered new algorithms (e.g. based on
derandomization) for these metrics which is an interesting
extension of the results in this paper.
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