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Abstract—The effective PAPR of the transmit signal is the performance measures recently proposed in practicelhe
standard metric to capture the effect of nonlinear distortion in  detailed contributions are as follows:
OFDM transmission. A common rule of thumb is the logN) — contributions: First, we provide a new analytical upper
barrier where N is the number of subcarriers which has been C
theoretically analyzed by many authors. Recently, new altmative bound 0n the PAPR distribution f_or COd?d OFDM systems
metrics have been proposed in practice leading potentiallito generalizing some known results in the literature. The theo
different system design rules which are theoretically analzed in rems are used to bound some given alternative performance
this paper. One of the main findings is that, most surprisingy, metric introducing the so-called balancing method. In this
the log(V) barrier turns out to be much too conservative: e.9. ~qntext we prove that even though PAPR is of orlier(N)

for the so-called amplifier-oriented metric the scaling is ather . . . e .
log [log (V)]. To prove this result, new upper bounds on the PAPR with high probability, the amplifier backoff can be adjusted

distribution for coded systems are presented as well as a toeem ~ according to a much lower value. Specifically, for the sdechl
relating PAPR results to these alternative metrics. amplifier oriented metric the scaling turns out to be of order
log [log (N)] which is almost a constant in practical terms and
suggests new system design rules.

The peak-to-average power ratio (PAPR) problem is a well-
established problem in OFDM literature and has entailed nu- )
merous research papers since the mid ninefipsNowadays, L€t us introduce coded OFDM systems. We adopt the
even though OFDM has become the predominant wirele®stem model introduced byJJf Let C be a code that
technology in the downlink, there are still many concerd@&PSks input bits into blocks of V' constellation symbols
about the application of OFDM in the uplink. This is mainlyo: - - -»¢N—-1, from a complex constellatio® forming the
due to the fact that the PAPR reduction capabilities of stafgodewordc. We assume her@ := {—1,1} = BPSK The
of-the-art algorithms and their respective impact on raey 'at€ 12 of this code is defined to b& = k,/N such thatC
performance measures such as power efficiency, error proBasM1 = 27V codewords,
bility, and spectral regrowth are not easy to track and mostl GIVen & codeword;, a single OFDM baseband symbol can
presented in terms of simulations. This situation is inde&§ described by
dissatisfactory for system design, where provable perdoce 1 Nt _
limits are required. Another important driving factor with  Sc (t) = N Z cpe®™RATE 0 <t < Ty, j=+/~1 (1)
the context ofGreen Information Technologig the growing Nis
energy cost of network operation setting standards beyomtiere N is the number of subcarriera\f = 1/T5 is the
capabilities of current PAPR reduction algorithm$ [Hence, subcarrier frequency offset afd is the symbol duration. For
it becomes more and more apparent that the problem can nethematical convenience the time axis can be normalized by
be considered as solved yet and that the PAPR metric itself Ha, i.e. we substituté (1) = 2nt/Ts and write S. (6),0
to be carefully reviewed overthrowing some of the commah < 27. Furthermore, for later reference defifg (0, ) :
understanding and results particularly in the context ofI@l e (SC (9) ejo‘) with sampling points
(31, 141, [5]- ol 197

This paper revisits the PAPR problem and analyzes new 0,1 = SN LK = e
performance metrics in terms of their effective behaviour., . . . . .
Standard results suggest that power amplifier backoff is WA“Ch are collected in the two-dimensional lattice
be adjusted along thieg (N) rule of thump whereV is the Q. ={(0,0,00,,x), 0<11 <LN,0<1Iy < K},
number of subcarrierss], [7]. However, high but very narrow of the squaré0, 2r) x [0, 2r). Here, L > 1 is the oversampling

peaks obviously cause spectral regrowth but the effectgn efactor andK > 2 is some auxiliary variable. The Nyquist-rate

symbol error probability might be negligible which suggest -
that amplifier backoff and PAPR of the transmit signal capmples ard; := ;1. In the baseband model the OFDM

indeed fall apart while, still, zero symbol error probatyil symbols undergo a nonlinear transformation denoted as

can be achieved. This motivates the analysis of alternative DS (0) = D[S (0)]

I. INTRODUCTION

II. THE COMMUNICATION MODEL

[ IA
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representing some high power amplifier (HPA) model. In th8. Amplifier-oriented metric

sequel, we assume for simplicity that the nonlinearity acts the definition of D, () suggest the following metric

solely on the samples obtained with some oversamplingifacto Nt

L. 1 5
AOML (SC) = |l)c (OIVL)|
. HPA M ODELS LN ;
A. Soft envelope limiter model In the following we will see how we can relate this metric to
The soft envelope limiter (SEL) model is given by Br.
Se (0), |Se (0)] < A V. FUNDAMENTALS ON CF DISTRIBUTION

B (50 0) = { 3o i,
el 2re(5e@) 8¢ (0)] > A The general approach is as follows: suppose the probabiliti
where \ is the saturation level of the non-linearity and the

event{|S. (#)| > A} is commonly described as clipping. The Pr(Se (6,0) > z)
samples after the SEL nonlinearity can be decomposed asare given where the tupl§, «) runs throughQ2, . By the

& (Se (61.1)) = Se (B1.1) + De (61.1,) method of projections and union bound we have
and obviouslyD. (;.) = 0 VI when no clipping occurs. By (z) < min Z Pr (Sc 0,q) > i)
The SEL model is a standard model when there are additional K>2 (0,0)€00 x Ck

predistortion techniques. i
whereCk = cos™* (&), K > 3. Thus, all we have to do is

B. Cubic polynomial model to bound the distribution of the instantaneous envelopéhier
Particular in the 3GPP contexi][ [4] the cubic model has different modulation schemes. Thus, we replace the préibabi
become popular and is given by terms with the Chernoff (or any other Marcov style) bound,

Dy (Sc () =a-Sc(8)+b-5c(0)]S (O, a,b>0. &
(Se (6)) = a- Sc(6) +b- S (6)Se (), a,b > Pr(S.(6.0) > 0) <E (<500 0) (g

The advantage is in most cases a simpler analytical treatmen
for any (real)po > 0 (E (-) is the expectation operator). We

IV. FIGURES OFMERIT call the bound §) a union bound on the CCDF of the CF.

A. Crest-factor We also need some elements from coding theory. Let
The crest-factor (CF)of eqn. () is defined by d(c’,c") be theHamming distanceetween codewords, ¢”,
L i.e. the number of positions where the codewords differ. The
CFL(Se) = SN [Se (61,01 2) distance distribution is then given by

with 1 <CFy, (S.) < v/N. A first choice to assess the impact W o Hc',c” €C:d(c,c") =k}
of a nonlinearity in the transmitter path would be the maximu ko M, ’
CF taken over all codewords (that we call the CF of a codRjyte that since for a linear code it does not matter which

defined by individual codeword we pick when calculating the distanze t
CFL(C):= I?eacx CFL (Se) - another codeword, the distance distribution coincideh e

It was shown in (], [11] that for spherical codes the CF ofveight distributioniV; for linear codes, i.e.
a code can be compu_tgd with grbitrary accuracy provided that Wy :={c:w(c) =k,ceC}
the code supports minimum-distance decoding. On the other )
hand, the occurrence of this ,,worst-case* codeword may Weerew (-) denotes the weight of a codeword. Furthermore,
extremely unlikely. In this case, the distribution of the CH the code contains the all-one codeword (i.e. all compémen
must be taken into account. The complementary cumulati@é® Negative under our identification of constellation sgtsp
distribution function (CCDF) ofZ) is defined by we haveW; = Wxy_; and the weight distribution becomes
symmetric

Bp () :=Pr({CFL (Sc) > z;¢ €C}). The main purpose of the following derivations is to prove an
(Pr denotes probability). Using the CCDF a more appropria't@_ter_esting conrjection between CF dist_ributions an(_:i dtsir_:t
measure can be defined such as the ,effective* CF defirfligiributions. Since many results require symmetric weigh
by the CF of which the probability of occurrence may bénd distance distributions we start with the following leenm
considered negligible in practice, i.e. It says that the CF distribution can be estimated by its

B symmetrized version.

B (CFeps (€)) = Lemma 1:Suppose’, is a binary code. Then, for any set
where CF.;; (C) is the effective CF and is some small A:= {c € Cs:CF(S;) > z} the probability that this occurs
number, sayl0—3...10~% (outage probability). Our aim is to is upperbounded by
bound this term for codes. Al AU B| 4]

IWe consider CF instead of PAPR. ICal — TICaUCE|] — "|Cal’



where Cp is the binary code constructed by adding th®bserving that
all-one codeword to any codeword af4 and B :=

J
{c €Cp : CF(Sc) > z}. (4) 1.2
Proof: First, observe thaiC4| = |Cp| and |A| = |B]. Zbi ki (0, 0) = S (k0 +a)

Furthermore we have i€Z;
ICaUCB| < 2|C4l
so that we get we have .
|CA|Z%- Br (z) S Z e Ok
(0,a)eQ
Hence, we have LK
|A| |AUB| |AUB| QJ\IJ2 )
1< <9 ) e M2
Al = el = *eaucs Z 2

The converse is )
AU B| 24| 24| Next, we can replace the squared moments in terms of the

< < distance distribution of the (in general nonlinear) codé&],[
_— ||C_A UCs| €4 UCB] — [Cal [1, Proof of Thm. 6.16], i.e.
proving the claim. [ |

Now, we are ready for our first theorem which generalizes

_ N-1 \?Z N )
[1, Thm. 6.16]. S o <Z I1 c}j) M (N —2k) Wy,
k=0

Theorem 1:For any binary cod€ the CCDF of the CF is 1€7; c€C k=0
upperbounded by and therefore
__oVNzx
N _ f*(o,x) Wy cosh (gNi (N — Qk)) By (z) S Z e K

By, () < min Z

0>0 prd My

1
ol 27\1/ 1 & A
where Z ¢ (ﬁ > (N —2k)% Wk>
L k=0

(H,Q)EQL)K

since the distance distribution is symmetric. Again applyi
Cauchy-Schwartz’s inequality yields

Proof: We first assume codes with symmetric weight :
distributions. For ease of presernauon let us define M g2 Wy (e,a)]%] [y (6,0)]F & AL
() ! > S (V=20 Wy
b = ————— i=0 ( j)' ! k=0
! 10!21!-"2]\/_1! J .
) 3\ 27\ 2
and | | Ny g% ([‘PN (970[)]%) 7\’
ki (0,c) == (cos™ () ,...,cos™" "' (N = 1) + o)), = (27)!
— !
as well as the code moments ! )
M; =T (cocit .. ¢iv-1) . N 2 N 1N 27 S B
y (et i) . S =S ([ Gt (V-2
Fixing o > 0,L > 1,K > 2,N; > 1, and expanding the \ = 1(29)! 0

exponential function in the Chernoff bound yields . . .
Since N is arbitrary, we have

Bw)s Y. MIZ SN v g (jn (0,00

(0,0)€QL K " i€z, Z — COSh( [\IJN (9 Oé)]

Bl

)

7 .
where we have omitted the error term (indicatedyon the =0 (27) M
right hand side which depends on the natural numer> gnq
0 and is given by Taylor's theorem. Applying the Cauchy- . N _
Schwartz's inequality yields Z o Z ([\IJN 0 a)]i)% (N— 2P W
ey M (2))! ’ ¥ Nichoo
B (x) < Z e Ok
(6,0)€0, k¢ i i — Zcosh( [Ty (6, a)]% (N — Qk)) W,:
' () () ,
Z (Z bk (0, ) (Z b MiQ) forany o > 0,L > 1, K > 2. The final result follows from
=0 7" \iez 1€Z; ¥/ (0,) < N7 and invoking Lemmal to lift the proof to



the non-symmetric case. The additional fac%ois due to the V1. ALTERNATIVE METRICS. UPPERBOUNDS

real BPSK symbols whergs. (0) | = [Se (27 — 0) |. u In this section we use Theorerhs? to obtain upper bounds

We can improve on the result by assuming linearity of thgy the alternative metrics. Let us define the random vaeiabl
code. The following theorem relies on the fact that moments

of linear codes are non-negative which generalized, [1, N (A) == {1+ [Sc (B1,L)| > \,1=0,...,LN —1}| (5)
Thm. 6.13].

Theorem 2:Let C be a linear, binary code. Then the CCD
of the CF is upperbounded by

Fcounting the number of samples which exceed a levein
the following theorem we apply a balancing technique betwee
the CCDF of the CF and the number of samples that exceed
a given level. For ease of presentation we ket 1.
Wy cosh (o (N — 2k ; .
i cosh (e ) We start with the uncoded BPSK case where a tighter bound

N ook
Br (x) < minz [ (o, x)
k=0

=0 My can be obtained. Note that BPSK is a linear code With= 0
where in Theorem3.
Theorem 4:AssumeQ := {—1,1} = BPSKand suppose
. . oVNx Sec Is clipped at the leveh. For any given performance metric
;7 (o) = K>3 2LN K exp <_ Ck ) ' h which is increasing in its argument, the average distortion

is upperbounded by
Proof: The proof uses Lemma and invokes the same

proof steps as inl[Z] which are omitted. [ | =
The applicability of the latter theorems is ensured by the Pr <; h([De (01)]) > x)
following result. = h2 (11— A)
Theorem 3:Suppose that for all,, there is a constant,, < min {Bl (1) + [B1 (\) + Bf (V)] Mi} .
independent of; so that w>X
Proof: Define the event

o 1 N
W, < (1+Cw>m<k>' @ A= {Lilh(wc(@z)l)ﬂ}-

Then the CF is upperbounded by: 1=0

a2 ; A can be partioned into disjoint eventsn {CFy, (S¢) > u}
B (z) <2(1+C,)LKN exp (_2C?<—\/N) nonlinearC or AN {CFy. (S.) < pu}. Thus

B (x) < 2(1+ Cy) LKN exp (—%;:) linear C Pr(d) < Br () + Pr(An{CEL (5 < 4D).  (8)

Proof: We omit the proof for the linear part which foIIowsNext we need to calculate the tedPn (A N {CFy, (Sc) < u})
directly from from [LZ]. In the nonlinear case by Theorein Clearly the eventn{CF, (S.) < 1 is contained in the event

and by virtue of
{00 o 012 @) 2 o 0 (R (50 <

N_ /N cosh (QN% (N — 2l<:)) RS
2 (k) 2N < (cosh (N0)) which itself is within the event
k=0
2N (N )R- 22}
= exp ’ Hence, we take the unconstrained number of points exceeding
A but lift up the level that is needed for a countable event.
and since Writing
2N 5 _
3 0 N2 LN—-1
cosh (eN) < exp ( 1 ) , Ne(WL)= 3 I{ISe (00)] > A}
=0
btai
e obtam < ¥ H{sc(e,a)>i}
VN 2Nd Cx
B (z) <2(14Cy) LNK exp _ev exp e . (Ge)er.
Ck 4 and by Markov’s inequality applied to the squared term and
Setii _ 2 yield evaluating the exponential moments thereby using the artter
etinge = &, yields structure ofS, (0, a) [19] yields
- 2 Pr (N2 (A L) > 2?)
FC(z) <2(1+Cy)LNKexp | ——— | . e
of (@) <2(1+ Cy) exp ( C%\/N) 2N oAVE 2PN 2AVE

o NEe > +N (N —-1)K?% CK
The asymptotics follow immediately then. [ | - x?




All sequences

Fig. 1. lllustration of bounding method: the shaded are@ésset of which
the probability measure is to be bounded. The upper boung adjusting
the u level. The bold encircled area is the set where a sufficiembar of
points crosses tha level.

Due to lack of space we omit the details.

The following theorem holds for any binary code.
Theorem 5:Suppose S, is clipped at the level\. For
any given performance metric which is increasing in its

argument, the average distortion is upperbounded by

N-1
Pr| )" h(De(0))]) >«
=0

< min |:Bl (1) + B1(A) hip=2) :

> x

VII. APPLICATIONS

In this section we relate the theoretical results obtaireed s
far to get scaling result for alternative metrics. Suppdss t [5

we use a binary code and that conditial) is satisfied. Note

that the condition holds for uncoded transmission as well 61%]

many families of codes (such as the BCH familiy pp. 158

ff.]). Suppose further we apply the AOM metric in case of the[7

SEL amplifier model. Setting

1D (B

h(1De (0)]) = =55

then by Theorenb we have (omitting constants which have

no effect on the asymptotic results)

LN—-1
Pr| Y h(IDe(bin)]) > =

=0

. (u—N)?
< B By (\) VL
< min L)+ BL(N)

_u? _a2 )2
< min | NKe %% + NKe 7% =N |
T oa>A N -z
and setting

A=Ay =+/(1+¢)log[log (N)]
p=pn =+/(1+¢)log(N)

wheree > 0 is a arbitralily small constant yields
LN-1
for any fixedz > 0. Hence we have the remarkable result
that the clipping level of the amplifier can be almost set to
a constant and still the AOM metric can be made arbitralily
small.

| De (61,)|

p
8 LN

>r| =0, N—>oo

VIII. CONCLUSIONS

In this paper we show that the standard design rule for
the power amplifer in OFDM transmission might be too
conservative if alternative metrics are considered. It stiv
emphasizing that we do not claim that this is the ultimate
scaling as in practice other metrics might be important.(e.g
spectral regrowth). We provided an example and considered
the amplifier oriented metric recently proposed in practice
We have not yet considered new algorithms (e.g. based on
derandomization) for these metrics which is an interesting
extension of the results in this paper.
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