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Abstract—An encoder observes a point pattern—a finite num- ~ We also show that the Poisson process is the most difficult
ber of points in the interval [0, 7']—which is to be described to to cover, in the sense that any point process that, with high
a reconstructor using bits. Based on these bits, the reconsictor probability, has no more thanT points in [O,T] can be

wishes to select a subset df), 7] that contains all the points in . . ; L .
the pattern. It is shown that, if the point pattern is produced described with—\log D bits per second. This is even true if

by a homogeneous Poisson process of intensity, and if the ~an adversary selects the point pattern provided that thterpat
reconstructor is restricted to select a subset of average besgue contains no more thak points per second and that the encoder
measure not %Xcee?iE%DT, then, az T tegdz t; iminity, thg and the reconstructor are allowed to use random codes.
minimum numper O IS per second neeae € encoaer i H R :

is —Alog D. It is also shO\F/)vn that, asT tends toyinfinity, any Finally, we COI’_ISIde.I’ a Wyner-Ziv setting! [9] of the problem
point pattern on [0, 7] containing no more than AT points can where some points in the pattern are kno_wn to the recon-
be successfully described using-Alog D bits per second in this Structor but the encoder does not know which ones they are.
sense. Finally, a Wyner-Ziv version of this problem is consiered This can be viewed as a dual problem to the Poisson channel
where some of the points in the pattern are known to the with noncausal side-information [10]. We show that in this
reconstructor. setting one can achieve the same minimum rate as when the
transmitterdoes know the reconstructor’s side-information.

The rest of this paper is arranged as follows: in Secfion Il we
An encoder observes a point pattern—a finite number witroduce some notation; in Section] Il we present the tesul
points in the interval0, T]—which is to be described to afor the Poisson process; in Sectionl IV we present the results

reconstructor using bits. Based on these bits, the reaarstr for general point processes and arbitrary point patternd; a
wishes to produce a covering-set—a subséd df’] containing in Sectior V¥ we present the results for the Wyner-Ziv setting
all the points—of least Lebesgue measure. There is a tride-o
between the number of bits used and the Lebesgue measure i
of the covering-set. This trade-off can be formulated as a'Ve use alower-case letter liketo denote a number, and an

continuous-time rate-distortion problem (Section 1. this UPPer-case letter lik& to denote a random variable. We use a
paper we investigate this trade-off in the limit whéfe— cc. boldface Iower-(_:ase letter Ilk:et(_) de_znote a vector, a function

When the point pattern is produced by a homogeneoﬁfsr_eals’ or a point patte_rn, and it will be clear_from the et
Poisson process, this problem is closely related to that §fich one we mean. it is a vector;; denotes itsth element.
transmitting information through an ideal peak-limitedggon !f x is a function,z(¢) denotes its value at € R. If x is a
channel [[1], [2], [3], [2]. In fact, the two problems can be0int pattern, we usex(-) to denote its counting func_tlon, o]
considered dual in the sense of [5]. However, the dualityltes ™x(f2) — nx(t1) is the number of points ix that fall in the
of [5] only apply to discrete memoryless channels and sayrciMterval (f1,t2]. We use a bold-face upper-case letter Ike
so they cannot be directly used to solve our problem. Insted@ denote a random vector, a random function, or a random
we shall use a technique that is similar to Wyners [3], [4] t@omt_ process. Th(_a random counting function correspontting
find the desired rate-distortion function. We shall showt,tha® Point procesX is denoted byNx(-). S
if the point pattern is the outcome of a homogeneous PoissoVe Use Befp) to denote the Bernoulli distribution of
process of intensity\, and if the reconstructor is restrictegP@rametern, namely, the distribution that has probability
to select covering-sets of average measure not excedaiihg ©" the outcome and probability(1 — p) on the outcome.
then the minimum number of bits per second needed by the I1l. COVERING A POISSONPROCESS
encoder to describe the pattern-is\log D.

Previous works[[6],[1[7] have studied rate-distortion fun
tions of the Poisson process with different distortion niees. . .
It is interesting to notice that our rate-distortion funoetj Pr [Nx(t +7) — Nx(t) = k] = & (A7)

—Alog D, is equal to the one in[[7], where a queueing k!

distortion measure is considered. This is no coincidennees for all 7 € [0,T],t € [0,T — 7] andk € {0,1,...}.

the Poisson channel is closely related to the queueing ehann The encoder maps the realization of the Poisson process
introduced in[[8]. to a message if1,...,27%}. The reconstructor then maps

I. INTRODUCTION

II. NOTATION

Consider a homogeneous Poisson pro@essf intensity A
%n the intervall0, T). Its counting functionVx (-) satisfies
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this message to &0, 1}-valued, Lebesgue-measurable, signatay: if x has at least one point in the time-s{¢t — 1) A, iA],
Z(t), t € [0,T]. We wish to minimize the total length of thechoosex] = 1; otherwise choose, = 0. The encoder then

region wherez(t) = 1 while guaranteeing that all points inmapsx’ to a message i1, ...,27%}.
the original Poisson process lie in this region. See Fiflire 1Based on the encoder’'s message, the reconstructor produces
for an illustration. a {0,1}-valued lengthL vector &’ to meet the distortion
criterion
/ !~z
N E[d(X,X)}gD—i-e,
‘ ‘ ‘ ‘ ‘ where the distortion measut¥(-, -) is given by
% | T ! @'(0,0)=0
: : :: m'si‘j'? |_ 4(0,1) =1
— . d'(1,0) = o
d(1,1)=1
Fig. 1. lllustration of th blem. . . .
9 ustration ot fhe problem It then mapsx’ to a continuous-time signa through
More formally, we formulate this problem as a continuous- a(t) = i’[%], t€[0,77.

time rate-distortion problem, where the distortion betwéee

. . o Scheme 1 reduces the task of designing a codXfsubject
point patternx and the reproduction signal is

to distortiond(-,-) to the task of designing a code for the
vector X’ subject to the distortiod’ (-, -). The way we define
d'(-,-) yields the simple relation

d(x,%x) £ {M, if all points in x are in2~1(1)
. d(x, %) = d'(x,X'). (4)

00, otherwise

wherey(-) denotes the Lebesgue measure. , . . When X is the homogeneous Poisson process of intensity
We say that(R, D) is an achievable rate-distortion pair for)\’ the components ofX’ are independent and identically

the homogenepus Poisson process of intensitfy for every distributed (IID) Bef1—e—*2). Let Ra (D, A) denote the rate-
¢ > 0, there exists somé, > 0 such that, for ever" > To,  gigtortion function forX’ andd'(-, ). If we combine Scheme 1

there exists an encodgfir(-) and a reconstructopr(-) of . . , ) it ot
rate R + ¢ bits per second which, when applied to the Poissé’ﬁ'th an optlmal code foX SUbJ?Ct toE [d (X, X )} < D+te,
we can achieve any rate that is larger than

processX on [0, T}, gives
Ra(D, )\) bits
Eld(X, o7 (fr(X)))] < D +e. A seconds

Denote byR(D, \) the minimum rateR such that(R, D) is The next lemma, which is reminiscent of [4, Theorem 2.1],
achievable for the homogeneous Poisson process of intensitows that when we lef\ tend to zero, there is no loss in

A. Define optimality in using Scheme 1.
Rea(D,\) & —Mlog D bits per second D € (0,1) @ Lemma 1 For all D, A >0,
PO 0, D>1. R(D, \) = lim Fa(D: ). (5)
ALO A
Theorem 1: For all D, X > 0, Proof: See Appendix. [
Proof of Theorem[ll We derive R(D, \) by computing
R(D, A) = Rpois(D, A). () the right-hand side of{5). To compui@s (D, \) we apply

To prove Theorenil1, we propose a scheme to reduce $laannon’s formula of the rate-distortion function for acdete

original problem to one for a discrete memoryless sourd@emoryless source [11]:
This is reminiscent of Wyner's scheme for reducing the peak- RA(D,\) = min 1(Z; 2)B (6)
limited Poisson channel to a discrete memoryless chanhhel [3 Py 5:E[da(Z,Z])<D
We shall show the optimality of this scheme in Lemimha 1, a'\ﬂ/hen D € (0,1), the conditional distribution?;, , which
we shall then prove Theorellj 1 by computing the best ralgpioves the minimum on the right-hand side[EZ#%G) is
that is achievable using this scheme.

Scheme 1: We divide the time-interva, 77 into slots ofA P37 (10) = De® — e 41,
seconds long. The encoder first maps the original point patte P (1]1) = 1.
x to a{0, 1}-valued vectorx’ of length %@ in the following 212

2gtrictly speaking, since our distortion measure is unbednave need to

IWhenT is not divisible byA, we considex as a pattern of0, 7] where  modify Shannon’s proof of this formula in order to use it far @roblem. This

T = (%]A. When we letA tend to zero, the difference betwe@hand can be done by letting the reconstructor produce the allseagience, which

T’ also tends to zero. Henceforth we ignore this technicalityf assumel”  yields bounded distortion for any source sequence, whenmsvecodeword
is divisible by A. can be found that is jointly typical with the source sequence



Computing the mutual informatiofi(Z; Z) under thisPZ We shall construct a random code of rafe which, when

Z
yields | applied to anyz’ satisfying [11), yields
RA(D,\) = Hy(D)—e M Hp(De M —e*2+1), D € (0,1), E [d’(z’, Z’)} <D +e,
(7)
where Hy(-) denotes the binary entropy function. ~ where the random vectdZ’ is the result of applying the
When D > 1, it is optimal to chooseZ = 1 (deterministi- random encoder and decoder2o Combined with Scheme 1
cally), yielding this random code will yield a random code on the continuous-
Ra(D,A\)=0, D>1. 8) t(i}r;eD)point patternz that achieves the rate-distortion pair
Combining @)’ ¥) and[{8) and computing the limit As Our discrete-time random code consists ot {0,1}-
tends to zero yieldd [3). " valued, lengthl random sequence®,,, m € {1,...,2TR}.
IV. COVERING GENERAL POINT PROCESSES AND The first sequenc& is chosen deterministically to be the
ARBITRARY POINT PATTERNS all-one sequence. The othef — 1 sequences are drawn
We next consider a general point proc@s We assume independently, with each sequence drawn 11D (B&r.
that there exists some such that To describe source sequengg the encoder looks for a
Ny (t) codewordz,, m € {2,...,27F} such that
limPr[ >)\+6]=0 forall§ >0. (9)
t=o0 t 4,: =1 wheneverz] = 1. (12)

Condition [9) is satisfied, for example, whahis an ergodic

process whose expected number of points per second is II é[sﬂ_nds one or more Sl.mh codewords, it sends the index of
than or equal to\. the first one; otherwise it sends The reconstructor outputs

. . . .
Since the Poisson process is memoryless, one naturéh? sequenceé,, wherem is the message it receives from the

expects it to be the most difficult to describe. This is inde coder. ) , )
the case. as the next theorem shows We next analyze the expected distortion of this random code
, . . L .
Theorem 2 The pair(Rpois(D, \), D) is achievable on any for a fixedz’ satisfying [11). Define
point process satisfying1(9). R ZT/A o
Before proving Theoreni]2, we state a stronger result. pE ==

T
Consider a point patterm chosen by an adversary on the
interval [0, 7] which contains no more thaNT points. The and note that byl (1) < A. Denote by the event that the

tAAl TR 1 i
corresponding counting functi -) must then satis encoder cannot find;,, m € {2,..., 277} sat.lsfyln.g m)' If.
P ¢ g on. () fy £ occurs, the encoder sendlsand the resulting distortion is

n,(T) < \T. (10) equal tol. .

The encoder and the reconstructor are allowed to use randomne probability that a randomly drawn codewd(), satis-
codes. Namely, they fix a distribution on all (deterministicfies 12) is
codes of a certain rate d6, T']. According to this distribution,
they randomly pick a code which is not revealed to th
adversary. They then apply it to the point patterohosen by
the adversary. We say thaR, D) is achievable with random
coding against an adversary subjectfd (10) if, for everyO0,
there exists som&, such that, for every” > Ty, there exists
a random code ofD, T'] of rate R + ¢ such that the expected
distortion betweerany z satisfying [I0) and its reconstructio
is smaller thanD + .

Theorem 3: The pair (Rpois(D, \), D) is achievable with
random coding against an adversary subjeckid (10).

Proof: First note that wherD > 1, the encoder does not E [d/(zl’ 7

need to describe the pattern: the reconstructor simplyymes!
the all-one function, yielding distortioh for anyz. Hence the When we letA tend to zero, this value tends 8. We have
pair (0, D) is achievable with random coding. thus shown that, for small enougk, we can achieve the pair

Next considerD < (0,1). We use Scheme 1 as in Section Il R/A, D) onz’ with random coding whenevét > —\log D,
to reduce the original problem to one of random coding for amnd therefore we can also achig\@, D) on the continuous-
arbitrary discrete-time sequeneé Herez' is {0,1}-valued, time point patternz with random coding ifR > —\log D.

DNT Z DXT — 2(X log D)T.

Because the codewords, , m € {2,...,27R} are chosen
independently, if we choos® > —Alog D, thenPr[€] — 0
asT — oo. Hence, for large enough’, the contribution to
the expected distortion from the evefitcan be ignored.

We next analyze the expected distortion conditionalén
The reproductioi’ has the following distribution: at positions
Mwherez' takes the valué, Z’ must also b ; at other positions

the elements o’ have the 11D BetD) distribution. Thus the

expected value o/ 7/ is uT + D(L — uT), and

SC] =D+ (1- D)uA.

has lengthL, and satisfies []
/A We next use Theorefd 3 to prove Theorigm 2.
Z o < A\T. (11) Proof of Theorem[2Z It follows from TheoreniB that, on

= any point process satisfyinfl(9), the péipois(D, A+ 4), D)



is achievable withrandom coding. Further, since there is no Proof: The caseD > 1 is trivial, so we shall only

adversary, the existence of a good random code guaranteestinsider the case wher® < (0,1). The encoder and the
existence of a good deterministic code. He@is(D, A + reconstructor first use Scheme 1 as in Sedfidn Il to reduce
§), D) is also achievable on this process with deterministibe point patterrz to a {0, 1}-valued vectorz’ of length %.
coding. Theoren]2 now follows when we léttend to zero, Define

) ) ) ) T/A
since Rpois(D, -) is a continuous function. [ ] /A

& 2ii=1 i
H= — 7
V. SOME POINTS ARE KNOWN TO THE RECONSTRUCTOR .
and note that, by assumptiop,< A. If x < v, then we can

In this section we consider a Wyner-Ziv setting for our L X
: . . Ignore the reconstructor’s side-information and use theoan
problem. We first consider the case wha&rés a homogeneous
: : . . ) code of Theorerhl3. Henceforth we assume v.
Poisson process of intensity (Later we consider an arbitrary Denote by the point pattern known to the reconstructor and
point pattern.) Assume that each pointX¥is known to the ¥ b P

. . . by s’ the vector obtained from through the discretization in

reconstructor independently with probability Also assume . )
. . time of Scheme 1. Since there are at m@gt points that are
that the encoder does not know which points are knownh

to the reconstructor. The encoder majsto a message in Unknown to the reconstructor,

{1,...,2"%}, and the reconstructor produces a Lebesgue- T/A
measurable{0, 1}-valued signalX on [0,7] based on this Z s; > (u—v)T. (15)
message and the positions of the points that he knows. The i=1

achievability of a rate-distortion pair is defined in the 8am The encoder conveys the value @ to the receiver using

way as in Sectiof Jll. Denote the smallest rdtefor which  pits. SinceuT is an integer betweetand AT, the number of

(R, D) is achievable byRwz (D, A, p). bits per second needed to describe it tends to zefb &ds
Obviously, Rwz(D, A, p) is lower-bounded by the smallestyg infinity.

achievable rate when the transmittizes know which points  Next, the encoder and the reconstructor randomly generate

are known to the reconstructor. The latter rate is given By'(7+#) jndependent codewords

Rpois(D, (1 — p)A), where Rpis(, -) is given by [2). Indeed, )

when the encoder knows which points are known to the z,,, me{l,....2"7} 1e{1,...2""},

reconstructor, it is optimal for it to describe only the réma _

ing points, which themselves form a homogeneous Poiss\ghere each co/deword is generated D @ey. R

process of intensityl — p)A. The reconstructor then selects a To describez’, the encoder looks for a codewazf},; such

set based on this description to cover the points unknown%'Jlt

it and adds to this set the points it knows. Thus, Zm.1i = 1 wheneverz] = 1. (16)
Rwz(D, \,p) > Rpois(D, (1 —p)N). (13) [f it finds one or more such codewords, it sends the index
) ) of the first one; otherwise it tells the reconstructor to el
The next theorem shows th&t{13) holds with equality. the all-one sequence.
Theorem 4: Knowing the points at the reconstructor only is \yhen the reconstructor receives the index it looks for
as good as knowing them also at the encoder: an index] € {a,... 2TR} such that
Rwz(D, A, p) = Reais(D, (1 = p)A). (14) 2! .. =1 whenevers; = 1. (17)

To prove Theorenil4, it remains to show that the paj . . .
(Rea(D, (1—p)A), D) is achievable. We shall show this as alf there is only one such codeword, it outputs it as the

. o feconstruction; if there are more than one such codewords,
consequence of a stronger result concerning arbitraritying .
SOUICeSs it outputs the all-one sequence.

! . . To analyze the expected distortion fgr over this random
Consider an arbitrary point patteznon [0, 7] chosen by an ' : )
. ; code, first consider the event that the encoder cannot find
adversary. The adversary is allowed to put at mdStpoints e i,
) . : a codeword satisfying (16). Note that the probability that a
in z. Also, it must reveal all but at mostT’ points to the randomly generated codeword satisfiEs] (16)07, so the
reconstructor, without telling the encoder which pointhais y 9 '

revealed. The encoder and the reconstructor are alloweskto Brob_ablhty of this event tends to zero dstends to infinity
; . rovided that

random codes, where the encoder is a random mapplnngror% R4 B log D 18

to a message i1, ...,27%}, and where the reconstructor is + 4> —plogD. (18)

a random mapping from this message, together with the poiniyext consider the event that the reconstructor finds more
pattern that it knows, to QO,Al}Tvalue-d, Lebesgue-measurablgnan onei satisfying [1¥). The probability that a randomly
signalz. The distortiond(z, z) is defined as in[{1). generated codeword satisfi@(l?)l)sﬁgf si. Consequently,

'_I'heorem 5. Against an adversary who puts at _mo’éf by (18) the probability of this event tends to zeroZasends
points on[0,7'] and reveals all but at mostI" points to g infinity provided

the reconstructor, the rate-distortion péaRpsis(D,v), D) is )
achievable with random coding. R< —(p—v)logD. (29)



Finally, if the encoder finds a codeword satisfyifgl(16) and N4 max N,
the reconstructor finds only one codeword satisfyihgl (17), me{l,.... 278}
then the two codewords must be the same. Following tlecan be seen that
same calculations as in the proof of Theolgdm 3, the expected , . _, TR
distortion in this case tends t© as A tends to zero. H (wm (1)) — #(An) 2NA, mefl,..., 270 (22)

Combining [18) and[{19), we can make the expected diSur encoder works as follows: # contains no point ir3, it
tortion arbitrarily close taD asT — oo if mapsx to the same message as the given encoder; otherwise

R>—vlogD it mapsx to the inqex(Q_TR +1) c_)f the all-one codeword_. To
' analyze the distortion, first consider the case wheoentains
B no pointinB. In this case, all points itt must be covered by
Proof of Theorem & The claim follows from [(IB), the selected codeword,,. By (20) and [(ZR), the difference
Theoren{b, and the Law of Large Numbers. B d(x,W,)—d(x,X,), if positive, can be made arbitrarily small
by choosing smalk and A. Next consider the case whexe
does contain points i8. By (21), the probability that this

In this appendix we prove Lemmia 1. Given any ratehappens can be made arbitrarily small by choosirgmall,
distortion code with2”# codewordsk,,, m € {1,...,27%}  therefore its contribution to the expected distortion cio &e
that achieves expected distortidh we shall construct a new made arbitrarily small. We conclude that our cdde,,} can
code that can be constructed through Scheme 1, that contaiohieve a distortion that is arbitrarily close to the distor
(27F 1 1) codewords, and that achieves an expected distortigohieved by the original codgx,,, }. This concludes the proof

APPENDIX

that is arbitrarily close tdD. of Lemmal].
Denote the codewords of our new code By,, m €
{1,...,2TR £ 1}. We choose the last codeword to be the con- REFERENCES

stant 1. We next describe our choices for the other codeword$] Y. Kabanov, “The capacity of a channel of the Poisson fyjeory of

5 ; Probability and Its Appl., vol. 23, pp. 143-147, 1978.
For everye > 0 and everyx,,, we can approximate the set [2] M. H. A. Davis, “Capacity and cutoff rate for Poisson-gyghannels,”

{t: Z,n(t) = 1} by a setA,, that is equal to a finite, sa¥,,, IEEE Trans. Inform. Theory, vol. 26, pp. 710-715, Nov. 1980.
union of open intervals. More specifically, [3] A. D. Wyner, “Capacity and error exponent for the directtettion
photon channel — part IJEEE Trans. Inform. Theory, vol. 34, no. 6,

U (@;1(1) A Am) <2 TRe (20) pp. 1449-1461, Nov. 1988. _ _
[4] ——, “Capacity and error exponent for the direct detectiphoton

where A denotes the symmetric difference between two sets ‘132%”?\" —fggg“'"'EEE Trans. Inform. Theory, vol. 34, pp. 1462—
, NOV. .

(See' e.g.[12, Chapter 3, Proposition 15])' Define [5] T. M. Cover and M. Chiang, “Duality between channel capjaand
oTR rate distortion with two-sided state informatiodFEE Trans. Inform.
A 1 Theory, vol. 48, no. 6, pp. 1629-1638, June 2002.
B = U (Im (1) \ Am) ) [6] I. Rubin, “Information rates and data-compression sobe for Poisson
m=1 processes,1EEE Trans. Inform. Theory, vol. 20, no. 2, pp. 200-210,
Mar. 1974.
and note that by[(20) [7] T. P. Coleman, N. Kiyavash, and V. G. Subramanian, “Thee-ra
distortion function of a Poisson process with a queueingodisn
,U(B) <e (21) measure,” inProceedings Data Compression Conference 2008, ClIiff
. Lodge, Snowbird, Utah, USA, Mar. 2008.
For eachA,,, m € {1,...,27F}, define [8] V. Anantharam and S. Verd, “Bits through queue¢&FE Trans. Inform.
Theory, vol. 42, no. 1, pp. 4-18, Jan. 1996.
T & {t € [0,77: ((ft/A] — 1A, [t/A] A} NA;, # @} ) [9] A. D. Wyner and J. Ziv, “The rate-distortion function fspurce coding
with side information at the decoder/EEE Trans. Inform. Theory,

We now constructv,,, m € {1,...,27%} as vol. 22, no. 1, pp. 1-10, Jan. 1976.
[10] S. Bross, A. Lapidoth, and L. Wang, “The Poisson chanwith
W = 17, side information,” inProceedings Forty-Seventh Allerton Conf. Comm.,,
" Contr. and Comp., Allerton House, Monticello, Illinois, September 30—
where 15 denotes the indicator function of the s8t Note 1] gctgbg:]z, 2009;A thematical th . icati@ell St
1 . . . . E. Shannon, “A mathematical theory of communicati em
that A,, € 7, = w,' (1). See Figurél2 for an illustration of ™™ oy "y 01 57, pp. 379-423 and 623-656, July and Oct. 1948.
this construction. Let [12] H. L. Royden,Real Analysis, 3rd ed. Macmillan Publishing Company,
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14,

Fig. 2. Constructingw,, from A, .
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