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Abstract

Storage area networks, remote backup storage systems, and similar information systems frequently

modify stored data with updates from new versions. In these systems, it is desirable for the data to not only

be compressed but to also be easily modified during updates. Amalleable coding scheme considers both

compression efficiency and ease of alteration, promoting some form of reuse or recycling of codewords.

Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of

particular interest when representing information and modifying the representation are both expensive.

We examine the trade-off between compression efficiency andmalleability cost measured with respect

to the length of a reused prefix portion. The region of achievable rates and malleability is formulated as

an information-theoretic optimization and a single-letter expression is provided. Relationships to coded

side information and common information problems are also established.
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source coding, side information
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I. INTRODUCTION

Conventional data compression uses a small number of compressed-domain symbols but otherwise picks

the symbols without care. This carelessness renders codewords utterly disposable; little can be salvaged

when the source data changes even slightly. Such data compression is concerned only with reducing the

length of coded representations. In this paper and a companion paper with a distinct formulation [1], we

adopt the mantra of the green age,reduce, reuse, recycle. We formulate problems motivated not only by

reduction of representation length but also by the reuse or recycling of compressed data when the source

sequence to be coded changes.

In Shannon’s original formulation of asymptotically lossless block coding,1 “the high probability group

is coded in anarbitrary one-to-one way” into an index set of the appropriate size. This arbitrariness may

seem to impede reuse, but it also suggests that many codes areequally good for compression, and one

may choose amongst them to optimize a reuse criterion.2 One may also allow suboptimal compression

to improve reuse; this trade-off, under a specific model of reuse, is the focus of this paper.

Moving toward formalizing, suppose that after compressinga random source sequenceXn
1 , it is

modified to become a new source sequenceY n
1 according to a memoryless editing processpY |X . A

malleable codingscheme preserves some portion of the codeword ofXn
1 and modifies the remainder

into a new codeword from whichY n
1 may be decoded reliably using the same deterministic codebook.

There are several possible notions of preserving a portion of the codeword ofXn
1 . Here we concentrate

on a malleability costdefined through the reuse of a fixed part of the old codeword in generating a

codeword forY n
1 . We call thisfixed segment reusesince a segment is cut from the codeword forXn

1

and reused as part of the codeword forY n
1 . Without loss of generality, the fixed portion can be taken to

be the beginning of the codeword, so the new codeword is a fixedprefix followed by a new suffix.

The fixed reuse formulation is suitable for applications where the update information (new suffix) must

be transmitted through a rate-limited communication channel. If the locations of changed symbols were

arbitrary, the locations would also need to be communicated, communication which may be prohibitively

costly. This formulation is also suitable for information storage systems that use linked lists such as the

FAT and NTFS systems. A contrasting scenario is for a cost to be incurred when a symbol is changed

in value, regardless of its location. We studied this in [1].

1From [2] with emphasis added.

2The arbitrariness of code mappings have also been exploitedin redundancy-free methods for joint source channel coding[3]

and for modulation [4], in a manner related to [1].
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Our main result is a characterization of achievable rates asa single-letter expression. To the best of our

knowledge, this is among the first works connecting problemsof information storage—communication

across time—with problems in multiterminal information theory. We relate the fixed reuse problem to

several previously-studied problems in multiterminal information theory, some of which are exploited

in this work. In particular, a connection to the Gács–Körner common information shows that a large

malleability cost must be incurred if the rates for the two versions are required to be near entropy.

The remainder of the paper is organized as follows. Motivations from engineering practice in areas

such as database management and network information storage are given in Section II. Section III then

provides a formal problem statement for malleable coding with fixed segment reuse. The region describing

the trade-off between the rates for the original codeword, for the reused portion, and for the new codeword

is the main object of study. Section III-B uses an implicit Markov property to simplify the analysis of the

rate–malleability region and Section III-C describes two easily achieved points. Using a random coding

argument, Theorem 1 in Section IV gives an achievable rate–malleability region in terms of an auxiliary

random variable. There is also a matching converse. SectionIV-B looks at the auxiliary random variable

in detail; Theorem 2 is a partial characterization of the unknown auxiliary random variable when there is a

sufficient statistic for the new version based on the old version. Section V connects this malleable coding

problem to other problems in multiterminal information theory. Section VI closes the paper, drawing

comparison to the problem of designing side information.

II. BACKGROUND

Our study of malleable coding is motivated by information systems that store frequently-updated

documents. In such systems, storage costs include not only the average length of the coded signal, but

also costs in updating. We describe these systems and some oftheir applications.

In information technology infrastructures, there is oftena separation between computer hosts used

to process information and storage devices used to store information. Storage area networks (SAN)

and network-attached storage (NAS) are two technologies that transfer data between hosts and storage

elements. SAN and NAS systems comprise a communication infrastructure for physical connections

and a management infrastructure for organizing connections, storage elements, and computers for robust

and efficient data transfers [5], [6]. Grid computing and distributed storage systems also display similar

distributed caching [7], [8]. Even within single computers, updating caches within the memory hierarchy

involves data transfers among levels [9].

Data may be dynamic, being updated or edited after some time.Separate data streams may be generated,
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Fig. 1. Distributed database access.

but the contents may differ only slightly [10]–[13]. Moreover, old versions of the stream need not be

preserved. Examples include the storage of a computer file backup system after a day’s work or graded

homework in distance learning [14]. Correlations among versions differentiates malleable coding from

write-efficient memories [15], where messages are assumed independent; see [1] for further contrasts.

Storage of communication transcripts in email hosting services such as GMail provides another area

where different versions of snippets of text are stored in one common access point. The problem there is

made more interesting by the presence of a large number of users who have created different modifications

of original shared sources. We do not deal with such problemsexplicitly.

Systems such as SAN and NAS have complicated interplays between storage and transmission. Current

technological trends in transmission and storage technologies show that transmission capacity has grown

more slowly than disk storage capacity [7]. Hence “new” representation symbols may be more expensive

than “old” representation symbols, suggesting thatreusemay be more economical thanreduce.

Recent advances in biotechnology have demonstrated storage of artificial messages in the DNA of

living organisms [16]; such systems provide another motivating application. Certain biotechnical editing

costs correspond to the malleability costs defined for fixed reuse, as detailed in [1].

Here we describe several scenarios where malleable coding is applicable. Consider the topology given

in Fig. 1. The first user has stored a codewordA for documentX in database1. Now the second user,

who has a copy ofX, modifies it to createY . The second user wants to save the new version to the

information system, but since the users are separated, database2 rather than database1 serves this user.

Transmission costs for different links may be different. The natural problem is to minimize the total cost

needed to create a codewordB at database2 that losslessly representsY .

Consider two users who both have access to a distributed database system that stores several copies

of the first user’s document on different media at different locations. Due to proximity considerations,
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the users will access the document from different physical stores. Suppose that the first user downloads

and edits her document and then wishes to send the new versionto the second user. There are different

ways to accomplish this. The first user can send the entire newversion to the second user or the second

user can download the old version from his local store and require that the first user only send the

modification. In the former scheme, the cost of transmissionis borne entirely by the link between the

users, rendering distributed storage pointless. In the latter scheme, there is a trade-off between the rate

at which the second user downloads the original version fromthe database system and the rate at which

the first user communicates the modification.

Even in a single user scenario, there may be similar considerations. The first user may simply wish

to update the storage device with her edited version. The goal would be to avoid having to create an

entirely new version of the stored codeword by taking advantage of the availability of the stored original

in the database.

III. PROBLEM STATEMENT AND SIMPLIFICATION

We are now ready to give the formal problem statement. Following the formal problem statement, we

deduce simplifications to the problem statement and quicklyfind two achievable points.

A. Formal Problem Statement

Let {(Xi, Yi)}
∞
i=1 be a sequence of independent drawings of a pair of jointly-distributed random

variables(X,Y ), X ∈ W, Y ∈ W, whereW is a finite set andpX,Y (x, y) = Pr[X = x, Y = y]. The

marginal distributions are

pX(x) =
∑

y∈W

p(x, y)

and

pY (y) =
∑

x∈W

p(x, y),

and the conditional distribution

pY |X(y|x) =
pX,Y (x, y)

pX(x)

describes amodification channel. When the random variable is clear from context, we writepX(x) as

p(x) and so on.

Denote the storage medium alphabet byV, which is also a finite set. It is natural to measure all rates in

numbers of symbols fromV. This is analogous to using base-|V| logarithms in place of base-2 logarithms,

and all logarithms should be interpreted as such.
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AnK
1

∈ VnK

BnL
1

∈ VnL

UnJ
1

∈ VnJ

Xn
1
∈ Wn

Y n
1

∈ Wn

Fig. 2. In malleable coding with fixed segment reuse, the compressed representations ofXn

1 andY n

1 have the firstnJ storage

symbols in common.

Our interest is in coding ofXn
1 followed by coding ofY n

1 where the firstnJ letters of the codes

are (asymptotically almost surely) in common. We show this in Fig. 2, whereAnK
1 ∈ VnK is the

representation ofXn
1 , BnL

1 ∈ VnL is the representation ofY n
1 , andUnJ

1 ∈ VnJ is the common initial

symbols. We thus define the encoding and decoding mappings asfollows.

An encoder forX with parameters(n, J,K) is the concatenation of two mappings:

f
(X)
E = f

(U)
E × f

′(X)
E ,

where

f
(U)
E : Wn → VnJ

and

f
′(X)
E : Wn → Vn(K−J).

An encoder forY with parameters(n, J, L) is defined as:

f
(Y )
E = f

(U)
E × f

′(Y )
E ,

where we use one of the previous encodersf
(U)
E together with

f
′(Y )
E : Wn × VnJ → Vn(L−J).

Given these encoders, a common decoder with parametern is

fD : V∗ → Wn.

The encoders and decoder define a block code for fixed reuse malleability. Although not strictly required, a

common decoder is a convenient way of expressing the requirement of a common deterministic codebook.
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A trio (f
(X)
E , f

(Y )
E , fD) with parameters(n, J,K,L) is applied as follows. Let

AnK
1 = f

(X)
E (Xn

1 )

be the source code forXn
1 , where the first part of the code is explicitly notated as

UnJ
1 = f

(U)
E (Xn

1 ).

Then the encoding ofY n
1 is carried out as

BnL
1 = f

(Y )
E (Y n

1 , UnJ
1 ).

We also let

(X̂n
1 , Ŷ

n
1 ) = (fD(A

nK
1 ), fD(B

nL
1 )).

We define the error rate

∆ = max(∆X ,∆Y ),

where

∆X = Pr[Xn
1 6= X̂n

1 ]

and

∆Y = Pr[Y n
1 6= Ŷ n

1 ],

and we define the disagreement rate as

∆U = Pr[AnJ
1 6= BnJ

1 ].

The fact that there is a disagreement rate rather than requiring the firstnJ symbols to always be equal

introduces the usual slack associated with Shannon reliability. (We will require∆U to be arbitrarily small,

so the possibility of∆U 6= 0 is ignored in Fig. 2.)

We use conventional performance criteria for the code, which are the numbers of storage-medium

letters per source letter

K =
1

n
log|V| |V|

nK

and

L =
1

n
log|V| |V|

nL,

and add as the third performance criterion the normalized length of the portion of the code which does

not overlap

M = L− J =
1

n
log|V| |V|

n(L−J).
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X

Y

✲

✲

f
(X)
E

f
(Y )
E

✲

✲

R1

R2

fD

fD

✲

✲

X̂

Ŷ

❄

U
R0

✻

❄

Fig. 3. Block diagram of malleable coding with fixed segment reuse.

We callM the malleability rate.

Definition 1: Given a sourcep(X,Y ), a triple(K0, L0,M0) is said to beachievableif, for arbitraryǫ >

0, there exists (forn sufficiently large) a block code for fixed reuse with error rate ∆ ≤ ǫ, disagreement

rate∆U ≤ ǫ, and lengthsK ≤ K0 + ǫ, L ≤ L0 + ǫ, andM ≤ M0 + ǫ.

We want to determine the set of achievable rate triples, denoted asM. It follows from the definition

that M is a closed subset ofR3 and has the property that if(K0, L0,M0) ∈ M, then (K0 + δ0, L0 +

δ1,M0 + δ2) ∈ M for anyδi ≥ 0, i = 0, 1, 2. The rate regionM is thus completely defined by its lower

boundary, which is itself closed.

Rather than using(K,L,M), the triple (J,K,L) may be used to characterize the achievable region.

Equivalently, we can use(R0, R1, R2) in place of(K,L,M) as shown in Fig. 3. Using this notation is

more consistent with established work in multiterminal information theory. The relation is:

1) J = R0,

2) K = R0 +R1, and

3) L = R0 +R2.

B. Problem Simplification

A priori, it seems there are two approaches to trading off storage rate for malleability rate in the fixed

reuse problem: expendingK greater thanH(X) might allow a better side informationU to be formed;

and expendingL greater thanH(Y ) might allow greater flexibility in the design ofU . It turns out that

expanding the representation ofXn
1 provides no advantage, i.e., any extra bits used to encodeX will not

help in the representation forY . This is due to the Markov relationU ↔ X ↔ Y that holds due to the

ordering of the encoding procedure.

For the remainder of this paper, we focus on expendingL greater thanH(Y ) and analyze the achievable

rate–malleability. We focus on howL depends on the size of the portion to be reusedJ , thus establishing
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the malleabilityM . When proceeding in this regime, two constraints are imposed:

1) H(U) = J , and

2) H(U,X) = H(X).

The second constraint states thatU is a subrandom variable ofX, which is implicit in the formal problem

statement in Section III and the block diagram, Fig. 3.

Rather than characterizing the entire region of achievabletripletsM, we consider fixingJ and finding

the bestL (thus fixingM = L− J). We want to characterize the achievable ratesL as a function ofJ .

The smallest suchL is denotedL∗(J).

C. Two Achievable Points

It is easy to note the values of the corner points corresponding to J = 0 andJ = H(X). For J = 0,

the lossless source coding theorem yieldsL∗(0) = H(Y ). ForJ = H(X), since the lossless compression

of Xn
1 has to be preserved, we will needL∗(H(X)) = H(X,Y ). This follows from noting that since

the firstH(X) symbols have to be fixed, we need to be able to losslessly represent the conditionally

typical set, which requiresH(Y |X) additional symbols, for a total ofH(X) + H(Y |X) = H(X,Y ).

SinceH(Y |X) ≤ H(Y ), this is better than discarding the old codeword ofXn
1 and creating an entirely

new codeword forY n
1 ; unlessX andY are independent, this is strictly better.

IV. M AIN RESULTS

We cast the fixed reuse malleable coding problem as a single letter information theoretic optimiza-

tion, providing matching achievability and converse statements. Unfortunately, this is not computable in

general. Later we will give a computable partial characterization for cases where there exists a sufficient

statistic for the estimation of the new version of the sourcefrom the reused part of the compressed old

version. The basic concepts are also applicable to a lossy formulation with Gaussian sources.

The achievability proof for the boundary of the fixed reuse rate region uses definitions and properties

of strongly typical sets (Lemmas 1–4), given in Appendix A.

A. The Fixed Reuse Malleability Region

We consider the trade-off betweenL and J . From the previous section, it is clear that for a given

malleability, the compression efficiency ofY n
1 is determined by the quality of the binning assignment

for the typical strings ofXn
1 . We capture this assignment by a (probabilistic) functionp(U |X). Then,

October 24, 2018 DRAFT
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we can formulate the following information theoretic optimization problem:

L∗(J)− J = min
p(U |X)

H(Y |U) (1)

s.t. H(U) +H(X|U) = H(X),

H(U) = J .

Theorem 1:The optimization problem (1) provides a boundary to the rateregionR = (R0, R1, R2)

whenK = R0 +R1 = H(X).

Proof: Achievability: The constraints requireH(U) = J and that there is a Markov condition

U ↔ X ↔ Y . Codebooks forXn
1 andY n

1 are randomly generated according top(x) and p(y). These

codebooks are of size|V|nK = |V|nH(X) and |V|nL respectively. Each codebook is partitioned into

|V|nH(U) bins with a corresponding bin labelUnJ
1 . SinceUnJ

1 is a function ofXn
1 , it may be written as

UnJ
1 (Xn

1 ). Clearly, we can chooseH(U) = J and useJ symbols to assign the bin labelUnJ
1 . For the

Xn
1 codebook,H(X)− J symbols are used to assign labels to members of each bin; the intra-bin label

is denotedIX . Similarly for theY n
1 codebook,L− J symbols are used to assign labels to members of

each bin; the intra-bin label is denotedIY .

The encoder forXn
1 , f (X)

E = f
(U)
E × f

′(X)
E , operates by generating a labelAnK

1 = [UnJ
1 , IX ] according

to which xn1 is realized. The encoder forY n
1 , f (Y )

E = f
(U)
E × f

′(Y )
E generates the same bin labelUnJ

1

and also generates the intra-bin labelIY , based on whichyn1 is realized; the resulting encoding is

BnL
1 = [UnJ

1 , IY ]. Since both encoders use the identical bin labelunJ1 , it is clear that the disagreement

rate∆U can be made arbitrarily small.

The common decoderfD operates according to strong typicality in the usual way.

By the direct part of Shannon’s source coding theorem (see Lemma 1) and the splitting possible due to

the entropy chain rule [17], it follows that∆X = Pr[Xn
1 6= fD(A

nK
1 )] is arbitrarily small with increasing

block length.

Now consider recoveringY n
1 from the codewordBnL

1 = [UnJ
1 , IY ], which uses the same prefix

but different suffix. The encoder had found the indexIY such that(UnJ
1 (Xn

1 ), Y
n
1 ) ∈ T n

[UnJ

1
,Y ]δ. The

probability of successful encoding is determined by two error events. The first is that(UnJ
1 , Y n

1 ) does

not belong to the typical set; the second is thatUnJ
1 is jointly typical with Xn

1 but not with Y n
1 . The

first event has arbitrarily small probability of error by thejoint AEP, Lemma 2. The second event has

arbitrarily small probability of error by applying Lemma 4 to theU ↔ X ↔ Y Markov chain.

October 24, 2018 DRAFT
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Decoding error happens when there is another typicalỸ n
1 6= Y n

1 that is jointly typical withUnJ
1 . The

probability goes to zero almost surely whenL− J > H(Y |U) by an AEP argument [18, (14.278)].

Thus∆Y and also∆ may be made arbitrarily small, as required for achievability.

Converse: The converse for the encoding and decoding ofXn
1 via [UnJ

1 , IX ] as a tree-based label

follows directly from the converse to Shannon’s source coding theorem.

We focus on the encoding ofY n
1 onto [IY ] and the decoding of̂Y n

1 from [UnJ
1 , IY ]. By the encoding

strategy,U is a function ofXn
1 . We then have a chain of inequalities:

n(L− J) = nR2

(a)

≥ H(IY )

(b)

≥ H(IY |U
nJ
1 )

= I(Y n
1 ; IY |U

nJ
1 ) +H(IY |Y

n
1 , UnJ

1 )

(c)
= I(Y n

1 ; IY |U
nJ
1 )

= H(Y n
1 |UnJ

1 )−H(Y n
1 |IY , U

nJ
1 )

(d)

≥ H(Y n
1 |UnJ

1 )− nǫ

(e)
= nH(Y |U)− nǫ.

Step (a) follows from dimensionality considerations; step(b) from noting that conditioning can only

decrease entropy; step (c) from the fact thatY n
1 andUnJ

1 determineIY ; step (d) by applying Fano’s

inequality; and step (e) from the chain rule of entropy and independence in time. Thus we have obtained

the desired inequality.

B. Further Characterizations

As in the source coding with side information problem [19]–[21] and several other problems in

multiterminal information theory, Theorem 1 left us to optimize an auxiliary random variableU that

describes the method of partitioning. Here we will provide simple bounds onL∗(J) and then further

characterization in terms of a sufficient statistic ofX for Y .

Theorem 1 demonstrated that we require

L(J) ≥ H(Y |U) + J .

The easily achieved corner points discussed previously anda few simple bounds are shown in Fig. 4.

The bounds, marked by dotted lines, are as follows:

October 24, 2018 DRAFT
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J

L∗(J)

H(W ) H(X)

H(Y )

H(W,Y )

H(X)

H(X, Y )

H(X) +H(Y )

(a)

(b)

(c)

Fig. 4. Characterizations of the fixed reuse malleability region boundaryL∗(J). Each♦ is a point determined in Section III-C,

and the dotted lines are simple bounds from Section IV-B. With W defined as a minimal sufficient statistic ofX for Y , the

solid line shows the unit-slope boundary determined by Theorem 2. The dashed line represents a portion of boundary that is

unknown (but known to be convex by Theorem 3).

(a) The lossless source coding theorem applied toY alone givesL∗(J) ≥ H(Y ).

(b) Another trivial lower bound from the construction isL∗(J) ≥ J .

(c) Since one could encodeY n
1 without trying to take advantage of theJ symbols already available,

L∗(J) ≤ J +H(Y ).

In evaluating the properties ofL∗(J) further, let W be a minimal sufficient statistic ofX for Y .

Intuitively, if J is large enough that one can encodeW in the shared segmentUnJ
1 , it is efficient to do

so. Thus we obtain regimes based on whetherJ is larger thanH(W ).

For the regime ofJ ≥ H(W ), the boundary of the region is linear by the following theorem:
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Theorem 2:Consider the problem of (1). LetW be a minimal sufficient statistic ofX for Y . For

J > H(W ), the solution is given by:

L∗(J)− J = H(Y |W ). (2)

Proof: By definition, a sufficient statistic contains all information in X aboutY . Therefore any rate

beyond the rate required to transmit the sufficient statistic is not useful. BeyondH(W ), the solution is

linear.

A rearrangement of (2) is

L∗(J) = H(Y,W ) + [J −H(W )].

This is used to draw the portion of the boundary determined byTheorem 2 with a solid line in Fig. 4.

For the regime ofJ < H(W ), we have not determined the boundary but we can show thatL∗(J) is

convex.

Theorem 3:Consider the problem of (1). LetW be a minimal sufficient statistic ofX for Y . For

J < H(W ), the solutionL∗(J) is convex.

Proof: Follows from the convexity of conditional entropy, by mixing possible distributionsU .

The convexity from Theorem 3 and the unit slope ofL∗(J) for J > H(W ) from Theorem 2 yield the

following theorem by contradiction. An alternative proof is given in Appendix B.

Theorem 4:The slope ofL∗(J) is bounded below and above:

0 ≤
d

dJ
L∗(J) ≤ 1.

The following can be seen as extremal cases for the theorem: whenX andY are independent,L∗(J) =

J +H(Y ) and so d
dJ

L∗(J) = 1. WhenX = Y , L∗(J) = H(Y ) for any J , and so d
dJ

L∗(J) = 0.

Without regard to the constraint onJ , it is known that the sufficient statistic forY upon the observation

X = x is p(Y |X = x). Therefore for the regime whereJ > H(p(Y |X = x)), this is the best knowledge

of Y we can endow to the decoder for decodingY .

The challenge lies whenJ ≤ H(p(Y |X = x)): this is an estimation problem with limited communi-

cation budget. In a lossy setting, for the special case of jointly GaussianX andY this problem may be

entirely solved by casting it as a linear least-squares estimation problem.

In fact, (1) can be stated as follows:

max
f(X)

H(Y |H(f(X))) (3)

s.t. H(f(X)) = m

October 24, 2018 DRAFT
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It is clear that (1) and (3) are equivalent. In this problem the design of the label is cast as the problem

of designing a sufficient statistic ofY givenX, consistent with our previous discussion. The fact that in

this statementU equalsf(X) ensures thatU is a subrandom variable ofX.

V. CONNECTIONS

An alternate method of further analyzing the rate–malleability region for fixed segment reuse is to

make connections with solved problems in the literature. Here we connect our problem and the lossless

source coding with coded side information problem [19]–[21]. Source coding with coded side information

problems provide achievable rate regions for fixed reuse malleability. We also discuss relations to a

common information problem [22]. IfK = H(X) and L = H(Y ) are required, then the length of

the common portion of the source code is less than or equal toC(X;Y ), the Gács–Körner common

information.

A. Relation to the Coded Side Information Problem

In this section, we show that rate regions for the coded side information problem (also called the helper

problem) are achievable rate regions for the malleability problem. Results are expressed in terms of the

rate tripleR rather than the rate–malleability tripleM.

Definition 2: Let

Rhelp
1
=



















(R0, R1, R2) : R0 ≥ H(U)

R0 +R1 ≥ H(X)

R2 ≥ H(Y |U)



















,

whereU is any auxiliary random variable.

Theorem 5:The rate region for the coded side information problemRhelp
1

is an achievable rate region

for the fixed reuse malleability problem, i.e.Rhelp
1
⊆ R.

Proof: The result follows simply by noting that the malleability problem has a more extensive

information pattern than the coded side information problem (see Fig. 5) and by the achievability result

for the coded side information problem [20, Theorem 2.1]. Wyner’s rate region in the case where the

side information need not be compressed satisfiesR0 ≥ H(U), R1 ≥ H(X|U), andR2 ≥ H(Y |U),

which impliesRhelp
1
.

For the malleable coding problem, the auxiliary random variableU may be generated fromX and

will be given to the encoder forY . Lossless source coding is always successively refinable [17], but it

is unclear how to split off some of the information fromX into U .
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✲
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❄

Fig. 5. The fixed reuse malleable coding problem (left, Fig. 3) has a more extensive information pattern than the coded side

information problem (right). For fixed reuse, the side information may be designed fromX and this side information is available

at the encoder forY .

X

Y

✲

✲

f
(U)
E

f
(Y )
E

✲

R0

R2 fD ✲Ŷ

❄❄

X

Y

✲

✲

f
(U)
E

f
(Y )
E

✲

R0

R2 fD ✲Ŷ

❄

Fig. 6. The fixed reuse malleable coding problem (left) has a more extensive information pattern than the coded side information

problem (right). For fixed reuse, the coded side informationis available at the encoder forY .

In the result just given, the side information was not compressed and so the rate region was actually a

Slepian–Wolf region [23] rather than a true coded side information rate region, even though the coded side

information theorem was invoked in the proof. An alternative comparison leads to the side information

actually being compressed. In particular, consider the coded side information problem whereX is side

information to be compressed, andY is the source to be compressed. There is a decoder that takes these

two things and tries to reproduceY . This describes only the lower branch of the fixed reuse system. The

upper branch would produce a code to allow lossless reconstruction ofX at total rateR0+R1 ≈ H(X).

We focus on the lower branch, studying the trade-off betweenR0 andR2. This is equivalent to looking

at L∗(J), as in previous sections. In order to cast an equivalence to the coded side information problem,

assume that the side information code is not available to theY encoder. Since the malleable coding

problem has a more extensive information pattern, this implies that the derived rate region will be an

achievable region. The lower branch as described, is now exactly the coded side information problem

[19], [20].

Definition 3: Let

Rhelp
2
=







(R0, R2) : R0 ≥ H(Y |U)

R2 ≥ I(X;U)







,

whereU is any auxiliary random variable that satisfies the Markov condition U ↔ X ↔ Y .
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Theorem 6:The rate region for the coded side information problemRhelp
2

is an achievable rate region

for the lower branch of the malleable coding with fixed reuse problem, i.e.Rhelp
2
⊆ proj(R0,R2)R.

Proof: The result follows simply by noting that the malleable coding problem has a more extensive

information pattern than the coded side information problem (see Fig. 6) and by the achievability result

for the coded side information problem [19, Theorem 2].

Since we are interested in the lower boundary of the rate region, findingRhelp
2

may be reduced to

optimizing the auxiliary random variableU for the coded side information problem, which is also the

reused segment of the source code for the malleable coding problem. This is usually difficult, but see

[21], [24]. The optimization problem forR0 as a function ofR2 is

F (R2) = min
p(U |X)

H(Y |U) (4)

s.t. I(U ;X) ≤ R2.

Interestingly, a problem in machine learning called the information bottleneck problem formulates a

similar optimization function and provides an alternativeoperational interpretation ofRhelp
2

[25], [26].3

The optimization problem is

B(R2) = max
p(U |X)

I(Y ;U) (5)

s.t. I(U ;X) ≤ R2,

which clearly satisfiesF (R2) = H(Y )−B(R2), sinceH(Y ) is not open to optimization [26].

One can notice that the optimization problem(1) is closely related to the optimization problems that

arise for the coded side information problem and the information bottleneck problem. In particular, it

can be noted that the constraint is a subset of the constraintfor the coded side information problems.

SinceI(U ;X) = H(U) −H(U |X), it follows that {p(U |X) : I(U ;X) ≤ R0} ⊇ {p(U |X) : H(U) ≤

R0 andH(U |X) = 0}.

B. Relation to Ǵacs–K̈orner Common Information

We have found that rate regions for lossless coding with coded side information are achievable for

malleable coding, however computing these regions involves optimizing auxiliary random variables. It

turns out that for particular ranges of rates, the rate region is actually known in closed form [21]; the

3New developments in computing the rate region for the coded side information problem [21], [24] also have implications

for computing the information bottleneck function [25], [26], though these do not appear to have been exploited.
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range is partially delimited by the common information functional of Gács and Körner [22], [27, pp.

402–404]. The Gács–Körner common information also yields a characterization of malleable coding with

fixed segment reuse.

Definition 4: For random variablesX andY , let U = f(X) = g(Y ) wheref is a function ofX and

g is a function ofY such thatf(X) = g(Y ) almost surely and the number of values taken byf (or

g) with positive probability is the largest possible. Then the Gács–Körner common information, denoted

C(X;Y ), is H(U).

Definition 5: The joint distributionp(x, y) is indecomposableif there are no functionsf andg each

with respect to the domainW so that

• Pr[f(X) = g(Y )] = 1, and

• f(X) takes at least two values with non-zero probability.

It can be shown thatC(X;Y ) = 0 if X and Y have an indecomposable joint distribution. Further

properties of indecomposable joint distributions are given in [27, p. 350] and [21]. In particular, an

auxiliary random variableU that satisfies the Markov relationU ↔ X ↔ Y is used for characterization.

Gács and Körner show that the maximal length of the common beginning portion of entropy-achieving

source codes forX and for Y , the operational definition of common information, coincides with the

informational definition of common information. The basic result, [22, Theorem 1], is that it is not

possible in general to code two sources so that the resultingcodes have some common fixed length of

ordern. This is because in general,p(x, y) is indecomposable and so the common information is zero.

Such a negative result also carries over to the fixed reuse problem.

Consider the block diagram for the coding problem that involves the common information in its solution

[27, Fig. P.28 on p. 403], Fig. 7. If it is required thatR1 = H(X)−R0 and thatR2 = H(Y )−R0, then the

largest possibleR0 is C(X;Y ). Since entropy is being achieved, it follows thatR2 = H(Y |U) through

Slepian–Wolf or conditional entropy means atf
′(Y )
E [17]. Since the distributed system does as well as

a centralized system, even ifU is given tof ′(Y )
E , this will not improve things. In particular, the system

shown in Fig. 8 will have the same relationship to the common information. Showing this rigorously

involves modifying the converse of the common information proof and seeing that the arguments follow

through. Now one can observe that this block diagram is an enhanced version of the fixed reuse malleable

coding block diagram, redrawn as Fig. 9.

Theorem 7:The Gács–Körner common information rate triple providesa partial converse to the rate–

malleability triple.
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Fig. 7. Block diagram for the Gács–Körner common information problem.
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Fig. 8. Block diagram for the Gács–Körner common information problem when givingU to f
′(Y )
E

. This additional information

does not help in coding.

Proof: The result follows from the fact that the common informationproblem has a more extensive

information pattern than the fixed reuse malleable coding problem (see Fig. 9) and the converse for the

enhanced common information problem [22].

This theorem gives an outer bound to go with the achievable region defined in Definition 2. Thus for

the malleable coding problem, if we wantK = H(X) andL = H(Y ), thenM must be bad:M ≥

H(Y )−C(X;Y ), whereC(X;Y ) is often zero. Since there is almost no overlap possible whenrequiring

L = H(Y ), allowing largerL in Section III-B was a good approach.

VI. D ISCUSSIONS ANDCLOSING REMARKS

Phrased in the language of waste avoidance and resource recovery: classical Shannon theory shows

how to optimallyreduce; we have here studiedreuseand in [1] studiedrecyclingand have found these

goals to be fundamentally in tension.

We have formulated an information-theoretic problem motivated by the transmission of data to up-
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Fig. 9. Block diagram for malleable coding with fixed segmentreuse. This has a reduced information pattern as compared to

the Gács–Körner common information problem when givingU to f
′(Y )
E

.

date the compressed version of a document after it has been edited. Any technique akin to optimally

compressing the difference between the documents would require the receiver to uncompress, apply the

changes, and recompress. We instead requirereuseof a fixed portion of the compressed version of the

original document; this segment cut from the compressed version of the original document is pasted

into the compressed version of the new document. This requirement creates a trade-off between the

amount of reuse and the efficiency in compressing the new document. Theorem 1 provides a complete

characterization as a single-letter information-theoretic optimization.

We established relationships to several previously-studied multiterminal information theory problems.

Perhaps the most interesting is with the Gács–Körner common information problem. Through that

relationship one can see that if the original and modified sources have an indecomposable joint distribution

and are required to be coded close to their entropies, then the reused fraction must asymptotically be

negligible. We also showed through a Markovianity argumentthat there is no benefit from coding the

original source above its entropy. Our focus was therefore on cases where the modified source is encoded

with excess rate.

A. On the Effectiveness of Binning

We informally describe the ineffectiveness of independent, uniform binning. Place the codewords of

T n
[X]δ that have the same firstnJ symbols into the same bin. There are|V|nJ bins, each of which

has |V|n(H(X)−J) elements. Let the bins be labeled byUnJ
1 = 1, . . . , |V|nJ . For each of the binsunJ1

containing some sequences ofxn1 , create a corresponding bin to contain the conditionally typical sequences

yn1 , given thatxn1 ∈ unJ1 . This gives the smallest sized bins foryn1 given that the firstnJ symbols of

the representation ofxn1 are the same as the firstnJ symbols used to representyn1 . It is clear that the
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representation ofyn1 is not unique, as the sameyn1 may be represented in more than one bin.

For eachxn1 ∈ T n
[X]δ there are about|V|nH(Y |X) conditionally typical members ofT n

[Y |X]δ(x
n
1 ) by

Lemma 3. Through the union bound (Boole’s inequality) we obtain:

|T n
[Y |X]δ(x

n
1 ∈ unJ1 )| ≤ |unJ1 ||T n

[Y |X]δ(x
n
1 )|

= |V|n(H(X)−J)|V|nH(Y |X);

note that there are|V|nJ such binsunJ1 . Although this may suggest that the compression ofY n
1 may

require up tonH(X,Y ) = n(H(X) +H(Y |X)) regardless of the value ofJ , this is not the case.

The union bound is tight if and only if it consists of independent events, but it is difficult to examine

the tightness or to find a tighter bound. One might believe that the union bound is tight for anyJ > 0,

implying a rate requirement ofH(X) + H(Y |X) = H(X,Y ) symbols for the compression ofY n
1 to

have any nontrivial malleability. With the upper bound of Section IV-B, we have shown that this belief

is false. Thus the union bound is not tight, and independent,uniform binning [23] fails.

B. Designing Side Information

Even after characterization by a coding theorem, rate regions in multiterminal information theory

are notoriously difficult to examine because of optimizations involving auxiliary random variables. For

several source coding problems with coded side information, achievable rates are characterized by product-

space characterizations with implicit optimizations overinfinite-letter mappings. One can think of these

optimizations as problems of designing useful side information. For malleable coding problems, the

design of side information takes central importance.

For the Slepian–Wolf problem [23], side information formedthrough random binning is good. For point-

to-point problems, (side) information formed through quantization binning is good. For other problems,

however, there is no intuition about optimal auxiliary random variables and the nature of good binning.

Recent work on the source coding with coded side informationproblem [19], [20] provides some insight

into regimes where side information generated through codes like random-binning works and where it

does not [21], however there is no general theory.

One fundamental difference between coding with side information problems and the malleable coding

problem is the time ordering of when codes are applied. Here,the first source is compressed and then the

second source is compressed with access to a portion of the actual realization of the compressed version

of the first source, not just a statistical description.

October 24, 2018 DRAFT



20

APPENDIX A

STRONG TYPICALITY

Definition 6: The strongly typical setT n
[X]δ with respect top(x) is

T n
[X]δ =

{

xn1 ∈ Wn |
∑

x

∣

∣

∣

∣

N(x;xn1 )

n
− p(x)

∣

∣

∣

∣

≤ δ

}

,

whereN(x;xn1 ) is the number of occurrences ofx in xn1 andδ > 0.

Definition 7: The strongly jointly typical setT n
[XY ]δ with respect top(x, y) is

T n
[XY ]δ =

{

(xn1 , y
n
1 ) ∈ Wn×n |

∑

x,y

∣

∣

∣

∣

N(x, y;xn1 , y
n
1 )

n
− p(x, y)

∣

∣

∣

∣

≤ δ

}

.

Definition 8: For anyxn1 ∈ T n
[X]δ, define a strongly conditionally typical set

T n
[Y |X]δ(x

n
1 ) =

{

yn1 ∈ T n
[Y ]δ | (x

n
1 , y

n
1 ) ∈ T n

[XY ]δ

}

.

Now that we have definitions of typical sets, we put forth somelemmas.

Lemma 1 (Strong AEP):Let η be a small positive number such thatη → 0 as δ → 0. Then for

sufficiently largen,
∣

∣

∣
T n
[X]δ

∣

∣

∣
≤ |V|n(H(X)+η).

Proof: See [28, Theorem 5.2].

Lemma 2 (Strong JAEP):Let λ be a small positive number such thatλ → 0 as δ → 0. Then for

sufficiently largen,

Pr[(Xn
1 , Y

n
1 ) ∈ T n

[XY ]δ] > 1− δ

and

(1− δ)|V|n(H(X,Y )−λ) ≤
∣

∣

∣
T n
[XY ]δ

∣

∣

∣
≤ |V|n(H(X,Y )+λ).

Proof: See [28, Theorem 5.8].

Lemma 3: If
∣

∣

∣
T n
[Y |X]δ(x

n
1 )
∣

∣

∣
≥ 1, then

|V|n(H(Y |X)−ν) ≤
∣

∣

∣
T n
[Y |X]δ(x

n
1 )
∣

∣

∣
≤ |V|n(H(Y |X)+ν),

whereν → 0 asn → ∞ andδ → 0.

Proof: See [28, Theorem 5.9].

Lemma 4 (Berger’s Markov Lemma):Let (X,Y,Z) form a Markov chainX ↔ Y ↔ Z. Then for

sufficiently largen,

Pr[(Xn
1 , z

n
1 ) ∈ T n

[XZ]|X |δ|(Y
n
1 , zn1 ) ∈ T n

[Y Z]δ] > 1− δ
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for any δ > 0 and any realizationzn1 .

Proof: See [29, Lemma 4.1].

APPENDIX B

ALTERNATE PROOF OFTHEOREM 4

Proof of upper bound:Let J1 > J2 be any two values ofJ . Let V1 and V2 be the corresponding

auxiliary random variablesU that solve the optimization problem (1). Then by the successive refinability

of lossless coding [17], it follows thatV1 andV2 will satisfy the Markov chainV2 ↔ V1 ↔ X ↔ Y .

By the data processing inequality,

I(Y ;V2) ≤ I(Y ;V1)

H(V1|Y )−H(V2|Y ) ≤ H(V1)−H(V2).

By definition,

L∗(J1)− L∗(J2) = H(Y |V1) +H(V1)−H(Y |V2)−H(V2)

= H(V1|Y )−H(V2|Y ).

Therefore,

L∗(J1)− L∗(J2) ≤ H(V1)−H(V2) = J1 − J2

which implies
L∗(J1)− L∗(J2)

J1 − J2
≤ 1.

Proof of lower bound:We want to show thatH(V1|Y )−H(V2|Y ) ≥ 0. This property may be verified

using Yeung’s ITIP [28] after invoking the Markov chainV2 ↔ V1 ↔ X ↔ Y and the subrandomness

conditions,H(V1|X) = H(V2|X) = 0.
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