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Abstract

We study the secure lossy transmission of a vector Gaussian source to a legiti-

mate user in the presence of an eavesdropper, where both the legitimate user and the

eavesdropper have vector Gaussian side information. The aim of the transmitter is

to describe the source to the legitimate user in a way that the legitimate user can

reconstruct the source within a certain distortion level while the eavesdropper is kept

ignorant of the source as much as possible as measured by the equivocation. We ob-

tain an outer bound for the rate, equivocation and distortion region of this secure lossy

transmission problem. This outer bound is tight when the transmission rate constraint

is removed. In other words, we obtain the maximum equivocation at the eavesdrop-

per when the legitimate user needs to reconstruct the source within a fixed distortion

level while there is no constraint on the transmission rate. This characterization of the

maximum equivocation involves two auxiliary random variables. We show that a non-

trivial selection for both random variables may be necessary in general. The necessity

of two auxiliary random variables also implies that, in general, Wyner-Ziv coding is

suboptimal in the presence of an eavesdropper. In addition, we show that, even when

there is no rate constraint on the legitimate link, uncoded transmission (deterministic

or stochastic) is suboptimal; the presence of an eavesdropper necessitates the use of a

coded scheme to attain the maximum equivocation.

∗This work was supported by NSF Grants CCF 07-29127, CNS 09-64632, CCF 09-64645 and CCF 10-
18185.
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1 Introduction

Information theoretic secrecy was initiated by Wyner in [1], where he studied the secure

lossless transmission of a source over a degraded wiretap channel, and obtained the necessary

and sufficient conditions. Later, his result was generalized to arbitrary, i.e., not necessarily

degraded, wiretap channels in [2]. In recent years, information theoretic secrecy has gathered

a renewed interest, where mostly channel coding aspects of secure transmission is considered,

in other words, secure transmission of uniformly distributed messages is studied.

Secure source coding problem has been studied for both lossless and lossy reconstruction

cases in [3–16]. Secure lossless source coding problem is studied in [3–9]. The common theme

of these works is that the legitimate receiver wants to reconstruct the source in a lossless

fashion by using the information it gets from the transmitter in conjunction with its side

information, while the eavesdropper is being kept ignorant of the source as much as possible.

Secure lossy source coding problem is studied in [10–16]. In these works, unlike the ones

focusing on secure lossless source coding, the legitimate receiver does not want to reconstruct

the source in a lossless fashion, but within a distortion level.

The most relevant works to our work here are [15,16]. In [15], the author considers the se-

cure lossy transmission of a source over a degraded wiretap channel while both the legitimate

receiver and the eavesdropper have side information about the source. In [15], in addition

to the degradedness that the wiretap channel exhibits, the source and side information also

have a degradedness structure such that given the legitimate user’s side information, the

source and the eavesdropper’s side information are independent. For this setting, in [15], a

single-letter characterization of the distortion and equivocation region is provided. In par-

ticular, the optimality of a separation-based approach, i.e., the optimality of a code that

concatenates a rate-distortion code and a wiretap channel code, is shown. In [16], the set-

ting of [15] is partially generalized such that in [16], the source and side information do

not have any degradedness structure. On the other hand, as opposed to the noisy wiretap

channel of [15], in [16], the channel between the transmitter and receivers is assumed to be

noiseless. For this setting, in [16], a single-letter characterization of the rate, equivocation,

and distortion region is provided.

Here, we consider the setting of [16] for jointly Gaussian source and side information. In

particular, we consider the model where the transmitter has a vector Gaussian source which

is jointly Gaussian with the vector Gaussian side information of both the legitimate receiver

and the eavesdropper. In this model, the transmitter wants to convey information to the

legitimate user in a way that the legitimate user can reconstruct the source within a distor-

tion level while the eavesdropper is being kept ignorant of the source as much as possible

as measured by the equivocation. A single-letter characterization of the rate, equivocation,

and distortion region for this setting exists due to [16]. Although we are unable to evaluate

this single-letter characterization for the vector Gaussian source and side information case to

obtain the corresponding rate, equivocation, distortion region explicitly, we obtain an outer
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bound for this region. We obtain this outer bound by optimizing the rate and equivocation

constraints separately. We note that a joint optimization of the rate and equivocation con-

straints for a fixed distortion level would yield the exact achievable rate and equivocation

region for this fixed distortion level. Thus, optimizing the rate and equivocation constraints

separately yields a larger region, i.e., an outer bound. We show that this outer bound is

tight when we remove the rate constraint at the transmitter. In other words, we obtain the

maximum achievable equivocation at the eavesdropper when the legitimate user needs to

reconstruct the vector Gaussian source within a fixed distortion while there is no constraint

on the transmission rate.

We note some implications of this result. First, we note that since there is no rate

constraint on the transmitter, it can use an uncoded scheme to describe the source to the

legitimate user, and, indeed, it can use any instantaneous (deterministic or stochastic) en-

coding scheme for this purpose. However, we show through an example that even when

there is no rate constraint on the transmitter, to attain the maximum equivocation at the

eavesdropper, in general, the transmitter needs to use a coded scheme. Hence, the presence

of an eavesdropper necessitates the use of a coded scheme even in the absence of a rate

constraint on the transmitter. Second, we note that the maximum equivocation expression

has two different covariance matrices originating from the presence of two auxiliary random

variables in the single-letter expression. We show through another example that both of

these covariance matrices, in other words, both of these two auxiliary random variables, are

needed in general to attain the maximum equivocation at the eavesdropper. The necessity of

two covariance matrices, and hence two auxiliary random variables, implies that, in general,

Wyner-Ziv coding scheme [17] is not sufficient to attain the maximum equivocation at the

eavesdropper.

2 Secure Lossy Source Coding

Here, we describe the secure lossy source coding problem and state the existing results. Let

{(Xi, Yi, Zi)}
n
i=1 denote i.i.d. tuples drawn from a distribution p(x, y, z). The transmitter,

the legitimate user and the eavesdropper observe Xn ∈ X n, Y n ∈ Yn, and Zn ∈ Zn, respec-

tively. The transmitter wants to convey information to the legitimate user in a way that

the legitimate user can reconstruct the source Xn within a certain distortion, and mean-

while the eavesdropper is kept ignorant of the source Xn as much as possible as measured

by the equivocation. We note that if there was no eavesdropper, this setting would reduce

to the Wyner-Ziv problem [17], for which a single-letter characterization for the minimum

transmission rate of the transmitter for each distortion level exists.

The distortion of the reconstructed sequence at the legitimate user is measured by the

function dn(Xn, X̂n) where X̂n ∈ X̂ n denotes the legitimate user’s reconstruction of the
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source Xn. We consider the function dn(Xn, X̂n) that has the following form

dn(Xn, X̂n) =
1

n

n
∑

i=1

d(Xi, X̂i) (1)

where d(a, b) is a non-negative finite-valued function. The confusion of the eavesdropper is

measured by the following equivocation term

1

n
H(Xn|Zn,M) (2)

where M ∈ M, which is a function of the source Xn, denotes the signal sent by the trans-

mitter.

An (n,R) code for secure lossy source coding consists of an encoding function fn : X n →

M = {1, . . . , 2nR} at the transmitter and a decoding function at the legitimate user gn :

M×Yn → X̂ n. A rate, equivocation and distortion tuple (R,Re, D) is achievable if there

exists an (n,R) code satisfying

lim
n→∞

1

n
H(Xn|Zn,M) ≥ Re (3)

lim
n→∞

E[d(Xn, X̂n)] ≤ D (4)

The set of all achievable (R,Re, D) tuples is denoted by R∗ which is given by the following

theorem.

Theorem 1 ([16, Theorem 1]) (R,Re, D) ∈ R∗ iff

R ≥ I(V ;X|Y ) (5)

Re ≤ H(X|V, Y ) + I(X ; Y |U)− I(X ;Z|U) (6)

D ≥ E[d(X, X̂(V, Y ))] (7)

for some U, V satisfying the following Markov chain

U → V → X → Y, Z (8)

and a function X̂(V, Y ).

The achievable scheme that attains the region R∗ has the same spirit as the Wyner-Ziv

scheme [17] in the sense that both achievable schemes use binning to exploit the side informa-

tion at the legitimate user, and consequently, to reduce the rate requirement. The difference

of the achievable scheme that attains R∗ comes from the additional binning necessitated by

the presence of an eavesdropper. In particular, the transmitter generates sequences (Un, V n)

and bins both sequences. The transmitter sends these two bin indices. Using these bin in-

4



dices, the legitimate user identifies the right (Un, V n) sequences, and reconstructs Xn within

the required distortion. On the other hand, using the bin indices of (Un, V n), the eaves-

dropper identifies only the right Un sequence, and consequently, U does not contribute to

the equivocation, see (6)1. Indeed, this achievable scheme can be viewed as if it is using a

rate-splitting technique to send the message M , since M has two coordinates, one for the

bin index of Un, and one for the bin index of V n. This perspective reveals the similarity of

the achievable scheme that attains R∗ and the one that attains the capacity-equivocation

region of the wiretap channel [2] where also rate-splitting is used. In particular, in the latter

case, the message W is divided into two parts Wne,We such that Wne is sent by the sequence

Un and We is sent by the sequence V n. The eavesdropper decodes Wne whereas the other

message We contributes to the secrecy.

We note that Theorem 1 holds for continuous (Xn, Y n, Zn) by replacing the discrete

entropy term H(X|V, Y ) with the differential entropy term h(X|V, Y ). To avoid the neg-

ative equivocation that might arise because of the use of differential entropy, we replace

equivocation with the mutual information leakage to the eavesdropper Ie defined by

lim
n→∞

1

n
I(Xn;Zn,M) (9)

Once we are interested in the mutual information leakage to the eavesdropper, a rate, mutual

information leakage, and distortion (R, Ie, D) tuple is said to be achievable if there exists an

(n,R) code such that

lim
n→∞

1

n
I(Xn;Zn,M) ≤ Ie (10)

lim
n→∞

E[d(Xn, X̂n)] ≤ D (11)

The set of all achievable (R, Ie, D) tuples is denoted by R. Using Theorem 1, the region R

can be stated as follows.

Theorem 2 ([16]) (R, Ie, D) ∈ R iff

R ≥ I(V ;X|Y ) (12)

Ie ≥ I(V ;X)− I(V ; Y |U) + I(X ;Z|U) (13)

D ≥ E[d(X, X̂(V, Y ))] (14)

for some U, V satisfying the following Markov chain

U → V → X → Y, Z (15)

1The fact that the eavesdropper can decode Un sequence can be obtained by observing that for a (U, V )
selection, if I(U ;Y ) ≥ I(U ;Z), there is no loss of optimality of setting U = φ which will yield a larger region.
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and a function X̂(V, Y ).

3 Vector Gaussian Sources

Now we study the secure lossy source coding problem for jointly Gaussian {(Xi,Yi,Zi)}
n
i=1

where the tuples {(Xi,Yi,Zi)}
n
i=1 are independent across time, i.e., across the index i, and

each tuple is drawn from the same jointly Gaussian distribution p(X,Y,Z). In other words,

we consider the case where Xi is a zero-mean Gaussian random vector with covariance matrix

KX ≻ 0, and the side information at the legitimate user Yi and the eavesdropper Zi are

jointly Gaussian with the source Xi. In particular, we assume that Yi,Zi have the following

form

Yi = Xi +NY,i (16)

Zi = Xi +NZ,i (17)

where NY,i and NZ,i are independent zero-mean Gaussian random vectors with covariance

matrices ΣY ≻ 0 and ΣZ ≻ 0, respectively, and (NY,i,NZ,i) and Xi are independent. We

note that the side information given by (16)-(17) are not in the most general form. In the

most general case, we have

Yi = HYXi +NY,i (18)

Zi = HZXi +NZ,i (19)

for someHY ,HZ matrices. However, until Section 5, we consider the form of side information

given by (16)-(17), and obtain our results for this model. In Section 5, we generalize our

results to the most general case given by (18)-(19). We note that since the rate, information

leakage and distortion region is invariant with respect to the correlation between NY,i and

NZ,i, the correlation between NY,i and NZ,i is immaterial.

The distortion of the reconstructed sequence {X̂i}
n
i=1 is measured by the mean square

error matrix:

E
[

(

Xi − X̂i

)(

Xi − X̂i

)⊤
]

(20)

Hence, the distortion constraint is represented by a positive semi-definite matrix D, which

is achievable if there is an (n,R) code such that

1

n

n
∑

i=1

E
[

(

Xi − X̂i

)(

Xi − X̂i

)⊤
]

� D (21)

Throughout the paper, we assume that 0 � D � KX|Y . Since the mean square error is
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minimized by the minimum mean square error (MMSE) estimator which is given by the

conditional mean, we assume that the legitimate user applies this optimal estimator, i.e.,

the legitimate user selects its reconstruction function {X̂i}
n
i=1 as

X̂i = E [Xi|Y
n, fn(X

n)] (22)

Once the estimator of the legitimate user is set as (22), using Theorem 2, a single-letter

description of the region R for a vector Gaussian source can be given as follows.

Theorem 3 (R, Ie,D) ∈ R iff

R ≥ I(V ;X|Y) (23)

Ie ≥ I(V ;X)− I(V ;Y|U) + I(X;Z|U) (24)

D � KX|V Y (25)

for some U, V satisfying the following Markov chain

U → V → X → Y,Z (26)

We also define the region R(D) as the union of the (R, Ie) pairs that are achievable when the

distortion constraint matrix is set to D. Our main result is an outer bound for the region

R(D), hence for the region R.

Theorem 4 When D � KX|Y , we have

R(D) ⊆ Ro(D) (27)

where Ro(D) is given by the union of (R, Ie) that satisfy

R ≥
1

2
log

|KX|Y |

|D|
=

1

2
log

|KX |

|F(D)|
−

1

2
log

|KX +ΣY |

|F(D) +ΣY |
(28)

Ie ≥ min
0�KX|V �KX|U�KX

KX|V �F(D)

1

2
log

|KX |

|KX|V |
−

1

2
log

|KX|U +ΣY |

|KX|V +ΣY |
+

1

2
log

|KX|U +ΣZ |

|ΣZ|
(29)

and F(D) = ΣY (ΣY −D)−1ΣY −ΣY .

We will prove Theorem 4 in Section 4. In the remainder of this section, we provide interpre-

tations and discuss some implications of Theorem 4.

The outer bound in Theorem 4 is obtained by minimizing the constraints on R and Ie

individually, i.e., the rate lower bound in (28) is obtained by minimizing the rate constraint

in (23) and the mutual information leakage lower bound in (29) is obtained by minimizing

the mutual information leakage constraint in (24) separately. However, to characterize the
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rate and mutual information leakage region R(D), one needs to minimize the rate constraint

in (23) and the mutual leakage information constraint in (24) jointly, not separately. In

particular, since the region R(D) is convex in the pairs (R, Ie) as per a time-sharing argu-

ment, joint optimization of the rate constraint in (23) and the mutual information leakage

constraint in (24) can be carried out by considering the tangent lines to the region R(D),

i.e., by solving the following optimization problem

L(µ1, µ2) = min
(R,Ie)∈R(D)

µ1R + µ2Ie (30)

= min
U→V→X→Y,Z

KX|V Y �D

µ1 [I(V ;X)− I(V ;Y)] + µ2 [I(V ;X)− I(V ;Y|U) + I(X;Z|U)]

(31)

for all values of µ1, µ2, where µj ∈ [0,∞), j = 1, 2. As of now, we have been unable

to solve the optimization problem L(µ1, µ2) for all values of (µ1, µ2). However, as stated

in Theorem 4, we solve the optimization problems L(0, µ2) and L(µ1, 0) by showing the

optimality of jointly Gaussian (U, V,X) to evaluate the corresponding cost functions. In

other words, our outer bound in Theorem 4 can be written as follows.

R ≥ L(1, 0) (32)

Ie ≥ L(0, 1) (33)

We note that the constraint in (28), and hence L(1, 0), gives us the Wyner-Ziv rate distortion

function [17] for the vector Gaussian sources. Moreover, we note that L(0, 1) gives us the

minimum mutual information leakage to the eavesdropper when the legitimate user wants to

reconstruct the source within a fixed distortion constraint D while there is no concern on the

transmission rate R. Denoting the minimum mutual information leakage to the eavesdropper

when the legitimate user needs to reconstruct the source within a fixed distortion constraint

D by Imin
e (D), the corresponding result can be stated as follows.

Theorem 5 When D � KX|Y , we have

Imin
e (D) = min

0�KX|V �KX|U�KX

KX|V �F(D)

1

2
log

|KX |

|KX|V |
−

1

2
log

|KX|U +ΣY |

|KX|V +ΣY |
+

1

2
log

|KX|U +ΣZ|

|ΣZ|
(34)

where F(D) = ΣY (ΣY −D)−1ΣY −ΣY .

Theorem 5 implies that if the transmitter’s aim is to minimize the mutual information

leakage to the eavesdropper without concerning itself with the rate it costs as long as the

legitimate receiver is able to reconstruct the source within a distortion constraint D, the use

of jointly Gaussian (U, V,X) is optimal. Since in Theorem 5, there is no rate constraint,

one natural question to ask is whether Imin
e (D) can be achieved by an uncoded transmission
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scheme. Now, we address this question in a broader context by letting the encoder use any

instantaneous encoding function in the form of gi(Xi) where gi(·) can be a deterministic or

a stochastic mapping. When gi(·) is chosen to be stochastic, we assume it to be independent

across time. We note that the uncoded transmission can be obtained from instantaneous

encoding by selecting gi(·) to be a linear function. Similarly, uncoded transmission with

artificial noise can be obtained from instantaneous encoding by selecting gi(x) = αx + N ,

where N denotes the noise. Hence, if the encoder uses an instantaneous encoding scheme,

the transmitted signal is given by M = [ g1(X1), . . . , gn(Xn) ]. Let I
ins
e (D) be the minimum

information leakage to the eavesdropper when the legitimate user is able to reconstruct the

source with a distortion constraint D while the encoder uses an instantaneous encoding. The

following example demonstrates that, in general, Imin
e (D) cannot be achieved by instanta-

neous encoding.

Example 1 Consider the scalar case, where the side information at the legitimate user and

the eavesdropper are given as follows

Yi = Xi +Ny,i (35)

Zi = Xi +Nz,i (36)

where Xi, Ny,i and Nz,i are zero-mean Gaussian random variables with variances σ2
x, σ

2
y and

σ2
z , respectively. {Xi}

n
i=1, {Ny,i}

n
i=1 and {Nz,i}

n
i=1 are independent. We assume that σ2

y < σ2
z ,

which implies that we can assume X → Y → Z since the scalar model in (35)-(36) is

statistically degraded, or in other words, the correlation between Ny,i and Nz,i does not affect

the achievable (R, Ie, D) region. Using Theorem 3, Imin
e (D) for the scalar Gaussian channel

under consideration can be found as follows

Imin
e (D) = min

U→V→X→Y→Z
σ2
x|vy

≤D

I(V ;X)− I(V ; Y |U) + I(X ;Z|U) (37)

= min
V→X→Y→Z

σ2
x|vy

≤D

I(V ;X)− I(V ; Y ) + I(X ;Z) (38)

where in (38), we used the Markov chain U → V → X → Y → Z.

As shown in Appendix A, the information leakage to the eavesdropper when the encoder

uses an instantaneous mapping is given by

I inse (D) = min
V→X→Y→Z

σ2
x|vy

≤D

I(X ;V, Z) (39)

= min
V→X→Y→Z

σ2
x|vy

≤D

I(V ;X)− I(V ;Z) + I(X ;Z) (40)

where (40) is obtained by using the Markov chain V → X → Z.
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Using (38) and (40), we have

I inse (D)− Imin
e (D) = min

V→X→Y→Z
σ2
x|vy

≤D

I(V ;X)− I(V ;Z) + I(X ;Z)

− min
V→X→Y→Z

σ2
x|vy

≤D

I(V ;X)− I(V ; Y ) + I(X ;Z) (41)

≥ min
V→X→Y→Z

σ2
x|vy

≤D

I(V ; Y )− I(V ;Z) (42)

= min
V→X→Y→Z

σ2
x|vy

≤D

I(V ; Y |Z) (43)

where (43) comes from the Markov chain V → Y → Z. Next, we note the following lemma.

Lemma 1 For jointly Gaussian (X, Y, Z) satisfying the Markov chain X → Y → Z and

Pr[Y = Z] 6= 1, if D < σ2
x|y, we have

min
V→X→Y→Z

σ2
x|vy

≤D

I(V ; Y |Z) > 0 (44)

The proof of Lemma 1 can be found in Appendix B. The proof of Lemma 1 starts with the

observation that (44) is zero iff we have the Markov chain V → Z → Y . On the other hand,

since we already have the Markov chain V → X → Y → Z, and Y and Z are not identical,

we show in Appendix B that the Markov chain V → Z → Y is possible iff V and X are

independent. However, if D < σ2
x|y, any V that is independent of X is not feasible. Hence,

Lemma 1 follows. Lemma 1 implies that in general, we have I inse (D) 6= Imin
e (D), i.e., Imin

e (D)

cannot be achieved by instantaneous encoding.

This example shows that an uncoded transmission is not optimal even when there is no rate

constraint. This is due to the presence of an eavesdropper; the presence of an eavesdropper

necessitates the use of a coded scheme.

Another question that Theorem 5 brings about is whether the minimum in (34) is achieved

by a non-trivial KX|U . By a trivial selection for KX|U we mean either KX|U = KX or

KX|U = KX|V . The former corresponds to the selection U = φ and the latter corresponds

to the selection U = V . We note that although (34) is monotonically decreasing in KX|V in

the positive semi-definite sense, (34) is neither monotonically increasing nor monotonically

decreasing inKX|U in the positive semi-definite sense. Hence, due to this lack of monotonicity

of (34) in KX|U , in general, we expect that both U 6= φ and U 6= V may be necessary to

attain the minimum in (34). The following example demonstrates that in general U 6= φ and

U 6= V may be necessary.
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Example 2 Consider the Gaussian source X = [ X1 X2 ]⊤ where X1 and X2 are indepen-

dent. The side information at the legitimate receiver and the eavesdropper are given by

Yℓ = Xℓ +NY,ℓ, ℓ = 1, 2 (45)

Zℓ = Xℓ +NZ,ℓ, ℓ = 1, 2 (46)

where NY,ℓ and NZ,ℓ are zero-mean Gaussian random variables with variances σ2
Y,ℓ and σ2

Z,ℓ,

respectively. Moreover, NY,1 and NY,2 are independent, and also so are NZ,1 and NZ,2. We

assume that noise variances satisfy

σ2
Y,1 < σ2

Z,1 (47)

σ2
Z,2 < σ2

Y,2 (48)

which, in view of the fact that correlation between the noise at the legitimate receiver and the

noise at the eavesdropper does not affect the rate, distortion and information leakage region,

lets us assume the following Markov chains

X1 → Y1 → Z1 (49)

X2 → Z2 → Y2 (50)

Moreover, we assume that the distortion constraint D is a diagonal matrix with diagonal

entries D1 and D2. In this case, the minimum information leakage is given by

Imin
e (D1, D2) = min

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1; Y1) + I(X1;Z1)

+ min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (51)

whose proof can be found in Appendix C. The minimum information leakage in (51) corre-

sponds the selections U = (φ, V2) and V = (V1, V2), where (U1, V1) and (U2, V2) are indepen-

dent. This selection of (U, V ) corresponds to neither U = φ nor U = V .

Next, we obtain the minimum information leakage that arises when we set either U = φ

or U = V , and show that the minimum information leakage arising from these selections

are strictly larger than the minimum information leakage in (51), which will imply the sub-

optimality of U = φ and U = V . When we set U = φ, the minimum information leakage is
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given by

Imin−φ
e (D1, D2) = min

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1; Y1) + I(X1;Z1)

+ min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2; Y2) + I(X2;Z2) (52)

whose proof is given in Appendix D. When we set U = V , the minimum information leakage

is given by

Imin−S
e (D1, D2) = min

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1) + I(X1;Z1|V1)

+ min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (53)

whose proof can be found in Appendix D.

Now, we compare the minimum information leakage in (51) with (52) and (53) to show

that the selections U = φ and U = V are sub-optimal in general. Using (51) and (52), we

get

Imin−φ
e (D1, D2)− Imin

e (D1, D2) = min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2; Y2) + I(X2;Z2)

− min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (54)

≥ min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(X2;Z2)− I(X2;Z2|V2)− I(V2; Y2) (55)

= min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;Z2)− I(V2; Y2) (56)

= min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;Z2|Y2) (57)

> 0 (58)

where (56)-(57) follow from the Markov chain

V2 → X2 → Z2 → Y2 (59)

and (58) comes from Lemma 1. Thus, in general, we have Imin−φ
e (D1, D2) 6= Imin

e (D1, D2),

or in other words, in general, U = φ is sub-optimal.
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Next, we consider the selection U = V . Using (51) and (53), we have

Imin−S
e (D1, D2)− Imin

e (D1, D2) = min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1) + I(X1;Z1|V1)

− min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1; Y1) + I(X1;Z1) (60)

≥ min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(X1;Z1|V1) + I(V1; Y1)− I(X1;Z1) (61)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1; Y1)− I(V1;Z1) (62)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1; Y1|Z1) (63)

> 0 (64)

where (62)-(63) follow from the Markov chain

V1 → X1 → Y1 → Z1 (65)

and (64) comes from Lemma 1. Thus, in general, we have Imin−S
e (D1, D2) 6= Imin

e (D1, D2),

or in other words, in general, U = V is sub-optimal.

Example 2 shows that, in general, we might need two covariance matrices, and hence two

different auxiliary random variables, to attain the minimum information leakage. Indeed, if

we have either U = V or U = φ, the corresponding achievable scheme is identical to the

Wyner-Ziv scheme [17]. Hence, the necessity of two different auxiliary random variables

implies that, in general, Wyner-Ziv scheme [17] is suboptimal.

4 Proof of Theorem 4

We now provide the proof of Theorem 4. As mentioned in the previous section, this outer

bound is obtained by minimizing the rate constraint in (23) and the mutual information

13



leakage constraint in (24) separately. We first consider the rate constraint in (23) as follows

R ≥ L(1, 0) (66)

= min
V→X→Y,Z
KX|V Y �D

I(V ;X|Y) (67)

= min
V→X→Y,Z
KX|V Y �D

h(X|Y)− h(X|V,Y) (68)

= min
V→X→Y,Z
KX|V Y �D

1

2
log |(2πe)KX|Y | − h(X|V,Y) (69)

= min
KX|V Y �D

1

2
log

|KX|Y |

|KX|V Y |
(70)

=
1

2
log

|KX|Y |

|D|
(71)

where (70) comes from the fact that h(X|V,Y) is maximized by jointly Gaussian (V,X,Y),

and (71) comes from the monotonicity of | · | in positive semi-definite matrices. Now we

introduce the following lemma.

Lemma 2

1

2
log

|KX|Y |

|D|
=

1

2
log

|KX |

|F(D)|
−

1

2
log

|KX +ΣY |

|F(D) +ΣY |
(72)

The proof of Lemma 2 is given in Appendix E. Lemma 2 and (71) imply (28).

Next, we consider the mutual information leakage constraint in (24) as follows

Ie ≥ L(0, 1) = min
U→V→X→Y,Z

KX|V Y �D

I(V ;X)− I(V ;Y|U) + I(X;Z|U) (73)

We note that the cost function of L(0, 1) can be rewritten as follows

C(L) = I(V ;X)− I(V ;Y) + I(U ;Y) + I(X;Z|U) (74)

= I(V ;X|Y) + [I(U ;Y) + I(X;Z|U)] (75)

where (74) comes from the Markov chain U → V → Y and (75) comes from the Markov

chain V → X → Y. We note that the first term in (75) is minimized by a jointly Gaussian

(V,X) as we already showed in obtaining the lower bound for the rate given by (28) above

in (66)-(71). On the other hand, the remaining term of (75) in the bracket is maximized by

a jointly Gaussian (U,X) as shown in [18]. Thus, a tension between these two terms arises

if (U, V,X) is selected to be jointly Gaussian. In spite of this tension, we will still show that

a jointly Gaussian (U, V,X) is the minimizer of L(0, 1). Instead of directly showing this,

we first characterize the minimum mutual information leakage when (U, V,X) is restricted
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to be jointly Gaussian, and show that this cannot be attained by any other distribution for

(U, V,X). We note that any jointly Gaussian (U, V,X) can be written as

V = AVX+NV (76)

U = AUX+NU (77)

where NV ,NU are zero-mean Gaussian random vectors with covariance matrices ΣV ,ΣU ,

respectively. Moreover, NV ,NU are independent of X,Y,Z, but can be dependent on each

other. Before characterizing the minimum mutual information leakage when (U, V,X) is

restricted to be jointly Gaussian, we introduce the following lemma.

Lemma 3 When D � KX|Y and V is Gaussian, we have the following facts.

• ΣY −D ≻ 0, i.e., ΣY −D is positive definite, and hence, non-singular.

• We have the following equivalence:

KX|V Y � D ⇐⇒ KX|V � F(D) (78)

The proof of Lemma 3 is given in Appendix F. Using Lemma 3, the minimum mutual

information leakage to the eavesdropper when (U, V,X) is restricted to be jointly Gaussian

can be written as follows:

LG = min
U→V→X→Y,Z

(U,V,X) is jointly Gaussian
KX|V �F(D)

I(V ;X)− I(V ;Y|U) + I(X;Z|U) (79)

We note that the minimization in (79) can be written as a minimization of the cost function

in (79) over all possible AU ,AV ,ΣU ,ΣV matrices by expressing KX|U and KX|V in terms of

AU ,AV ,ΣU ,ΣV . Instead of considering this tedious optimization problem, we consider the

following one:

L̄G = min
0�KX|V �KX|U�KX

KX|V �F(D)

1

2
log

|KX |

|KX|V |
−

1

2
log

|KX|U +ΣY |

|KX|V +ΣY |
+

1

2
log

|KX|U +ΣZ |

|ΣZ|
(80)

We note that due to the Markov chain U → V → X, we always have KX|V � KX|U . A

proof of this fact is given in Appendix G. Besides this inequality, KX|V and KX|U might

have further interdependencies which are not considered in the optimization problem in (80).

Since neglecting these further interdependencies among KX|U and KX|V enlarges the feasible

set of the optimization problem in (79), we have, in general,

LG ≥ L̄G (81)
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On the other hand, it can be shown that the value of L̄G can be obtained by some jointly

Gaussian (U, V,X) satisfying the Markov chain U → V → X, as stated in the following

lemma.

Lemma 4

LG = L̄G (82)

The proof of Lemma 4 is given in Appendix H.

Now we study the optimization problem L̄G in (80) in more detail. Let K∗
X|V and K∗

X|U

be the minimizers for the optimization problem L̄G. They need to satisfy the following KKT

conditions.

Lemma 5 If K∗
X|V and K∗

X|U are the minimizers for the optimization problem L̄G, they need

to satisfy

(K∗
X|V +ΣY )

−1 +MU +MD = (K∗
X|V )

−1 (83)

(K∗
X|U +ΣZ)

−1 +MX = (K∗
X|U +ΣY )

−1 +MU (84)

MU(K
∗
X|U −K∗

X|V ) = (K∗
X|U −K∗

X|V )MU = 0 (85)

MD(F(D)−K∗
X|V ) = (F(D)−K∗

X|V )MD = 0 (86)

MX(KX −K∗
X|U) = (KX −K∗

X|U)MX = 0 (87)

for some positive semi-definite matrices MU ,MD,MX .

The proof of Lemma 5 is given in Appendix I.

Next, we use channel enhancement [19]. In particular, we enhance the legitimate user’s

side information as follows.

(K∗
X|U + Σ̃Y )

−1 = (K∗
X|U +ΣY )

−1 +MU (88)

This new covariance matrix Σ̃Y has some useful properties which are listed in the following

lemma.

Lemma 6 We have the following facts.

• 0 � Σ̃Y

• Σ̃Y � ΣY , Σ̃Y � ΣZ

• (K∗
X|V + Σ̃Y )

−1 = (K∗
X|V +ΣY )

−1 +MU

• (K∗
X|U + Σ̃Y )

−1(K∗
X|V + Σ̃Y ) = (K∗

X|U +ΣY )
−1(K∗

X|V +ΣY )

• (K∗
X|U + Σ̃Y )

−1(KX + Σ̃Y ) = (K∗
X|U +ΣZ)

−1(KX +ΣZ)
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• (K∗
X|V + Σ̃Y )

−1(F(D) + Σ̃Y ) = (K∗
X|V )

−1F(D)

The proof of Lemma 6 is given in Appendix J. Using this new covariance Σ̃Y , we define the

enhanced side information at the legitimate user Ỹ as follows

Ỹ = X+ ÑY (89)

where ÑY is a zero-mean Gaussian random vector with covariance matrix Σ̃Y . Since we

have Σ̃Y � ΣY and Σ̃Y � ΣZ as stated in the second statement of Lemma 6, without loss

of generality, we can assume that the following Markov chain exists.

X → Ỹ → Y,Z (90)

Assuming that the Markov chain in (90) exists does not incur any loss of generality because

the rate, mutual information leakage and distortion region R depends only on the condi-

tional marginal distributions p(Y|X), p(Z|X) but not on the conditional joint distribution

p(Y,Z|X). Now, we define the following optimization problem:

L̄ = min
U→V→X→Ỹ→Y,Z

KX|V Y �D

I(V ;X)− I(V ; Ỹ|U) + I(X;Z|U) (91)

We note that we have I(V ;Y|U) ≤ I(V ; Ỹ|U) due to the Markov chain in (90), which leads

to the following fact:

LG = L̄G ≥ L(0, 1) ≥ L̄ (92)

Moreover, unlike the original optimization problem L(0, 1) in (73), we can find the minimizer

of the new optimization problem L̄ explicitly, as stated in the following lemma.

Lemma 7

L̄ =
1

2
log

|KX |

|F(D)|
−

1

2
log

|KX + Σ̃Y |

|F(D) + Σ̃Y |
+

1

2
log

|KX +ΣZ|

|ΣZ|
(93)

We note that Lemma 7 implies that U = φ and a Gaussian V leading to KX|V = F(D) is the

minimizer of the optimization problem L̄. The proof of Lemma 7 is given in Appendix K.
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Next, we show that indeed LG = L̄G = L̄ which, in view of (92), will imply L(0, 1) =

L̄ = L̄G = LG. To this end, using Lemma 7, we have

L̄ =
1

2
log

|KX |

|F(D)|
−

1

2
log

|KX + Σ̃Y |

|F(D) + Σ̃Y |
+

1

2
log

|KX +ΣZ |

|ΣZ|
(94)

=
1

2
log

|KX |

|K∗
X|V |

−
1

2
log

|KX + Σ̃Y |

|K∗
X|V + Σ̃Y |

+
1

2
log

|KX +ΣZ |

|ΣZ|
(95)

=
1

2
log

|KX |

|K∗
X|V |

−
1

2
log

|K∗
X|U + Σ̃Y |

|K∗
X|V + Σ̃Y |

+
1

2
log

|K∗
X|U +ΣZ |

|ΣZ|
(96)

=
1

2
log

|KX |

|K∗
X|V |

−
1

2
log

|K∗
X|U +ΣY |

|K∗
X|V +ΣY |

+
1

2
log

|K∗
X|U +ΣZ |

|ΣZ|
(97)

= L̄G = LG (98)

where (95) comes from the last statement of Lemma 6, (96) follows from the fifth statement

of Lemma 6, and (97) comes from the fourth statement of Lemma 6. In view of (92),

(98) implies that L(0, 1) = LG; completing the proof of Theorem 4 as well as the proof of

Theorem 5 due to the fact that Imin
e = L(0, 1).

5 General Case

We now consider the general case where the side information are given by

Y = HYX+NY (99)

Z = HZX+NZ (100)

where without loss of generality, we can assume that the covariance matrices of Gaussian vec-

tors NY and NZ are given by identity matrices. We denote the singular value decomposition

of HY and HZ by HY = QYΛYR
⊤
Y and HZ = QZΛZR

⊤
Z , respectively. Since any invertible

transformation applied to the side information does not change the rate, information leak-

age, and distortion region, the side information given by (99)-(100) and the side information

obtained by multiplying (99)-(100) by Q⊤
Y ,Q

⊤
Z , respectively, yield the same rate, information

leakage and distortion region. In other words, the side information given by (99)-(100) and

the side information given by

Ȳ = ΛYR
⊤
YX+ N̄Y (101)

Z̄ = ΛZR
⊤
ZX+ N̄Z (102)

yield the same rate, information leakage and distortion region, where the covariance matrices

of N̄Y , N̄Z are given by identity matrices. Next, we claim that there is no loss of generality
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to assume that the side information Ȳ and Z̄ have the same length as the source X. To

this end, assume that the length of Ȳ is smaller than the length of X. In this case, simply,

we can concatenate Ȳ with some zero vector to ensure that both Ȳ and X have the same

length. Next, assume that the length of Ȳ is larger than the length of X. In this case, ΛY

will definitely have at least length(Ȳ) − length(X) diagonal elements which are zero, and

hence the corresponding entries in Ȳ will come from only the noise. Since noise components

are independent, dropping these elements of Ȳ does not change the rate, information leakage

and distortion region. Thus, without loss of generality, we can assume that length(Ȳ) =

length(X), and hence without loss of generality, we can assume that ΛY is a square matrix.

The same argument applies to the eavesdropper’s side information, and hence, without loss

of generality, we can also assume that ΛZ is a square matrix. Next, we define the following

side information

Ȳα = (ΛY + αI)R⊤
YX+ N̄Y (103)

Z̄α = (ΛZ + αI)R⊤
ZX+ N̄Z (104)

where α > 0. We note that (ΛY + αI) and (ΛY + αI) are invertible matrices. Since

multiplying the side information in (103)-(100) by some invertible matrices does not change

the rate, information leakage and distortion region, the side information in (103)-(104) and

the following side information

¯̄Yα = X+ N̄Y,α (105)

¯̄Zα = X+ N̄Z,α (106)

have the same rate, information leakage and distortion region, where the covariance matrices

of N̄Y,α and N̄Z,α are given by

ΣY,α = RY (ΛY + αI)−2R⊤
Y (107)

ΣZ,α = RZ(ΛZ + αI)−2R⊤
Z (108)

respectively. For a given distortion constraint D, we denote the rate and information leakage

region for the side information model given in (99)-(100) by Ro(D), where the subscript o

stands for the “original system”, and for the side information model given in (105)-(106) by

Rα(D). We have the following relationship between Ro(D) and Rα(D).

Lemma 8

Ro(D) ⊆ lim
α→0

Rα(D) (109)

The proof of Lemma 8 is given in Appendix L. Next, using Theorem 4, we obtain an outer

bound for the region limα→0Rα(D), where this outer bound also serves as an outer bound
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for the region Ro(D) due to Lemma 8. The corresponding result is stated in the following

theorem.

Theorem 6 If D � KX|Y , any (R, Ie) ∈ Ro(D) satisfies

R ≥
1

2
log

|KX|Y |

|D|
=

1

2
log

|KX |

|Fo(D)|
−

1

2
log

|HYKXH
⊤
Y + I|

|HYFo(D)H⊤
Y + I|

(110)

Ie ≥ min
0�KX|V �KX|U�KX

KX|V �Fo(D)

1

2
log

|KX |

|KX|V |
−

1

2
log

|HYKX|UH
⊤
Y + I|

|HYKX|VH
⊤
Y + I|

+
1

2
log |HYKX|UH

⊤
Y + I|

(111)

where Fo(D) = (D−1 −H⊤
YHY )

−1.

The proof of Theorem 6 is given in Appendix M. We prove Theorem 6 in two steps. In

the first step, by using Theorem 4, we obtain an outer bound for the region Rα(D), and in

the second step, we obtain the limit of this outer bound as α → 0. As the outer bound in

Theorem 6 basically comes from the outer bound in Theorem 4, all our previous comments

and remarks about Theorem 4 are also valid for the outer bound in Theorem 6. Similar to

Theorem 4, Theorem 6 also provides the minimum information leakage to the eavesdrop-

per when the rate constraint on the transmitter is removed. Denoting the corresponding

minimum information leakage by Imin
e (D), we have the following theorem.

Theorem 7 If D � KX|Y , we have

Imin
e (D) ≥ min

0�KX|V �KX|U�KX

KX|V �Fo(D)

1

2
log

|KX|

|KX|V |
−

1

2
log

|HYKX|UH
⊤
Y + I|

|HYKX|VH
⊤
Y + I|

+
1

2
log |HYKX|UH

⊤
Y + I|

(112)

where Fo(D) = (D−1 −H⊤
YHY )

−1.

As Theorem 7 basically comes from Theorem 5, all our previous comments and remarks

about Theorem 5 are also valid for Theorem 7.

6 Conclusions

In this paper, we study secure lossy source coding for vector Gaussian sources, where the

transmitter sends information about the source in a way that the legitimate user can re-

construct the source within a distortion level by using its side information. Meanwhile, the

transmitter wants to keep the mutual information leakage to the eavesdropper to a minimum,

where the eavesdropper also has a side information about the source. We obtain an outer

bound for the achievable rate, mutual information leakage, and distortion region. Moreover,
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we obtain the minimum mutual information leakage to the eavesdropper when the legitimate

user needs to reconstruct the source within a certain distortion while there is no constraint

on the transmission rate.

Appendices

A Proof of (39)

We first define the following function

R(D) = min
V→X→Y,Z
σ2
X|V Y

≤D

I(X ;V, Z) (113)

which is monotonically decreasing, continuous and convex in D. Next, we note that when an

instantaneous encoding scheme is used, the minimum-mean-square-error estimator is given

by

X̂i = E [Xi|g1(X1), . . . , gn(Xn), Y
n] (114)

= E [Xi|gi(Xi), Yi] (115)

where (115) comes from the independence of (Xi, gi(Xi), Yi) across time. Consequently, when

an instantaneous encoding scheme is used, the minimum-mean-square-error is given by

σ2
Xi|gi(Xi)Yi

= E
[

(Xi − E [Xi|gi(Xi), Yi])
2] (116)

Assume that there exists an instantaneous encoding scheme that achieves the distortion level

D:

lim
n→∞

1

n

n
∑

i=1

σ2
Xi|gi(Xi)Yi

≤ D (117)
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We now obtain a lower bound for the minimum information leakage for this instantaneous

encoding scheme as follows

lim
n→∞

1

n
I(Xn;M,Zn) = lim

n→∞

1

n
I(Xn; g1(X1), . . . , gn(Xn), Z

n) (118)

= lim
n→∞

1

n

n
∑

i=1

I(Xi; gi(Xi), Zi) (119)

= lim
n→∞

1

n

n
∑

i=1

I(Xi;Vi, Zi) (120)

≥ lim
n→∞

1

n

n
∑

i=1

R
(

σ2
Xi|ViYi

)

(121)

≥ lim
n→∞

R

(

1

n

n
∑

i=1

σ2
Xi|ViYi

)

(122)

= R

(

lim
n→∞

1

n

n
∑

i=1

σ2
Xi|ViYi

)

(123)

≥ R(D) (124)

where (119) comes from the independence of (Xi, gi(Xi), Zi) across time, (120) follows by

setting Vi = gi(Xi), (121) comes from the definition of R(D), (122) is due to the convexity

of R(D) in D, (123) follows from the fact that R(D) is continuous in D, and (124) comes

from (117) and the fact that R(D) is monotonically decreasing in D.

B Proof of Lemma 1

We first introduce two lemmas that will be used in the proof of Lemma 1. Throughout this

appendix, we use notation A ⊥⊥ B to denote “A and B are independent” to shorten the

presentation.

Lemma 9 Let Q, T,W be arbitrary random variables. If we have Q → T → T + W and

T ⊥⊥ W . Then, we have (Q, T ) ⊥⊥ W .

Proof: Since a set of random variables is independent iff their joint characteristic function

is the product of their individual characteristic functions, to prove Lemma 9, it is sufficient

to show the following.

E
[

es1Q+s2T+s3W
]

= E
[

es1Q+s2T
]

E
[

es3W
]

, ∀(s1, s2, s3) (125)
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We can show this as follows

E
[

es1Q+s2T+s3W
]

= E
[

E
[

es1Q+s2T+s3W
∣

∣T
]]

(126)

= E
[

e(s2−s3)T E
[

es1Q+s3(T+W )
∣

∣T
]]

(127)

= E
[

e(s2−s3)T E
[

es1Q
∣

∣T
]

E
[

es3(T+W )
∣

∣T
]]

(128)

= E
[

es2T E
[

es1Q
∣

∣T
]

E
[

es3W
∣

∣T
]]

(129)

= E
[

es2T E
[

es1Q
∣

∣T
]

E
[

es3W
]]

(130)

= E
[

es2T E
[

es1Q
∣

∣T
]]

E
[

es3W
]

(131)

= E
[

es1Q+s2T
]

E
[

es3W
]

(132)

where (128) comes from the Markov chain Q → T → T +W and (130) follows from the fact

that T ⊥⊥ W . Equation (132) implies the independence between (Q, T ) and W ; completing

the proof of Lemma 9. �

Lemma 10 Let Q, T,W be random variables satisfying (T,Q) ⊥⊥ W and Q ⊥⊥ T + W .

Then, we have Q ⊥⊥ T .

Proof: Similar to the proof of Lemma 9, here also we use the fact that a set of random

variables is independent iff their joint characteristic function is the product of their individual

characteristic functions. To this end, since (T,Q) ⊥⊥ W , we have

E
[

es1W+s2T+s3Q
]

= E
[

es1W
]

E
[

es2T+s3Q
]

, ∀(s1, s2, s3) (133)

If we set s1 = s2 in (133), we get

E
[

es2W+s2T+s3Q
]

= E
[

es2W
]

E
[

es2T+s3Q
]

, ∀(s2, s3) (134)

On the other hand, since Q ⊥⊥ T +W , we have

E
[

es2W+s2T+s3Q
]

= E
[

es2(W+T )
]

E
[

es3Q
]

(135)

= E
[

es2W
]

E
[

es2T
]

E
[

es3Q
]

(136)

where (136) comes from the fact that T ⊥⊥ W . In view of (134) and (136), we have

E
[

es2T+s3Q
]

= E
[

es2T
]

E
[

es3Q
]

(137)

which implies that T ⊥⊥ Q; completing the proof of Lemma 10. �

We now prove Lemma 1. We note that we have I(V ; Y |Z) = 0 iff the Markov chain

V → Z → Y holds. We prove by contradiction that when D < σ2
x|y, the Markov chain V →

Z → Y is not possible. To this end, we note that the side information at the eavesdropper
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can be written as

Z = X +Ny + Ñz (138)

or in other words, we have Nz = Ny+Ñz where Ñz is a Gaussian random variable independent

of (X,Ny) with variance σ2
z−σ2

y > 0. Next, we note that the Markov chain V → X → Y → Z

implies (V,X) ⊥⊥ (Ny, Ñz) in view of Lemma 9. Since Y, Z are jointly Gaussian, Y can be

written as

Y = αZ + (Y − αZ) (139)

where α = E[Y Z]/E[Z2], and as a consequence of this α choice, we have Z ⊥⊥ Y − αZ.

Hence, if we have the Markov chain

V → Z → Y = αZ + (Y − αZ) (140)

then, Lemma 9 implies that V ⊥⊥ Y − αZ, where Y − αZ is

Y − αZ = (1− α)X + (1− α)Ny − Ñz (141)

Since (V,X) ⊥⊥ (Ny, Ñz), we have (V,X) ⊥⊥ (1−α)Ny − Ñz, and also V ⊥⊥ (1−α)X + (1−

α)Ny − Ñz due to the assumption that the Markov chain V → Z → Y holds. Hence, in view

of Lemma 10, we have V ⊥⊥ X . Moreover, since we have the Markov chain V → X → Y ,

V ⊥⊥ X implies that V ⊥⊥ (X, Y ). Hence, if V ⊥⊥ (X, Y ), we have σ2
x|vy = σ2

x|y. However,

if D < σ2
x|y, V ⊥⊥ X is not feasible, and this implies that the Markov chain V → Z → Y is

not possible; completing the proof of Lemma 1.

C Proof of (51)

Here, we provide the proof of (51). To this end, we consider a slightly more general case

where the joint distribution of the source and side information is given by

p(x,y, z) =

L
∏

i=1

p(xi, yi, zi) (142)

and the distortion constraint is imposed with a diagonal matrix D whose diagonal entries

are denoted by D1, . . . , DL. From Theorem 3, the minimum information leakage is given by

Imin
e = min

U→V→X→Y,Z
σ2

Xi|V Y L
≤Di, i=1,...,L

I(V ;X)− I(V ;Y|U) + I(X;Z|U) (143)
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We first introduce the following auxiliary random variables

Ui = UY i−1ZL
i+1, i = 1, . . . , L (144)

Vi = V Y i−1XL
i+1, i = 1, . . . , L (145)

which satisfy the Markov chain

Ui → Vi → Xi → Yi, Zi (146)

which follows from (142) and the Markov chain U → V → X → Y,Z.

Next, we introduce the following two lemmas.

Lemma 11 ([2, Lemma 7]) Let Sn, T n be length-n random vectors, and W be an arbitrary

random variable. We have

n
∑

i=1

I(T n
i+1;Si|WSi−1) =

n
∑

i=1

I(Si−1;Ti|WT n
i+1) (147)

Using Lemma 11, the following lemma can be proved.

Lemma 12

I(W ;Sn)− I(W ;T n) =
n
∑

i=1

I(W ;Si|S
i−1T n

i+1)− I(W ;Ti|S
i−1T n

i+1) (148)
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Now, we proceed with (143) as follows

Imin
e = min

U→V→X→Y,Z
σ2

Xi|V Y L
≤Di, i=1,...,L

I(V ;X)− I(V ;Y|U) + I(X;Z|U) (149)

= min
U→V→X→Y,Z

σ2

Xi|V Y L
≤Di, i=1,...,L

I(V ;X)− I(V ;Y) + I(U ;Y)− I(U ;Z) + I(X;Z) (150)

= min
U→V→X→Y,Z

σ2

Xi|V Y L
≤Di, i=1,...,L

L
∑

i=1

I(V ;Xi|Y
i−1, XL

i+1)− I(V ; Yi|Y
i−1, XL

i+1)

+
L
∑

i=1

I(U ; Yi|Y
i−1, ZL

i+1)− I(U ;Zi|Y
i−1, ZL

i+1) + I(X;Z) (151)

= min
U→V→X→Y,Z

σ2

Xi|V Y L
≤Di, i=1,...,L

L
∑

i=1

I(V ;Xi|Y
i−1, XL

i+1)− I(V ; Yi|Y
i−1, XL

i+1)

+

L
∑

i=1

I(U ; Yi|Y
i−1, ZL

i+1)− I(U ;Zi|Y
i−1, ZL

i+1) + I(Xi;Zi) (152)

= min
U→V→X→Y,Z

σ2

Xi|V Y L
≤Di, i=1,...,L

L
∑

i=1

I(Y i−1, XL
i+1, V ;Xi)− I(Y i−1, XL

i+1, V ; Yi)

+

L
∑

i=1

I(Y i−1, ZL
i+1, U ; Yi)− I(Y i−1, ZL

i+1, U ;Zi) + I(Xi;Zi) (153)

= min
U→V→X→Y,Z

σ2

Xi|V Y L
≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi)− I(Vi; Yi) + I(Ui; Yi)− I(Ui;Zi) + I(Xi;Zi) (154)

= min
U→V→X→Y,Z

σ2

Xi|V Y L
≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi)− I(Vi; Yi|Ui) + I(Xi;Zi|Ui) (155)

≥ min
Ui→Vi→Xi→Yi,Zi

σ2
Xi|ViYi

≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi)− I(Vi; Yi|Ui) + I(Xi;Zi|Ui) (156)

where (150) comes from the Markov chain U → V → X → Y,Z, (151) follows from

Lemma 12, (152) and (153) are due to (142), (154) follows from the definitions of Ui, Vi in

(144) and (145), respectively, (155) comes from (146), and (156) follows from

σ2
Xi|V Y L ≥ σ2

Xi|V Y LXL
i+1

(157)

= σ2
Xi|V Y iXL

i+1

(158)

= σ2
Xi|ViYi

(159)

26



where (157) follows from the fact that conditioning reduces MMSE (which will be shown in

Appendix G), (158) comes from the following Markov chain

Xi, V, Y
i → XL

i+1 → Y L
i+1 (160)

which is a consequence of (142) and the Markov chain U → V → X → Y,Z, and (159)

is obtained by using the definition of Vi given in (145). Hence, (156) implies that when

the joint distribution of the source and side information can be factorized as in (142), the

minimum information leakage is given by

Imin
e = min

Ui→Vi→Xi→Yi,Zi

σ2
Xi|ViYi

≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi)− I(Vi; Yi|Ui) + I(Xi;Zi|Ui) (161)

We now specialize (161) for the case given in Example 2, where L = 2 and we have the

following Markov chains

X1 → Y1 → Z1 (162)

X2 → Z2 → Y2 (163)

Under these conditions, the minimum information leakage is given by

Imin
e = min

U1→V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1; Y1|U1) + I(X1;Z1|U1)

+ min
U2→V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2; Y2|U2) + I(X2;Z2|U2) (164)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1; Y1) + I(X1;Z1)

+ min
U2→V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2; Y2|U2) + I(X2;Z2|U2) (165)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1; Y1) + I(X1;Z1)

+ min
V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (166)

where (165)-(166) come from the following Markov chains

U1 → V1 → X1 → Y1 → Z1 (167)

U2 → V2 → X2 → Z2 → Y2 (168)
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respectively; completing the proof.

D Proofs of (52) and (53)

We first prove (52). To this end, we note that when the joint distribution of the source and

side information is given by

p(x,y, z) =

L
∏

i=1

p(xi, yi, zi) (169)

and the distortion constraint is imposed by a diagonal matrix D with diagonal entries

D1, . . . , DL, the minimum information leakage is given by

Imin
e = min

Ui→Vi→Xi→Yi,Zi

σ2
Xi|ViYi

≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi)− I(Vi; Yi|Ui) + I(Xi;Zi|Ui) (170)

as shown in Appendix C (in particular, see (161)). When we set U = φ, in other words,

when we set U1 = φ, . . . , UL = φ, (170) reduces to

Imin−φ
e = min

Vi→Xi→Yi,Zi

σ2
Xi|ViYi

≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi)− I(Vi; Yi) + I(Xi;Zi) (171)

which is the desired result in (52).

Next, we prove (53) by using (170). When we set U = V , in other words, when we set

U1 = V1, . . . , UL = VL in (170), we get

Imin
e = min

Ui→Vi→Xi→Yi,Zi

σ2
Xi|ViYi

≤Di, i=1,...,L

L
∑

i=1

I(Vi;Xi) + I(Xi;Zi|Vi) (172)

which is the desired result in (53).

E Proof of Lemma 2

We note that since X,Y are jointly Gaussian, we have [20, page 155]

KX|Y = KX −KXYK
−1
Y KY X (173)

= KX −KX(KX +ΣY )
−1KX (174)

= KX(KX +ΣY )
−1ΣY (175)
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where (174) comes from the fact that Y = X +NY . Next, we have the following chain of

equalities

|KX(KX +ΣY )
−1|

|F(D)(F(D) +ΣY )−1|
=

|KX(KX +ΣY )
−1ΣY |

|F(D)(F(D) +ΣY )−1ΣY |
(176)

=
|KX|Y |

|(ΣY (ΣY −D)−1ΣY −ΣY )Σ
−1
Y (ΣY −D)|

(177)

=
|KX|Y |

|D|
(178)

where (177) follows from the definition of F(D), i.e., F(D) = ΣY (ΣY − D)−1ΣY − ΣY .

Equation (178) implies (72); completing the proof of Lemma 2.

F Proof of Lemma 3

We first prove the first statement of the lemma. To this end, using (175), we have

KX|Y = KX(KX +ΣY )
−1ΣY (179)

= ΣY −ΣY (KX +ΣY )
−1ΣY (180)

Hence, using (180), the constraint D � KX|Y can be expressed as

D � ΣY −ΣY (KX +ΣY )
−1ΣY (181)

which is

ΣY (KX +ΣY )
−1ΣY � ΣY −D (182)

where ΣY (KX +ΣY )
−1ΣY ≻ 0 implying ΣY −D ≻ 0. Hence, ΣY −D is non-singular, and

(ΣY −D)−1 exists.

Next, we prove the second statement of the lemma. To this end, we note that since

(V,X,Y) are jointly Gaussian, Y = X+NY , and V is independent of NY , KX|V Y is given

by [20, page 155]

KX|V Y = KX − [ KXV KX ] M−1 [ KXV KX ]⊤ (183)

where M is given by

M =

[

KV KV X

KXV KY

]

(184)
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Using block matrix inversion lemma [21, page 45], M−1 can be obtained as

M−1 =

[

K−1
V +K−1

V KV X∆
−1
M KXVK

−1
V −K−1

V KV X∆
−1
M

−∆−1
M KXVK

−1
V ∆−1

M

]

(185)

where ∆M is given by

∆M = KY −KXVK
−1
V KV X (186)

= KX −KXVK
−1
V KV X +ΣY (187)

= KX|V +ΣY (188)

where the last equality follows from the fact that KX|V = KX −KXV K
−1
V KV X . Using (185)

and (188), we get

[ KXV KX ] M−1 =
[

ΣY∆
−1
M KXVK

−1
V I−ΣY∆

−1
M

]

(189)

using this in conjunction with (188), we obtain

[ KXV KX ] M−1 [ KXV KX ]⊤ = KX −ΣY +ΣY∆
−1
M ΣY (190)

Using (190) in (183), we have

KX|V Y = ΣY −ΣY∆
−1
M ΣY (191)

= ΣY −ΣY (KX|V +ΣY )
−1ΣY (192)

where (192) follows from (188). Thus, using (192), the constraint KX|V Y � D can be

expressed as follows

ΣY −ΣY (KX|V +ΣY )
−1ΣY � D (193)

from which, since ΣY −D ≻ 0, the following order can be obtained

KX|V � ΣY (ΣY −D)−1ΣY −ΣY = F(D) (194)

which completes the proof of Lemma 3.

G Conditioning Reduces MMSE

Here, we prove that conditioning reduces MMSE. To this end, we introduce the following

lemma.
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Lemma 13 Let U and V be any two n-dimensional random vectors and g : Rn → R
n.

Then,

E
[

g(V)g⊤(V)|U = u
]

� E [g(V)|U = u]E
[

g⊤(V)|U = u
]

(195)

Proof: The proof of this lemma comes from the following fact

0 � E
[

(g(V)− E [g(V)|U = u]) (g(V)− E [g(V)|U = u])⊤ |U = u
]

(196)

= E
[

g(V)g⊤(V)|U = u
]

− E [g(V)|U = u]E
[

g⊤(V)|U = u
]

(197)

�

We now prove the fact that conditioning reduces MMSE.

Lemma 14 If U → V → X, then KX|V � KX|U .

Proof: We have

KX|V = E
[

XX⊤
]

−E
[

E [X|V]E
[

X⊤|V
]]

(198)

= E
[

XX⊤
]

−E
[

E
[

E [X|V]E
[

X⊤|V
]

|U
]]

(199)

� E
[

XX⊤
]

− E
[

E [E [X|V] |U]E
[

E
[

X⊤|V
]

|U
]]

(200)

= E
[

XX⊤
]

−E
[

E [X|U]E
[

X⊤|U
]]

(201)

where (200) comes from Lemma 13 and (201) comes from the following fact

E [E [X|V] |U] = E [X|U] (202)

which is a consequence of the Markov chain U → V → X. �

H Proof of Lemma 4

We now prove Lemma 4. Since any jointly Gaussian (U, V,X) triple satisfying the Markov

chain U → V → X also satisfies KX|V � KX|U due to Lemma 14, the feasible set of L̄G

already contains all jointly Gaussian (U, V ) pairs satisfying the Markov chain U → V → X.

Hence, we have LG ≥ L̄G. Next, we show that L̄G ≥ LG to complete the proof of Lemma 4.

To do so, we need to show that for any jointly Gaussian (U, V,X) with conditional covariance

matricesKX|U andKX|V satisfying 0 � KX|V � KX|U � KX andKX|V � F(D), there exists

another jointly Gaussian (UG, V G) pair such that this pair has the following properties

• KX|V G = KX|V

• KX|UG = KX|U
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• UG → V G → X

To this end, we note that (UG, V G) can be represented as

V G = AVX+NV (203)

UG = AUX+NU (204)

where (NU ,NV ) and X are independent, NU ,NV are zero-mean Gaussian random vectors

with identity covariance matrices. The cross covariance of NU and NV is given by ΣUV =

E
[

NUN
⊤
V

]

, which needs to be selected accordingly to ensure that UG → V G → X.

The conditional covariance KX|V G is given by [20, page 155]

KX|V G = KX −KXV GK−1
V GKV GX (205)

Since we are seeking a V G such that KX|V G = KX|V , we set KX|V G = KX|V in (205) yielding

KX|V = KX −KXV GK−1
V GKV GX (206)

= KX −KXA
⊤
V (AVKXA

⊤
V + I)−1AVKX (207)

which is equivalent to

K−1
X (KX −KX|V )K

−1
X = A⊤

V (AVKXA
⊤
V + I)−1AV (208)

Next, we note the Woodbury matrix identity [22].

Lemma 15 ([22, page 17])

(

A+CBC⊤
)−1

= A−1 −A−1C
(

B−1 +C⊤A−1C
)−1

C⊤A−1 (209)

Using Woodbury matrix identity, we get

(

AVKXA
⊤
V + I

)−1
= I−AV (K

−1
X +A⊤

VAV )
−1A⊤

V (210)

using which in (208), we get

K−1
X (KX −KX|V )K

−1
X = A⊤

V

[

I−AV (K
−1
X +A⊤

VAV )
−1A⊤

V

]

AV (211)

= A⊤
VAV −A⊤

VAV (K
−1
X +A⊤

VAV )
−1A⊤

VAV (212)

= A⊤
VAV −A⊤

VAV (K
−1
X +A⊤

VAV )
−1
(

K−1
X +A⊤

VAV −K−1
X

)

(213)

= A⊤
VAV (K

−1
X +A⊤

VAV )
−1K−1

X (214)

=
(

K−1
X +A⊤

VAV −K−1
X

)

(K−1
X +A⊤

VAV )
−1K−1

X (215)

= K−1
X −K−1

X (K−1
X +A⊤

VAV )
−1K−1

X (216)
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which implies

KX|V =
(

K−1
X +A⊤

VAV

)−1
(217)

which, in turn, implies

A⊤
VAV = K−1

X|V −K−1
X (218)

Hence, if we select AV as satisfying (218), we get KX|V G = KX|V . Similarly, if we select AU

to satisfy

A⊤
UAU = K−1

X|U −K−1
X (219)

then, we also have KX|UG = KX|U .

Next, we will explicitly construct AV and AU matrices to satisfy (218) and (219), re-

spectively. To this end, we introduce the following lemma, which will be used subsequently.

Lemma 16 ([23]) Let A,B be two real symmetric positive semi-definite matrices. Then,

there exists a non-singular matrix W such that

A = W⊤ΛAW (220)

B = W⊤ΛBW (221)

(222)

where ΛA and ΛB are diagonal matrices.

Lemma 16 states that two real symmetric positive semi-definite matrices can be diagonalized

simultaneously. Using this fact in (218)-(219), we get

K−1
X|V −K−1

X = W⊤Λ2
VW (223)

K−1
X|U −K−1

X = W⊤Λ2
UW (224)

for some non-singular matrix W, and diagonal matrices ΛU ,ΛV . Since KX|V � KX|U , we

have K−1
X|V � K−1

X|U , which, in view of (223)-(224) imply

W⊤
(

Λ2
V −Λ2

U

)

W � 0 (225)

Since W is non-singular, (225) implies that

ΛV � ΛU (226)
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Finally, we choose

AV = ΛVW (227)

AU = ΛUW (228)

which, in view of (218)-(219) and (223)-(224), imply KX|V G = KX|V and KX|UG = KX|U .

Next, we show that a proper selection the cross-covariance matrix ΣUV would yield the

desired Markov chain UG → V G → X. To this end, we introduce the following matrix

AUV = ΛUΛ
†
V (229)

where the diagonal matrix Λ†
V is defined as follows:

Λ†
V,ii =

{

1
ΛV,ii

, if ΛV,ii 6= 0

0, otherwise
(230)

Since ΛU � ΛV , we have ΛUΛ
†
VΛV = ΛU . Hence, we have

AUVAV = AU (231)

We also note the following

AUVA
⊤
UV = ΛU

(

Λ†
V

)2
ΛU � I (232)

since ΛU � ΛV .

Now, we are ready to show that UG and V G satisfy the Markov chain UG → V G → X

by specifying ΣUV . We set NU as follows

NU = AUVNV + Ñ (233)

where Ñ is a zero-mean Gaussian random vector with covariance matrix I−AUVA
⊤
UV , and

is independent of NV . In view of (233), we have

UG = AUX+NU (234)

= AUVAVX+AUVNV + Ñ (235)

= AUV V
G + Ñ (236)

which implies that (UG, V G) satisfy the Markov chain UG → V G → X; completing the proof.
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I Proof of Lemma 5

The Lagrangian for the optimization problem L̄G is given as follows

L
(

L̄G
)

=
1

2
log

|KX |

|KX|V |
−

1

2
log

|KX|U +ΣY |

|KX|V +ΣY |
+

1

2
log

|KX|U +ΣZ|

|ΣZ |
− tr(M0KX|V )

− tr(MU (KX|U −KX|V ))− tr(MX(KX −KX|U))− tr(MD(F(D)−KX|V ))

(237)

where the positive semi-definite matrices M0,MU ,MD,MX are the Lagrange multipliers for

the following constraints

KX|V � 0 (238)

KX|U −KX|V � 0 (239)

F(D)−KX|V � 0 (240)

KX −KX|U � 0 (241)

respectively. Let K∗
X|V and K∗

X|U be the minimizers of the optimization problem L̄G. Using

(237), the KKT conditions can be found as follows.

∇KX|V
L(L̄G) |KX|V =K∗

X|V
= 0 (242)

∇KX|U
L(L̄G) |KX|U=K∗

X|U
= 0 (243)

tr(M0K
∗
X|V ) = 0 (244)

tr(MU(K
∗
X|U −K∗

X|V )) = 0 (245)

tr(MD(F(D)−K∗
X|V )) = 0 (246)

tr(MX(KX −K∗
X|U)) = 0 (247)

We first note that we have K∗
X|V ≻ 0, otherwise L̄G → ∞. Hence, using the fact that if

A � 0,B � 0, tr(AB) ≥ 0, and (244), we get M0 = 0. Next, using the fact that M0 = 0 in

(242), we get the KKT condition given in (83). Equation (243) implies (84). Finally, using

the fact that A � 0,B � 0, tr(AB) = tr(BA) ≥ 0 in (245)-(247), we can get the KKT

conditions given in (85)-(87), respectively.
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J Proof of Lemma 6

We start with the second statement of the lemma. To this end, we note that (84) and (88)

imply the following.

(K∗
X|U + Σ̃Y )

−1 = (K∗
X|U +ΣY )

−1 +MU (248)

= (K∗
X|U +ΣZ)

−1 +MX (249)

Next, using the fact that if A ≻ 0,B ≻ 0 and A � B, we have A−1 � B−1 in conjunction

with the fact that MU � 0,MX � 0, we can obtain the second statement of the lemma from

(248)-(249).

Next, we consider the third statement of the lemma as follows

K∗
X|V + Σ̃Y

= K∗
X|V +

[

(K∗
X|U +ΣY )

−1 +MU

]−1
−K∗

X|U (250)

= K∗
X|V +

[

I+ (K∗
X|U +ΣY )MU

]−1
(K∗

X|U +ΣY )−K∗
X|U (251)

= K∗
X|V +

[

I+ (K∗
X|U −K∗

X|V +K∗
X|V +ΣY )MU

]−1
(K∗

X|U +ΣY )−K∗
X|U (252)

= K∗
X|V +

[

I+ (K∗
X|V +ΣY )MU

]−1
(K∗

X|U +ΣY )−K∗
X|U (253)

= K∗
X|V +

[

(K∗
X|V +ΣY )

−1 +MU

]−1
(K∗

X|V +ΣY )
−1(K∗

X|U +ΣY )−K∗
X|U (254)

= K∗
X|V +

[

(K∗
X|V +ΣY )

−1 +MU

]−1
(K∗

X|V +ΣY )
−1(K∗

X|U −K∗
X|V +K∗

X|V +ΣY )

−K∗
X|U (255)

= K∗
X|V +

[

(K∗
X|V +ΣY )

−1 +MU

]−1
(K∗

X|V +ΣY )
−1(K∗

X|U −K∗
X|V )

+
[

(K∗
X|V +ΣY )

−1 +MU

]−1
−K∗

X|U (256)

= K∗
X|V +

[

(K∗
X|V +ΣY )

−1 +MU

]−1 [
(K∗

X|V +ΣY )
−1 +MU

]

(K∗
X|U −K∗

X|V )

+
[

(K∗
X|V +ΣY )

−1 +MU

]−1
−K∗

X|U (257)

= K∗
X|V + (K∗

X|U −K∗
X|V ) +

[

(K∗
X|V +ΣY )

−1 +MU

]−1
−K∗

X|U (258)

=
[

(K∗
X|V +ΣY )

−1 +MU

]−1
(259)

where (250) comes from (248), (253) and (257) follow from (85).

Now, we consider the fourth statement of the lemma as follows

(K∗
X|U + Σ̃Y )

−1(K∗
X|V + Σ̃Y ) = I+ (K∗

X|U + Σ̃Y )
−1(K∗

X|V −K∗
X|U) (260)

= I+
[

(K∗
X|U +ΣY )

−1 +MU

]

(K∗
X|V −K∗

X|U) (261)

= I+ (K∗
X|U +ΣY )

−1(K∗
X|V −K∗

X|U) (262)

= (K∗
X|U +ΣY )

−1(K∗
X|V +ΣY ) (263)

where (261) follows from (248), and (262) comes from (85).
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Next, we consider the fifth statement of the lemma as follows

(K∗
X|U + Σ̃Y )

−1(KX + Σ̃Y ) = I+ (K∗
X|U + Σ̃Y )

−1(KX −K∗
X|U) (264)

= I+
[

(K∗
X|U +ΣZ)

−1 +MX

]

(KX −K∗
X|U) (265)

= I+ (K∗
X|U +ΣZ)

−1(KX −K∗
X|U) (266)

= (K∗
X|U +ΣZ)

−1(KX +ΣZ) (267)

where (265) comes from (249), and (266) is due to (87).

Now, we prove the last statement of the lemma. To this end, we note that the third

statement of this lemma and (83) imply the following

(K∗
X|V + Σ̃Y )

−1 +MD = (K∗
X|V )

−1 (268)

which will be used in the sequel. Now, the last statement of this lemma follows from

(K∗
X|V + Σ̃Y )

−1(F(D) + Σ̃Y ) = I+ (K∗
X|V + Σ̃Y )

−1(F(D)−K∗
X|V ) (269)

= I+
[

(K∗
X|V )

−1 −MD

]

(F(D)−K∗
X|V ) (270)

= I+ (K∗
X|V )

−1(F(D)−K∗
X|V ) (271)

= (K∗
X|V )

−1F(D) (272)

where (270) comes from (268), and (271) is due to (86).

Finally, we note that (268) also implies the first statement of the lemma; completing the

proof.

K Proof of Lemma 7

K.1 Background

We need some properties of the Fisher information and the differential entropy, which are

provided next.

Definition 1 ([24, Definition 3]) Let (U,X) be an arbitrarily correlated length-n random

vector pair with well-defined densities. The conditional Fisher information matrix of X given

U is defined as

J(X|U) = E
[

ρ(X|U)ρ(X|U)⊤
]

(273)
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where the expectation is over the joint density f(u,x), and the conditional score function

ρ(x|u) is

ρ(x|u) = ∇ log f(x|u) =

[

∂ log f(x|u)

∂x1

. . .
∂ log f(x|u)

∂xn

]⊤

(274)

We first present the conditional form of the Cramer-Rao inequality, which is proved

in [24].

Lemma 17 ([24, Lemma 13]) Let U,X be arbitrarily correlated random vectors with well-

defined densities. Let the conditional covariance matrix of X be Cov(X|U) ≻ 0, then we

have

J(X|U) � Cov(X|U)−1 (275)

which is satisfied with equality if (U,X) is jointly Gaussian with conditional covariance

matrix Cov(X|U).

The following lemma will be used in the upcoming proof. The unconditional version of

this lemma, i.e., the case T = φ, is proved in [24, Lemma 6].

Lemma 18 ([24, Lemma 6]) Let T,U,V1,V2 be random vectors such that (T,U) and

(V1,V2) are independent. Moreover, let V1,V2 be Gaussian random vectors with covariance

matrices Σ1,Σ2 such that 0 ≺ Σ1 � Σ2. Then, we have

J−1(U+V2|T)−Σ2 � J−1(U+V1|T)−Σ1 (276)

The following lemma will also be used in the upcoming proof.

Lemma 19 ([24, Lemma 8]) Let K1,K2 be positive semi-definite matrices satisfying 0 �

K1 � K2, and f(K) be a matrix-valued function such that f(K) � 0 for K1 � K � K2.

Moreover, f(K) is assumed to be gradient of a scalar field. Then, we have

∫

K2

K1

f(K)dK ≥ 0 (277)

The following generalization of the de Bruijn identity [25,26] is due to [27], where the un-

conditional form of this identity, i.e., U = φ, is proved. Its generalization to this conditional

form for an arbitrary U is rather straightforward, and is given in [24, Lemma 16].

Lemma 20 ([24, Lemma 16]) Let (U,X) be an arbitrarily correlated random vector pair

with finite second order moments, and also be independent of the random vector N which is
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zero-mean Gaussian with covariance matrix ΣN ≻ 0. Then, we have

∇ΣN
h(X+N|U) =

1

2
J(X+N|U) (278)

The following lemma provides a connection between the conditional covariance matrix

and the Fisher information matrices of a random vector.

Lemma 21 Let (V,X) be two arbitrary random vectors with finite second moments, and

N be a zero-mean Gaussian random vector with covariance matrix ΣN . Let Y = X + N.

Assume (V,X) and N are independent. We have

KX|V Y = ΣN −ΣNJ(X+N|V )ΣN (279)

Lemma 21 is proved in [27] for V = φ. Its generalization to the current conditional form can

be obtained by using the conditional Fisher information and Lemma 20.

K.2 Proof

We first consider the cost function of the optimization problem L̄

C(L̄) = I(V ;X)− I(V ; Ỹ|U) + I(X;Z|U) (280)

= I(V ;X)− I(V ; Ỹ) + I(U ; Ỹ) + I(X;Z)− I(U ;Z) (281)

= I(V ;X)− I(V ; Ỹ) + I(U ; Ỹ,Z) + I(X;Z)− I(U ;Z) (282)

= I(V ;X)− I(V ; Ỹ) + I(U ; Ỹ|Z) + I(X;Z) (283)

≥ I(V ;X)− I(V ; Ỹ) + I(X;Z) (284)

where (281)-(282) come from the following Markov chain

U → V → X → Ỹ → Y,Z (285)

and (284) comes from the non-negativity of the mutual information. On the other hand,

(284) can be obtained from (91) by choosing U = φ, i.e., we have

L̄ ≤ min
V→X→Ỹ→Y,Z

KX|V Y �D

I(V ;X)− I(V ; Ỹ) + I(X;Z) (286)
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Hence, (284) and (286) imply the following

L̄ = min
V→X→Ỹ→Y,Z

KX|V Y �D

I(V ;X)− I(V ; Ỹ) + I(X;Z) (287)

= min
V→X→Ỹ→Y,Z

KX|V Y �D

I(V ;X|Ỹ) + I(X;Z) (288)

where (288) comes from the Markov chain V → X → Ỹ. We note that the optimization

problem in (288) is similar to the one we already studied in (67)-(71). Indeed, if the constraint

KX|V Y � D in (288) was KX|V Ỹ � D, both optimization problems would be identical, and

using the analysis in (67)-(71), we could conclude that (288) is minimized by a Gaussian V

satisfying KX|V Ỹ � D. However, the difference between these two constraints necessitates a

new proof, and indeed, showing the optimality of Gaussian V for the optimization problem in

(288) is not as straightforward as showing the optimality of Gaussian V for the optimization

problem in (67).

We find the minimizer for the optimization problem L̄ in two steps. In the first step, for

a given feasible V , we explicitly construct a feasible Gaussian V̄ which provides the same

value for the cost function of L̄ as the original V does. Thus, this first step implies that

restricting V to be Gaussian does not change the optimum value of the optimization problem

L̄. Consequently, in the second step of the proof, we minimize L̄ over all feasible Gaussian

V . To this end, we note that the cost function of the optimization problem L̄ can be written

as

C(L̄) = h(Ỹ|V )− h(X|V ) + c (289)

for some constant c, which is independent of V . From now on, we focus on the difference of

the two differential entropy terms in (289). Next, we note that using Lemma 20, we have

h(Ỹ|V )− h(X|V ) =
1

2

∫

Σ̃Y

0

J(X+N|V )dΣN (290)

whereN is zero-mean Gaussian random vector with covariance matrixΣN satisfying 0 � ΣN .

Next, we find upper and lower bounds for (290). We note that Lemma 18 implies the following

upper bound for J(X+N|V )

J(X+N|V ) �
[

J−1(X|V ) +ΣN

]−1
(291)

Using (291) in (290) in conjunction with Lemma 19, we get

h(Ỹ|V )− h(X|V ) ≤
1

2
log

|J−1(X|V ) + Σ̃Y |

|J−1(X|V )|
(292)
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We note that due to Lemma 17, we have J(X|V ) � K−1
X|V ≻ 0, i.e., (292) is well-defined.

Similarly, using Lemma 18, we have

J−1(X+ ÑY |V )− Σ̃Y � J−1(X+N|V )−ΣN , ΣN � Σ̃Y (293)

which implies

J(X+N|V ) �
[

J−1(X+ ÑY |V )− Σ̃Y +ΣN

]−1

(294)

Using (294) in (290) in conjunction with Lemma 19, we get

h(Ỹ|V )− h(X|V ) ≥
1

2
log

|J−1(X+ ÑY |V )|

|J−1(X+ ÑY |V )− Σ̃Y |
(295)

Now, we rewrite the bounds in (292) and (295). To this end, we define the following function

f(t) =
1

2
log

|K(t) + Σ̃Y |

|K(t)|
, 0 ≤ t ≤ 1 (296)

where the matrix K(t) is given as follows

K(t) = tJ−1(X|V ) + (1− t)
[

J−1(X+ ÑY |V )− Σ̃Y

]

(297)

Hence, using f(t) in (296), the bounds in (292) and (295) can be rewritten as follows:

f(0) ≤ h(Ỹ|V )− h(X|V ) ≤ f(1) (298)

Since f(t) is continuous in t, there exists t∗ such that

f(t∗) = h(Ỹ|V )− h(X|V ) (299)

=
1

2
log

|K(t∗) + Σ̃Y |

|K(t∗)|
(300)

where K(t∗) is bounded as follows

J−1(X|V ) � K(t∗) � J−1(X+ ÑY |V )− Σ̃Y (301)

� J−1(X+NY |V )−ΣY (302)

where we used the fact that 0 ≤ t∗ ≤ 1 and Lemma 18. Thus, (300) implies that if we pick

a Gaussian V̄ satisfying KX|V̄ = K(t∗), it provides the same value for the cost function of L̄

as the original V does.

Next, we check whether this Gaussian V̄ is feasible, i.e., whether it satisfies KX|V̄ Y � D.
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To this end, using Lemma 21, we get

KX|V̄ Y = ΣY −ΣY J(Y|V̄ )ΣY (303)

Since V̄ is Gaussian, Lemma 17 implies that

J(Y|V̄ ) = K−1
Y |V̄

(304)

= (KX|V̄ +ΣY )
−1 (305)

where (305) follows from the fact that (V̄ ,X) and NY are independent. Moreover, due to

(302), we have KX|V̄ � J−1(Y|V )−ΣY , which together with (305) imply the following

J(Y|V̄ ) � J(Y|V ) (306)

Using (306) in (303), we get

KX|V̄ Y � ΣY −ΣY J(Y|V )ΣY (307)

= KX|V Y (308)

� D (309)

where (308) follows from Lemma 21 and (309) is due to the assumption that V is feasible,

i.e., KX|V Y � D. Equation (309) implies that the constructed Gaussian random vector V̄ is

feasible, i.e., for each feasible V , there exists a feasible Gaussian V̄ which provides the same

value for the cost function of L̄; completing the first step of the proof.

Hence, in view of this first step of the proof, we can restrict V to be Gaussian which

leads to the following form for L̄:

L̄ = min
V→X→Ỹ→Y,Z
V is Gaussian
KX|V Y �D

I(V ;X)− I(V ; Ỹ) + I(X;Z) (310)

= min
V→X→Ỹ→Y,Z
V is Gaussian
KX|V �F(D)

I(V ;X)− I(V ; Ỹ) + I(X;Z) (311)

= min
KX|V �F(D)

1

2
log

|KX |

|KX|V |
−

1

2
log

|KX + Σ̃Y |

|KX|V + Σ̃Y |
+

1

2
log

|KX +ΣZ |

|ΣZ|
(312)

=
1

2
log

|KX |

|F(D)|
−

1

2
log

|KX + Σ̃Y |

|F(D) + Σ̃Y |
+

1

2
log

|KX +ΣZ |

|ΣZ|
(313)
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where (311) follows from Lemma 3, and (313) comes from the fact that

|KX|V + Σ̃Y |

|KX|V |
(314)

is monotonically decreasing in the positive semi-definite matrices KX|V ; completing the proof

of Lemma 7.

L Proof of Lemma 8

We note that due to Theorem 3, we already have single-letter descriptions for the regions

Ro(D) and Rα(D). Thus, to prove Lemma 8, it suffices to show that for any given feasible

(U, V ), these two regions satisfy the relationship given in Lemma 8. We first note the

following Markov chains

U → V → X → ¯̄Yα → Y (315)

U → V → X → ¯̄Zα → Z (316)

Next, we show that any feasible (U, V ) for the region Ro(D) is also feasible for the region

limα→0Rα(D). To this end, we note that

D � KX|V Y (317)

� KX|V Y ¯̄Yα
(318)

= KX|V ¯̄Yα
(319)

where (318) is due to the fact that conditioning reduces MMSE and (319) follows from the

Markov chain in (315). Moreover, it can be shown that limα→0KX|V ¯̄Yα
exists and is equal

to KX|V Y . Hence, this observation and (319) imply that (U, V ) is also feasible for the region

limα→0Rα(D).

Next, we show that for a given (U, V ), any rate inside the region Ro(D) is also inside

limα→0Rα(D). To this end, for a given (U, V ), we denote the minimum achievable rates in

Ro(D) and Rα(D) by Ro and Rα, respectively. Due to Theorem 3, we have

Ro −Rα = [I(V ;X)− I(V ;Y)]− [I(V ;X)− I(V ; ¯̄Yα)] (320)

= I(V ; ¯̄Yα)− I(V ;Y) (321)

= I(V ; ¯̄Yα|Y) (322)

≥ 0 (323)

where (322) comes from the Markov chain in (315). Equation (322) implies that any achiev-

able rate within the region Ro(D) is also included in the region limα→0Rα(D).
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Finally, we show that for a given (U, V ), any achievable information leakage inside the

region Ro(D) is also inside limα→0Rα(D). To this end, for a given (U, V ), we denote the

minimum information leakage in Ro(D) and Rα(D) by Ie,o and Ie,α, respectively. Due to

Theorem 3, we have

Ie,o − Ie,α = [I(V ;X)− I(V ;Y|U) + I(X;Z|U)]

−
[

I(V ;X)− I(V ; ¯̄Yα|U) + I(X; ¯̄Zα|U)
]

(324)

=
[

I(V ; ¯̄Yα|U)− I(V ;Y|U)
]

+
[

I(X;Z|U)− I(X; ¯̄Zα|U)
]

(325)

= I(V ; ¯̄Yα|U,Y) +
[

I(X;Z|U)− I(X; ¯̄Zα|U)
]

(326)

≥ I(X;Z|U)− I(X; ¯̄Zα|U) (327)

≥ I(X;Z)− I(X; ¯̄Zα) (328)

=
1

2
log |HZKXH

⊤
Z + I| −

1

2
log

|KX +RZ(ΛZ + αI)−2R⊤
Z |

|RZ(ΛZ + αI)−2R⊤
Z |

(329)

=
1

2
log |HZKXH

⊤
Z + I| −

1

2
log

|KX +RZ(ΛZ + αI)−1Q⊤
ZQZ(ΛZ + αI)−1R⊤

Z |

|RZ(ΛZ + αI)−1Q⊤
ZQZ(ΛZ + αI)−1R⊤

Z |

(330)

=
1

2
log |HZKXH

⊤
Z + I| −

1

2
log |QZ(ΛZ + αI)R⊤

ZKXRZ(ΛZ + αI)Q⊤
Z + I|

(331)

where (326) comes from the Markov chain in (315) and (328) follows from the Markov chain

in (316). Equation (331) implies that

lim
α→0

Ie,o − Ie,α ≥
1

2
log |HZKXH

⊤
Z + I| − lim

α→0

1

2
log |QZ(ΛZ + αI)R⊤

ZKXRZ(ΛZ + αI)Q⊤
Z + I|

(332)

=
1

2
log |HZKXH

⊤
Z + I| −

1

2
log |QZΛZR

⊤
ZKXRZΛZQ

⊤
Z + I| (333)

=
1

2
log |HZKXH

⊤
Z + I| −

1

2
log |HZKXH

⊤
Z + I| (334)

= 0 (335)

where (333) comes from the continuity of the determinant in positive semi-definite matrices.

Equation (335) implies that any achievable information leakage in the region Ro(D) is also

inside the region limα→0Rα(D); completing the proof of Lemma 8.

M Proof of Theorem 6

We start the proof of Theorem 6 by first expressing Theorem 4 for the side information model

given by (105)-(106). In other words, we first provide an outer bound for the region Rα(D)

by using Theorem 4. To this end, to be able to use Theorem 4, we needD � KX| ¯̄Yα
. However,
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since we originally have D � KX|Y and KX| ¯̄Yα
� KX|Y , where the latter one follows from

the Markov chain X → Ȳα → Y and the fact that conditioning reduces MMSE, KX| ¯̄Yα
−D

might be indefinite. However, the only place we use the condition D � KX|Y is to be able to

show the equivalence between KX|V Y � D and KX|V � F(D) for Gaussian V in Lemma 3.

In particular, we only need the fact that ΣY −D is non-singular to show this equivalence,

and which is implied by D � KX|Y . However, still there might be distortion matrices D

for which although we have non-singular ΣY −D, the condition D � KX|Y is not satisfied.

Hence, if we can find an α∗ such that

ΣY,α −D ≻ 0, 0 < α ≤ α∗ (336)

we can still use Theorem 4 to obtain an outer bound for the regionRα(D). Now, we establish

the existence of such an α∗. Using the assumption D � KX|Y , we have

D � KX|Y = (K−1
X +H⊤

YHY )
−1 (337)

where the equality follows from (217). Equation (337) implies that

0 ≺ D−1 −H⊤
YHY (338)

= D−1 −RYΛ
2
YR

⊤
Y (339)

where we use the singular value decomposition ofHY . Thus, since D
−1−RYΛ

2
YR

⊤
Y is strictly

positive definite, there exists 0 < β such that

D−1 −RYΛ
2
Y R

⊤
Y ≻ β2I (340)

= β2RYR
⊤
Y (341)

which implies

D−1 ≻ RY (Λ
2
Y + β2)R⊤

Y (342)

which, in turn, implies the existence of an α∗ such that

D−1 ≻ RY (ΛY + α)2R⊤
Y , 0 < α ≤ α∗ (343)

Hence, using the definition of ΣY,α in (343), we get

D−1 ≻ Σ−1
Y,α, 0 < α ≤ α∗ (344)

which is equivalent to the desired condition in (336) which is needed to use Theorem 4 to

obtain an outer bound for the region Rα(D). Hence, assuming that 0 < α ≤ α∗, an outer
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bound for the region Rα(D) can be written as the union of rate and information leakage

(R, Ie) pairs satisfying

R ≥
1

2
log

|KX| ¯̄Yα
|

|D|
=

1

2
log

|KX |

|Fα(D)|
−

1

2
log

|KX +ΣY,α|

|Fα(D) +ΣY,α|
(345)

Ie ≥ min
0�KX|V �KX|U�KX

KX|V �Fα(D)

1

2
log

|KX |

|KX|V |
−

1

2
log

|KX|U +ΣY,α|

|KX|V +ΣY,α|
+

1

2
log

|KX|U +ΣZ,α|

|ΣZ,α|
(346)

where Fα(D) = ΣY,α(ΣY,α −D)−1ΣY,α −ΣY,α. We now find the limiting region that comes

from the one described by (345)-(346) as α → 0. To this end,we introduce the following

lemma that will be used subsequently.

Lemma 22

lim
α→0

KX| ¯̄Yα
= KX|Y (347)

lim
α→0

Fα(D) = (D−1 −H⊤
YHY )

−1 (348)

The proof of Lemma 22 is given in Appendix N.

We first consider the rate bound in (345) as follows

lim
α→0

1

2
log

|KX| ¯̄Yα
|

|D|
=

1

2
log

|KX|Y |

|D|
(349)
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which follows from the continuity of the determinant in positive semi-definite matrices and

(347). Similarly, for the second expression in the rate bound in (345), we have

lim
α→0

1

2
log

|KX |

|Fα(D)|
−

1

2
log

|KX +ΣY,α|

|Fα(D) +ΣY,α|

=
1

2
log

|KX |

|(D−1 −H⊤
YHY )−1|

− lim
α→0

1

2
log

|KX +ΣY,α|

|Fα(D) +ΣY,α|
(350)

=
1

2
log

|KX |

|(D−1 −H⊤
YHY )−1|

− lim
α→0

1

2
log

|KX +RY (ΛY + αI)−2R⊤
Y |

|Fα(D) +RY (ΛY + αI)−2R⊤
Y |

(351)

=
1

2
log

|KX |

|(D−1 −H⊤
YHY )−1|

− lim
α→0

1

2
log

|KX +RY (ΛY + αI)−1Q⊤
YQY (ΛY + αI)−1R⊤

Y |

|Fα(D) +RY (ΛY + αI)−1Q⊤
YQY (ΛY + αI)−1R⊤

Y |

(352)

=
1

2
log

|KX |

|(D−1 −H⊤
YHY )−1|

− lim
α→0

1

2
log

|QY (ΛY + αI)R⊤
YKXRY (ΛY + αI)Q⊤

Y + I|

|QY (ΛY + αI)R⊤
YFα(D)RY (ΛY + αI)Q⊤

Y + I|

(353)

=
1

2
log

|KX |

|(D−1 −H⊤
YHY )−1|

−
1

2
log

|QYΛYR
⊤
YKXRYΛYQ

⊤
Y + I|

|QYΛY R⊤
Y (D

−1 −H⊤
YHY )−1RYΛYQ⊤

Y + I|
(354)

=
1

2
log

|KX |

|(D−1 −H⊤
YHY )−1|

−
1

2
log

|HYKXH
⊤
Y + I|

|HY (D−1 −H⊤
YHY )−1H⊤

Y + I|
(355)

where (350) is due to the continuity of the determinant in positive semi-definite matrices

and (348), (351) comes from the definition of ΣY,α, (354) comes from the continuity of the

determinant in positive semi-definite matrices and (348), and (355) is obtained by using the

singular value decomposition of HY . Hence, (349) and (355) imply that any rate R inside

the region limα→0Rα(D) satisfies

R ≥
1

2
log

|KX|Y |

|D|
(356)

=
1

2
log

|KX|

|(D−1 −H⊤
YHY )−1|

−
1

2
log

|HYKXH
⊤
Y + I|

|HY (D−1 −H⊤
YHY )−1H⊤

Y + I|
(357)

Following a similar analysis, the limit of the information leakage in (346) can be found as

min
0�KX|V �KX|U�KX

KX|V �(D−1−H
⊤
Y HY )−1

1

2
log

|KX |

|KX|V |
−

1

2
log

|HYKX|UH
⊤
Y + I|

|HYKX|VH
⊤
Y + I|

+
1

2
log |HYKX|UH

⊤
Y + I| (358)

which implies that any information leakage Ie inside the region limα→0Rα(D) should be

larger than (358); completing the proof of Theorem 6.
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N Proof of Lemma 22

We first prove the following lemma which will be used subsequently.

Lemma 23 Let K(α) = (A+ f(α)B)−1, 0 < α ≤ α∗, where A ≻ f(α)B � 0, 0 ≤ α ≤ α∗

and f(α) is continuous in α. Then, we have

lim
α→0

K(α) = (A+ f(0)B)−1 (359)

Proof: In the proof of this lemma, we use the fact that if limn→∞Cn = 0, we have

(I+C)−1 =

∞
∑

n=0

(−1)nCn (360)

where C0 = I [21, page 19]. Now, we consider

K(α) = (A+ f(α)B)−1 (361)

= A−1/2(I+ f(α)A−1/2BA−1/2)−1A−1/2 (362)

where due to A ≻ f(α)B � 0, we have I ≻ f(α)A−1/2BA−1/2 � 0 which implies

lim
n→∞

(

f(α)A−1/2BA−1/2
)n

= 0 (363)

Hence, we can use (360) in (362) to get

K(α) = A−1/2

[

∞
∑

n=0

(−1)nfn(α)(A−1/2BA−1/2)n

]

A−1/2 (364)

which implies

lim
α→0

K(α) = lim
α→0

A−1/2

[

∞
∑

n=0

(−1)nfn(α)(A−1/2BA−1/2)n

]

A−1/2 (365)

= A−1/2

[

∞
∑

n=0

(−1)nfn(0)(A−1/2BA−1/2)n

]

A−1/2 (366)

= A−1/2
[

I+ f(0)A−1/2BA−1/2
]−1

A−1/2 (367)

= (A+ f(0)B)−1 (368)

where (367) comes from (360); completing the proof of Lemma 23. �
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We now consider (347) in Lemma 22 as follows

KX| ¯̄Yα
= KX(KX +ΣY,α)

−1ΣY,α (369)

= (K−1
X +Σ−1

Y,α)
−1 (370)

=
[

K−1
X +RY (ΛY + αI)2R⊤

Y

]−1
(371)

=
[

K−1
X +RYΛ

2
Y R

⊤
Y +RY (2αΛY + α2I)R⊤

Y

]−1
(372)

where 0 < α ≤ α∗. Equation (369) comes from (175), (371) is due to the definition of ΣY,α.

We note that K−1
X +RYΛ

2
YR

⊤
Y ≻ 0, and thus, α∗ can be selected to ensure that

K−1
X +RYΛ

2
YR

⊤
Y ≻ RY (2αΛY + α2I)R⊤

Y (373)

for all 0 ≤ α ≤ α∗. Hence, we can use Lemma 23 in (372) to get

lim
α→0

KX| ¯̄Yα
=
[

K−1
X +RYΛ

2
YR

⊤
Y

]−1
(374)

=
[

K−1
X +RYΛYQ

⊤
YQYΛY R

⊤
Y

]−1
(375)

= (K−1
X +HT

YHY )
−1 (376)

= KX|Y (377)

where (376) comes from the singular value decomposition of HY and (377) is due to (217);

completing the proof of (347).

Next, we consider (348) in Lemma 22 as follows

Fα(D) = ΣY,α(ΣY,α −D)−1ΣY,α −ΣY,α (378)

= ΣY,α(ΣY,α −D)−1D (379)

= (D−1 −Σ−1
Y,α)

−1 (380)

= (D−1 −RY (ΛY + αI)2R⊤
Y )

−1 (381)

=
[

D−1 −RYΛ
2
YR

⊤
Y −RY (2αΛY + α2I)R⊤

Y

]−1
(382)

=
[

D−1 −RYΛYQ
⊤
YQYΛYR

⊤
Y −RY (2αΛY + α2I)R⊤

Y

]−1
(383)

=
[

D−1 −H⊤
YHY −RY (2αΛY + α2I)R⊤

Y

]−1
(384)

where 0 < α ≤ α∗. Equation (381) comes from the definition of ΣY,α and (384) is obtained

by using the singular value decomposition of HY . We note that D−1 − H⊤
YHY is strictly

positive definite as (338) indicates, and hence, there exists an α∗ such that

D−1 −H⊤
YHY ≻ RY (2αΛY + α2I)R⊤

Y (385)
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for all 0 ≤ α ≤ α∗. Consequently, we can use Lemma 23 in (384) to get

lim
α→0

Fα(D) = (D−1 −H⊤
YHY )

−1 (386)

which completes the proof of Lemma 22.
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