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Abstract—The problem of reconstructing a source sequence D" = (D4, ..., Dy), which determines how" is to be deleted.
with the presence of decoder side-information that is mis- The outcome of the deletion process, denoteg®§', D"), is

synchronized to the source due to deletions is studied in a yarjyed fromX™ by deleting the bits at those locations where
distributed source coding framework. Motivated by practical - - . .
the deletion pattern is 1. Here is an example:

applications, the deletion process is assumed to be burstynd
is modeled by a Markov chain. The minimum rate needed n
to reconstruct the source sequence with high probability is X
characterized in terms of an information theoretic expresgn, D"
which is interpreted as the amount of information of the dele¢ed n =n
content and the locations of deletions, subtracting “natue’s y(X", D)

secret”, that is, the uncertainty of the locations given thesource . n
and side-information. For small bursty deletion probability, the Note that the deletion patterD" tends to have bursts of

(0,1,0,1,1,0,1,0,1,0)
(0,1,1,0,0,0,1,1,1,0)
(0,1,1,0,0).

asymptotic expansion of the minimum rate is computed. consecutive 1's, which lead to bursty deletions. The oagin
files X" and the deleted fileg(X",D") are available to the
| INTRODUCTION encoder and the decoder, respectively. The encoder sends a

In distributed file backup or file sharing systemsifelient message to the decoder, so that the latter can reconstruct
source nodes may havefidirent versions of the same file(synchronize) the original fileX" with an error probability
differing by a small number of edits including deletions antthat is vanishing whem goes to infinity. The objective of
insertions. The edits usually appear in bursts, for exaplethis work is to characterize the minimum rate of the message
paragraph of text is deleted, or several consecutive frashesdefined as the minimum number of bits per source bit.
video are inserted. An important question is: how ficceently The problem of synchronizing edited sequences has been
send a file to a remote node that has fiedent version of it? studied by [1], [2] under the assumptions (1) the decoder is
Further, what is the fundamental limit of the number of bitaot allowed to make any error, and (2) the number of edits is a

that needs to be sent to achieve this goal? constant that does not increase with the length of the seguen
Upper and lower bounds of the minimum number of communi-
Virtual bursty cation bits were provided as functions of the number of edits
deletion channel and the length of the sequence. i [3], an interactive, low-
y(X", D") complexity and asymptotically optimal scheme was proposed

In comparison, in this paper, we consider on information

. '/? “n theoretic formulation allowing a positive probability ofrer
X Encoder— Decoder— X that vanishes a® increases. This assumption allows us to

use additional techniques like random binning to improwe th
ffinimum rate. Unlike in assumption (2), we consider the case
that a vanishing fraction of source bits, rather than a @ontst

In this paper, we study the problem of reconstructing number of bits, is de_let_ed, to get which makes the problem
source sequence with the help of decoder side-informatiBrder and more realistic. o .
using a distributed source coding framework (see Figure 1!N this paper, we characterize the minimum rate in terms of
for an illustration of the system). In this paper we focu1® limit of the conditional entropy of the source sequence
on a simple case where the side-information is a deletgfyén the side-information. We interpret the minimum rate
version of the source sequence. Consider a binary sequefgdne amount of information in the deleted content and the
of length n denoted byX" = (X4,...,X,). Consider another locations of the deletions, subtracting the uncertaintythef

binary sequence of lengthcalled deletion pattern, denoted bylocations given the source and side-information. We reder t

the latter as “nature’s secret”. This is the informationttha

1This material is based upon work supported by the US NatiGei#nce the decoder will never find out even if it knows the source

Foundation (NSF) under grants 23287 and 30149 and by a @ih fr sequence and the side-information exactly; it represdrs t
Qualcomm Inc.. Any opinions, findings, and conclusions eoremendations . . . . . .
expressed in this material are those of the authors and duesetsarily reflect over-counting of information in the locations of the dejers.

the views of the NSF. For example, ifX" = (0,0) andy(X",D") = (0), the decoder

Fig. 1.  Synchronizing source sequences based on deletion si
information
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will never know and never needs to know whether the first Il. ProBLEM FORMULATION AND MAIN RESULT
bit or the second bit is deleted. Therefore the informatioR problem formulation

about the precise location of the deleted bit is over-caliatel n no
should be subtracted. For small deletion rate and georaéyric .. Tge sou”r_ciz zseqLueincx - OoilThxn)d Iet'{o, U ttls
distributed burst length, the minimum rate is computed up E' Dernou IID( / )'_ € Cf[’ﬂ et (t ’ )t. r N ele\z/llorll pa ﬁ"_‘
the precision of two leading terms. 0:D1,..., Dns1) IS @ two-state stationary Markov chain

illustrated in Figur ith the initial distributio ~
If the deletion patterrD" is independent and identicallyI . in Figurel> wi ! ISTBUNOT,

distributed (iid), X andy(X", D") are the input and output of gf[;hof‘"gf[))f Vlm_e ri‘; = (_QI;(@ - dﬁ{;”?”f o PapTies
i = i-1 = = i = i-1 = =

a binary iid deletion channel (selel [4] and references th)areiP Di = UDiq = 0) = 1— B(D; = 0D;4 = 0) = B, for all
[ i-1 = = i = i-1 = = Ps

In this case, the problem of characterizing the minimum rafe_ 5 5 n+ 1. Note that the initial distributioro, is
=12..., ) 0

to reconstruct lid “””O”T‘ source sequences in the disebu . stationary distribution of the Markov chain. The delete
source coding problem is closely related to the evaluation gequencey(xn D" € {0, 1}" is a subsequence o, which is

the mutual information across the deletion channel with iigerived fromX" by deleting all thoseX’s with D; = 1E The
| I — .

uniform input distribution. For small deletion probabjlithe length ofy(X", D), denoted by, is a random variable taking

second and third order terfh®f the channel capacity ar(;§IueS in{0,1,....n). Fori < L,, Y; denotes thé-th bit in the

achieved by iid uniform input distribution and are compute X" D" sequence. A run of consecutive 1's in the deletion

n .[El’ Lemm_a ll.1]. In th_|s_ paper we consider the asym attern is called a burst of deletion. Singés the probability
totic expansion of the minimum rate for the general burs

. . > initiate a burst of deletion, it is called the deletionerat
deletion process where the deletions are correlated awver. ti

In the special case of iid deletion process, the expansion in
Theorem[dl reduces to 1[5, Lemma IIl.1]. Note that in the B

source coding problem, the constant term becomes zerohwhic
means that the second and third order terms of the chanr(gl_ﬁ) 0 e (1-a)
capacity correspond to the first and second order terms of ,

the minimum rate. Therefore, although it is mathematically
equivalent to evaluate the these terms for the source coding
and channel coding problems, from the practical point &fg. 2. Markov model for the deletion pattern procéBs}i»o. Di = 1
view, the evaluation is more important for the source codirfgeansX is deletedD; = 0 means; is not deleted.

problem than for the channel coding problem. See Refmark 3
for detailed discussions. The source sequencé' is available to the encoder and the

When we generalize the iid deletion process to bursfifléted sequencg(X",D") is available only to the decoder

deletion process, new techniques are introduced. The m@stSide-information. The deletion patterdS is available to
interesting technique is the generalization of the usuatept N€ither the encoder nor the decoder. The encoder encddes

"~ We view the sequence (@ 1,0, 1,0) as a run with and sends a message to the decoder so that the decoder can

respect to deletion bursts of length two, because deleting t"€Produce the source with high probability.

consecutive bits from that sequence always results in tinesa Remark 1:f 5 =1-a =d, D" becomes iid, and the relation
outcome sequence,(@ 1, 0). betweenX" andy(X", D") can be modeled as an iid deletion

The rest of this paper is organized as follows. In Sedbn ?lhannel with deletion probabilitgl. In this paper we consider

we formally setup the problem and provide a preview of th:he Markov deletion pattern to emphasize the bursty natfire o

main result. In Sectiof Il we provide information theoceti %e deletion process in the source coding problem.

; . The formal definitions of a code and an achievable rate are
expressions of the minimum rate for general parameterseof tarlls follows

deletion pattern. In Sectid]V we focus on the asymptoticS Definition 1: A distributed source code for deletion side-

when the deletion rate is small and compute the two Ieadiﬂ%ormation with parametersn(M,]) is the tuple .
terms of the minimum rate. All the proofs are provided in the P " pie tn. Gn

appendices consisting of an encoding functiofy, : {0,1}" —» M, and
) a decoding functiom, : M, x {0, 1}* 0,1}".
Notation: With the exception of the symboR E, C, andJ, g B Mn x {0, 1" = {0. 1

d . d di d thei _.Definition 2: A real numberR is called an achievable
random quantities are denoted in upper cas? and their speqify if, there exists a sequence of distributed source codes
instantiations in lower case. Farj € Z, V; denotes the

sequence\( V) andVi denotesvi. The binary entropy {(fn, On)ln>1 for deletion side-information with parameters
SHME M - V] 1 n, IMp) satisfying limh_ e P(X" # gn(fa(X™), y(X",DM)) = 0
function is denoted byn,(-). All logarithms are base 2. Theém(lj Ii:rll)sug fle/gn) Ig}g];|Mn|(< R Gn (10X, Y( 0

nogation{*o, dl}” denotes then-fcild Cartesian product ofo, 1}, The set of all achievable rates is necessarily closed and
and{0, 1} enotes(Uk€Z+{O, L )U{V)}- hence the minimum exists. The minimum achievable rate is

[

of a “run

3Dg and Dy;1 do not determine the deletion of any source bit and do
2For small deletion probabilitg, the first order term of the channel capacitynot play a role in the problem formulation. However, they aged in the
is 1, the second order term &(dlogd), and the third order term i®(d). information theoretic expressions in Secti¢n$ Il V.



denoted byRqi,. The focus of this paper is to characterizéursty deletion channel is
Rmin, €specially for smalp. 1
lim —1(X% y(X", D)

B. Main result

= 1+plogp - /3( + o)

+loge - c) +0(B%9)(2.2)

In Section[Il] we expres&min using information theoretic
quantities when the parametersandp take arbitrary values. In [6], Dobrushin showed that the channel capacity of the
Unfortunately, we cannot provide an explicit expression did deletion channel is lif.(1/n) max,, (X" y(X", D")). If
Rmin @s a function ofr ands. Hence we focus on asymptoticthis expression can be extended to the bursty deletion ehann
regimes in Sectiof IV wheg is small. where the deletion pattern process is a Markov chain, then

Since the main dierence between the erasure process af@d) provides an asymptotic lower bound for the capacity of
the deletion process is that the locations of the erasures Hie bursty deletion channel for small valuesgof
explicit but those of the deletions are not, it is interegtto |
focus on a regime where the amount of information to describe _ o :
the locations of the deletions should play a significant iole We.car.1 write t.he minimum ach|ev§1ble raknin as the
the minimum rate. Wheny is vanishing and the length Offollowmg |an)rmat|on theoretic expression.
bursts of deletions is increasing, for each burst, the numbe Lemma 1.
of bits to describe the deleted content increases lineaitly w Ruin = lim }H(x”|y(X“, D"), Do, Dn:1).
respect to the length of the burst, but the number of bits n—eo M
to describe the location and length of the burst increas€be proof of Lemmalll is given in AppendiX]A.
logarithmly. Therefore the regime with a vanishingis not The structure of the proof is as follows: (1) we
interesting. On the contrary, whenis fixed, the length of a show that the limit lim_«(1/NHX"y(X", D"), Do, Dns1)
burst is of orde®(1) and we have an interesting regime. Iexists, (2) using the information-spectrum methad [7,

. | NFORMATION THEORETIC EXPRESSION FOR GENERAL @ AND B

this case, we evaluat,(a,8) as follows. Sgction 7.2, we haveRn, = HX"y(X", D”)) =
Theorem 1:Whenu is fixed, for anye > 0, we have pdim sup,_, . (1/n) log(1/ pxayexn,om (X"IY(X", DM)),  which is
the conditional spectral sup-entropy, (3) we show that

e HXUy(X", D) = liMpoe(1/mHXNy(X", D7), Do, Dn.1).

+loge—C|+0(5"). The techniques we use in step (3) are similar to those Do-
(2.1) brushin used i [6], where the capacity of the iid deletioarch

whereC = 3, 27" logl ~ 1.29. nel is characterized by lign,(1/n) max,, 1(X"; y(X", D").

The proof of Theorerll based on Lemmas 1 @nd 2, and isin Lemmal2, the information theoretic expression of the
provided in AppendiXC. Detailed discussions about the prominimum rate is written in another way, which has a more
techniques are given in Sectibn TV-B. intuitive interpretation as explained in Reméik 5.

Remark 2: The dominating term on the right side ¢f (2.1) Lemma 2:
is —Blogps, and the second leading term is of ord@(s).

Since —logp tends to infinity slowly ag decreases to zero,
in practice these two terms are often in the same order where E. = limoe En, and E, =
magnitude. Therefore we need to evaluate both of them. H(D;|Dg, X", y(X", D"), Dps1).

Remark 3:In [B], the authors evaluated the mutual infor- The proof of Lemm&l2 is given in AppendiX B.
mation across the iid deletion channel with iid Bernoufifl ~ Remark 5:Lemma2 expressé&nn in terms of three parts,
input as which can be intuitively interpreted as follows. The firstnte

d is the fraction of deleted bits iK". It represents the amount
lim }l(xn;y(xn, D") = 1 + dlogd — d(log 2e - C) + O(d>), of information per source bit in the deleted content, and thu
n—eo the rate needed to send the deleted content. The second term
is the entropy rate of the deletion pattern process, which is
the rate needed to describe the locations of deletions.elf th

1 N mon o encoder knew the locations and sent them together with the

Jim ~H((X", DY)IXT) = —dlogd + d(log2e - C) + O(d™).  deleted content, the decoder could reprod€e However,
this is excessive information. In fact, even if the decodsr ¢

This expression should be compared with(2.1) in the specirrectly reproduceé”, it can never know the exact deletion

case that the deletion process is iid, which requfresl—a = pattern. Therefore the uncertainty of the deletion pat@®n

d. Under this condition,[(2]1) also has the same two leadiggven X" andy(X", D"), is not required to be revealed in order

terms—dlogd +d(log 2e-C). Therefore in the special case ofto reproducex™.

iid deletion process[(2.1) is consistent with the resuliSh The uncertainty in the deletion pattern, given the source

Remark 4:TheorentIl implies that when the input distribusequence and side-information is thature’s secretwhich is
tion is iid Bernoulli(}/2), the mutual information across theknown only to an imaginary third party (nature) who genesate

Ruin(@.) = ~Blogp +/3( ho(e)

Rmin = d + H(D1|Do) — Ec, (3-3)

which implies that



the deletion pattern. Since nature’s secret is not requived The complete proof of (416) is given in Appendix C. In this
reproduceX”, it should be subtracted from the message ratsubsection we explain only the intuition ¢f (4.6).
Lemmal2 shows that nature’s secret per source bit, which isLet us first consider the case that the deletion is not bursty
the uncertainty in the whole deletion pattedd? normalized (@ = 1), i.e., no consecutive bits are deleted. In order to
by n, can be expressed &s,, which is the uncertainty in only evaluate nature’s secrgt, we need to estimate the uncertainty
D;. An intuitive explanation is that, the uncertainty in eath bin D; given X", y(X",D"), Do and Dn,;. The uncertainty is
in D" is approximately the same, therefore the uncertainty caignificant if the first run ofX" is different from the first run
be represented by the uncertainty in odly. of y(X", D"). For example, ifX" = (0, 0,0, 1) andy(X", D") =
(0,0,1), we know that one bit is deleted in the first run (first
three bits) ofX", but do not know which bit is deleted. The
In typical settings the number of edits is often much lespue identity of the deleted bit is nature’s secret. Sinaareh
than the file size. Sincg is the probability to start a burst of gre three equally likely possible deletion patterns ang onk
deletions, the asymptotic behavior Bfin for small g is of |eads toD; = 1, the conditional entropy db; is hy(1/3). The
special interest. length of the first run ofX" is L, a geometrically distributed
A. Case 1: Few number of long bursts of deletionk 1,8 < r_andom variable Wi.th parametef. .If one bitis deleted in. .the
1, anda/ is fixed first run, the_ cond_mo_nal entropy iB2(1/L). The probability
that any bit inL bits is deleted is roughlyg, therefore the

Whena « 1,8 < 1 anda/g is fixed, the number of bursts average uncertainty i8[h(1/L)L3] = (Zfi1 h2(1/I)2*'I)ﬂ -
are much smaller than the length of the sequence, and each, .__; A
2127 M logl) B = CB

burst is so long that the overall fraction of deletior: 5/(a + Let us now extend the discussion in the previous paragraph

p) is a constant. : .
On the right side of[{313), the first terthis a constant. For o the case of bursty d_el_e_tlona/ (< 1) First, we need to
generalize the usual definition of “run” terun.

anyls>0, the second terrhl (D1|Do) =dh2(a)+(1_d)h2(€): Definition 3: For any b and | € Z*, a sequence
gc(f:or;'inarlg EZ;;?E; tvevremfg’ves H(D1IDo) = O(E™). (X1, ..., %ou-1) is called ab-run of extentl if for all i, j
9 ' satisfying { = j modb), x; = x; holds.

Rmin(a@,B8) = d + O(ﬁl"). For example, (11,1,1,1) is a 1-run of extent 5, and 1-run

. ) . is the usual definition of a run. The sequenced(1,0,1) is
Intuitively speaking, if we have a small number of long bSlI‘SIa 2-run of extent 4. Note that there aralifferent ways to

of deletion, the amount of information of the locations OBeIeteb consecutive bits in a sequence of lengthb— 1. A
deletions is orderwise less than the amount of information Qpecial property of &-run of extentl is that, all thel ways

the content of deletion. Therefofin is dominated by the ¢ yejetion result in the same outcome. For example, all four

rate needed to deliver the deleted content. ways of deleting two consecutive bits in, (11,0, 1) lead to
A more interesting case is when all three terms[ofl(3.3) &g same outcome (@, 1). This observation is formally stated

comparable. in the following fact.

B. Case 2: Few number of short bursts of deletioris fixed ~ Fact 1: Let x*"* be ab-run of extent. Letd, denote the

andp < 1 sequence ofi(- 1) O's followed byb 1's, then followed by

I . (I —i) 0’'s. Theny(x**'-1,d;},) is the same forall = 1,...,1I.
Whena is fixed ands < 1, the number of bursts is much Definition 4: For anyb € Z*, the firstb-run of a sequence

smaller than the length of the sequence. Since the length o(fxa x.) is the longest segment starting fram that is a
burst is drawn from a geometric distribution with parameter b?un s 9 9 g from
the expected length is of ordé&(1). The overall proportion of '

L a > . . For example, the first 2-run of (0,0,1,1) is (01,0, 1).
deleted bits isl = 5/ +£) = p/a+ OF). In this case, unlike Now let us consider the uncertainty iD; given

in Case 1, the location information and “nature’s secre# aln
. . ,Y(X", D), Do and Dy through an example. If we know
comparable to the content information. Therefore we need hogt a burst of 2 bits is deleted " = (0,1,0,1.1) to

evaluate all three terms for this case. The three terms on {

. . producey(X", D") = (0, 1, 1), we know that the deletion occurs
right side of [3.B) are evaluated as follows. For ary 0, we within the first 2-run, i.e., (QL,0,1). Since there are three

IV. A SYMPTOTIC BEHAVIOR OF Ry FOR SMALL VALUES OF f3

have indistinguishable deletion patterns,, 10,0, 0), (0,1,1,0,0),
d = Bla+06(s>), (4.4) and (Q0,1,1,0), among which only the first one satisfies
3 Bho(a) - D; = 1, the conditional entropy dD; is hy(1/3).
H(D1IDo) = —Blogh + o +floge+ O(5™).(4.5) For anyb, the extent of the firsb-run, L, is a geometrically
~E.. = -CB+0(%°), (4.6) distributed random variable with parametg}las in the non-

whereC = 32, 27 logl ~ 1.29. Combining [[4}4) through  “In this section we only provide an intuitive explanationngsa simplified
@]) gives Theorerl 1. case that there is only one burst of deletion. In a rigorow®fpit is shown

. .that with high probability the first burst of deletion can Iselated from the
The prOOfS Ofm) ant) are trivial. The proof4§) l'other bursts so that the general case is reduced to the Badpliase. See

highly nontrivial and is the essence of the proof of Thedr&ém Appendix[T for details.



bursty case. This fact can be seen by sequentially gengratin(2) Using the information-spectral version

X1, X, .... For arbitrary realization oX® = x°, X° always of the  Slepian-Wolf  theorem []7, Section

belongs to the firsb-run. If the firstb-run has been extended7.2], we have Ruin = H(X"y(X", D) =

to the { — 1)-th bit, it will be extended to théth bit if Xi = p- limsup,_.(1/n) 09(1/pxmyxn,om(X"ly(X", D")). In the

Xi-p, Which occurs with probability%. Therefore the extent rest of this appendix, for any random variables B,

of the first b-run is a geometrically distributed variable. Ifwe abbreviatepa(A) and pag(AB) to p(A) and p(A/B),

one burst ofb is deleted in the firsb-run, the conditional respectively, to avoid cumbersome notations.

entropy of D; is hy(1/L). Since given the length of burst (3) Now we show that the sequence of random variables

the probability that any deletion pattern amonglaipossible (1/n)log(1/p(X"y(X", D"))) converges in probability to the

deletion patterns occurs is roughlg, the average uncertaintylimit lim p_ Rn.

of E[hz(1/L)LB] = CB. Note that the result is the same for all We introduce a segmented deletion process as follows.

b. In other words, nature’s secret is alwa@se 1.29 bitsper Let k > 3 be the length of a segment. Let := [n/k]

burst regardless of the length of burst. be the number of complete segments dnd= n - gk
Remark 6:Since nature’s secret i€8 + O(3>€) for any be the length of the remainder. Consider the outcome of

given value of the length of burstebZ*, the fact that nature’s a segmented deletion process as follows: 2", D") :=

secret averaged acrosdfdrent possible values df is C8+  (Zu, Zim, Z1R, - - - » ZgL, Zgm, Zgr, Zremainde) D€ @ vector with

O(8%¢), regardless of the distribution of the length of a bur§Bg + 1) components, where¥i = 1,....9, Z4i =
of deletions. This implies that Theoreh 1 may generalize $¢X-uk1. Di-1je1): Zim = Y(XtTh,o DiTiyer) ZR
more general deletion processes beyond the two-state Mark@Xi, Dik), and Zremainder := Y(X oken)- From z(xX",D")

. - ’ gk+1° k- ”
chains. In order to draw a rigorous statement, however, owe can find out how many source ?mts are deleted in each

has to revisit Lemmds 1 and 2 and prove them for the genesagment and the remainder, and whether the first and last bits

setup. of each segment are deleted. The sequei(X& D") can be

obtained by merging all the 3+ 1) components of(X", D").

Therefore the sequenaX", D") contains more information
We studied the distributed source coding problem of syfhan y(x", D). We will first fix k and letn go to infinity.

chronizing source sequences based on bursty deletion sifigen we increas& to prove the final result.

information. We evaluated the two leading terms of the The statement to be proved is based on the following three

minimum achievable rate for small deletion rate. Direc$iorfacts.

for future work include considering insertions in addititm Fact 2: For anyk > 3, n and anys > 0, there exists a

deletions, and evaluating the leading terms of the capatity function (k) satisfying lim. e1(K) = 0, so that

the bursty deletion channel.

V. CONCLUDING REMARKS

P 1 ’Io —lo ! >0)< ﬂ
n |29 B0y om) 0 pxrxm. oMyl ) = T

. Fact 3: For anyk and anys > 0, there exists a function
(1) We first show thaR, := (1/n)H(X"y(X",D"), Do, Dni1)  ey(K) satisfying limk_. e2(k) = 0, so that a1 — oo,

converges a1 — oo, so that the limit in the statement of 1 1

Lemma[l is well defined. P('— 00 ————~
For allme {1,...,n- 1}, we have n pP(X"Z(X", D)

APPENDIX A
ProoF oF LEmma [Tl

NRy = H(X"ly(X",D"), Do, Dns1) —%H(XE*Hy(XE*% D5™), Dy, Di)| > 6)
2 HYX™. D™, YO, 1. D). Do Dova) . al)
> HX"y(X™, D), y(X,1, Dit.1): Do, Dv1, Dinia) oot -0
+H(xrr:1+1|y(xm’ Dm)’ y(xrr:w-l’ DﬂH.l)’ DO, Dn+1, Dm) ' 1
© HX™y(X™, D", Do, D) Jim 3 HOG 06 D), Bu, DY
+H(xrr;}+1|y(xr?H1, DﬂHl), Dn+1, Dm) — k”m %H(ka(xk’ Dk), Do, Dk+1)-

= H(xmly(xmv Dm)v DO? Dm+1)
Proof of Fact2:

n-m n-m n-m
FHOTTYXTE DT, Do, Dn-m) Since y(X",D") can be determined by(X",D"), there
where step €) holds because the tuplexists a functiong, such thaty(X",D") = ¢n(z(X", D).
(y(X™, D), y(XI. . Dy, 1)) determines y(X",D"), For any realization of z2X",D") = z we have

mH1°

and step (b) holds because the Markov chaifgz(X",D") = 2) < P(y(X",D") = ¢n(2), which implies that
(XD, 1-Dn.1):Dni1) = Dmer — (XM y(X™,DM), Do) and (1/n)logP(z(X",D") = 2) - (1/n) logP(y(X",D") = ¢n(2)) <0

m+1°

(Y(X™,D™M), Do) — Dm - (X§,1-Y(XH.1-Dpyq). Dni1) hold. always holds. Letl; be the vector of (3gl) components

m+1° m+1°
Therefore the sequenéBR,}nay is superadditive. By Fekete’s representing the lengths of all the componentz(f, D").

lemma [8], the limit lim_,., R, exists. Then we have



2|~ log py(X", D)) - 1 Iog p2X", D)

5| loa (X", D7) - £ | log ptatx, )
L(-H(Y0<", D7) + HEX", D)

S, DY)lYX, DY)
1

= ~H(Laly(x".D")
1

= EH(LZ)

< %(39 + 1) logk

- 4 Iogk'

- k

By Markov’s inequality,

- 4logk.
ké

P (% log p(y(X", D) - log p(z(X", D)| > 6)

Using the same argument we also have

4logk
ké

P(% [log p(X", y(X", D)) — log p(X", (X", D")| > 5) <

Using the same argument we also have
1

1
F (!a 199 157, 27, D)
1
- EHOG 05 D5, 01, ) > o
K

0

Combining the last two inequalities completes the proof of
Fact[3 [ |

Proof of Fac4:Fact{4 holds because (B pir = Pxiz prez
and (ii) k—2)/k - 1 ask — oo. ]

Combining Fact§12 and 3, we have: for any fidednd s,
asn — oo,

il

<

1‘|0 ;
n 09 B(XTy(X", DY)

1 et kel ke
~ HOG y(%3™, D5™), D1, DY)

> 6)
es(k)

o
for some e3(k) which vanishes a& increases. By choosing
a large enouglk, the right hand side of (Al2) can be made
arbitrarily small. Combining[{A]2) and Fatti 4, the sequence
of random variables (h) log(1/p(X"y(X", D"))) is shown to

(A.2)

Combining the last two inequalities completes the proof d&fe converging in probability to the limit lig,. Rn.

Fact[2. [ |
Proof of Fact(3:
Let Zg = (Zu, Z1R, - - -, ZgL, ZgR, Zremaindep- TheEN
" log p(a(x", D)
9 Llogp(zs) + il ~ log p(zwzs)
9 Liogoze)+ )" Logpzmizeza. (A1)
i=1

where step (c) holds because givés, Zim,...,Zgw are

conditionally independent, and step (d) holds becdD%as
a Markov chain.

Since the expectation of the first term Bf (A.1) is equal to

(1/nH(Zg) < (2g+1)/nlog 3, by Markov’s inequality we have
P((1/n) log p(Zg) > ) < (29 + 1) log 3/(nd).
Due to the law of large number, as — oo, which

implies g — oo, the second term of[ (All) converges to

(1/K)H(y(X5™, D5~1)|Dy, Dy) in probability.
Therefore we have: for any andn — o,
L1

1
P('ﬁ 109 Sz o) k

for somee; (k) which vanishes ak increases.

&(K)

H(y(xl2(_l’ Dg_l)’ Dl, Dk) 5

>6)S

Combining (1), (2) and (3) we haveRy
lim e (1/N)HXy(X", D), Do, Dnyt1).

AprpPENDIX B
ProoF oF LEmMa [Z

We will first introduce a sequenc@h}nay and show that
liMn—co In = Rimin.

Lemma 3:For all n ¢
(1/mMH(y(X", D")IX", Do, Dn+1).
liMn—co In = Rmin.

Proof: We have

d +
have

Z*, let
Then

JIn

we

.1
Rmin I"llmo ﬁ H(xn|y(xn, Dn), DO, DI"I+1)

1
lim =[H(X"|Dg, Dns1) + Hy(X", D")|X", Do, Dn+1)

n—oo N

_H(y(xna Dn)|DO’ Dn+l)]
1
1+ Illm - H(y(X", D")|X", Do, Dn+1)
.1
- I’!El]o H(H(Ly| DO’ Dn+l) + H(y(xn9 Dn)“—y5 D05 Dn+1))~
Since

1 .1
0 < lim —=H(Ly|Dg, Dp41) < lim —log(n+ 1) =0,
n—oo N n—oo N

we have lim« 2H(Ly|Do, Dny1) = 0. Since givenL, =

| and given Do, Dn.1) the sequencey(X",D") is an iid



Bernoulli(1/2) sequenceH(y(X",D")ILy = |,Do,Dnwt) = | Proof: (1) For alln > 2, we have
holds. ThereforéH (y(X", D")|Ly, Do, Dnst) = E(Ly) and hence
(y( )l Yy 0 I"I+t) ( y) H(D1|Xn, y(xn, Dn), DO, Dn+1)

H(D1|Xn, Y(Xn, Dn), DO, Dn, Dn+1)

H(D1/X", y(X", D"), Do, Dn)

H(D1|X", y(X", D"), Do, D = 1)pp, (1)

+H(D1/X", y(X", D"), Do, Dn = 0)pp,(0)

= H(D1X", Xo, (X", D"1), Do, D = 1)pp, (1)

= lim (d + TH(y(X™, DX", Do, Dml))) +H(D1X"%, Xo, (X", D), Do, D = 0)pp, (0)
ey = H(DyX"™ L, y(X"%, D"1), Do, Dy)

n
(07

a+p

\%

=1-d.

1 1
Alm HH(y(xn’ Dn)lLy, DO, DI"I+1) = Alm HE[LY] =

In conclusion,

Rrin = 1+ lim ZH(y(X", D)X, Do, Dy1) ~ (1~ d)

= lim J,,
n—oo n = En_]_.
which completes the proof of Lemnha 3. [ ] Therefore{En}ns1 is nondecreasing.
Now let us use Lemmil 3 to prove Lemida 2. (2) Since for alln, E, > 1 holds andE,}n=1 is nondecreas-
Expanding | (Dy; y(X", D")IX", Do, Dn.1) in two ways, We ing E,, = lim,_, E, exists. |
have By Lemmd4, the left side of (Bl 4) convergesHigD1|Do)—

E. asn — oo. Since [B.%) holds, the right side also converges
n n n n
H(DaIX", DO’nD”J;l) —nH(D1IX V(X" D )nDO’nD”*nl) and the limit is(limy_c N(Jn = Jn_1)) + Rmin — d. Since{Jy}ns1

= HY(X", D")IX", Do, Dn.1) — H(y(X", D)IX", Do, D1, Dni1).is a converging sequence and the Jim n(J, — J_1) exists,
(B.3)limpco N(In — In-1) = 0. Therefore in the limit a® — oo,

(B:4) becomes
The first term on the left side of[(B.3) is equal to
H(D1|Do, Dns1). The second term on the left side ¢f (B.3) H(D1|Do) — Ew = Rmin — d,

is denoted byE,. The first term on the right side of (B.3) is

equal ton(J, — d). The second term on the right side b (B. 3)

is: AppeEnDIX C
ProoF oF THEOREM[]]

which completes the proof of Lemni& 2.

H(y(X“ D")|X", Do, D1, Dpy1)
= H(Y(X",D")IX", D1, Dns1)
= H(y(X",D")IX", D1 = 1, Dn1) Pp, (1)
+H(y(X", D")|X", D1 = 0, Dyy1) Po, (0) d+H(D1|Do) =

Whena is a fixed constant anfl < 1, it is easy to verify
that the first two terms of (3.3) are

B, @)  ph)
a+p  a+p a+p

= H(Y(X3, D3)IX1, X3, D1 = 1, Dns1) Po, (1) ho(a) .
+H(X1, y(xn’ D2)|X]_, XS, Dl _ 0, Dn+1) le(O) = _,8 IOg:B +,8( + |Og e) + O(ﬁ )9
© H(y(X3, D)IX3, D1 = 1, Dns1) po, (1) for any e > 0. We will show that the third term of (3.3, =

+H(Y(X3, D)IX3, D1 = 0, D1s1) Po, (0) cgror. _ _
= H(y(X2, DY)IX? Dy, Dpis) Le_zt us first dejme typicality” of the d.eletllon pattern. Senc
n’_l 2 n—1’ n’—l E. is the conditional entropy ob;, which is more relevant
= HY(X™ D" )IX", Do, Dn) to the first a few bits oD}, the typicality of theD} concerns
= (n=1)(Jn-1 —d), about only the first a few bits.
o Definition 5: Let k = max6,6/(log(1 — «))}. For n >
where step (e) holds becaus¥, is independent of _kjogp, the deletion patterDf) is typical if the following
(D™, X5, y(X3, DY)). Therefore[[B:B) becomes two conditions hold.

B _ _ _ 1) There is at most one run of 1's iDg, . .., D_kiogp)-
H(D1lBo. Dnsa) = En = Nk = Jn-1) + Jp-a - (B.4) 2) There are no more than —K/3logp) 19’5 in
Now let us take the limit am — o on both sides (Do, - . ., D_kiogp)-
of (B4). Because of mixing of the Markov chaifD;}ixo, Lemmd states that the deletion pattern is typical with high
the distributionpp,,, 0,0, (:|do, d1) converges to the stationaryprobability.
distribution regardless of the initial valuedy(d;) asn goes Lemma 5:For anye > 0, the probability thaDj is typical
to infinity. Therefore lim_., H(D1|Do, Dns1) = H(D1|Do). For is at least 1- O(3%°).
the second term on the left side bf(B.4), Lemimha 4 guarantees Proof: Since any deletion pattern that hasuns of 1’s in
the convergence dfEn}ns1. (Do, ..., D_xiogs) Occurs with probabilityO(8") and there are
Lemma 4:(1) The sequencéEn}n.1 is nondecreasing. (2) no more than {klogp)®* such patternsP((Do, .. ., D—xiogs)
lim,_, E, exists. containsr runs of 1's) = O(8'¢) for any ¢ > 0. Hence



condition 1) of DefinitiorLb holds with probability-10(8%~). 1,D0=1,T = 1) = (1/2)1°9% = O(5°). SinceP(D;

Given that condition 1) holds, condition 2) is violated itte 1Dp=1,T =1)=0(1) andP(D; = 0Dy = 1,T =
is a burst of deletion longer thar-K/3logg), which occurs 1) = ©(1), by Bayes’ rule, we havé(D; = 1|Dg =
with the probabilityO((1 — @) ¥/3°98) = O(5?). In conclusion, 1,T = 1,M; = 1) = O(B®). ThereforeH(D1|Dy =
P(Dj is typical )= 1 - O(5%) for any e > 0. [ ] 1,T=1M; =1)=0(85¢), Ve > 0.

Let the indicator random variable := 1 if Dy is typical and In conclusion, the contribution of Case (1) E, is

T := 0 otherwise. Lemmi 5 implies that (0) = O(8%~¢), Ve > n N o~n

0. Lemmd® states that we can focus on the typical Gasel H(D1IX", y(X", DY), (Do, T) = (1, 1), Dns1) Po,.7(1, 1)

in order to evaluaté,, to the precision of0(3%¢). H(D41/X", y(X", D"), (Do, T) = (1, 1), Dns1, M1)
Lemma 6: X Pp, (L, 1)

Ew = lim H(D1/X", y(X", D", Do, Dyes, T = 1)pr(1)+O(6>). O(B*).

o Case (2):)Dp =0, T = 1. In this case we will first check
whetherX-*/31098 = y-k/3l098 | ot M, := 1 if they match

Proof: For all n > —klogp, we have the following lower

bound ofE and M, := 0 otherwise.
En > H(DuX", y(X",D"), Do, Dny1, T) — Case (2.1)Do = 0,T = 1,M, = 1. By the same
> H(DyX", y(X", D"), Do, Dps1, T = 1)pr(1), argument as in Case 1 fdi; = 1, we haveP(D; =
1Dp = 0,T = 1, My = 1) = O(8?), and H(D1|Dg =
and the following upper bound 0,T =1, Mz = 1)pp, ., (0. 1, 1) = O(B2<), Ve > 0.

— Case (2.2)Dg=0,T =1,M; = 0. We try to find a
Ien%]th tk/3logB) segment inY~k1°9% that matches
Since (i) Mz = 0 implies that at least

En < H (D19 T|Xn’ y(xn’ Dn)& DO’ Dn+1)

= H(D1|Xn7 Y(Xn, Dn)7 DO: DI"I+17 T)
X 24310 gp+1"

+H(TIX, y(X", D"), Do, Dn+1) one bit In the first-k/3 logp bits is deleted and (ii)
< H(DyX", y(X",D"), Do, Dny1, T = 1)pr(1) a burst of deletion in a typical deletion pattern is no
longer than—-k/3logp, there must be no deletion in
H(D1/X", y(X", D"), Do, Dns1, T = 0)pr(0) + H(T
B ; é ;('n );E“ . )D OD ”+1_|_ 1 )pTl( )+ H(T) j(/SIOgﬁJrl’ which implies that there must be at least
< H(DXEY(X, D), Do, Dnya, T = 1)pr(1) one segment iny 1994 that matchesX_ 'z‘l'(‘;gﬁ) g5
+pr(0) + H(T) DefineB := 0 if there are two or more segments that
= H(D1X",y(X", D), Do, Dns1, T = 1)pr(1) + OB>). match X 3,797 and forb e Z*, defineB := b if
. - klogB-b
Taking the limit asn — oo completes the proof. [ th(il;e is a unique segme¥ity 3\ ., , that matches
For all n > —klog, we have X gy 3lngse1 With an dfsetb.

x Case (2.2.1)Dp=0,T =1, M, =0,B=0. The

n n n —
H(DaIXT Y7, D), Do, Dnva, T = Lpr(1) condition B = O requires at least-/3logp) in-

= H(DX" y(X",D"),Do = 1,Dns1, T = 1)pp, 1(1,1) dependent bit-wise matches, each of which occurs
+H(D1|X", y(X",D"), Dg = 0, Dn1, T = 1)pp, 1(0, 1). with probability (1/2). HenceB = 0 occurs with
_ _ probability at most (12)%/3°9% = O(5?). There-
We will separately analyze the following two cases: )= fore the contribution of Case (2.2.1)k(D1|Do =
1,T=1 and (2)D0 =0,T=1. . 0T = 1, M, = 0B = 0)pDo,T,M2,B(O, 1,0, O) —
« Case (1):Dg = 1, T = 1. In this case we check whether 0(B?).
XKlogs - y-klogh | et M; := 1 if they match and x Case (2.2.2)Dp=0,T=1,M,=0,B=be Z".
M; := O otherwise. Note thaM; is determined byX" There must be a burst of deletion of lendhak-
andy(X", D). ing place inD;*/*"°% which causes theftset ofb
— Case (1.1)Do = L T = 1,My = 0. There exists at betweenX_ 'Z‘IL‘/JnggBH and the matching segment in
least one 1 er #. SinceDo = 1 and there is at y(X", D). Since the length of the burst is bounded
most one run of 1inD, klogh i a typical deletion by (-k/3logp) in a typical deletion patterry <
pattern,D; = 1 must hold Thereforéd(D1|Dg = (—k/3logB) must hold. Since we can find a correct
1L,T=1,M=0)=0. correspondence between a segmeniXbfto its
— Case (1.2)Dg = 1, T = 1,M; = 1. In this case, outcome of deletion, the deletion process to the
bothD; = 0 andD; = 1 are possible. Givelby = left of the segment is conditionally independent
1,T=1,if Dy =0, then for alli = 2,...,-klogg, to the deletion process to the right. Therefore in
D; = 0, which implies thatx k09 — y-klogh ¢ order to evaluate the conditional entropy Bf
D; = 1, then for alli = 1,...,-klogB, Xi andY; we need to focus on the process to the left of
are independently generated fair bits, hence the event the segment only. Hence the contribution of this
Xi = Y; occurs with probability 12. Since events case toE. is: >, H(D1|X",y(X",D"), Dpy1, T =

{X; = Y;}i are independent acro$sP(M; = 1|D; = 1,Do = 0,Mz = 0,B = b)pr.p,m,s(1,0,0,b) =



ZpH(D1X™,y(X",D"), T = 1,Dp = O,Mz =
0,B b) pr.o,.m,.8(1,0,0,b), where n’
—-2k/3logB. LemmalY will show that the contri-
bution of Case (2.2.2) i€3+ O(8%¢). This is the
only case that is responsible for the leading term
Cg in E.

As a summary, the contribution of all the cases (1.1), (1.2),
(2.1), (2.2.1) toE,, is of orderO(5>€). LemmalT will show

For a sequence” satisfyingly(x™) = I, we have

Pxv x.00.8(X" s X117, 1,0, b)
|
Pxr (X") D Pogip,,., (dil0. 0)
i

Py (X )a(1 - @)* (L - p)" P
pxr (X7)la(L - )" 1B(L - O(B*)),

that the contribution of Case (2.2.2) @3 + O(8%), which for anye > 0. _
will complete the proof of Theorefm 1. Therefore we continué (d.6) as
Lemma 7:For n’ = -2k/3logB, we have (CH8)
L8198 (D4 X, y(X™, D), (T, Do, M2, B) = (1,0,0,b)) x ~K/310g8 /—b 1 /
P owv25(1.0.0.b) = CB + O(3), - >, e[ P 0lata - 35— O
Proof: Using the abbreviatiolY := y(X", D"), we have g:(;2) =1 X ()=
+
—k/3logs-b 1
~k/3logp = Z Z hy (I_) 27la(1 - @)*'B(1 - O(B*)) + O(8?)
> H(D1IX", Y, (T, Do, Mz, B) = (1,0,0,b) S
b=1 ) - b-1 1-€ 2
= hol=]127la(l -« 1-0 +0
ibroma(L0.0.0) ) o(7)210- 0450 059 + o)
—k/3logp ) ) 00 1
= > D HOIXT =x",Y =y, - th(l—)Z"Iﬁ+O(ﬂ2‘€)
b=1 x"",y =1
(T, Do, Mz, B) = (1,0,0,5) 0 cpe 00>,
v X",y,1,0,0,b C5
_/3logs X ooz (XY ) (€9) where step (h) holds becauke= max6, 6/(log(1 - «))} and
©) Zg Z H(DX™ = X7, Y = X n" = —2k/3logpB, which guarantee that changing the limits of
- L L A =X 1= % summations to infinity only leads to a change of or@és?),
=L X ; 00 —I| _ g o-l-1
(T, Do, My, B) = (1,0,0, b)) and step (i) holds becaugg®, ho(1/)27'1 = }}2, 2 IIogL
XPxr ’Y’T’DO’MZ’B(XN, Xg;l’ 1.0.0.6) REFERENCES
—k/3logp
(g) n n n . e . " .
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