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Abstract—Cut-set bounds on achievable rates for network invertible linear transformation®; andT5, we can write

communication protocols are not in general tight. In this pger

we introduce a new technique for proving converses for the

problem of transmission of correlated sources in networksthat
results in bounds that are tighter than the corresponding ct-
set bounds. We also define the concept of “uncertainty regidn
which might be of independent interest. We provide a full
characterization of this region for the case of two correlaged
random variables. The bounding technique works as followson
one hand we show that if the communication problem is solvalel,
the uncertainty of certain random variables in the network with
respect to imaginary parties that have partial knowledge ofthe
sources must satisfy some constraints that depend on the medrk
architecture. On the other hand, the same uncertainties haw
to satisfy constraints that only depend on the joint distribution
of the sources. Matching these two leads to restrictions orhée
statistical joint distribution of the sources in communicaion
problems that are solvable over a given network architectue.

I. INTRODUCTION

Consider a directed network with a sourcend two sinks

t; and ¢, [l Suppose that the source observes i.i.d. copies .

random variableX, Y jointly distributed according tp(x, ).
Sink ¢; is interested in the i.i.d. copies &f, while sinkty is

interested in the i.i.d. copies &f. We consider the problem
of reliable transmission to fulfill the demands of both sin
nodes with probability converging to one as the number @

i.i.d. observations ofX, Y grows without bound.

The cut-set bound says that if the demands of both sinks

be fulfilled, each of the cuts that separatffom ¢; must have
capacity at leasH (X), each of the cuts that separatérom

to must have capacity at least(Y") and each of the cuts that

separates from (¢4, t2) must have capacity at least(X,Y).
The cut-set bound is known to be tight whéh= (M, M)

andY = (Mj, Ms) for some mutually independent rando

variablesMy, My, M- [1], [2]. Another case is wheX and

Y are “linearly correlated” in the sense that one can expkess

C

_ AO m
hX = L‘h] U

_ AO m
TY = {BJ um,

where the rows ofdy, A; and B; are linearly independent.
Because the linear transformatios and 75 are invertible,
the communication task is to transmit the common message
AoU™ to both the sinks, and the private message& ™ and
B,U™ to the two sinks. Clearly this problem reduces to the
one mentioned above lyU™, A,U™, BLU™ are mutually
independent. Therefore the cut-set bound is also tight @ su
cases.

However, in general when the joint distribution &f and
Y is arbitrary the cut-set bound is not always tight. To
go beyond the cut-set bound, we devise a new technique
for proving converses for the problem of transmission of
correlated sources over networks. We provide an example for
vc\)/Pich the cut-set bound is not tight, but the new converse
iS tight. Nonetheless the problem of finding joint distribat
of the sources in communication problems that are solvable
over a given network remains an open problem. One can refer
lt(o the several papers written on this topic for treatments of
special cases of this problem (see for instancel[8]-[1n&
of these works discuss different settings in which sepdrate
source coding and network coding becomes either optimal or

optimal.
At the heart of our technique lies the concept of “uncer-
tainty region” and how we relate it to networks. We define
the uncertainty region as the set of all possible uncestaint
vectors where each of these vectors are trying to capture the
uncertainty of a given random variable from the perspeaiive

Mhifferent observers who have access to distinct but depende

sources. More precisely, given an arbitrary random vagiabl
K, a vector formed by listing the uncertainty left i when

andY asX = AU™ andY = BU™ for some random Vector .., jiioned on different subsets of i.i.d. Copiéx ™, Y "},
U™, and matricesA and B all taking values in a given field. ie. [LH(K), LH(K|X"), LH(K[Y"), LH(K|X", V")
Without loss of generality one can assume that the rows of. " ‘n I i o ' ’

4B i v ind dent. B Vi itablv ch is called an uncertainty vector. Since the statistical ddpace
an are finearly independent. by applying sultably choS€layeen the sources affects the uncertainty region in datruc

way, our discussion of correlated sources here is not an
straightforward extension of the case of independent ssurc
Our technique also differs from those developed by Kramer et

1To convey the basic ideas in the simplest way, throughoust ghper we
assume that there are two sources. Generalization to manetéfo sources
(sinks) is also possible.
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Fig. 1. Transmission of correlated sources over a butterfiyvork. The Fig. 2. Transmission of correlated sources over a butteryvork with
capacity of edge is C; as labeled. Assumé€&s = C7 = Cs. K is the secrecy constraint. A passive eavesdropper is on nodeand R respectively
message on edge are the messages on edge 4 and 5.

= J— .
al. [15], Harvey,.et .aI. [131 and Thakor et &l. [16], all of whi variables is zero, implying that H(K) should be almost
concern transmission of independent sources over networks n

The rest of the paper is organized as follows. In Sediibn fero: This _effeptwely implies that we are not using edge
. ; ; il communication at all. But the cuts at the two sinks were
we motivates our new technique. Sectiod Il contains one

the main results of this article, a complete characteopatif ﬁght, implying thatCy < H(X) andCs < H(Y'). There is not

the uncertainty region. Sectiéri V includes the proofs enough rate to communicafé™ andY™ through these links.
y region. P ' This implies that the required communication demands canno

Il. MOTIVATION be simultaneously satisfied. Note that because even a small

This section motivates our technique which is based Hgrturbation in the joint distribution can destroy the &ac

uncertainty computations. For the ease of exposition and Kg"er commeon information between two random variables, a
convey the main ideas, discussions in this section will iven network that supports transmission of certain cateel

quite intuitive and not rigorousA precise discussion will be SCUrCes, may not support transmission of correlated seumce
provided later. its immediate vicinity, a discontinuity type phenomenon.

Let us begin with the well-known butterfly network shown Our second example is again based on the butterfly network
in Figure[1. Assume that the source is observing.i.d. Of Figure[2 with a passive eavesdropper on one of the nodes
repetitions of the correlated binary sourde$, Y). Thus the as shown in the figure. The eavesdropper can observe random
source has a length-vector X™ and the length: vectory”. variable K but cannot tamper with any of the messages. The
The first sink is interested in recovering the.i.d. repetitions goal of the code is to keep the eavesdropper almost ignofant o
of X whereas the second sink is interested in recoveriﬁ@ message of the first sink. That is, we would like to refstric
the n i.i.d. repetitions ofY. Probabilities of error at both our attention to those codes in whiéhis almost independent
sinks are required to converge to zero as the number of i.iaf. X". Further, assume that the cut at the second sink is tight,
observations ofX, Y grow without bound. For the sake ofi.e., C5 + Cs = H(Y). We claim that one must then have
simplicity we restrict ourselves to networks such that the cCs > H(X), Cs < H(Y|X), C5 > I(X;Y). Otherwise, the
towards the first receiver across edgesand 6, and the cut sources are not transmittable.
towards the second receiver across edgesd 6, are tight; To see this, take a code of lengthLet L and R respectively
that isCy + Cs = H(X) andC5; + Cs = H(Y). Let K denote the messages that are put on the edges with capacities
denote the random variable that is put on edgas shown n (a)
in Figure[1. Using the source coding theorem and the fag¢ and 05'(2)/\/6 havenCy > H(L) > I(L; X"|K) =
that Cy + Cs = H(X), one can conclude thall (K|X™) I(LK;X"™) = H(X"™) = nH(X). Approximation(a) is a
ought to be negligible if the demand of the first sink is to beonsequence of the fact that is almost independent of ™,
fulfilled. Similarly H (K |Y™) ought to be negligible. Thereforeand(b) follows from the fact thatX™ should (with high prob-
K corresponds to common randomness betw&&nandY ™  ability) be recoverable fronk and K. ThereforeC, > H(X).
in the sense of Gacs-Korner|[3]. This common informatioBinceCs + Cs = H(Y), that is the cut at the second sink is
is equal tomax H(T) whereT is both a function ofX and tight, bothK and R must essentially be functions &f*. Thus
Y. For binary sources this common information is non-zemwe haveH (K) = I(K; Y™ X") < H(Y"|X"™) = nH(Y|X).
if and only if X =Y or X = 1—Y. Thus in the general Thus if Cs > H(Y|X), the inequalityH (K) < nH(Y|X)
case, the Gacs-Kdrner common information for binary cemd implies that the edge with capacitys is not fully used. But



sinceCs; + Cs = H(Y) and Y™ is recoverable (with high The second set of points is the union overcalt 0 of 4-tuples
probability) from R and K, one must fully exploit the edge (u1,uz, us, us) Where
with capacityCs. This is a contradiction. _

These two examples can be recast in the same w = e+ HY]X),

language if one considers the “uncertainty” vector us = c+ H(Y|X),
[%H(K), %H(K|X”), %H(K|Y"), %H(K|X",Y")], us = ¢,
i.e. the vector formed by listing the uncertainty left K Uy = c.

conditioning on different subsets dfX™,Y™}. In the first ) o )
example, each ok andY™ is almost sufficient to determine 1he third set of points is the union over all> 0 of 4-tuples
K. Thus, the last three coordinates of the uncertainty vectdft 42 U3, ua) Where
are almost zero. Thus, the Gacs-Korner common informatio u; = c+ H(X|Y),
can be reinterpreted as providing an upper bound for the
first coordinate of the uncertainty vector when all the other
coordinates are zero. In the second example, the secrecy
constraint of K being almost independent of™ imposes Ug = C.
the con_straint that the first and the secon_d coordin_ate of hEs fourth set of points is the union over all > 0,
uncertainty vector are equal. The fact thatis a function of < f < max(H(X|Y), H(Y|X)) of non-negative 4-tuples
Y™ implies that the third and the fourth coordinate are aImoatl ws, us,us) Where

. . 1, w2, U3, wq
zero. Thus the uncertainty vector is of the fofm a, 0, 0].
The constraintCs < H(Y|X) can be interpreted as saying up =c+ f,
that the maximum value aof such that the uncertainty vector uy = ¢+ min(f, H(Y|X)),

[a, a, 0, 0] is plausible, isa = H(Y|X). ug = ¢+ min(f, H(XY)),
IIl. THE UNCERTAINTY REGION Ug = C.

The above section motivates the definition of the uncegtaint Reémark 1:One can use the strengthened Carathéodory the-
region. In this section we formally define this region an@rem of Fenche[[17] to prove a cardinality bound &f|V|+2
then provide a complete characterization of it. In the ne® the auxiliary random variabl#' in the first set of points.
section we discuss the use of the uncertainty region in pgvi Although the above theorem characterizes the region, the
converses. following outer bound is useful in some instances. The exére

Given joint distributionp(z, ) on discrete random variablesPoints of this outer bound belong to the first set of points of
X andY, let us define a four-dimensional regiancertainty the above theorem. _ o _
region, U(p), as the closure of the set of non-negative 4_tup|esTheorem 2:The uncertainty region is a subset of the union

(u1,u9,us, uq) SUch that for some andp(k|z",y™) we have O‘Ler allc,g,h > 0 andp(elz,y) of 4-tuples(ui,us,us, us)
where

up = %H(K), uz = %H(KIX"% uy = c+ I(E; XY)
ws = SH(KIY™),  wp = ~H(K|X™,Y™). uz = e+ I(EYIX) +g
n n us=c+I(E;X|Y)+h
Intuitively speaking, the coordinates of this vector are th Uy = c.
uncertainties of’ when i.i.d. copies of a subset of variables
X and Y are available. We are interested in the set of IV. WRITING CONVERSESUSING THE UNCERTAINTY

all plausible uncertainty vectors. Note that we define the _ _ REGION _
uncertainty region in terms of(z, y) alone, irrespective of Take an arbitrary directed netwoX with a sources and

the network architecture. two sinkst¢; andt,. Suppose that the source observes i.i.d.
We now fully characterize the uncertainty region. The progPpies ofX, Y jointly distributed according to(z,y). Sink
is provided in [7]. t; is interested in the i.i.d. copies oX, while sink ¢y is

lope of the union of the following four sets of points. Theftfirse is denoted byCe.. An (n, €) code for this network consists
set is the union over alt > 0 andp(e|z,y) of non-negative Of @ set of encoding functions at the intermediate nodes such

4-tuples(uy, us, us, us) where thatX™ andY™ can be recovered at the first and second sinks
respectively with probabilities of error less than or ectioad,
up =c+ I(E;X,Y), and furthermore the number of bits passed on a given edge
uy = c+ I(E;Y|X), is at mostn(C, + €).

In order to write a converse fok” we take the edges one
by one and write a converse for that particular edge. At the
Uqg =C. end we intersect all such converses.

us =c+ I(E; X|Y),



Take an (n,e) code. Take a particular edge and Thus for every(n, ¢) code we write all such constraints on
let K denote the random variable that is put on ththe coordinates of

edge e. The idea is to find as many constraints as [1 1 1 1 o
possible on the uncertainty vector associated Ko i.e. SH(K), ~H(K|X"), ~H(K|Y"), —~H(K|X",Y")|.
LH(K),LH(K|X"),LH(K|Y"),2H(K|X",Y")]. Letus

‘n ‘n 1
denote the first coordinaté I7(K) by d,, defined as the Lastly we look at these gonstramts over a sequence of_ codes
n (ni,e;) wheree; — 0 asi — oco. As an example, consider

entropy rate of the random variable on edgeThis d. is ; .
Py dg y a problem with no secrecy constraints. Uetincutt be the

required to satisfy) < d. < C. + ¢. Every cut that has the llest cut that has the ed q tos th ¢
edgee and separates the source from the first sink impose§'§a est cutnat has the edgand separates the source from

constraint onl /(K| X") as follows. ::he ft|rr13t su:jk.MincutZ arr:d Mincut;, , are defined similarly.
Lemma 1:Take an arbitrary cut (containing) from the or the code(n;, €;) we have
source to the first sink, and l&tut, denote the sum of the iH(K—) —d..
capacities of the edges on this cut. Théf/ (K|X™) must n; v
satisfy the following inequality: iH(K-|X”i) <Mincut® — C
1 § ni [3 = T e
SH(K|X") < Cuty — Ce +de — H(X) + k(e) +dei — H(X) + k(e;),
for some functionk(e) that converges to zero asconverges iH(K1-|Y”i) <Mincuty — Ce
to zero. M ‘
Proof: Let ) denote the collection of random variables +dei — H(Y) + k(es),
passing over the edges of the cut (exceptAs shown in iH(K-|X’” Y™ = 0 <Mincutt —C
71, LH(Q) < Cut, — C. + me, wherem is the number n; ! ’ - Ty e
of edges in the graph. Sindg€), K) is the collection of the +dei — HX,Y) + k(ei).

random variables passing the edges of the &lit,should be
recoverable fron{@, K') with probability of error less than or
equal toe. Thus, by Fano's inequality H(X"|Q, K) < ki(e)
for some functiork; (¢) that converges to zero asconverges
to zero. We have uy = dy,

There is a convergent subsequenkg converging to some
d: < C.. Therefore the regionU(p) contains a point
[ul,u2,u;),,U4] such that

1 1 1 1 i e _ *
“H(KIX") < ~H(Q K|X") = ~H(QK,X") - —H(xX") "= Mineuly = Corrde = HX),
! 1 " 1 1n " uz < Mincuty — Ce +d; — H(Y),
< H(Q) + —H(K) + ~H(X"|Q, K) — H(X) uy =0 < Mincuts, , — Ce +d; — H(X,Y).
< Cuty — Ce +me+de — H(X) + ki(e). From Theorem 2 we know that there existy,h > 0 and
We get the desired result by settikge) = ki () + me. | plefz,y) such that
Other restrictions o H(K|X™) may come from secrecy — u, = ¢+ I(E; X,Y), us=c+I(E;Y|X)+g,

constraints_. For instgnce}_i’ is observed b_y an eavesdropper us = c+ I(E; X|Y) + h,
and there is an equivocation rate constraint on how much the _
eavesdropper can learn abolit’, say 1I(K;X") < R, we Thus, there exists a(e|x, y) such that

Ug = C.

can conclude that H(K|X") > 1 H(K) - R=d. — R. & = I(E; X,Y) < C, Q)
l]f[)(r];|}f’?)r] use similar ideas to impose constraints on ]\/e[mwt; ’_ ée +le _H(X) > I(E:Y|X) @
" > (B X[]Y).  (3)

If there is no secrecy constraint, without loss of geneyralit Mincuty, — Ce +d; — H(Y)

we assume thak’ is a function of (X", Y™) as randomized ang furthermore) < Mincut® — O, +d*— H(X,Y). These
coding would only reduce the throughput. Thus the last Chequalities together form a converse for the edgVe can

i 1 n n H P
ordinates H (K |X™,Y™) will be zero. The following lemma eneat this process for all the edges and take intersectien o
(whose proof is similar to that of Lemnid 1, and hence I g,ch converses.

omitted) is also useful. _ _
Lemma 2:Take an arbitrary cut containing from the A. Comparison with the cut-set bound
source to the first sink, and lefut, , denote the sum of Let us compare the above converse with the one given by
the capacities of the edges on this cut. T@aﬁ(K|X”, Y™) the cut-set bound. Take some edgélhe constraints
must satisfy the following inequality:
Y 9 nequatly d; =I(E:X.Y) < C..

1 . %

—H(K|X",Y") < Cutyy—Ce +de — H(X,Y) + k(e) Mincut; — C. +d; — H(X) > I(E;Y|X),
n

Mincut, — Ce +dy — H(Y) > I(E; X|Y),

for some functionk(e) that converges to zero asconverges ,
Mincut;, , — Ce +d7 — H(X,Y) >0

to zero.
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Fig. 3. This network is the Gray-Wyner system whép = C4 = Cs.

Fig. 4. An explicit example for a multi-source problem thiabws the benefit
of using edge-cuts. We write the edge-cut for edge 6.

imply that Mincut;, — H(X) > 0, Mincut;, — H(Y) > 0 and

Mincut; , — H(X,Y) > 0. Since edge: was arbitrary, one

can see that this converse is no worse than the cut-set boutfterefore the new converse represents a strict improvement
Let us consider the network given in figure 3. Assume thaver the cut-set bound.

Cs = Cy = C5. This network is known as the Gray-Wyner

system [[5]. Let us write the converse for the edge numberB. Using “Edge-Cuts” to write better converses

The converse says that there exists(elz, ) such that The new converse as expressed above is not also tight in

dy=I1(E;X,Y) < Cs, general. In the above discussion we observed that every cut
Mincut® — Cy + di — H(X) > I(E;Y|X), _that has the edgeqnd separates the source _from the first sink

_ 3 I HY) S [E-XIY imposes a constraint ohH (K| X ™). However it turns out that
Mincut, — Cs +d3 — H(Y) 2 I(E; X]Y), one can use the technique to write strictly better converges

Mincutiy —C3+4+d; - H(X,Y)>0. looking at what might be termed “edge-cuts” (certain cuts in

Note that Mincut? — Cy + Cy = Cs + Ch, Mz'ncutg _certain subgraphs of the original graph) if there are migtip

- X 3 source nodes in the network. Our concept of edge-cuts should
s + €y = Cs + Cp and Mincut; , = Cy + Cz + Cs. Thus not be confused with that of [15].

ds =1(E; X,Y) < Cs, In order to construct an explicit example for multi-source
Cs+Cy — Cs+di — H(X) > I(B;Y|X), problems that shows the benefit of using edge-cuts, we con-
% sider a directed network with two sources and s, and
— — > : . X :
Cs +Co = Cs +d3 — H(Y) = I(B; X]Y), two sinkst; andt, of Figure[4 under the assumption that

Ci+Co+C3—Cs+d;—H(X,Y)>0. Cs = C7 = Ck.
After simplification and substituting the value of; =  Suppose that the sourcg observes ii.d. copies of the
I(E; X,Y) from the first equation into the other equationsandom variableX, and sources; observes i.i.d. copies of
we get that the random variablé”. As before, random variable¥ and
Y are jointly distributed according tp(z, y), and sinkt; is
Cs > I(E;X,Y), interested in the i.i.d. copies of while sink ¢, is interested
C, > I(E)Y|X)-I(E; X,Y)+ HX)=HX|E), in the i.i.d. copies ofY". We consider the problem of reliable
Co > I(E; X|Y) - I(E; X,Y)+ HY) = HY|E), transmission to fulfill the demands of both sink nodes, with

probability of decoding error converging to zero as the nemb
of i.i.d. observations ofX, Y grows without bound.
The last equation is redundant. Therefore we get 1) edge-cuts:Take an arbitrary edge in a directed graph
) from a vertexv; to a vertexvy. Consider the subgraph formed

Cs 2 I(B; X, Y), C1 2 H(X|E), G2 > H(Y|E) by including all the directed paths from the two sourcessto
for some p(e|z,y). But this is exactly the solution to theWe can think ofvy as an imaginary sink in this subgraph. Let
Gray-Wyner system [5]. Therefore the new converse is tight’ denote the random variable carried on the- v, edge. We
On the other hand the cut-set bound is not tight for thisan consider three types of cuts between the two sources and
network. Let us consider the minimum daf3 such that the imaginary sink in this subgraph: 1. cuts that that separa
Cy +Cy + C3 = H(X,Y) over the actual region and thethe first source from node, but do not separate the second
cut-set bound. It is known that in the Gray-Wyner system thgurce from nodes, 2: cuts that separate the second source
minimum is equal to the Wyner’'s common informatian [6]from v, but do not separate the first source from noegeand
However, in the cut-set bound this minimumZigX; Y') which 3. cuts that separate both sources from nedd_et Cuty 4 .,
can be strictly less than the Wyner's common informatiolenote the sum-capacity of an arbitrary cut that separatis b

Ci+Cy>H(X,Y)—I(E;X,Y) = H(X,Y|E).



Xm yn for somep(eg|z,y). Here we used the fact that the capacities

$1 52 of edges 6, 7 and 8 are all the same, hence we can assume
Co Cs that they are all carrying the same message. Therefore we can
compute the uncertainty of the message on edge 6 by looking
U1 at cuts that include edge 7 or 8.
The next step is to incorporate the inequality
C()l LH(KglY™) < O, with the above set of inequalities.

Remember thatCs + Cs — Cs + dg — H(Y) in the third
inequality above is an upper bound epH (K¢|Y™). This
imaginary sink comes from Lemmdll. The termi(Es; X|Y) is a lower

bound oni H(Ks|Y™). This comes from Theorefd 2. Now,

Fig. 5. The subgraph formed by including all the directechpdtom the using the inequalit)%H(K6|Y") < C5 we can conclude that

two sources to the end point of edgei.e. the nodevs. We can think of .., (O, ¢ C. —C de — H(Y)) is an upper bound on
vg as an imaginary sink in this subgraph. Edge-cuts are thebaftgeen the ( 2,05+ Co 6 + do ( )) PP

V2

two sources and the imaginary sink in this subgraph. %H(K6|Yn)- Thus, we can write
dg = I(Eg,XY) S CG
sources from node- in the subgraph. We have Ca + Cs = Cg +ds — H(X) = I(Eg; Y[ X)
] because(4,7} is a cut betweeny, s,

Cuty yv, > EI(K;X",Y”) andt, in the original graph
Let Cut,_,, denote the sum-capacity of an arbitrary cut that ™™ (C2, G5+ Cs - Co +ds — H(Y)) > I(Es; X|Y)
separates the first source from nogdgein the subgraph. We because(5, 8} is a cut betweeny, s;
have ) andt, in the original graph

Cuty v, > —I(K; X"Y™)
n

Similarly, let Cut, .., denote the sum-capacity of an arbitraryOf S0Mep(es|z, y). This set of equations can be simplified in
cut that separates the second source from nedén the the following form

subgraph. We have Cs > I(Es; XY) 4)

Cuty o, > ~I(K; Y7 X") Cy = H(X|Eg) 5)

n Cs > H(Y|Eo) (6)

These inequalities have consequences for the uncertagaty v Cy > I(Eg; X|Y) @)
tor 1 H(K), LH(K|X"), 1H(K|Y™), LH(K|X",Y")].

Consider the edgé in Figure[3. The resulting subgraphfor somep(es|z,y).
formed by including all the directed paths from the two 2) Comparison of two conversesNVe now compare the
sources to the end point of this edge is shown in Figonverse given by equatioris {121 30) with the converse given
ure[B. Let K; denote the random variable carried on thi8Y €quations[(fd7). The latter converse is derived in the
edge. Observe that edgeis a cut that separates the firsfPPendix by looking at all cuts between the sources and the
source only from the imaginary sink. Therefore we can writ@nks (no edge-cuts here).
%I(KG;X”|Y”) < C,. Since H(Kg|X™,Y") = 0, we We claim that the minimum possible value 6% in this
conclude thatl H(Kg|Y™) < Cs. It is not possible to get converse is less than or equal £0X;Y") if we restrict our-
this constraint on the uncertainty &fs given Y by looking Selves to networks whei@; + Cy = H(X|Y'). This is shown
at the cuts between the sources and the sinks in the origidkfhe end of the appendix. Next consider the converse writte
graph. To see this note that if we use equatibiig (1-3) fohell tusing edge-cuts and given by equation$1(4-7). We show that
cuts that have the edgewe get the following set of equations:the minimum in the other converserisiny, sy I(E; XY,
i.e. Wyner's common information. From equatidis 5 &nd 7
dg = I(Ee; XY) < Cg we haveC, + Cy > H(X|Eg) + I(Es; X|Y) = H(X|Eg) +
Ci+Cs — Cs +ds — H(X) > I(Es; Y|X) H(X]Y) — HI(XIE&Y) = Ii(XI?]”)Cg I()é;YIE;J)[-()I;ll\//V)e
: restrict ourselves to networks whe€® + Cy = ,
becaus.e{4,7} IS_' é cut between,, s, it must be the case that random variabl§s— E; — Y
andt, in the original graph form a Markov chain. Therefore the minimum «f; is
Cs+Cs—Cs+ds—H(Y) > I(Eg; X|Y) minx, g,y I(Es; X,Y) which is equal to Wyner's common
becaus€(5, 8} is a cut betweeny, s, infﬁlrmaﬂonﬁ Wy - o I
, . oting that Wyner's common information is in genera
andz in the original graph larger thanI(X;Y), we conclude that the later converse is
strictly better than the former converse.



V. PROOFS 2 HXIY)+I)] and M, : Y™ [1 : 20HE1X)+9)] such that
Proof of Theorenil1: X™ can be recovered frorM,,,(X™),Y™), andY™ can be
pecovered from(M,,(Y"), X™) with probability 1 — e. One

Achievability We begin by showing that each of the fou
can prove th

set of points is a subset @f (p). This would complete the

proof noting thatl/ (p) is a convex set ilR* as it implies that 1

the convex envelope of the un_ion of the fqur sets of points is gI(Mwn(Xn); Y™) <rife), (8)
cre given in 7). Note thet 1 ie can prove e meluson for 0y (7 X7 < o), ©
ot e o et o gy HOMOX) ) e, 0
e o a1 v e GO 2 KO 0

n n
sequence op(ky, «", y") such that for some functions; such thatr;(e) converges to zero as

lim ~H(K,) = I(E;X,Y) e converges to zero. Setting M, (Y™) would give

n=y00 n us the second set of points as —+ 0 andn — oo.
1 N To see this note thatim, .. +H(K,) = H(Y|X) be-

nll—{l;o EH(K"|X ) = I(E;Y]X) cause of equation[(11) and the fact thaf,, is taking

1 : . n(H(Y|X)+e)

lim —H(K,|Y") = I(E; X|Y) value. in[1 3 2 ] Furthermore one can show
n—oo n that lim,, .o - H(K,|X") = H(Y|X) using equation[{9).
lim lH(Kn|X”, Y") =0 Similarly settin_gKn = M,,(X™) asymptotically gives us the
n—o0 N third set of points.

We now prove that the fourth set of points is iA(p). |
r{der to defind¥,, appropriately to get this set of points we are
going to use random variabled,,, and M,,, defined above.
For everyn € N, we can find some,, such that equations[8-111

We use part 1 of Theorem 5 afl[4] which says that one ca
find a sequence gf(k,,z™, y™) such that

1 . . -
lim ~I(X™Y"|K,)=I(X;Y|E) hold, and that,, converges to zero as converges to infinity.
n—co n Next, take some arbitrary < f < max(H(X|Y), H(Y|X)).
lim lH(K IX™) = I(E;Y|X) We would like to find a sequence ofk,,, 2™, y™) such that
n—o00 n

1
n lim —H(K,)=
lim nH(K Y™ = I(E; X|Y) Jm —H(K,) = f
1 n .

lim L H(K,[X",Y") =0 Jim EH(K |X™) = min(f, H(Y]X))
n—oo N

lim H(K [Y™) = min(f, H(X|Y))

n—o0 n
The difference between these set of equations and the ones we . N
would like to have is the first one. However these four set of nh—>H§o EH(K”'X Y1) =0
equations are indeed equivalent. Note that

H(Kn) =H(Kn|X™) + H(Kn|Y™") Let us define the functiond/,, € [1 : 2(HEXY)+en)]

— H(K,| X", Y™) + (X" Y"™) — [(X™;Y"|K,). and M,, € [1:2MHXIX)+e)] as above. We can think of
My, (X™) and M,,,(Y™) as two random binary sequences of
length[n(H (X |Y)+e,)] and|n(H (Y|X)+e,)] respectively.
Let us use the notatiod/}7(Y™) to denote the set af” to

Thus,

1 1 1
lim —H(K,)= lim —H(K,|X"™)+ hm H(K [Y™)

n—o0 n n—oo n 4 bits of M,,,(Y™). We use a similar notation fa¥f,,,,(X™).
~ lim lH(KMXn’Yn) FI(X:Y) Without Ioss.of generality _Iet us assume tHatX|Y) >
n—roo ? H(Y|X). Consider the following two cases:
— lim —I(X™;Y"|K,) Case 1.f < H(Y|X):
n—oo T In this case, we letK,, be equal to the bitwise XOR
= I(E;Y[X) + I(E; X[Y) of the first [nf| bits of M,,(X") and M,,(Y™), i.e. the
+I(X;Y) - I(X;Y|E)
=I(E; X, y). 2For instance the first equation holds becal#é(Mm(X”) Yn™) =

5 (H (Mo (X™)+ H(Y™) = H(Man (X™),Y™)) = & (H(Men (X™))+

We now prove that the second and the third sets of powﬁféyl — H(X™,Y") + H(X"|Men(X"),Y") £ H(X]Y) + € +
H(Y)—H(X,Y)+h(e) + €| X||Y| by the Fano inequality and the fact that

is in U( ) Sleplan -Wolf tell us that for any one can findV My, is a function of X™. The third equation holds because it is possible to
such that for any: > N there are functiond/,,, : X" — [1: reconstruct(X”,Y”) from My, (X"™) and Y™ with high probability.



bitwise XOR of Mzl (xm) and ML (y™). Clearly
LH(K,|X", Y") = 0. We would like to show that

lim lH(Kn) = f

n—,oo M

1
lim —H(K,|X") = f,
n—oo N

1
lim —H(K,|Y") = f.
n—oo N

It suffices to
H(K,|X") < H(K,) <log|K,| <nf. We prove the second
one, the proof for the third is similar. Note th&t( K, | X™) =
H(K, | X", My (xm)) = 5 v xm). Equa-
tion[d implies that

1 ‘
—I(Myi " (Y™); X7) < ra(en).
n

Thus,
: 1 ny _ 1: 1 1:|nf] n
nhﬂngo EH(KH|X )—nlirrgo EH(Myn (Y™).
Clearly  lim,_,o L H(My: " (vm)) < foolf
lim,, 00 %H(M;;}"'” (Y™) < f then additionally

considering the|nf] + 1 to [nH(Y|X) + ne,| bits of
M,, can at most increase the asymptotic entropy rate

will be infinity and is achieved at the poitjt, ¢, ¢, ¢] when
¢ — oo, If A+ X2+ A3+ X <0, we can write the maximum
of Aug + Aous + Azus + Aquy overU(p) as

lim sup 1 (All(K; XY™+ Xl (K; Y™ X™)+
n

n—00

AsT (K3 X7|Y™) 4 (A + Ao + As + M) H(K|X™, Y")).

The last term(A; + Ay + A3 + M) H(K|X™, Y™) is less than

prove the last two inequalities sinc&" equal to zero. Given anyi, X™,Y™), we can always use

part 1 of Theorem 5 of[J4] as in the achievability to find
(K', X™ Y™™ for somem such thatK’ is a function of
(xmm y™™) and sum of the first three terms is asymptotically
unchangedK’ being a function of X™™ Y™™) implies that
(M + A2 + A3 + M)H (K| X, Y™™) is zero. To sum
up, without loss of generality we can consider only random
variablesK that are deterministic functions ¢X ™, Y"), and
furthermore we only need to compute the following exprassio
over such random variables

) 1
lim sup —
n—oo T

+ NI (K X"|Y")).

</\1[(K; X™Y™) 4 MI(K; Y™ X™)

We

% now continue by a case by case analysis:

H(Y|X)— f bits. On the other hand equatipnl 11 implies that * A1 = 0, A2 > 0, A3 > 0: Note that if we replacé< with

limy, o0 = H (M, (Y")) = H(Y|X). This is a contradiction
because using the fact that the joint entropy is less than
equal to the individual entropies one can write

lim lH(MW(Y")) < lim l.EI(J\/./;;}"J‘J ™)

n—oo N n—oo 1

. 1 n n ne n
+ lim = H (M0 e ] (ymy)

n—oo 1
<f4+n—f=n
Case 2.H(Y|X) < f < H(X]Y): In this case, letK,
be equal to the bitwise XOR of/Ll"# 1% (xn) and
MmO IO) yny together withazbn? Y1 (x|
In this case, one needs to show that

lim ~H(K,) = f,

n—oo N
.1 ny
nhﬂngo EH(KH|X )=nH((Y|X),
1
lim —H(K,|[Y") = f.
n—oo N

(K, X", Y™) the expression will not decrease. Sirf€ds
or a function of(X™,Y™), we conclude that{ = XY™
is the optimal choice in this instance. In this case the
maximum ofAjuy + Agus + Azus + Aqug overU(p) will
be equal to the maximum of the same expression over
the first set of points with the choice & = XY'.
A1 > 0,0 <0,A3 > 0: If Ay + Ay > 0, the maximum
of Ajuy 4+ Aaua + Asug + Aqug over U(p) will be equal
to the maximum of the same expression over the first set
of points with the choice off = XY. To see this write
oI (K;Y™|X™) as o (K; Y™ X™) — M\ I(K; X™) and
note that the expression is maximized whén= XY™,
If Ay + X2 < 0 first note that if we replacds with
(K, X™) the expression will not decrease. In this case the
expression\; I (K, X™; X"Y™)+ I (K, X", Y™ X™)+
A I(K, X™ X"|Y™) will be equal to \H(X™) +
AsH (XY™ 4+ (A +X)I(K; Y™ X™). Sinced; + Mg <
0, we have (A1 + X)I(K;Y"|X™) < 0. Thus the
maximum of A\ju; + Agus + Aguz + Aguy overU(p) will
be less than or equal to H (X)) + A3 H(XY"), which is

As in case 1, the third equation implies the first. The proof
for the last two limits is similar to the one discussed abave i
case 1.

Converse Since U(p) is convex, to show that the region
U(p) is equal to the convex envelope of the given set of points,
it suffices to show that for any real, ..., A4, the maximum
of A\u1 + Aous + Asus+ Agug overU(p) is achieved at one of
the given points. We show this by a case by case analysi$. Firs
assume that; + A + A3 + A4 > 0. In this case maximum

equal to the maximum of the same expression over the
first set of points with the choice df = X.

A1 > 0,X2 > 0,X3 < 0: This case is similar to case 2
by symmetry.

A > 0,A < 0,A3 < 0 : Take some arbitrann

and K = f(X™Y"™). Let the random indexJ be
uniformly distributed on{1,2, 3, ...,n} and independent

of (K,X™ Y™). Define the auxiliary random variables
E = (K, Xl:J_l,}/i:J_l,J),X = X;,Y = Y;. Note



that Lemmal3
MI(K; X"Y™) + MI(K; Y™ |X™)

M=

I(K; X™Y"™) = I(K; X;,Y| X151, Y1.5—
( ) ) ) gt ( IR E) ]| 1:5—1, L1y 1) +)\3I(K,Xn|yn):
n M+ X+ M) I(K; X™Y™) — I (K; X™)
=D (K, Xujo1, Vi1 X5, Y)) “NI(K;Y") <
j=1
I(K; XY™
= nI(E;X,Y), (A1 + A2 + Aa) (K )
n =X [I(K; X"Y™) — H(Y™[X")] ¢
I(K; Y™ X™) :ZI(K;YJ-|X",Y1:J-,1) = M[I(K; X"Y™) — HX™Y™); =
j=1 . n<)\1 I(K;)fl"Y") s min(I(K;)fl"Y")7
= ZI(K, X1, Xjr1m, Y1:5-1; Y5 X;) > o
= HYIX) + Ao min( X500 pr(xy) ).
Z I(K, X1:5-1, Y1;j-1; Y51 X;) Thus, the maximum of the original expression is less than
j=1 or equal to
=nl(E;Y|X)
o max (Alt + Ao min(¢, H(Y|X))
and similarly 0<t<H(X,Y)
I(K; X™|Y™) > nl(E; X|Y). + A3 min(t, H(XIY))> =
Since Xy < 0,A3 < 0, we havel, T I(K;Y"[X") < max (A1t+/\2 min(t, H(Y|X))
I(E;Y|X)and X321 1(K; X"Y™) < I(E; X[|Y). There- Ost<max(H(X[Y),H(¥|X))
fore the_ maximum of\;u; + Aous + Azug + /}4u4 over + Az min(t, H(X|Y))>.
U(p) will be less than or equal to the maximum of the
same expression over the first set of points. Thus the maximum of; u; + Aota + Astis + Mgty OVEr

A 0,22 20,23 <021 Ay 4 A2 > 0, we can write U(p) will be less than or equal to the maximum of the

MK XPY™) 4 AT (K3 Y| X™) + AsT(K: X" |y™) < same expressmn over the fourth set of pomts.
Lemma 3:Given any three random variableX Y, K
MI(K; XY™+ MDI(K;YXT) =

where K is a function of(X,Y"), we have
/\1[(K;Xn) + (/\1 =+ /\Q)I(K; Yn|Xn) <

I(K;X)> |HK)-H(Y|X
(A1 + A)I(I Y™ X™) < (A + M) H(Y"|X™) (K5 X) 2 [H(K) = HY X))+
_ I(K;Y) > [H(K) — HXY))+
Thus the maximum oh;uy + Asus + Azuz + Aguy OvVEr _ _ _ o
U(p) will be less than or equal té\; + \;)H(Y|X), Where [z]+ is 0 when z is negative andz when it is non-

which is equal to the maximum of the same expressidi¢gative.
over the second set of points. X, + \» < 0, we can Proof: We prove the first equation. The proof for the second

write one is similar. It suffices to show thd(K; X) > H(K) —
H(Y|X), which is equivalent withH (Y, X) > H(K, X ) and
MIK;XPY™) 4+ M I(K;Y™X™) 4+ A3I(K; X™Y™) = obviously true.
(A + M) (K XY™ = AT (K X™) + I (K; X™Y™) u
Proof of Theorenl]2: Take some: and p(k|z™, y") and
<0. .
= consider the 4-tupleuy, uz, us, uy)

Thus the maximum of;uy + Asus + A\guz + Aguy OvVEr _ 1H i
U(p) will be zero. =0 (K)
A <0, <0,X3 > 0: This is similar to case 5. 1

A1 <0, <0,); <O0: This is similar to case 4. w2 = EH(KLX )

. 1
/\1§0,)\220,/\320.|f)\1+/\2+)\3§0 U3:—H(K|Yn)
MIK; XY™+ M I(K;Y?X™) 4+ AN I(K; XY™ wi = SH(K|X™,Y™)
(M 4 Ao 4+ M) (G X™Y™) — Mo I (K X™) — A I(K;Y™) n
<0. Let ¢ = 1H(K|X" Y"). Let the random index/ be

uniformly distributed on{1,2,3,...,n} and independent of
Thus K constant works here. Ik; + A2+ A3 > 0 using (K, X" Y™). Define the auxiliary random variables =



(K,X1.7-1,Y1.7-1,J),X = X;,Y = Y;. One can then Thus, by Fano’s inequality%H(X"|Q,K, Y™ < kq(e) for

verify that some functionk; (¢) that converges to zero asconverges to
zero. We have
I(K; X", Y") =nl(E; X,Y), ) )
I(K;Y"|X™) > nl(E;Y|X) CH(K|X") < —H(Q, K, Y"|X")
I(K; X™Y™) > nl(E; X|Y). :lH(Q Kyn X")—lH(X")
Thus,u; = ¢+ I(E; X,Y), up > ¢+ I(E;Y|X) anduz > 1 1 "
c+ I(F; X|Y) for somep(e|z,y). [ < ~H(Q) + ~H(K) + H(Y)
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(¢) + me. For

1 1
—H(K|X™,Y") < —H(Q,K|X",Y")
n n

APPENDIX
. . 1 1
A. Using the cuts to write a converse =-HQ,KY"X")— —H(X",Y")
n n
In this appendix we use cuts between sources and sinks to 1 1

IN

write a converse for the network of Figure 4. Since there are ﬁH(Q) + EH(K) +H(Y)

two sources and two sinks in this network there are more types

1 n n
of cuts to consider. Every cut divides the nodes of the nekwor + EH(X @, K, Y™) - H(X,Y)

into two setsA and.A°. We use the notatioaut(sources inA; < Cuty —Ce+ H(Y)

sources in4¢; sinks in.A) to denote the edges of such a cut. +me+de — HX,Y) + k1 (e).

For instance in FigurEl 44, 2} is cut(si; s2;t1,t2) meaning

that edgest and2 are the edges of a cut that hasin A, s, |

in A¢ and sinkst;, t» in A°. Suppose we want to write the We can now write down the converse using the edge-cuts.
converse for an edge in cut(sources inA; sources inA°; We proceed in a similar fashion that we did in deriving
sinks in.A°). If there is no source iM4¢, then we can write equations[({{13) using Lemnid 1 (revisited) and Theokém 2.
a converse as discussed earlier in equatioli$ (1-3). Hovileveeemmall (revisited) gives us upper bounds on the elements
there is a source iM°, say s;, we need to use a modifiedof the uncertainty vector, whereas Theorem 2 gives us lower
version of Lemmall used to bound the entropy of the randdmunds on these elements.

variable on an edge of the cut conditioned on a source thatCuts that have edge 2:

is in A. The inequality of the lemma is weakened by adding

the joint entropy of all the sources id¢ to one side of the dp = I(Ex; XY) < C

inequality as shown below. Co+Cy—Crt+da+ HY) - H(X) =2 I(Ey; Y|X)
Lemmalll [revisited]:Take an arbitrary cut containing Co+Cy—Co+do+H(Y)—H(X,Y)>0
from the first source to the first sink, and I€wt, denote because(2,4} is cut(s1; s2;t1, t2)

the sum of the capacities of the edges on this cut. Further
assume thas, is in A°. Then 2 H(K|X") must satisfy the Cot U3+ Ca+Cs - _02 +dy —H(X,Y) 20
following inequalities: because(2,3, 4,5} is cut(s1, s2; 05 t1, t2)

Larixmy < cuty — €+ do + BHY) — H(X) + ko)
n for somep(ez|z, y).

Cuts that have edge 3:
LH(KIX™, Y™ < Cuty—Cotde+HY )= HX,Y)+k(e) " ve edg
! . ds = I(Es; XY) < Cs
Igrzsec;?e functiong:(¢) that converges to zero asconverges Cy + Cs — Cs + ds + H(X) — H(Y) > I(Ey; X|Y)

Proof: Let Q) denote the collection of random variables C3+Cs —Cs +ds+ H(X) - H(X,Y) >0

passing over the edges of the cut (exegpClearly L H(Q) < becaus€(3,5} is cut(sa; s1;t1,t2)
Cuty — Ce + me wherem is the number of edges in the ¢, 4 03+ Cy+ C5 — C5+ds — H(X,Y) >0
graph. Sincg@, K) is the collection of the random variables . 4
passing the edges of the cuf™ should be recoverable from because(2,3, 4,5} IS cut(s1, 52:0; 11, 1)
(Q, K,Y™) with probability of error less than or equal to



for somep(es|z, y). edge 6 by looking at cuts that include edge 7 or 8.

Cuts that have edge 4: de = I(Eg; XY) < Cs

Ci+C5+Cs—Cs+ds —H(X,Y)>0
becaus€4,5,6} is cut(s1, s2;0;t1,t2)

Cy+ Cs— Cg +dg + H(Y) — H(X) > I(Eg; Y|X)

Cu+Cs— Cg+dg+ HY) — HX,Y) >0
becaus€4,6} is cut(sy; s2;t1,ta)

Cs + Cs — Cg +dg + H(X) — H(Y) > I(Eg; X|Y)

Cs + Cg — Cg +dg + H(X) — H(X,Y) > 0
becaus€5,6} is cut(sa; s1;t1,t2)

Cy+ Cs — Cg +dg — H(X) > I(Eg; Y|X)
becausd4, 7} is cut(sy, s2;0;t1)

Cs+ Cs — Cg +dg — H(Y) > I(Eg; X|Y)
becaus€5, 8} is cut(s1, s2;0;t2)

Ci+Cs+Cr+C3s—Cs+ds —H(X,Y) >0
becaus€4,5,7,8} is cut(sy, so; 0; 1, t2)

dy = I(By; XY) < Cy

Co+Cy—Cy+di+ H(Y) - H(X) =2 I(E; Y|X)

Co+Cys—Cyi+dy+HY) - H(X,Y) >0
because(2,4} is cut(sy; s2;t1,t2)

Co+C3+Cy+C5—Cy+ds—H(X,Y)>0
becaus€2,3,4,5} is cut(s1, s2;0;t1,t2)

Ci+C54+Cs—Cy+ds—H(X,Y)>0
becaus€g4,5,6} is cut(s1, s2;0;t1,t2)

Cy+ Cy— Cy+dy — H(X) > I(Bg; Y| X)
becaus€(4, 7} is cut(s1, s2;0;t1)

for somep(eg|x,y). After simplification and removal of re-
dundant equations and noting thét = C; = Cs, these
inequalities can be written as follows:

for somep(eq|z, y). I(Es; X,Y) < C (12)
Cuts that have edge 5: Cy 2 H(X,Y|E;) — H(Y) (13)
C3+Cy+Cs5 > H(X,Y|E>) (14)
From equations for edge 2
I(E3;X,Y) < Cs (15)
Cs > H(X,Y|By) — H(X) (16)
ds = I(E5; XY) < C5 Co + Cu+ Cs > H(X,Y|Es) (17)
Cs+Cs5 = Cs +ds + H(X) = H(Y) 2 I(E5; X]Y) From equations for edge 3
C3+C5—Cs+ds + HX) - H(X,Y) >0 (B X,Y) < Cy (18)
becaus€3,5} is cut(sa; s1;t1,t2) Cy > H(X,Y|Es) — H(Y) (19)
Cy+C3+Cy+C5 —Cs+ds —H(X,Y) >0 Cy+ Cs+Cs > H(X,Y|Ey) (20)
becausg2,3,4,5} is cut(s1, s2;0;t1,t2) s+ Cs > H(X,Y|Ey) (21)
Ci+C54+Cs—Cs+ds —H(X,Y)>0 Cs > H(X|Es) 22)
because(4, 5,6} is cut(s1, s2:0; 1, t2) From equations for edge 4
C5+Cs —Cs +ds — H(Y) > I(E5; X[Y) I(Es: X,Y) < Cs (23)
becaus€5, 8} is cut(si, s2;0;t2) Cy > H(X,Y|Es) — H(X) (24)
Co+C3+Cy > H(X,Y|Es5) (25)
Cy+Co > H(X,Y|Es) (26)
Co > H(X|E5) (27)
From equations for edge 5 I(Fs; X,Y) < Cg
for somep(es|x, ). Ci+Cs > H(X,Y|Eg) (28)
Cy > H(X|Es) (29)

Since the capacities of edges 6, 7 qnd 8 are all the same,C5 > H(Y|Es) (30)
we can assume that they are all carrying the same message. ]
Therefore we can compute the uncertainty of the message on From equations for edge 6



for somep(es, es3, €4, €5, €6|T, Y).

We claim that the minimum possible value 6% in this
converse is less than or equal {dX;Y") if we restrict
ourselves to networks wher@; + Cy = H(X|Y). This is
because the choice @f; = 0, C5 = H(Y), Cy = H(X|Y),
Cs = HX,Y) and Cs = I(X;Y) is a valid point in
this converse region. To see this takg in a way that
Es — X — Y forms a Markov chain, and furthermore
p(es|z) ~ p(y|x). Take E4 in a way thatE, — X — Y forms
a Markov chain, and furthermo® E,; X) = H(X|Y). Take
Es = (X,Y), B3 =Y and E> = constant. To verify these
equations, it is useful to note that sin€g = H(X,Y") those
equations involving’s will be automatically satisfied. Because
Es — X — Y forms a Markov chain ang(es|z) ~ p(y|z),
we havel (Fs; X,Y) =1(Es; X) = I[(YV; X).
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