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Abstract

Let X be a non-negative random variable and let the conditional distribution of a random variable Y , given
X, be Poisson(γ ·X), for a parameter γ ≥ 0. We identify a natural loss function such that:

• The derivative of the mutual information between X and Y with respect to γ is equal to the minimum mean
loss in estimating X based on Y , regardless of the distribution of X.

• When X ∼ P is estimated based on Y by a mismatched estimator that would have minimized the expected
loss had X ∼ Q, the integral over all values of γ of the excess mean loss is equal to the relative entropy
between P and Q.

For a continuous time setting where XT = {Xt, 0 ≤ t ≤ T} is a non-negative stochastic process and the conditional
law of Y T = {Yt, 0 ≤ t ≤ T}, given XT , is that of a non-homogeneous Poisson process with intensity function
γ ·XT , under the same loss function:

• The minimum mean loss in causal filtering when γ = γ0 is equal to the expected value of the minimum mean
loss in non-causal filtering (smoothing) achieved with a channel whose parameter γ is uniformly distributed
between 0 and γ0. Bridging the two quantities is the mutual information between XT and Y T .

• This relationship between the mean losses in causal and non-causal filtering holds also in the case where the
filters employed are mismatched, i.e., optimized assuming a law on XT which is not the true one. Bridging
the two quantities in this case is the sum of the mutual information and the relative entropy between the
true and the mismatched distribution of Y T . Thus, relative entropy quantifies the excess estimation loss
due to mismatch in this setting.

These results parallel those recently found for the Gaussian channel: the I-MMSE relationship of Guo Shamai
and Verdú, the relative entropy and mismatched estimation relationship of Verdú, and the relationship between
causal and non-casual mismatched estimation of Weissman.

Index Terms- Causal estimation, Divergence, Girsanov transformation, I-MMSE, Mismatched estimation, Mu-
tual information, Nonlinear filtering, Point process, Poisson channel, Relative entropy, Shannon theory, Statistics

1 Introduction

In the seminal paper [13], Guo, Shamai and Verdú discovered that the derivative of the mutual information between
the input and the output in a real-valued scalar Gaussian channel, with respect to the signal-to-noise ratio (SNR),
is equal to the minimum mean square error (MMSE) in estimating the input based on the output. This simple
relationship holds regardless of the input distribution, and carries over essentially verbatim to vectors, as well as the
continuous-time Additive White Gaussian Noise (AWGN) channel (cf. [34, 21] for even more general settings where
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this relationship holds). When combined with Duncan’s theorem [7], it was also shown to imply a remarkable rela-
tionship between the MMSEs in causal (filtering) and non-causal (smoothing) estimation of an arbitrarily distributed
continuous-time signal corrupted by Gaussian noise: the filtering MMSE at SNR level γ is equal to the mean value
of the smoothing MMSE with SNR uniformly distributed between 0 and γ. The relation of the mutual information
to both types of MMSE thus served as a bridge between the two quantities.

More recently, Verdú has shown in [31] that when X ∼ P is estimated based on Y by a mismatched estimator
that would have minimized the MSE had X ∼ Q, the integral over all SNR values up to γ of the excess MSE due to
the mismatch is equal to the relative entropy between the true channel output distribution and the channel output
distribution under Q, at SNR = γ.

This result was key in [33], where it was shown that the relationship between the causal and non-causal MMSEs
continues to hold also in the mismatched case, i.e. when the filters are optimized for an underlying signal distribution
that differs from the true one. The bridge between the two sides of the equality in this mismatched case was shown to
be the sum of the mutual information and the relative entropy between the true and mismatched output distributions,
this relative entropy thus quantifying the penalty due to mismatch.

Consider now the Poisson channel, by which we mean, for the case of scalar random variables, that X, the
input, is a non-negative random variable while the conditional distribution of the output Y given the input is
given by Poisson(γ · X), the parameter γ ≥ 0 here playing the role of SNR. In the continuous time setting, the
channel input is XT = {Xt, 0 ≤ t ≤ T}, a non-negative stochastic process, and conditionally on XT , the output
Y T = {Yt, 0 ≤ t ≤ T} is a non-homogeneous Poisson process with intensity function γ ·XT . Often referred to as the
“ideal Poisson channel” [19], this model is the canonical one for describing direct detection optical communication:
The channel input represents the squared magnitude of the electric field incident on the photo-detector, while its
output is the counting process describing the arrival times of the photons registered by the detector. Here the energy
of the channel input signal is proportional to its l1 norm, rather than the l2 norm as in the Gaussian channel. Thus it
is the amplification factor γ rather than γ2 that plays the role of SNR. We refer to [32] for a review of the literature on
the Poisson channel and its communication theoretic significance, and to [11] and references therein for applications
of Poisson channel models in other fields.

The function `0(x) = x log x − x + 1, x > 0 (where log denotes the natural logarithm throughout), being the
convex conjugate of the Poisson distribution’s log moment generating function, arises naturally in analysis of Poisson
and continuous time jump Markov processes in a variety of situations. These include relative entropy representation
for jump Markov processes (see, e.g., equation (3.20) and Theorem 3.3 of [8]), large deviation local rate function for
such processes ([8], Chapter 5 of [29]), mutual information in the Poisson channel (Section 19.5 and equation (19.135)
of [20]), and logarithmic transformations in stochastic control theory (Section 3 of [9]). It is also intimately related
to change-of-measure formulae for point processes in the spirit of the Girsanov transformation (Section VI.(5.5–6) of
[4], [16], [28]). It is therefore not surprising that the function `0 appears in this paper in representations for relative
entropy and related calculations. It is less obvious, however, that using it to define estimation loss turns out to be
very useful and, in particular, gives rise to a number of results that parallel the Gaussian theory.

Enter the loss function ` : [0,∞)× [0,∞)→ [0,∞] defined by x̂`0(x/x̂) or, more precisely,

`(x, x̂) = x log(x/x̂)− x+ x̂, (1)

where the right hand side of (1) is well-defined as an extended non-negative real number in view of our conventions
0 log 0 = 0, 0 log 0/0 = 0, c/0 =∞ and log c/0 =∞ for c > 0. In Section 2, we exhibit properties of this loss function
that show it is a natural one for measuring goodness of reconstruction of non-negative objects, and that it shares
some of its key properties with the squared error loss, such as optimality of the conditional expectation under the
mean loss criterion.

The goal of this paper is to show that a set of relations identical to those that hold for the Gaussian channel
– ranging from Duncan’s formula [7], to the I-MMSE of [13, 34], to Verdú’s relationship between relative entropy
and mismatched estimation [31], to the relationship between causal and non-causal estimation in continuous time
for matched [13] and mismatched [33] filters – hold for the Poisson channel upon replacing the squared error loss by
the loss function in (1).

It is instructive to note that while the relative entropy between two Gaussians of the same variance and means
m1 and m2 is equal to (m1 − m2)2, that between two exponentials of parameters λ1 and λ2 is equal to `(λ1, λ2)
(with additional multiplicative terms in both cases). Although this simple fact does not exclusively explain the
Gaussian-Poissonian analogy, it lies at its heart, along with further properties of ` observed in Section 2.

2



Our emphasis is on the results for the mismatched setting, relating the cost of mismatch to relative entropy in
the Poisson channel. The results for the exact (i.e., non-mismatched) setting, relating the minimum mean loss to
mutual information, and causal to non-causal minimum mean estimation loss, are shown to follow as special cases.
The latter results, for the exact setting, are consistent and in fact coincide with those of [14] – which considered a
more general Poisson channel model that accommodates the presence of dark current – when specialized to the case
of zero dark current. Our framework complements the results of [14] not only in extending the scope to the presence
of mismatch, but also in highlighting that the estimation theoretic quantities obtained in [14] have minimum mean
loss interpretations paralleling those from the Gaussian setting.

The remainder of the paper is organized as follows. Section 2 establishes some basic properties showing the loss
function in (1) is a natural one, as discussed above. After introducing our standard notation and conventions for
information measures in Section 3, we present the main results of this paper in Section 4, relating relative entropy and
mismatched estimation for the Poisson channel, under the loss function in (1), for random variables and processes
(causal and non-causal estimation in the latter case). In Section 5, we detail implications of our results: we show
that they not only allow to recover known results from the non-mismatched Poisson channel setting such as some of
those in [20] and [14], but also endow the latter with optimal estimation interpretations that allow to easily deduce
results paralleling those that have been established in the Gaussian setting. We present additional consequences,
such as an estimation theoretic representation of entropy, the relationship between causal and non-causal (matched
and mismatched) estimation in continuous time, and some of its implications. Section 6 illustrates some of our
key findings via a couple of simplistic examples where the underlying noise-free process is a DC signal. Section
7 is dedicated to proving our results. We end that section by indicating how some of the results carry over to
accommodate the presence of feedback. An alternative route to proving the main results via a more elementary
analysis is described in Section 8. We conclude in Section 9 with a summary of our findings and some related future
directions.

2 A Natural Loss Function

Throughout the paper we use ` to denote the loss function specified in (1). In this section, we collect a couple
of lemmas suggesting that ` is a natural function for measuring goodness of estimation of a non-negative random
variable, and that it possesses some of the celebrated properties of squared error loss that make the latter so popular.

Lemma 2.1 The function ` defined in (1) has the following properties:

1. Non-negativity: `(x, x̂) ≥ 0 with equality if and only if x = x̂.

2. Convexity: `(x, x̂) is convex in each of its arguments.

3. Scaling: `(αx, αx̂) = α · `(x, x̂), α ≥ 0.

4. Unboundedness of loss for underestimation: For any x > 0, limx̂→0+ `(x, x̂) = `(x, 0) =∞.

One way of seeing why the first (non-negativity) property stated in the lemma holds is to recall that

`(x, x̂) = x̂ · `0(x/x̂) (2)

and note that the function
`0(x) = x log x− x+ 1 (3)

is a (convex) non-negative function assuming its unique minimum value of 0 at x = 1, cf. Figure 1-(b). We leave
the elementary verification of the remaining properties collected in the lemma to the reader. Note that the first
two properties in the lemma are enough to imply unboundedness of the loss for overestimation, i.e., that for any
x ≥ 0, limx̂→∞ `(x, x̂) = ∞. The fourth property shows that the same holds true for underestimation, a pleasing
property when measuring goodness of reconstruction of non-negative quantities, not possessed by the more common
loss functions such as absolute or squared error.

To note another key property, recall the squared error loss function

`SE(x, x̂) = (x− x̂)2, (4)
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which satisfies, for any random variable X of finite variance,

E [`SE(X, x̂)] = E [`SE(X,EX)] + `SE(EX, x̂). (5)

The same relationship holds under our present loss function as well:

Lemma 2.2 For any non-negative random variable X with E[X log+X] <∞, and any x̂ ∈ [0,∞),

E [`(X, x̂)] = E [`(X,EX)] + `(EX, x̂). (6)

Proof: When X = 0 a.s., EX = 0, and this identity follows from our conventions. Otherwise EX > 0 and

E [`(X, x̂)] = E

[
X log

X

x̂
−X + x̂

]
(7)

= E

[
X log

(
X

x̂

EX

EX

)
−X + x̂

]
(8)

= E

[
X log

X

EX
−X + EX

]
+

[
EX log

EX

x̂
− EX + x̂

]
(9)

= E [`(X,EX)] + `(EX, x̂). 2 (10)

One immediate consequence of (6), when put together with the first (non-negativity) property in Lemma 2.1, is the
fact that EX uniquely minimizes E [`(X, x̂)] over all x̂:

min
x̂
E [`(X, x̂)] = E [`(X,EX)] = E[X logX]− E[X] logE[X], (11)

and thus E[X logX] − E[X] logE[X] plays a role analogous to that played by variance under squared error loss.
An immediate consequence of (11) is that conditional expectation E[X|Y ] is the unique estimator of X based on Y
minimizing the mean loss not only under `SE , but also under `. This property is in fact common to (and characterizes)
the family of Bregman loss functions [1].

Another key property shared by the loss function ` and squared error loss, exhibited respectively in (6) and (5),
is that, beyond quantifying the loss, it also quantifies the price of mismatch, i.e., the excess loss due to using x̂ in lieu
of EX (cf., respectively, the second terms on the right hand sides of (6) and (5)). This property, which in the case
of squared error loss is due to orthogonality, is as key in the derivation of our results as the orthogonality principle
is for deriving the results in [7, 13, 31, 33].

3 Notation and Conventions

Our conventions and notation for information measures, such as mutual information and relative entropy, are stan-
dard. The initiated reader is advised to skip this section. If U, V,W are three random variables taking values in
Polish spaces U ,V,W, respectively, and defined on a common probability space with a probability measure P , we let
PU , PU,V etc. denote the probability measures induced on U , the pair (U ,V) etc. while e.g., PU |V denotes a regular
version of the conditional distribution of U given V . PU |v is the distribution on U obtained by evaluating that regular
version at v. If Q is another probability measure on the same measurable space we similarly denote QU , QU |V , etc.
As usual, given two measures on the same measurable space, e.g., P and Q, define their relative entropy (divergence)
by

D(P‖Q) =

∫ [
log

dP

dQ

]
dP (12)

when P is absolutely continuous w.r.t. Q, defining D(P‖Q) = ∞ otherwise. An immediate consequence of the
definitions of relative entropy and of the Radon-Nikodym derivative is that if f : U → V is measurable and one-to-
one, and V = f(U), then

D(PU‖QU ) = D(PV ‖QV ). (13)

Following [5], we further use the notation

D(PU |V ‖QU |V |PV ) =

∫
D(PU |v‖QU |v)dPV (v), (14)
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where on the right side D(PU |v‖QU |v) is a divergence in the sense of (12) between the measures PU |v and QU |v. It
will be convenient to write

D(PU |V ‖QU |V ) (15)

to denote f(V ) when f(v) = D(PU |v‖QU |v). Thus D(PU |V ‖QU |V ) is a random variable while D(PU |V ‖QU |V |PV ) is
its expectation under P . With this notation, the chain rule for relative entropy (cf., e.g., [6, Subsection D.3]) is

D(PU,V ‖QU,V ) = D(PU‖QU ) +D(PV |U‖QV |U |PU ) (16)

and is valid regardless of the finiteness of both sides of the equation.
The mutual information between U and V is defined as

I(U ;V ) = D(PU,V ‖PU × PV ), (17)

where PU × PV denotes the product measure induced by PU and PV . We note in passing, in line with the comment
on relative entropy and one-to-one transformations leading to (13), that if f and g are two measurable one-to-one
transformations and A = f(U) while B = g(V ), then

I(U ;V ) = I(A;B). (18)

Finally, the conditional mutual information between U and V , given W , is defined as

I(U ;V |W ) = D(PU,V |W ‖PU |W × PV |W |PW ). (19)

The roles of U, V,W will be played in what follows by scalar random variables, vectors, or processes.

4 Relative Entropy and Mismatched Estimation

4.1 Random Variables

Suppose that X is a non-negative random variable and the conditional law of a r.v. Yγ , given X, is Poisson(γX). If
X ∼ P , denote expectation w.r.t. the corresponding joint law of X and Yγ by EP , the distribution of Yγ by PYγ ,
the conditional expectation by EP [X|Yγ ], etc. We denote the mutual information by IP (X;Yγ) or simply I(X;Yγ)
when there is no ambiguity. Let further mleP,Q(γ) denote the mean loss under ` in estimating X based on Yγ using
the estimator that would have been optimal had X ∼ Q when in fact X ∼ P , i.e.,

mleP,Q(γ)
4
= EP

[
`
(
X,EQ[X|Yγ ]

)]
. (20)

The following is a new representation of relative entropy, paralleling the Gaussian channel result of [31]:

Theorem 4.1 For any pair P,Q of probability measures over [a, b], where 0 < a < b <∞,

D(P‖Q) =

∫ ∞
0

[mleP,Q(γ)−mleP,P (γ)] dγ (21)

Theorem 4.1 is a direct consequence of the fact (proved in Section 7) that

lim
γ→∞

D(PYγ‖QYγ ) = D(P‖Q), (22)

combined with the following result, which is the Poisson parallel of [31, Equation (24)]:

Theorem 4.2 For any P,Q as in Theorem 4.1, and for any γ ≥ 0,

D(PYγ‖QYγ ) =

∫ γ

0

[mleP,Q(α)−mleP,P (α)] dα. (23)

To note one immediate implication of Theorem 4.2, the non-negativity of the integrand on the right hand side of (23),
as follows from (6), implies that D(PYγ‖QYγ ) increases with γ. Additional implications are pointed out in Section 5.
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4.2 Continuous-Time Stochastic Processes

Fix T > 0. Denote by D the space of right-continuous paths with left limits from [0, T ] to R. Endow D with the
usual Skorohod topology [3] and denote by D the Borel σ-algebra of D. Denote by P the collection of probability
measures P on (D,D) under which for P -a.e. ξ ∈ D, ξ is bounded between two positive constants.

A measurable space (Ω,F) is given, on which a stochastic process XT = {Xt, 0 ≤ t ≤ T} and, for each γ > 0,
a stochastic process Y Tγ = {Yγ,t, 0 ≤ t ≤ T}, are given. These processes represent the signal and observation,
respectively. The sample paths of each of them are in D, and each is assumed to be measurable as a map from
(Ω × [0, T ],F ⊗ B([0, T ])) to (R+,B(R+)) (where throughout, B(U) denotes the Borel σ-algebra of a metric space
U). Given γ ≥ 0, we are interested in probability measures P̂ on (Ω,F) under which the measure induced by X
on (D,D) is in P, and Y Tγ is jointly distributed with XT in such a way that, given XT , Y Tγ is a non-homogenous

Poisson process with intensity function γ ·XT . We denote by P̂γ = P̂γ(Ω,F) the collection of all such measures.

Given γ ≥ 0 and a probability measure P on (D,D) pick P̂ ∈ P̂γ for which the law of XT on D is P , and let EP
denote expectation w.r.t. the joint law of XT and Y Tγ on D2 under P̂ . Although this law depends on γ, there is no

need to indicate γ in the notation EP because Y Tγ itself depends on γ. Let mleP,Q(γ) denote the expected cumulative

loss in non-causal filtering of XT based on Y Tγ when XT ∼ P but the filter used is optimized for XT ∼ Q, i.e.,

mleP,Q(γ)
4
= EP

[∫ T

0

`
(
Xt, EQ[Xt|Y Tγ ]

)
dt

]
. (24)

Note that the definitions in (20) and (24) are consistent with each other, and which of them applies is dictated
unambiguously according to whether P and Q govern random variables or processes. Theorem 4.2 carries over to
stochastic processes as follows:

Theorem 4.3 Let P and Q be two probability measures that are members of P. For γ ≥ 0,

D(PY Tγ ‖QY Tγ ) =

∫ γ

0

[mleP,Q(α)−mleP,P (α)] dα. (25)

Let now cmleP,Q(γ) denote the expected cumulative loss in causal filtering of XT based on Y Tγ when XT ∼ P

but the filter used is optimized for XT ∼ Q, i.e.,

cmleP,Q(γ)
4
= EP

[∫ T

0

`
(
Xt, EQ[Xt|Y tγ ]

)
dt

]
. (26)

The right hand side of (24) and that of (26) differ only in that the conditional expectation appearing in the former
has the entire process Y Tγ in the conditioning, while in the latter only Y tγ , the process up to time t. Our main result
regarding cmleP,Q(γ) is that its excess value above the mean filtering loss of the optimal causal filter is proportional
to the relative entropy between PY Tγ and QY Tγ :

Theorem 4.4 Let P and Q be two probability measures that are members of P. For γ ≥ 0,

D(PY Tγ ‖QY Tγ ) = γ · [cmleP,Q(γ)− cmleP,P (γ)] . (27)

Put together, Theorem 4.3 and Theorem 4.4 yield, for γ > 0,

cmleP,Q(γ)− cmleP,P (γ) =
1

γ

∫ γ

0

[mleP,Q(α)−mleP,P (α)] dα =
1

γ
D(PY Tγ ‖QY Tγ ), (28)

which is the Poissonian analogue of [33, Theorem 2]. On a technical note, the r.h.s. of (24), (25) and (26) are
well-defined as integrals of non-negative Borel measurable functions, as will follow from our treatment in Section 7.

5 Implications

5.1 Mutual Information and Minimum Mean Estimation Loss

Let X be a non-negative random variable and, for γ > 0, let Yγ be a non-negative integer-valued random variable,
jointly distributed with X such that the conditional law of Yγ given X is Poisson(γX). When specialized to this
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setting, Theorem 2 of [14] gives

d

dγ
I(X;Yγ) = E [X logX − E[X|Yγ ] logE[X|Yγ ]] . (29)

It is instructive to observe that the right hand side of (29) is nothing but the minimum mean loss in estimating X
based on Yγ under the loss function `. Indeed, denoting this minimum mean loss by mmle(γ), i.e.,

mmle(γ)
4
= E [` (X,E[X|Yγ ])] , (30)

we have

E [` (X,E[X|Yγ ])] = E

[
X log

X

E[X|Yγ ]
−X + E[X|Yγ ]

]
(31)

= E [X logX −X logE[X|Yγ ]] (32)

= E [X logX − E[X|Yγ ] logE[X|Yγ ]] . (33)

Thus, (29) can be stated as the “I-MMLE” relationship

d

dγ
I(X;Yγ) = mmle(γ), (34)

in complete analogy with the I-MMSE relationship of [13]. To see one immediate benefit of this realization that the
right hand side of (29) coincides with the minimum mean loss in the right hand side of (34), we first go through
the following data processing argument: Fix γ′ < γ, let {Bi}i≥1 be i.i.d. Bernoulli(γ′/γ) independent of (X,Yγ),

and note that
(
X,
∑Yγ
i=1Bi

)
is equal in distribution to (X,Yγ′). Since estimating X based on

∑Yγ
i=1Bi, which is a

function of Yγ and the randomization sequence {Bi}, cannot be better (in the sense of minimizing the expected loss
under `) than estimating X based on Yγ , we have mmle(γ′) ≥ mmle(γ). Thus, mmle(γ) is non-increasing with γ
which, when combined with (34), yields the following analogue of [13, Corollary 1]:

Corollary 5.1 I(X;Yγ) is concave in γ.

It is also worth pointing out that the I-MMLE relationship can be viewed as a direct consequence of Theorem
4.2. Indeed, in the notation of Section 4.1, (34) is expressed as

d

dγ
IP (X;Yγ) = mleP,P (γ), (35)

which can be inferred from:

IP (X;Yγ) =

∫
D(PYγ |X=x‖PYγ )dPX(x) (36)

(a)
=

∫ [∫ γ

0

[mleδx,P (α)−mleδx,δx(α)] dα

]
dPX(x) (37)

=

∫ [∫ γ

0

Eδx [`(x,EP [X|Yα])] dα

]
dPX(x) (38)

=

∫ γ

0

EP [`(X,EP [X|Yα])] dα (39)

=

∫ γ

0

mleP,P (α)dα, (40)

where we use δx to denote the degenerate distribution on x and (a) follows by applying Theorem 4.2 on the integrand
in (36). Note that (40) is nothing but the integral version of (35).

A similar exercise – of expressing the mutual information between the channel input and output as a relative
entropy between the distribution of the output conditioned on a particular channel input and the unconditioned
channel output distribution, integrated over the channel input distribution, and using the relevant relationship
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from Section 4 to express the integrand – can be performed in the continuous-time setting of Section 4.2. Indeed,
application of Theorem 4.3 on the said integrand gives

IP
(
XT ;Y Tγ

)
=

∫ γ

0

mleP,P (α)dα. (41)

The relationship (41) is consistent with [14, Theorem 4], the two in fact coinciding when specializing the latter to
zero dark current. In a similar way, application of Theorem 4.4 gives

IP
(
XT ;Y Tγ

)
= γ · cmleP,P (γ), (42)

which, as in (33), is seen to be equivalent to the known relationship

IP (XT ;Y Tγ ) = γ · EP

[∫ T

0

(
Xt logXt − EP [Xt|Y tγ ] logEP [Xt|Y tγ ]

)
dt

]
, (43)

cf., e.g., [20, Subection 19.5]. The representation (42) highlights the optimal estimation interpretation of this rela-
tionship and, through that, the close analogy with Duncan’s theorem [7, Theorem 3].

Finally, going back to the setting of the “I-MMLE” relationship for scalar random variables, we note that the
conditional entropy of the output given the input is given by

H(Yγ |X) = E

[
γX · (1− log(γX)) + e−γX

∞∑
k=0

(γX)k log(k!)

k!

]
, (44)

so, in particular, is dependent on both γ and the distribution of X, in contrast to the Gaussian channel setting
of [13] where the (differential) entropy of the output given the input depends on neither. Thus, while the mutual
information can be replaced by the (differential) entropy of the channel output in the I-MMSE relationship of [13],
this is not the case for the I-MMLE relationship of our present setting, which further consolidates the role of mutual
information rather than channel output entropy as key in the relations between information and estimation.

5.2 Estimation Theoretic Representation of Entropy

For a random variable X taking values in a countable set A, and a mapping g : A → [0,∞), let Zγ be jointly
distributed with X such that the conditional law of Zγ given X is Poisson(γ · g(X)). With benign abuse of notation,
we write Poisson(γ · g(X)) in lieu of Zγ when convenient. The following is a direct consequence of Theorem 4.1.

Corollary 5.2 For any discrete random variable X ∼ P supported on the alphabet A, for any one-to-one mapping
g : A → [0,∞), and for any x ∈ A with P (X = x) > 0, denoting expectation w.r.t. P by E,

log
1

P (X = x)
=

∫ ∞
0

E
[
`
(
g(X), E [g(X)|Poisson(γ · g(X))]

)
|X = x

]
dγ. (45)

Proof: Apply Theorem 4.1 with P = δg(x) and an arbitrary Q supported on g(A) to obtain

log
1

Q(X = x)
= log

1

Q(g(X) = g(x))
=

∫ ∞
0

E
[
`
(
g(x), EQ [g(X)|Poisson(γ · g(X))]

)
|X = x

]
dγ, (46)

and note that (45) is nothing but (46) specialized to Q = P . 2

Averaging over (45) with respect of P gives the following analogue to Theorem 13 of [13]:

Corollary 5.3 For any discrete random variable X taking values in A, and for any one-to-one mapping g : A →
[0,∞),

H(X) =

∫ ∞
0

E
[
`
(
g(X), E [g(X)|Poisson(γ · g(X))]

)]
dγ. (47)

Corollary 5.3 can also be deduced directly from (40) by noting that, for discrete X, I(X;Yγ)→ H(X) as γ →∞, and
that if the discrete X takes values in the alphabet A then H(X) = H(g(X)) for any one-to-one mapping g : A → R.
It is interesting that the integrals on the right-hand sides of (45) and (47) do not depend on g, a fact that seems
hard to deduce directly from estimation theoretic considerations.
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5.3 Relationship Between Causal and Non-Causal Estimation and the
Price of Mismatch in Continuous Time

Our main findings for the continuous-time setting are summarized in the theorem that follows, relating the causal
estimation error, the non-causal estimation error, the mutual information, and the relative entropy. It follows directly
from combining (28), (41) and (42).

Theorem 5.5 Let P and Q be two probability laws on the non-negative process XT that are members of P. For any
γ > 0,

cmleP,Q(γ) =
1

γ

∫ γ

0

mleP,Q(α)dα =
1

γ

[
IP (XT ;Y Tγ ) +D(PY Tγ ‖QY Tγ )

]
. (48)

We list a few observations that are implied for the continuous-time setting by Theorem 5.5 in a manner similar to
that in which the observations in Section 2 of [33] are implied by the main result therein. We refer to that section
for the details.

• cmleP,Q(γ) and mleP,Q(γ) do not necessarily decrease with γ: In the mismatched case, when P 6= Q, cmleP,Q(γ)
and mleP,Q(γ) need not decrease with γ, nor need the relationship cmleP,Q(γ) ≥ mleP,Q(γ) hold. The two
properties in fact determine each other:

mleP,Q(γ) > cmleP,Q(γ) if and only if
d

dγ
cmleP,Q(γ) > 0. (49)

In words: an increase in SNR deteriorates the mismatched causal estimation performance if and only if the
latter is better than the non-causal estimation performance. We give an extreme example of such a scenario in
Section 6.2.

• Invariance of the Mismatched Filtering Performance to the Direction of Time: Let acmleP,Q(γ) denote the
mean estimation loss achieved by the anti-causal mismatched filter, i.e.,

acmleP,Q(γ)
4
= EP

[∫ T

0

`
(
Xt, EQ[Xt|{Yγ,s − Yγ,t}t≤s≤T ]

)
dt

]
. (50)

By the invariance of the mutual information and of the relative entropy in (48) to the direction of the flow of
time (apply, respectively, (18) and (13) with the role of the transformations f and g played by time reversal),
we obtain

acmleP,Q(γ) = cmleP,Q(γ). (51)

It is remarkable that (51) holds under essentially no restrictions on P , on Q, or on the relationship between
them.

• Factor of 2 Relationship at Low SNR: Assuming that at γ = 0 cmleP,Q(γ) is continuously differentiable and
non-zero, we have

lim
γ→0

∫ T
0
EP [`(Xt, EQXt)]dt−mleP,Q(γ)∫ T

0
EP [`(Xt, EQXt)]dt− cmleP,Q(γ)

= 2, (52)

i.e., the non-causal error approaches its low SNR limit twice as rapidly as the causal error.

• High SNR Behavior of D(PY Tγ ‖QY Tγ ): Assume the relationship between P and Q is sufficiently regular to imply

lim
γ→∞

cmleP,Q(γ) = lim
γ→∞

mleP,Q(γ) = 0. (53)

D(PY Tγ ‖QY Tγ ) exhibits one of the following possible behaviors in the high SNR regime:

1. D(PY Tγ ‖QY Tγ ) ≡ 0 for all γ > 0. This can happen if and only if D(P‖Q) = 0, i.e., the non-mismatched
setting.

2. D(PY Tγ ‖QY Tγ ) = Θ(1), which can happen if and only if 0 < D(P‖Q) <∞.
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3. limγ→∞D(PY Tγ ‖QY Tγ ) = ∞ but D(PY Tγ ‖QY Tγ ) = o(γ), which can happen if and only if D(P‖Q) = ∞.

I.e., when D(P‖Q) =∞, D(PY Tγ ‖QY Tγ ) increases without bound with increasing SNR, but sub-linearly.

• “Semi-Stochastic” Setting: Suppose that Xt = λt, 0 ≤ t ≤ T , λt ≥ 0 being a deterministic signal. Applying
Theorem 5.5 with P degenerate on λT gives

E

[∫ T

0

`
(
λt, EQ[Xt|Y tγ ]

)
dt

]
=

1

γ

∫ γ

0

E

[∫ T

0

`
(
λt, EQ[Xt|Y Tα ]

)
dt

]
dα =

1

γ
D(PY Tγ ‖QY Tγ ), (54)

where here PY Tγ is the law of a non-homogeneous Poisson process with intensity function γ · λT , and the

expectations are with respect to this measure. The relationship (54) can be thought of as the non-Bayesian
version of (48).

We refer to Section 2 of [33] for the details leading to the above observations, as well as additional observations
and results that, equipped with Theorem 5.5, carry over verbatim from the Gaussian to the Poisson channel, such
as the structure and performance of minimax causal estimators and their direct relation to minimax source coding
via redundancy-capacity theory [10, 27, 25].

6 Example: A DC Signal

We now work out two examples. In both, the underlying noise-free process is a DC signal known to be such by the
mismatched filter, the mismatch being only in the prior distribution on its amplitude. As simplistic as this scenario
may be, it illustrates how some of the key observations made above play themselves out in concrete cases.

6.1 Binary DC Signal

Consider the case where XT is a binary DC process, i.e., Xt ≡ X, where X takes the values 1 and 0 with probabilities
p and 1− p, and without loss of generality take T = 1. Suppose that the mismatched filter is designed knowing that
XT is a binary DC process, but under the assumption that X takes the values 1 and 0 with probabilities q and 1− q.
Subscripting with p and q to denote the respective measures, we have

Ep[Xt|Y tγ = y] =

{
1 if y ≥ 1

pe−γt

1−p+pe−γt if y = 0
(55)

and
Ep
[
`
(
Xt, Eq[Xt|Y tγ ]

)]
= g(p, q, γt), (56)

where

g(p, q, γ) =
qe−γ(1− p)
1− q + qe−γ

+

[
log

1− q + qe−γ

qe−γ
− 1− q

1− q + qe−γ

]
pe−γ . (57)

Thus

cmleP,Q(γ) =

∫ 1

0

g(p, q, γt)dt =
1

γ
e−γ

{
−p log

[
1 + eγ

(
1

q
− 1

)]
+ eγ

(
p log

1

q
+ (p− 1) log

[
1 +

(
e−γ − 1

)
q
])}

(58)
while

mleP,Q(γ) = g(p, q, γ). (59)

The curves cmleP,Q(γ) and mleP,Q(γ) are plotted in Figure 2, along with those for the exact setting cmleP,P (γ) and
mleP,P (γ). Theorem 5.5 implies that the area of the dark rectangle is equal to the area under the curve of mleP,P (γ),
which are both equal to the mutual information between the clean and noisy signal. It further implies that the sum
of the areas of the dark and the light colored rectangles is equal to the area under the curve mleP,Q(γ), and both
are equal to the mutual information plus the relative entropy between the true and the mismatched channel output
distribution. Thus, the area of the light colored rectangle is equal to the relative entropy. Also evident in the figure
is the ‘factor of 2’ relationship of Equation (52), which holds for the two pairs of curves (mismatched and exact).
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6.2 Support of P Not in Support of Q

In the previous example, P andQ had the same support, which guarantees limγ→∞mleP,Q(γ) = limγ→∞ cmleP,Q(γ) =
0 despite the mismatch. Also, in that example mleP,Q(γ) and cmleP,Q(γ) were monotonically decreasing with γ. In
general, neither of these properties need to hold, as was mentioned in Section 5.3 and is illustrated in the following
extreme example.

Suppose that, under P , the signal is deterministic and constant at 1/2, i.e., Xt ≡ 1/2 for all 0 ≤ t ≤ T = 1.
Under Q, XT is a binary DC process as in the previous example with q = 1/2. Using (55), an elementary calculation
yields

EP
[
`
(
Xt, EQ[Xt|Y tγ ]

)]
= f(γt), (60)

where

f(γ) = `(1/2, 1) · (1− e−γ/2) + `

(
1/2,

e−γ

1 + e−γ

)
· e−γ/2. (61)

Thus
mleP,Q(γ) = f(γ) (62)

while elementary manipulations give

cmleP,Q(γ) =

∫ 1

0

f(γt)dt (63)

= − 1

24γ

[
−24 + 24e−γ/2 + 3γ2 + π2 − 24 ·Gudermannian

(
−γ

2

)
+ γ12 log 2− 24 log 2 (64)

+e−γ/224 log 2 + 12γ log [1 + eγ ]− 12γ log
[
eγCosh

(γ
2

)]
+ 12 · Li2 (−eγ)

]
, (65)

where Gudermannian(x) = 2 arctan (ex)− π/2 and Li2 (x) =
∑∞
k=1 x

k/k2. Figure 3 displays the curves of mleP,Q(γ)
and cmleP,Q(γ) in (62) and (65). In accord with Theorem 5.5, the area of the rectangle is equal to the area under
the curve of mleP,Q(γ), which are both equal to the relative entropy between the true and the mismatched channel
output distribution, noting that the mutual information in this case is zero since the clean signal is deterministic.

This example shows that mleP,Q(γ) and cmleP,Q(γ) need not vanish with increasing γ, as would be the case in
the absence of mismatch. In fact, in this extreme example, mleP,Q(γ) and cmleP,Q(γ) not only are not vanishing
with increasing γ but are increasing without bound because the mismatched distribution has positive mass at 0 and
therefore the conditional expectation under it is very close to zero when the channel output has zero occurrences,
while the underlying signal value is 1/2. In this case the incurred loss is very large as `(1/2, x̂) is unbounded in a
neighborhood of 0. So large, in fact, as to cause the overall expected loss to grow without bound with γ, despite the
diminishing probability of observing zero occurrences at the channel output.

7 Proofs via Change-of-Measure Formulae

As noted in Section 4, Theorem 4.1 is immediate from Theorem 4.2 once (22) is established. Towards this end note
first that

D(PYγ‖QYγ ) ≤ D(PX,Yγ‖QX,Yγ ) (66)

= D(P‖Q) +D(PYγ |X‖QYγ |X |P ) (67)

= D(P‖Q), (68)

where the last equality is due to the fact that, P -a.s., PYγ |X = QYγ |X provided P � Q (and otherwise D(P‖Q) =∞).
The obvious monotonicity of the right hand side of (23) in γ, put together with (68), implies that the limit in (22)
exists and satisfies

lim
γ→∞

D(PYγ‖QYγ ) ≤ D(P‖Q). (69)
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For the reverse inequality one need merely note that γ−1 · Yγ converges weakly to X as γ → ∞ under both P and
Q, and thus

lim inf
γ→∞

D(PYγ‖QYγ ) = lim inf
γ→∞

D(Pγ−1·Yγ‖Qγ−1·Yγ ) (70)

≥ D(P‖Q), (71)

where the inequality follows from the lower semi-continuity of relative entropy under weak convergence [6, Appendix
D.3].

We now note that Theorem 4.2 is a direct consequence of Theorem 4.4. Indeed, consider the setting of Theorem
4.4 when γ = 1 and Xt ≡ X for all t (and all ω) under both measures and note that in this case EP [`(Xt, EQ[Xt|Y t1 ])]
coincides with mleP,Q(t) from the setting of Theorem 4.2. Thus an application of Theorem 4.4 in this very special
case yields Theorem 4.2 (with T playing the role of γ in the latter). It remains to prove Theorem 4.3 and Theorem
4.4, to which we dedicate the respective two subsections that follow.

7.1 Proof of Theorem 4.3 via Multivariate Point Processes

The main idea is to think of the SNR level as ‘time’. In fact, we will use special notation in this subsection,
emphasizing this point of view, where t will denote SNR and z will denote the argument for the signal (that
elsewhere in this paper is thought of as time). The index set for z, i.e. the signal’s domain, plays but a secondary
role in the analysis, and rather than assuming that it consists of the interval [0, T ], we consider it to be a general
multidimensional Euclidean set. Our approach is to relate the observation processes Yt at different SNR t to one
another by constructing them as transformations of a single observation process that lives in a larger space, namely
a multivariate point process driven by the signal. The main tool is the change-of-measure formula for multivariate
point processes [16, 17], that is a counterpart of the Girsanov formula for pure jump processes. This formula gives
rise to a recursion in the variable t for the RN derivative, in the form of an integral equation, a key element of the
proof. It is here where thinking of SNR as ‘time’ is useful. In fact, the role played by t (SNR) is analogous to that
played by time in the proof of the result on causal estimation provided in the next subsection.

Let d be a positive integer and consider a bounded Borel subset E of Rd. E will serve as the domain for the
signal process. The given measurable space (Ω,F) may not be rich enough to support a multivariate point process,
so we switch to a new space, and define on it new signal and observation processes, that (in the setting of Subsection
4.2) share with the given signal and observation their joint distribution. Let a measurable space (Ω̄, F̄) be given,
and a random field X over E, taking values in R+, be defined on it. X is assumed to be measurable as a mapping
from (Ω̄ × E, F̄ ⊗ E) to (R+,R+), where we write E for the Borel σ-field B(E) and R+ for B(R+).1 Also defined on
(Ω̄, F̄) are random variables Zn and Tn, n ≥ 1, with values in E and (0,∞), respectively. Tn are strictly increasing
and finite. The sequence (Tn, Zn) forms a multivariate point process, and is characterized by the random measure
on (0,∞)× E

µ(ω; dt, dz) =
∑
n≥1

δ(Tn(ω),Zn(ω))(dt, dz),

where δx denotes the unit point mass at x. Define a measure on (E, E) by ν̂(B) =
∫
B
X(z)dz, B ∈ E . Let

Gt = σ{µ((0, s]×B) : s ≤ t, B ∈ E}

Ft = F0 ∨ Gt
where F0 = σ{ν̂(B) : B ∈ E}.

Let P0 (resp., Q0) be a probability measure on (Ω̄, F̄) under which X and µ are mutually independent, X has
some given law P (respectively, Q), and µ is a Poisson measure (cf. [17, p. 70]) relative to {Ft} with (deterministic)
intensity ν0 given by

ν0(dt, dz) = dtdz,

where dt and dz denote Lebesgue measures on (0,∞) and E, respectively. This, by definition, means that E[µ(B)] =
ν0(B) for B ∈ R+ ⊗ E , and that for any t ≥ 0, µ(·, B) is independent of the σ-field Ft, provided B ⊂ (t,∞)× E. In

1Note that this is consistent with the assumption made in Subsection 4.2 on XT ; the more special structure assumed for XT , namely
that it has paths in D, is not required here, and is used only in the result on causal estimation.
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fact, µ is the counting measure for what is often called a Poisson point process on R+ × E, and consequently, each
µ(B) is a Poisson r.v. with parameter ν0(B), and µ(Bi) are independent provided Bi are disjoint (see [17, p. 105]).
It is assumed that, under both P0 and Q0, X is a.s.-bounded between two positive constants.

We invoke an existence result, Theorem 5.2 of [16]. Let ν denote the random measure on (E×(0,∞), E ⊗B(0,∞))

ν(ω; dt, dz) = ν̂(ω; dz)dt = X(ω; z)dtdz.

Then there exists a probability measure P on (Ω̄, F̄), P� P0, under which X has the same law P as under P0, while
ν is a version of the Ft-predictable projection of µ for P. We do not define this term here (see [16]), but only note
the consequence that, under P, conditionally on X, µ(Bi) are Poisson r.v. with parameters ν(Bi), i.e.

∫
Bi
X(z)dtdz,

mutually independent across i provided Bi are disjoint.
Furthermore, [16, Theorem 5.1] (see also [17, Theorem III.5.43]) gives an explicit version of the RN derivative

EP0
[ dPdP0
|Ft] as

Λt =
[ ∏
n:Tn≤t

X(Zn)
]

exp

∫
Et

(1−X(z))ν0(ds, dz),

where Et = (0, t]× E (note that the processes α and Ŷ of [16] vanish). This can be expressed as

Λt = exp
{∫

Et
logX(z)µ(ds, dz) +

∫
Et

(1−X(z))dsdz
}
. (72)

Let yt denote the random measure on E, defined by

yt(ω,B) = µ((0, t]×B), B ∈ E .

Let Yt = σ{yt(B) : B ∈ E}. We can use (72) to calculate the RN derivative between the laws of observation process
µ (respectively, y) under both measures, namely Λ̂t := EP0 [Λt|Gt] (Λ̃t := EP0 [Λt|Yt]).

Lemma 7.3 Denote X̂t(z) = EP[X(z)|Gt] and X̃t(z) = EP[X(z)|Yt]. Then a version of both Λ̂t and Λ̃t is given by

Λ̂t = Λ̃t = exp
{∫

Et
log X̂s−(z)µ(ds, dz) +

∫
Et

(1− X̂s−(z))dsdz
}
, (73)

where one can write X̃s−(z) in place of X̂s−(z) on the r.h.s.

Proof: First note by (72) that Λt = exp{
∫
E logX(z)yt(dz) + t

∫
E(1−X(z))dz} depends on µ only through yt. Hence

EP0 [Λt|Gt] = EP0 [Λt|Yt], namely Λ̂t = Λ̃t.

Next, note that EP[X(z)|Yt] =
EP0

[X(z)Λt|Yt]
EP0

[Λt|Yt] . We have just argued that in the denominator one can replace

Yt by Gt. For a similar reason, the same is true for the numerator. Hence EP[X(z)|Yt] = EP[X(z)|Gt], namely
X̃t(z) = X̂t(z). To complete the proof it remains to show that Λ̂t is given by the r.h.s. of (73).

Toward this end, we will argue along the lines of Result VI.R8 of [4]. Note that Λt uniquely solves the integral
equation

Λt = 1 +

∫
Et
Λs−(X(z)− 1)(µ(ds, dz)− dsdz). (74)

Indeed, this can be seen as a special case of [16, equation (15)], or directly verified by noting that for t be-
tween jumps dΛt/dt = Λt

∫
E(1 − X(z))dz, while at times of jump

∫
{t}×E µ(ds, dz) = 1 and Λt = Λt−X(Zn) =

Λt−
∫
{t}×EX(z)µ(ds, dz). Using the relationship between (72) and (74), with X̂s−(z) in place of X(z), it suffices to

prove

Λ̂t = 1 +

∫
Et
Λ̂s−(X̂s−(z)− 1)(µ(ds, dz)− dsdz). (75)

By (74) and the independence of X from Gt under P0,

Λ̂t = 1 +

∫
Et
EP0 [Λs−(X(z)− 1)|Gs](µ(ds, dz)− dsdz). (76)
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Thus (75) will follow once we show equality between the integrands in (75) and (76). Invoking Lemma VI.L6 of [4],
showing this amounts to proving

EP0

[ ∫
(0,t]×B

CsΛs−(X(z)− 1)dsdz
]

= EP0

[ ∫
(0,t]×B

CsΛ̂s−(X̂s−(z)− 1)dsdz
]

(77)

for any Gt-predictable, bounded Ct and B ∈ E .
Toward showing (77), note first that

EP0

[ ∫
(0,t]×B

Λs−Cs(X(z)− 1)dsdz
]

= EP

[ ∫
(0,t]×B

Cs(X(z)− 1)dsdz
]
. (78)

Indeed, using integration by parts, for each z,∫ t

0

Λs−Cs(X(z)− 1)ds = Λt

∫ t

0

Cs(X(z)− 1)ds−
∫ t

0

∫ s

0

Cu(X(z)− 1)dΛs.

Since Λ is a martingale under P0, so is the last term on the right, and

EP0

[ ∫
(0,t]×B

Λs−Cs(X(z)− 1)dsdz
]

= EP0

[
Λt

∫
(0,t]×B

Cs(X(z)− 1)dsdz
]
.

This shows (78).
Next, since under P, the random measures X(z)dsdz and X̂s−(z)dsdz are the predictable projections of µ w.r.t.

Ft and Gt, respectively (see [16]), we have EP

∫
(0,t]×B CsX(z)dsdz = EP

∫
(0,t]×B CsX̂s−(z)dsdz. Thus

EP

∫
(0,t]×B

Cs(X(z)− 1)dsdz = EP

∫
(0,t]×B

Cs(X̂s−(z)− 1)dsdz (79)

= EP0

∫
(0,t]×B

Λs−Cs(X̂s−(z)− 1)dsdz (80)

= EP0

∫
(0,t]×B

Λ̂s−Cs(X̂s−(z)− 1)dsdz, (81)

where the second equality follows by an argument similar to that leading to (78). Displays (81) and (78) imply (77),
which completes the proof. 2

We use a convention, analogous to that used elsewhere in this paper, of writing EP for expectation w.r.t. the
joint law of X (signal) and yt (observation at SNR level t) under P. This is legitimate here as well since this joint
law is determined by P and the conditional law of yt as the counting measure of a Poisson point process on E with
intensity tX. This is valid also for conditioning, where we will write X̃P

t (z) := EP[X(z)|Yt] as EP [X(z)|Yt], and for
the law of yt, written Pyt . With this notation, applying Lemma 7.3 to both P and Q and noting that the law of yt

under P0 does not depend on P (hence equal to that under Q0), a version of
dPyt
dQyt

is given by

exp
{∫

Et
[log X̃P

s−(z)− log X̃Q
s−(z)]µ(ds, dz)−

∫
Et

[X̃P
s−(z)− X̃Q

s−(z)]dsdz
}
.

Hence

D(Pyt‖Qyt) = EP

[ ∫
Et

log
X̃P
s−(z)

X̃Q
s−(z)

µ(ds, dz)−
∫
Et

(X̃P
s−(z)− X̃Q

s−(z))dsdz
]
. (82)

Note by [16] that an integral of the form
∫
Et R(s, z)(µ(ds, dz) − ν(ds, dz)) forms a martingale under P, provided

R is a predictable integrable process. The predictability of log X̃P
s−(z)/X̃Q

s−(z) follows from left continuity, while
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integrability follows from the boundedness assumptions we put on X. Recalling that ν(dt, dz) is given by X(z)dtdz,
we have

D(Pyt‖Qyt) = EP

[ ∫
Et

(
X(z) log

X̃P
s−(z)

X̃Q
s−(z)

− X̃P
s−(z) + X̃Q

s−(z)
)
dsdz

]
(83)

= EP

[ ∫
Et

(
EP [X(z)|Ys] log

EP [X(z)|Ys]
EQ[X(z)|Ys]

− EP [X(z)|Ys] + EQ[X(z)|Ys]
)
dsdz

]
. (84)

Changing the order of integration, we have thus established the following.

Theorem 7.6 For t ≥ 0,

D(Pyt‖Qyt) =

∫ t

0

∫
E
EP [` (EP [X(z)|Ys], EQ[X(z)|Ys])] dzds.

Proof of Theorem 4.3: Specializing to E = [0, T ] and setting Yγ(z) = yt([0, z]), z ∈ [0, T ], where γ = t, gives for
(X,Y ) precisely the law indicated in Subsection 4.2 for the signal-observation pair. The result thus follows from
Theorem 7.6 as a special case. 2

7.2 Proof of Theorem 4.4

The tools here parallel those of the previous subsection, but are simpler in that change-of-measure considerations
are used only for usual point processes. Naturally, t here will denote time. The treatment cannot be regarded a
special case of the one for multivariate point processes, because the signal varies with time (whereas there was no
dependence of the signal on SNR). A related (but distinct) calculation is performed in [20, Section 19.5] for mutual
information. Here we use a result from Section VI.5 of [4], playing a role similar to that of Lemma 7.3 from the
previous subsection.

Let P,Q ∈ P be given. Letting Pγ (resp. Qγ) stand for the distribution of γ ·XT when XT ∼ P (resp. XT ∼ Q),
by the third property in Lemma 2.1 we have

cmlePγ ,Qγ (γ) = γ · cmleP,Q(γ), (85)

implying it suffices to prove Theorem 4.4 assuming γ = 1. Thus, assuming XT = {Xt, t ∈ [0, T ]} is a non-negative
process and that, conditioned on XT , Y T is a Poisson process of intensity XT , it suffices to prove

D(PY t‖QY t) =

∫ t

0

EP [` (Xs, EQ[Xs|Y s])− ` (Xs, EP [Xs|Y s])] ds (86)

which, in view of Lemma 2.2, is equivalent to

D(PY t‖QY t) =

∫ t

0

EP [` (EP [Xs|Y s], EQ[Xs|Y s])] ds. (87)

Toward proving the above identity, let P̂ , Q̂ be members of P̂1 corresponding to P and Q, respectively. Also
consider an auxiliary probability measure P̂0 on (Ω,F) under which XT and Y T are mutually independent, XT is
distributed P , while Y T is a standard Poisson process. Denote

Λt = exp
{∫

(0,t]

logXsdYs +

∫ t

0

(1−Xs)ds
}
. (88)

Then Λ uniquely solves the equation

Λt = 1 +

∫
(0,t]

Λs−(Xs − 1)dYs +

∫ t

0

Λs(1−Xs)ds, (89)

and, under P̂0, it is a nonnegative martingale with expected value 1. As a result, dP̃
dP̂0

= ΛT defines a probability

measure P̃ on (Ω,F). By the analogue of Girsanov’s theorem for point processes [20, Theorem 19.4] (cf. also Theorem
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19.10 therein; or use the result from the previous subsection for the case where E is a singleton), the joint law of
(XT , Y T ) under P̃ agrees with that under P̂ . Consequently, ΛT is a version of the RN derivative between this joint
law under P̂ and under P̂0, and denoting by RY t the law of Y t under P̂0, writing E0 for EP̂0

, we have

dPY t

dRY t
= Λ̂t := E0[Λt|Y t], t ∈ [0, T ]. (90)

Result VI(5.6) of [4] (alternatively, an argument along the lines of Lemma 7.3, based on (88), (89)) states

Λ̂t = exp

(∫
(0,t]

log X̃P
s−dYs +

∫ t

0

(1− X̃P
s−)ds

)
, (91)

where X̃P
t = EP [Xt|Y t]. Noting that RY t is nothing but a standard Poisson process (in particular, not depending

on P ),

dQY t

dRY t
= exp

(∫
(0,t]

log X̃Q
s−dYs +

∫ t

0

(1− X̃Q
s−)ds

)
, (92)

whence

D(PY t‖QY t) = EP

[ ∫
(0,t]

log
X̃P
s−

X̃Q
s−
dYs −

∫ t

0

(X̃P
s− − X̃

Q
s−)ds

]
. (93)

Under P̂ , Yt−
∫ t
0
Xsds is a martingale, hence so is

∫ t
0
Zs(dYs−Xsds) for any predictable integrable process Z. Thus

D(PY t‖QY t) = EP

[ ∫ t

0

(
Xs log

X̃P
s−

X̃Q
s−
− X̃P

s− + X̃Q
s−

)
ds
]

(94)

=

∫ t

0

EP

[
EP [Xs|Y s] log

EP [Xs|Y s]
EQ[Xs|Y s]

− EP [Xs|Y s] + EQ[Xs|Y s]
]
ds (95)

=

∫ t

0

EP [` (EP [Xs|Y s], EQ[Xs|Y s])] ds, (96)

where the equality in (95) follows by conditioning on Y s. We have thus established (87) and completed the proof.

7.3 The Presence of Feedback

An inspection of our proof of Theorem 4.4 reveals that it carries over verbatim to accommodate the presence of
feedback. Specifically, the relationship

D(PY T ‖QY T ) =

∫ T

0

EP
[
`
(
Xt, EQ[Xt|Y t]

)
− `
(
Xt, EP [Xt|Y t]

)]
dt (97)

continues to hold in the case where, under both P and Q, the output process {Yt}t≥0 is a point process which admits
the predictable intensity Xt, adapted to a suitable filtration. Indeed, the analogue of Girsanov’s theorem for point
processes that we have employed in the proof accommodates this level of generality. As for the case of non-causal
estimation, it is easy to find examples involving the presence of feedback where Equality (25) no longer holds.

8 An Alternative Proof Route

We dedicate this section to an outline of an alternative route for proving the main results of this paper, namely
Theorems 4.2, 4.3 and 4.4. In this alternative route, rather than starting with the continuous-time setting and
then obtaining Theorem 4.2 as a consequence of Theorem 4.4, our starting point is a proof of Theorem 4.2 that is
based on first principles. We then extend it to random n-vectors, an extension that follows rather directly from the
scalar case. Theorem 4.3 is then proven by ‘lifting’ from finite dimensional vectors to continuous-time processes,
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establishing first that, when the underlying noise-free signal is piecewise constant, the relative entropy between the
true and mismatched distributions of the channel output process coincides with that between the true and mismatched
laws of the counts at the edge points of the constancy intervals. This fact allows to appeal to the vector case result
to establish Theorem 4.3 for said piecewise constant processes, the general case then following approximation and
limiting arguments. Theorem 4.4, on the other hand, can also be proven using Theorem 4.2 as the main building
block and an appeal to the chain rule for relative entropy. We omit the details and refer to [33, Section 4-C] for a
totally analogous approach taken therein for the Gaussian case.

The merit in this alternative route is in providing further intuition and insight into why the main results hold.
We give an elementary proof of Theorem 4.2, and the subsequent results are seen to stem from Theorem 4.2 in a
natural way. Because we have already provided rigorous proofs of the main results in the previous section, our goal
here is only to outline the main ideas of this alternative proof route, and thus throughout this section we tacitly
change orders of limits, summations, integrations, differentiations, etc.

8.1 Outline of an Elementary Proof of Theorem 4.2

Noting that

D(PYγ‖QYγ ) =
∞∑
y=0

P (Yγ = y) log
P (Yγ = y)

Q(Yγ = y)
(98)

=

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) · log

∫ e−γx(γx)y

y! dP (x)∫ e−γx(γx)y

y! dQ(x)
(99)

=

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

, (100)

we have

d

dγ
D(PYγ‖QYγ ) (101)

=

∞∑
y=0

d

dγ

[∫
e−γx(γx)y

y!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

]
(102)

=

∞∑
y=0

∫
−xe−γx(γx)y

y!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

+

∞∑
y=1

∫
xe−γx(γx)y−1

(y − 1)!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

(103)

+

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) · d

dγ
log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

. (104)

Considering the second sum in (103),

∞∑
y=1

∫
xe−γx(γx)y−1

(y − 1)!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

=

∞∑
y=0

∫
xe−γx(γx)y

y!
dP (x) · log

∫
e−γxxy+1dP (x)∫
e−γxxy+1dQ(x)

, (105)
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and therefore the overall expression in (103) assumes the form

∞∑
y=0

∫
−xe−γx(γx)y

y!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

+

∞∑
y=1

∫
xe−γx(γx)y−1

(y − 1)!
dP (x) · log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

(106)

=

∞∑
y=0

∫
xe−γx(γx)y

y!
dP (x) · log

∫
e−γxxy+1dP (x)∫
e−γxxy+1dQ(x)

∫
e−γxxydQ(x)∫
e−γxxydP (x)

(107)

=

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) ·

∫
xe−γx(γx)ydP (x)∫
e−γx(γx)ydP (x)

· log

∫
e−γxxy+1dP (x)∫
e−γxxydP (x)

∫
e−γxxydQ(x)∫
e−γxxy+1dQ(x)

(108)

(a)
=

∞∑
y=0

P (Yγ = y)EP [X|Yγ = y] log
EP [X|Yγ = y]

EQ[X|Yγ = y]
(109)

= EP

[
EP [X|Yγ ] log

EP [X|Yγ ]

EQ[X|Yγ ]

]
, (110)

where (a) follows upon noting∫
e−γxxy+1dP (x)∫
e−γxxydP (x)

=

∫
x e
−γx(γx)y

y! dP (x)∫ e−γx(γx)y

y! dP (x)
= EP [X|Yγ = y]. (111)

Turning to the expression in (104),

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) · d

dγ
log

∫
e−γxxydP (x)∫
e−γxxydQ(x)

(112)

=

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) ·

∫
e−γxxydQ(x)∫
e−γxxydP (x)

·
∫
−xe−γxxydP (x)

∫
e−γxxydQ(x)−

∫
e−γxxydP (x)

∫
−xe−γxxydQ(x)(∫

e−γxxydQ(x)
)2

=

∞∑
y=0

∫
e−γx(γx)y

y!
dP (x) ·

[∫
e−γxxy+1dQ(x)∫
e−γxxydQ(x)

−
∫
e−γxxy+1dP (x)∫
e−γxxydP (x)

]
(113)

=

∞∑
y=0

P (Yγ = y) · [EQ[X|Yγ = y]− EP [X|Yγ = y]] (114)

= EP [EQ[X|Yγ ]− EP [X|Yγ ]] . (115)

Thus

d

dγ
D(PYγ‖QYγ )

(a)
= EP

[
EP [X|Yγ ] log

EP [X|Yγ ]

EQ[X|Yγ ]
+ EQ[X|Yγ ]− EP [X|Yγ ]

]
(116)

= EP [` (EP [X|Yγ ], EQ[X|Yγ ])] (117)

(b)
= EP [` (X,EQ[X|Yγ ])− ` (X,EP [X|Yγ ])] (118)

= mleP,Q(γ)−mleP,P (γ), (119)

where (a) follows from combining (103), (104), (110) and (115), and (b) from the (conditional version of) Lemma
2.2.

8.2 Extension to Random Vectors

Let Xn = (X1, . . . , Xn) be a random n-tuple with non-negative components and, for γ ≥ 0, let Y nγ = (Yγ,1, . . . , Yγ,n)
be jointly distributed with Xn such that, given Xn, the components of Y nγ are independent with Yγ,i|Xn ∼
Poisson(γXi), 1 ≤ i ≤ n. If Xn ∼ P we denote the distribution of Y nγ by PY nγ , conditional expectations by
EP [Xi|Y nγ ], etc. We extend the notation in (20) to this case by

mleP,Q(γ)
4
= EP

[
n∑
i=1

`
(
Xi, EQ[Xi|Y nγ ]

)]
. (120)
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With this extension of the notation, Theorem 4.2 carries over to random vectors essentially verbatim:

Theorem 8.7 For any pair of probability laws P,Q governing Xn with components bounded between two positive
constants, and for any γ ≥ 0,

D(PY nγ ‖QY nγ ) =

∫ γ

0

[mleP,Q(α)−mleP,P (α)] dα. (121)

Outline of proof:2 For β = (βi, . . . , βn) ∈ [0,∞)n, let Y nβ be jointly distributed with Xn such that, given Xn, the
components of Y nβ are independent and Yβ,i|Xn ∼ Poisson(βiXi), 1 ≤ i ≤ n. Then

d

dγ
D(PY nγ ‖QY nγ ) =

n∑
i=1

∂

∂βi
D(PY nβ ‖QY nβ )

∣∣∣∣
β=(γ,...,γ)

(122)

(a)
=

n∑
i=1

∂

∂βi

[
D(P

Y
n\i
β

‖Q
Y
n\i
β

) +D
(
P
Yβ,i|Y n\iβ

∥∥∥ QYβ,i|Y n\iβ

∣∣∣PY n\iβ

)]∣∣∣∣
β=(γ,...,γ)

(123)

(b)
=

n∑
i=1

∂

∂βi
D
(
P
Yβ,i|Y n\iβ

∥∥∥ QYβ,i|Y n\iβ

∣∣∣PY n\iβ

)∣∣∣∣
β=(γ,...,γ)

(124)

=

n∑
i=1

∂

∂βi

[∫
D
(
P
Yβ,i|yn\iβ

∥∥∥QYβ,i|yn\iβ

)
dP

Y
n\i
β

(y
n\i
β )

]∣∣∣∣
β=(γ,...,γ)

(125)

=

n∑
i=1

∫
∂

∂βi
D
(
P
Yβ,i|yn\iβ

∥∥∥QYβ,i|yn\iβ

)
dP

Y
n\i
β

(y
n\i
β )

∣∣∣∣
β=(γ,...,γ)

(126)

(c)
=

n∑
i=1

∫
EP

[
`(Xi, EQ[Xi|Y nβ ])− `(Xi, EP [Xi|Y nβ ])

∣∣∣Y n\iβ = y
n\i
β

]
dP

Y
n\i
β

(y
n\i
β )

∣∣∣∣
β=(γ,...,γ)

(127)

=

n∑
i=1

EP
[
`(Xi, EQ[Xi|Y nβ ])− `(Xi, EP [Xi|Y nβ ])

]∣∣
β=(γ,...,γ)

(128)

=

n∑
i=1

EP
[
`(Xi, EQ[Xi|Y nγ ])− `(Xi, EP [Xi|Y nγ ])

]
(129)

= mleP,Q(γ)−mleP,P (γ), (130)

where Y
n\i
β denotes the n − 1-tuple (Yβ,1, . . . , Yβ,i−1, Yβ,i+1, . . . , Yβ,n), (a) is an application of the chain rule of

relative entropy (16), (b) is due to the fact that the distributions P
Y
n\i
β

and Q
Y
n\i
β

do not depend on βi, and (c) to

an application of Theorem 4.2 with the roles of P and Q played respectively by P
Xi|yn\iβ

and Q
Xi|yn\iβ

. 2

8.3 Outline of Alternative Proof of Theorem 4.3

We start with:

Lemma 8.4 Let X be a non-negative random variable, jointly distributed with the pair (Y1, Y2) such that, condition-
ally on X, Y1 and Y2 are mutually independent, with both Y1|X ∼ Poisson(X) and Y2|X ∼ Poisson(X). Letting P
and Q correspond to two distributions on X:

D(PY1,Y2‖QY1,Y2) = D(PY1+Y2‖QY1+Y2). (131)

2Theorem 8.7 follows immediately from Theorem 4.3 by specializing the latter to piecewise constant processes. In the outlined proof
given here, however, the idea is of course not to rely on Theorem 4.3 and assume only Theorem 4.2, whose elementary proof was outlined
in the previous subsection.
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Proof of Lemma 8.4: Denoting Z = Y1 + Y2, for any x ≥ 0, integer z ≥ 0, and integer 0 ≤ y1 ≤ z

PY1|Z,X(y1|z, x) =
PY1,Z|X(y1, z|x)

PZ|X(z|x)
(132)

=

e−xxy1

y1!
e−xxz−y1

(z−y1)!
e−2x(2x)z

z!

(133)

=
z!

y1!(z − y1)!2z
(134)

=
1

2z

(
z
y1

)
, (135)

which does not depend on the value of x and therefore

PY1|Z(y1|z) =
1

2z

(
z
y1

)
. (136)

In particular, the induced conditional distribution of Y1 given Z does not depend on the distribution of X so

PY1|Z = QY1|Z . (137)

Thus

D(PY1,Y2
‖QY1,Y2

)
(a)
= D(PY1,Z‖QY1,Z) (138)

= D(PZ‖QZ) +D(PY1|Z‖QY1|Z |PZ) (139)

(b)
= D(PZ‖QZ), (140)

where (a) is due to the fact that there is a one-to-one transformation from (Y1, Y2) to (Y1, Z) and (b) is due to (137).
2

Iterating Lemma 8.4 by halving intervals gives

Corollary 8.4 Let X be a non-negative random variable X, and let Y T |X be a homogeneous Poisson process of
intensity X. Letting P and Q correspond to two distributions on X,

D(PY T ‖QY T ) = D(PYT ‖QYT ). (141)

Equipped with Corollary 8.4, we can start to prove Theorem 4.3 by establishing (25) under the assumption that XT

is piecewise constant both under P and under Q, i.e., assume existence of n and a random vector of nonnegative
components An = (A1, . . . , An) such that

Xt ≡ Ai for all
i− 1

n
T ≤ t < i

n
T, and 1 ≤ i ≤ n. (142)

We use P and Q to denote either the measures governing the continuous-time piecewise-constant signal XT satisfying
(142), or those governing the n-dimensional random vector An. To make the distinction clear, we add the superscript
vec in the latter case writing mlevecP,Q(γ) for mleP,Q(γ) of Section 8.2 (recall (120)) while staying with mleP,Q(γ) for the
continuous-time analogue in (24). In the same vein, we let Y vec,n

γ = (Y vec
γ,1 , . . . , Y

vec
γ,n) denote a random n-tuple jointly

distributed with An such that, given An, the components of Y vec,n
γ are independent with Y vec

γ,i |An ∼ Poisson(γAi),

while staying with Y Tγ = {Yγ,t, 0 ≤ t ≤ T} to denote the process which, conditioned on XT , is a Poisson process of

intensity γXT . With this convention, we have

mleP,Q(γ) =
T

n
mlevecP,Q

(
γ
T

n

)
(143)
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and thus ∫ γ

0

[mleP,Q(α)−mleP,P (α)] dα
(a)
=

T

n

∫ γ

0

[
mlevecP,Q

(
α
T

n

)
−mlevecP,P

(
α
T

n

)]
dα (144)

=

∫ γ Tn

0

[
mlevecP,Q (α)−mlevecP,P (α)

]
dα (145)

(b)
= D

(
PY vec,n

γT/n
‖QY vec,n

γT/n

)
(146)

(c)
= D(P{Yγ,iT/n−Yγ,(i−1)T/n}ni=1

‖Q{Yγ,iT/n−Yγ,(i−1)T/n}ni=1
) (147)

(d)
= D

(
P{Yγ,iT/n}ni=1

‖Q{Yγ,iT/n}ni=1

)
(148)

(e)
= D(PY Tγ ‖QY Tγ ), (149)

where (a) follows from (143), (b) follows from Theorem 8.7, (c) is due to the fact that Y vec,n
γT/n is equal in distribution

to {Yγ,iT/n − Yγ,(i−1)T/n}ni=1 regardless of the distribution of the underlying An, (d) is due to the fact that there
is a one-to-one transformation from {Yγ,iT/n − Yγ,(i−1)T/n}ni=1 to {Yγ,iT/n}ni=1, and (e) is due to an application of
Corollary 8.4 on each of the constancy intervals of XT (and invoking the chain rule of relative entropy).

This concludes the proof for the case where the input is a piecewise constant process of the form in (142). For
general processes, given the two process distributions P and Q, one considers the induced measures P (n) and Q(n),
on the input process X(n),T obtained from the original one via

X
(n)
t ≡ 2n

T

∫ (i+1)2−nT

i2−nT

Xtdt for t ∈ (i2−nT, (i+ 1)2−nT ], (150)

a piecewise constant process of the form in (142) for which we have already established the result. Thus, for any n,

D
(
P

(n)

Y Tγ
‖Q(n)

Y Tγ

)
=

∫ γ

0

[
mleP (n),Q(n)(α)−mleP (n),P (n)(α)

]
dα. (151)

Standard continuity arguments similar to those in [33, Section IV.C] would now yield

D
(
P

(n)

Y Tγ
‖Q(n)

Y Tγ

)
n→∞−→ D

(
PY Tγ ‖QY Tγ

)
(152)

and ∫ γ

0

[
mleP (n),Q(n)(α)−mleP (n),P (n)(α)

]
dα

n→∞−→
∫ γ

0

[mleP,Q(α)−mleP,P (α)] dα, (153)

implying (25) when combined with (151).

9 Conclusion

Under the right loss function, we find that the Poisson channel exhibits relationships between mutual information,
relative entropy, and mismatched estimation loss – for the causal and the non-causal filter– completely paralleling
those recently found for the Gaussian channel. For the non-mismatched setting, our findings shed light on the classical
continuous-time mutual information relation (43) (cf., e.g., [20]), as well as the recent ones of [14], endowing them
with optimal estimation interpretations that complete the analogy to Gaussian channel results such as Duncan’s
formula [7] and the I-MMSE relationship [13].

To what extent our findings can be applied to scenarios involving Poisson channels – analogously to the way their
Gaussian counterparts were used in, e.g., [15] for multiuser channels, [22] for analysis of sparse-graph codes, and
[30] to establish monotone convergence to a Gaussian limit under relative entropy – remains to explore. It would
also be of interest to see whether our results might lead to insight into or improvements on Poisson approximation
results, such as those in [2] and references therein. Finally, it would be valuable to understand whether and how the
relationships that we now know to hold for the Gaussian and the Poisson channel carry over to other channels. Steps
in related directions have been taken recently, establishing that derivatives of information measures with respect
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to parameters governing the channel induce functionals involving the conditional distribution of the input given
the output, cf. e.g. [26, 23, 12, 24]. It remains to be seen whether the latter admit interpretations of operational
significance corresponding to optimum or mismatched estimation, and whether these can, in turn, be used to infer
insightful relations such as between causal and non-causal estimation.
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[30] A. M. Tulino and S. Verdú, “Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random
Variables: A Simple Proof,” IEEE Trans. Information Theory, vol. 52, no. 9, pp. 4295-4297, Sep. 2006.
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Figure 2: The curves mleP,P (γ), cmleP,P (γ), mleP,Q(γ) and cmleP,Q(γ), marked respectively by A,B,C,D, of the
example in Section 6.1, plotted here for p = 1/2 and q = 1/5.
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Figure 3: The curves of mleP,Q(γ) and cmleP,Q(γ), as expressed in (62) and (65), marked respectively by A and B.
In this example, the mismatched non-causal filter performance is worse than that of the causal one.
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