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Abstract—The relation between the parity-check matrices of
quasi-cyclic (QC) low-density parity-check (LDPC) codes and the
biadjacency matrices of bipartite graphs supports searching for
powerful LDPC block codes. Algorithms for searching iteratively
for LDPC block codes with large girth are presented and
constructions based on Steiner Triple Systems and short QC
block codes are introduced, leading to new QC regular LDPC
block codes with girth up to 24.

I. INTRODUCTION

The connection between low-density parity-check (LDPC)
codes and codes based on graphs (see, for example, [1]) opens
new perspectives in searching for powerful LDPC codes.

Typically, LDPC codes have minimum distances which
are less than those for the best known linear codes, but
due to their structure they are suitable for low-complexity
iterative decoding, like the believe-propagation algorithm. One
important parameter determining the efficiency of iterative
decoding algorithms for LDPC codes is the girth, which is
a parameter of the underlying Tanner graph and corresponds
to the number of independent decoding iterations [2].

In this paper we shall focus on quasi-cyclic (QC) (J, K)-
regular LDPC codes, which can be encoded in linear time
and are most suitable for algebraic design. Such codes are
commonly constructed based on combinatorial approaches
using either finite geometries [3] or Steiner Triple Systems
[4]. Although QC LDPC codes are not asymptotically optimal
they can outperform random or pseudorandom LDPC codes
(from asymptotically optimal ensembles) for short or moderate
block lengths [5]. This motivates searching for good short QC
LDPC codes.

The problem of finding QC LDPC codes with large girth
was considered in several papers. For example, codes with
girth 14 are constructed in [6] while codes with girth up to
18 are presented in [7]. Most papers combine some algebraic
techniques and computer search. Commonly these procedures
start by choosing a proper base matrix or base graph (seed
graph [8] or protograph [9]). Then a system of inequalities
with integer coefficients describing all cycles of a given length
is constructed and suitable labels or degrees are derived.

In Section II, we introduce notations for parity-check ma-
trices of convolutional codes and for their corresponding
tailbiting block codes. Section III focuses on bipartite graphs,
biadjacency matrices, and their relation with parity-check
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matrices of LDPC block codes. Our construction of base
and voltage matrices, used when we search for LDPC block
codes with large girth, is introduced in Section IV. New
search algorithms are presented in Section V. In Section VI
new examples of (J, K)-regular QC LDPC codes with girth
between 14 and 24 based on Steiner Triple Systems and small
QC regular matrices are tabulated. Section VII concludes the
paper with some final remarks.

II. PARITY-CHECK MATRICES

A rate R = b/c binary convolutional code C is determined
by its parity-check matrix of memory m

h11(D) h12(D) hi(D)
ha1 (D haa (D hac(D

H(D) = W) W) i} SO It
hie—p)1(D)  hic—p)2(D) h(c—p)e(D)

with parity-check polynomials h;;(D). In the sequel we con-
sider parity-check matrices with either zero or monomial en-
tries h;;(D) = D™ of degree w;;, where w;; are nonnegative
integers. If each column and each row contain exactly J and
K nonzero elements, respectively, we call C a (J, K)-regular
LDPC convolutional code.

Expressing the (¢ — b) x ¢ parity-check matrix H(D) in
terms of its binary matrices H;, ¢ = 0,1,...,m, that is,

H(D)=Hy+ H,D + H,D*>+ ...+ H,,D™ (2
we obtain its semi-infinite syndrome former

HE HI; p HE ,
HI HT ... H 3)

m

HT =

where T' denotes transpose.

If we tailbite the convolutional code C to length M c-tuples,
where M > m, we obtain the M (¢ — b) x Mc parity-check
matrix of the quasi-cyclic (QC) block code B as

oY HT HT | HT 0
o H H' ... HL , H}

Hig=| HY o HI HI - HL | ®
Hf HEY , HL 0 Hf



Fig. 1.

Tanner graph with 8 symbol nodes (s;, ¢ = 1,2,..
constraint nodes (¢;, ¢ = 1,2,...,6).

.,8) and 6

Note that every cyclic shift of a codeword of B by ¢ places
modulo Mc is again a codeword.

The parity-check matrix Hrg is also (J, K)-regular, that is,
there are exactly J ones in every column and exactly K ones
in every row. Moreover, with J and K being much smaller
than M, the matrix Htg is sparse.

III. GRAPHS & BIADJACENCY MATRICES

A graph G is determined by a set of vertices V = {v;} and
a set of edges £ = {e;}, where each edge connects exactly
two vertices. The degree of a vertex denotes the number of
edges that are connected to it.

Consider the set of vertices ) of a graph partitioned into ¢
disjoint subsets Vi, k = 0,1,...,¢—1. Such a graph is said to
be t-partite, if no edge connects two vertices from the same
set Vi, k=0,1,...,t— 1.

A path of length L in a graph is an alternating sequence
of L + 1 vertices v;, ¢ = 1,2,...,L + 1, and L edges e;,
1=1,2,..., L, with e; # e; 1. If the first and the final vertex
coincide, that is, if v; = v 41, then we obtain a cycle. A cycle
is called simple if all its vertices and edges are distinct, except
for the first and final vertex which coincide. The length of the
shortest simple cycle is the girth g of the graph.

Every full-rank parity-check matrix H of a rate R = k/n
LDPC block code can be interpreted as the biadjacency matrix
[10] of a bipartite graph, the so-called Tanner graph, having
two disjoint subsets V,y and V; containing n and n—k vertices,
respectively. The n vertices in Vy are called symbol nodes,
while the n — k vertices in V; are called constraint nodes.
Note that, if the underlying LDPC block code is (J, K)-
regular, all symbol and constraint nodes have degree J and
K, respectively.

Consider the Tanner graph of the biadjacency matrix Hrg,
corresponding to a QC (J, K)-regular LDPC code, obtained
from the parity-check matrix of a tailbiting LDPC block-code.
By letting the tailbiting length M tend to infinity, we obtain
a convolutional parity-check matrix H (D) as given in (1) of
the parent convolutional code C. In terms of Tanner graph
representations, this corresponds to unwrapping the underlying
graph and extending it in the time domain towards infinity.
Hereinafter, we will denote the girth of this infinite Tanner
graph as the free girth giree.

Fig. 2. Bipartite voltage graph with 4 symbol nodes (s;, ¢ = 1,2, 3,4) and
3 constraint nodes (c;, ¢ = 1,2, 3).

Example 1: Consider the rate R = 1/4 convolutional code C
with parity-check matrix

11 1 1
HD)=|1 1 D D (5)
1 D1 D

Tailbiting (5) to length M = 2, we obtain the tailbitten 6 x 8
parity-check matrix of a QC (3,4)-regular LDPC block code

1 2 3 4 5 6 7 8
1 1 11 170 0 0 O
2 11 0 00 0 1 1
Hrp= 3|1 01 0/0 1 0 1 (6)
4 O 0 0 01 1 1 1
5 00 1 1/]1 1 0 O
6 \0O 1 0 1|1 0 1 O

In particular, every cyclic shift of a codeword by ¢ = 4 places
modulo Mc = 8 is again a codeword. Interpreting (6) as a
biadjacency matrix, we obtain the corresponding Tanner graph
G as illustrated in Fig. 1 with 8 symbol nodes and 6 constraint
nodes, having girth g = 4. In this case, the free girth coincides
with the girth, that is, ggee = g = 4.

IV. BASE MATRICES, VOLTAGES, & THEIR GRAPHS

A binary matrix B is called base matrix for a tailbiting
LDPC block code if its parent convolutional code with parity-
check matrix H(D) has only monomial or zero entries and
satisfies

B=H(D)|,_, (7)

which corresponds to all nonzero entries in H(D) being
replaced by DY = 1. Note, that different LDPC block codes
can have the same base matrix B.

The base graph Gg follows as the bipartite graph, whose
biadjacency matrix is given by the base matrix B. Denote
the girth of such a base graph by gg. The terminology “base
graph” originates from graph theory and is used, for example,
in [11]. It differs from the terminology used in [6], [9], where
protograph or seed graph are used.

Let I' = {7} be an additive group. From the base graph
Gs = {&,Vs} we obtain the voltage graph [12], [13]
Gv = {&s, Vs, '} by assigning a voltage value (e, v,v’) to
the edge e connecting the vertices v and v’, satisfying the
property y(e,v,v’) = —~v(e,v’,v). Note that, although the



graph is not directed, the voltage of the edge depends on
the direction in which the edge is passed. Finally, define the
voltage of the path as the sum of the voltages of its edges.

Let G = {&,V} be a lifted graph obtained from a voltage
graph, where £ C & x ' and V = Vg x I'. Two vertices
(v,7v) and (v',~') are connected in the lifted graph by an
edge if and only if v and v’ are connected in the voltage
graph Gy with the voltage value of the corresponding edge
given by y(e,v,v') = v — «'. It is easy to see that cycles
in the lifted graph correspond to cycles in the voltage graph
with zero voltage. Note that a voltage assignment corresponds
directly to selecting the degrees of the parity-check monomials
in H(D).

We describe LDPC convolutional codes using integer edge
voltages, that is, an infinite additive voltage group, whereas
QC LDPC are described using a voltage group of modulo M
residues. The edge voltage from the constraint node ¢; to the
symbol node s; is denoted by u;; while the corresponding
edge voltage for the opposite passing direction from symbol
node s; to constraint node c; is denoted by fi;;, that is,

pij = —Hji = wi;  mod M ®)

where w;; is the degree of the parity-check monomial h;;(D).
Thus, using voltage graphs allows a compact description of
LDPC codes and finding their (free) girth gy (gfee) is reduced
to finding their shortest cycle with voltage zero.

Example 1 (Cont’d): The bipartite graph whose biadjacency
matrix is given by the base matrix B of the rate R = 1/4
(3,4)-regular LDPC convolutional code C is illustrated in
Fig. 2. As the edges are labeled according to (8), Fig. 2
corresponds to a voltage graph with girth gy = 4 (for example,
§1 — €1 — S92 — c2 — s1). The edge from, for example,
constraint node ¢y to symbol node s3 is labeled according to

fo3 = —jigz = w3z =1

As the free girth of the infinite Tanner graph is equal to the
girth of the voltage graph, we can conclude that g = gv = 4.
If we neglect all edge labels, we would obtain the correspond-
ing base graph.

V. NEW SEARCH ALGORITHMS

When searching for QC (J, K)-regular LDPC block codes
with large girth, we start from a base graph and determine
a suitable voltage assignment based on nonnegative integers,
such that the girth of this voltage graph is greater than or
equal to a given girth g. Next we replace all edge labels
by their modulo M residuals, where we try to minimize
M while preserving the girth g. Using the duality between
the edge voltages and the degree of the monomial entries in
H(D), we obtain the corresponding parity-check matrix of a
convolutional code whose bipartite graph has girth g = gfree-
Tailbiting to lengths M, leads to the rate R = Mb/Mc QC
LDPC block code whose parity-check matrix is equal to the
biadjacency matrix of a bipartite graph with girth g.

The algorithm for determining a suitable voltage assignment
for a base graph consists of the following two main steps:

Fig. 3. A tree representation with maximum depth two, starting with symbol
node s1.

1) Construct a list containing all inequalities describing
cycles of length smaller than g within the base graph.

2) Search for such a voltage assignment of the base graph
that all inequalities are satisfied.

In general, when searching for all cycles of length g, roughly
(J —1)¢ different paths have to be considered. However, using
a similar approach as in [14] we can reduce the complexity to
roughly (J — 1)9/2 by using a tree representation.

A. Creating a tree structure

Consider the bipartite base graph of a (¢—b) x ¢ base matrix
and denote the set of ¢ symbol nodes s;, + = 1,2,...,¢, by
Vo and the set of ¢ — b constraint nodes ¢;, i = 1,2,...,c—b,
by Vi. A node in the tree will be referred to as £ and has
a unique parent node &P. Every node & is characterized by
its depth £(§) and its number n(£), where n(£) = i follows
directly from £ = s; or £ = ¢; depending on whether its depth
£(€) is even or odd.

Next we grow c separate subtrees with the root node & =
&iroot Of the ith subtree being initialized with £ € 1, and depth
£(€) = 0. We extend every node £ € V; at depth () = n
with i = n mod 2 by connecting it with the nodes & €
Vi+1 mod 2 at depth n + 1 according to the underlying base
graph, except &P which is already connected to & at depth
n — 1. Finally we label the edges according to (8) and obtain
the voltage for node £ in the ith subtree as the sum of the
edge voltages of the path &; roor — &.

All c subtrees contain all paths of a given length of the
voltage graph. As the girth g is always even, we conclude that
in order to check all possible cycles of length at most g — 2
in the voltage graph, it is sufficient to grow the corresponding
¢ subtrees up to depth (¢ — 2)/2 and to construct voltage
inequalities for all node pairs (£,£’) in the same subtree with
the same number n(§) = n(¢’) and depth £(£) = £(£') but
different parent nodes &P # &P,

Consider the node pair (£,&’) and let fe, ., ¢ denote the
difference between the voltages for the path from &; roo to £
and the path from &; roo to &', that is, fe, . e.e0 = (&iroot —
&) — (& root — &) If there exists a cycle of length ¢’ < g, then
at depth ¢’ /2 there exists at least one node pair (£,£’), whose
corresponding path voltages are equal, that is, their voltage
difference is fe, ,.¢.er = 0. Otherwise there is no cycle shorter
than g.



Example 2: Consider the rate R = 1/4 (3,4)-regular LDPC
convolutional code given by (5). The voltage graph, with four
symbol nodes s; € Vy, ¢ = 1,2,3,4, and three constraint
nodes ¢; € V1,1 = 1,2, 3, is illustrated in Fig. 2. By neglecting
all labels, we obtain the corresponding base graph.

Starting from such a base graph, we will find suitable edge
voltages for p;;, 1 = 1,2,3, 7 = 1,2,3,4, such that the
resulting voltage graph has at least girth g = 6. As a first step
we grow 4 subtrees up to length (¢ — 2)/2 = 2, with their
root nodes being initialized by s;, © = 1,2, 3, 4. For example,
the subtree with root node s; is illustrated in Fig. 3.

While there are no identical nodes at depth ¢(¢) = 1, we
find 3 x (g) = 9 pairs of identical nodes with different parents
at depth £(§) = 2. In all four subtrees, there are in total 36
identical node pairs, but only 18 unique ones.

B. Searching for a suitable voltage assignment

Using the ¢ obtained subtrees 7;, i = 1,2,. .., ¢, with depth
g/2 — 1, we will present hereinafter two different algorithms
to determine a suitable voltage assignment, such that all
corresponding inequalities are satisfied.

For both algorithms, we create a reduced list £ of node
pairs (&,&’) of all ¢ subtrees 7;, ¢ = 1,2,...,¢, containing
all unique voltage inequalities. Note that even different cycles
can correspond to the same voltage inequality. In a similar
manner we remove those nodes from each of the ¢ subtrees 7;
which do not participate in any cycle listed in £ and denote
the reduced subtree by 7; min-

In Algorithm A, we label the edges of the reduced subtrees
Timin» © = 1,2,...,¢c, with a set of predetermined voltages.
For every node pair (£,¢') in £, we determine the voltage of
the corresponding cycle as the difference of the path voltages
Eiroot — & and &; oo — &’. If none of these voltages is equal
to zero, the girth of the underlying base graph with such a
voltage assignment is greater than or equal to g.

In Algorithm B, we discard the list £ and focus on the
reduced subtrees 7; min. After labeling their edges with a set
of predetermined voltages, we sort all nodes & of each subtree
according to their path voltage &; oo — &. If there exists
no pair of nodes (&,&’) with the same path voltage, number
n(§) = n(¢’), and depth £(£) = £(£), but different parent
nodes &P £ &P, the girth of the underlying base graph with
such a voltage assignment is greater than or equal to g.

C. Complexity Comparison

Denote the sum of all nodes in the reduced tree 7; min, ¢ =
1,2,..., ¢, and the number of unique inequalities in the list £
by Np and Np, respectively, that is,

Np =) [Timn| and Np=|[L]
i=1
where |X'| denotes the number of entries in the set X'
Algorithm A requires Ny summations for computing the
path voltages and N, comparisons for finding cycles, leading
to the complexity estimate Ny + Np. Algorithm B requires
the same number of N summations for computing the path

TABLE I
COMPLEXITY OF SEARCHING FOR VOLTAGE ASSIGNMENTS FOR QC
LDPC BLOCK CODES WITH GIRTH g < 12 AND ALL-ONES BASE MATRIX

K g=2_8 g=10 g=12
NT NL NT NL NT NL
4 53 42 150 | 231 269 519
5 93 90 286 645 581 1905
6 142 | 165 [ 485 | 1470 | 1060 | 5430
7 200 273 759 2919 1742 12999
TABLE II
PROPERTIES OF QC LDPC CODES WITH GIRTH g = 14-18
K|lg (n, k) M Base graph
4|14 (1812, 453) 151 (9 x 12) STS(9)
((2208, 552) [7]) (184 [71)
5|14 (9720, 3888) 486 (12 x 20) S-STS(13)
((11525,4610) [7])
6 |14 (29978, 14989) 1153 (13 x 26) STS(13)
((37154,18577) [71) | (1429 (7))
416 (7980, 1995) 665 (9 x 12) STS(9)
((7488,1872) [71) (624 [71)
5|16 (51240, 20496) 2562 | (12 x 20) S-STS(13)
((62500, 25000) [71)
6 |16 (227032,113516) 8732 (13 x 26) STS(13)
((229476,114738) [71) | (8826 [71)
4|18 (32676,8169) 2723 (9 % 12) STS(9)
((34260,8565) [71) | (2855 [71)
5 | 18| , (371760,108704) 13588 | (12 x 20) S-STS(13)
((371100, 148440) [7])

voltages, roughly Nz log, N operations for sorting the set,
and Np comparisons, leading to a total complexity estimate
of Nrlog, Nr.

In Table I values of Ny and Ny, are given when searching
for a voltage assignment of arate R = 1—J/K (J, K)-regular
QC LDPC convolutional code with an all-ones base matrices,
J = 3 and arbitrary K > 4. Since in general we have to
consider all node pairs, Ny, is roughly N2, and thus Algorithm
B performs asymptotically better (when Ny — oco). However,
when searching for codes with girth g < 10, Algorithm A is
preferable.

VI. SEARCH RESULTS

Utilizing the previously described algorithms, we performed
a search for new QC (J = 3, K)-regular LDPC block codes
with girth ¢ > 14. Following [15], such codes can be
constructed as lifts of base matrices with monomial labelings,
having an approximately three times larger girth.

A. Base Matrices constructed from Steiner Triple Systems

We started by searching for QC (J = 3, K)-regular LDPC
block codes with girth g = 14, 16, and 18 and used (shortened)
base matrices constructed from Steiner Triple Systems of order
n, that is, STS(n) [4], [9], where n mod 6 has to be equal
to 1 or 3.

The corresponding (J, K)-regular (¢ — b) X ¢ base matrix
B with entries b;; is constructed in such a way that the
positions of its nonzero entries in each column correspond to
a triple within STS(c — b). We denote such a base matrix by



TABLE IIT
PROPERTIES OF QC LDPC CODES WITH GIRTH g > 20

Klg (n, k) M Base graph
4120 (1296000, 324002) 36000 (27 x 36), g = 8 [17]
5 (20| (31200000,12480002) 480000 | (39 x 65), g =8 [17]
6 |20 | (518400000, 259200002) | 4800000 | (54 x 108), g = 8 [17]
4122 (7200000, 1800002) 200000 (27 x 36), g = 8 [7]
5 | 22 ] (325000000, 130000002) | 5000000 | (39 x 65), g = 8 [17]
4124 (39600000, 9900002) 1100000 | (27 x 36), g = 8 [17]

Bsts(c—p)- Note that the columns and rows of the base matrix
B can be freely permuted. Using the properties of a Steiner
Triple System that no triple contains two identical numbers,
we obtain a shortened (c—b—1) X (c— K) (J, K — 1)-regular
base matrix B’ by removing one row and the corresponding
K columns from the base matrix B. Hereinafter we refer to
such a shortened base matrix as Bsgrs(c—p)- Note that by
deleting different columns and rows, it is also possible to
obtain intermediate codes, which are, however, irregular.

Applying the previously described algorithms to such a base
matrix B, we obtain a suitable voltage assignment, such that
the corresponding voltage graph has at least girth g. Note that
adding the same offset to all edge voltages connected to the
same vertex, does not influence the voltage of any cycles.

In Table II the obtained QC (J = 3, K)-regular LDPC block
codes with girth g = 14,16, and 18 based on Steiner Triple
Systems are presented. If applicable, previous results from [7]
are given for comparison. In the first column K we give the
number of nonzero elements in each row. The second column
corresponds to the girth g, while the third and forth columns
give the dimensions of the (n, k) block code after tailbiting
to length M. Finally, the fifth column specifies the used base
matrix, that is, which (maybe shortened) Steiner Triple System
is used. The corresponding voltage assignments are very large
and omitted due to space limitations, but are available at [16].

B. Base Matrices constructed from (J, K)-regular LDPC
block codes

When searching for QC (J = 3, K)-regular LDPC block
codes with girth g = 20 — 24, we started with previously
obtained QC (J = 3, K)-regular LDPC block codes of short
block length and smaller girth and (re-)applied our algorithms.

The obtained results for QC (J = 3, K)-regular LDPC
block codes with girth g = 20, 22, and 24 are presented in
Table III, based on (J = 3, K)-regular LDPC block codes
constructed from all-ones matrices with girth g = 8 [7], [17].
As before, the first column K denotes the number of nonzero
elements in each row; then we give the obtained girth g and the
dimensions of the (n, k) block code after tailbiting to length
M. The corresponding voltage assignments are very large and
omitted, but are available at [16].

Note that these codes are (probably) not practical due
to their huge block length. However, they illustrate that by
iteratively applying our algorithms we can find QC (J, K)-
regular LDPC block codes of “any” girth g.

VII. CONCLUSIONS

Using the relation between the parity-check matrix of QC
LDPC block codes and the biadjacency matrix of bipartite
graphs, new searching techniques have been presented. Start-
ing from a base graph, a set of edge voltages is used to
construct the corresponding voltage graph with a given girth.

New algorithms for searching iteratively for bipartite graphs
with large girth have been presented. Depending on the given
girth, the search algorithms are either based on Steiner Triple
Systems or QC block codes. Amongst others, new QC regular
LDPC block codes with girth between 14 and 24 have been
presented. In particular, these codes improve previous the
published results in [7].
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