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Spatially-Coupled MacKay-Neal Codes and

Hsu-Anastasopoulos Codes

Kenta KASAI'®, Member and Kohichi SAKANIWA ), Fellow

SUMMARY  Kudekar et al. recently proved that for trans-
mission over the binary erasure channel (BEC), spatial coupling
of LDPC codes increases the BP threshold of the coupled en-
semble to the MAP threshold of the underlying LDPC codes.
One major drawback of the capacity-achieving spatially-coupled
LDPC codes is that one needs to increase the column and row
weight of parity-check matrices of the underlying LDPC codes.

It is proved, that Hsu-Anastasopoulos (HA) codes and
MacKay-Neal (MN) codes achieve the capacity of memoryless
binary-input symmetric-output channels under MAP decoding
with bounded column and row weight of the parity-check ma-
trices. The HA codes and the MN codes are dual codes each
other.

The aim of this paper is to present an empirical evidence
that spatially-coupled MN (resp. HA) codes with bounded col-
umn and row weight achieve the capacity of the BEC. To this end,
we introduce a spatial coupling scheme of MN (resp. HA) codes.
By density evolution analysis, we will show that the resulting
spatially-coupled MN (resp. HA) codes have the BP threshold
close to the Shannon limit.
key words: spatial coupling, LDPC' code, iterative decoding

1. Introduction

Achieving the capacity of memoryless binary-input
symmetric-output (MBS) channels [1, Chap. 4] under
efficient decoding algorithms used to be an ultimate
goal for coding theorists. The capacity of MBS chan-
nels was practically achieved by irregular LDPC codes
[1] with belief propagation (BP) decoding and rigor-
ously achieved by polar codes [2] with successive can-
cellation. Spatially-coupled (SC) LDPC codes [3] have
bounded range of parity-check constrains like convolu-
tional codes. Recently, SC-LDPC codes have attracted
much attention due to the fact that the codes achieves
the capacity of binary erasure channels (BEC) [3] and
an observation that the codes seem to achieve the ca-
pacity of MBS channels [4].

SC-LDPC codes are capacity-achieving codes de-
signed based on the construction of convolutional
LDPC codes. Felstrom and Zigangirov [5] introduced
a construction method of (1,r)-regular convolutional
LDPC codes from (1, r)-regular block LDPC codes [1].
The convolutional LDPC codes exhibited better decod-
ing performance than the underlying block LDPC codes
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under a fair comparison with respect to the code length.
Note that in this paper, convolutional LDPC codes are
defined by sparse band parity-check matrices. Lent-
maier et al. observed that (4,8)-regular convolutional
LDPC codes exhibited the decoding performance sur-
passing the BP threshold of (4,8)-regular block LDPC
codes [6]. Sridharan et al. developed the density evolu-
tion (DE) [1] for the BEC and calculated the BP thresh-
old [7]. Lentmaier et al. developed the DE for the
binary-input memoryless (BMS) channels [8]. Further,
the BP threshold equals to the MAP threshold of the
underlying block LDPC codes with a lot of accuracy.
The MAP threshold was calculated by the extended BP
(EBP) extrinsic information transfer (EXIT) function
analysis [9]. Constructing convolutional LDPC codes
from a block LDPC code improves the BP threshold
up to the MAP threshold of the underlying codes.

Kudekar et al. named this phenomenon “thresh-
old saturation” and proved rigorously for the BEC [3].
In the limit of large L and w, the SC-LDPC code en-
semble (1,r, L,w) [3] was shown to achieve the MAP
threshold of (1, r)-regular LDPC code ensemble. The
parameters L and w are the coupling number and the
randomized window size. For more details, we refer the
readers to [3].

Further, by computing EBP generalized EXIT
(GEXIT) curves [9], Kudekar et al. [4] observed empir-
ical evidence which supports the threshold saturation
occurs also for the BMS channels. For arbitrary BMS
channels, the MAP threshold of the codes quickly con-
verge to the Shannon limit while the BP threshold goes
to 0 [10]. In other words, in the limit of large 1 as keep-
ing %, L and w, the SC-LDPC code ensemble (1, r, L, w)
achieves universally the capacity of the BMS channels
under BP decoding. Such universality is not supported
by other efficiently-decodable capacity-achieving codes,
i.e., polar codes [2] and irregular LDPC codes [11]. Ac-
cording to the channel, polar codes need selection of
frozen bits [12] and irregular LDPC codes need opti-
mization of degree distributions.

One major drawback of the (1,r,L,w) code en-
semble is that one needs to increase degree 1 and r to
strictly achieve the capacity. The number of non-zero
entries in the parity-check matrices is proportional to
the decoding computations of BP decoding. Specif-
ically, for the BEC case, this is identical to the to-
tal computations for decoding [13]. The number of
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edges per information bit is called density. For exam-

ple the density of (1,r)-regular LDPC codes is =%.

For fixed R = 1 — %, the density is unbounded as
1,r — oo. It is desired to reduce the density. Lent-
maier et al. constructed coupled Accumulate-Repeat-
Jagged-Accumulate (ARJA) codes [14] which exhibit
very good BP threshold. The density of the ARJA
code is bounded but the BP threshold leaves a small
gap to the Shannon limit.

For any code achieving a fraction 1 — € of capacity

of the BMS under MAP decoding, Sason and Urbanke

1
showed that the density of the code is at least 1{1[-;71;6,

where K, and Kj are constant [15]. In other words,
the density of capacity-achieving codes needs to be un-
bounded. However, this is not the case for the codes
with puncture. The punctured bits work as auxiliary
states and help decoding. Such puncturing is widely
used for structured codes [16]. Pfister and Sason con-
structed Accumulate-Repeat-Accumulate (ARA) codes
and Accumulate-LDPC (ALDPC) codes which achieve
the capacity of BEC with bounded density [17].

MacKay-Neal codes [18] are non-systematic two-
edge type LDPC codes [1],[16]. The MacKay-Neal
(MN) codes are conjectured to achieve the capacity
of BMS channels under ML decoding. Murayama et
al. [19] and Tanaka et al. [20] reported the empirical
evidence of the conjecture for BSC and AWGN chan-
nels, respectively by a non-rigorous statistical mechan-
ics approach known as replica method.

Hsu and Anastasopoulos [21] rigorously proved
that LDPC codes concatenated with LDGM (low-
density generator-matrix) codes [22] achieve the ca-
pacity of arbitrary BMS channels with bounded den-
sity under ML decoding. We name the codes Hsu-
Anastasopoulos (HA) codes after the inventors. Fur-
thermore, Wainwright and Martinian showed HA
codes achieve the rate-distortion bound for symmetric
Bernoulli sources [23].

On the contrary to their ML decoding perfor-
mance, it is interesting to see that the MN and HA
codes have no BP thresholds. In other words, the bit
error rate under BP decoding does not go to 0, even if
none of the transmitted bits are erased.

The aim of this paper is to present an empirical ev-
idence that SC-MN (resp. SC-HA) codes with bounded
density achieve the capacity of the BEC. To this end, we
introduce a spatial coupling scheme of MN (resp. HA)
codes. Spatial coupling of MN and HA codes has never
been studied before. By DE analysis, we will show that
the resulting SC-MN (resp. SC-HA) codes have the BP
threshold close to the Shannon limit.

2. Preliminaries

In this section, we briefly review the (1,r, L) SC-LDPC
codes introduced by Kudekar et al. [3] and their results
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of performance analysis. We assume 7 =: k € Z. For
simplicity, we focus on rate 1/2 codes, i.e., k = 2.

The SC-LDPC codes are defined by the following
protograph codes [24]. The adjacency matrix of the
protograph is referred to as a base matrix. The base
matrix of (1,r,L) SC-LDPC code is given as follow.
Let us define as L := 2L + 1. Let H(l,r,f), k) be an
(L +1—1) x kL band binary matrix of band size r x 1
and column weight 1, where the band size is height x
width of the band. For example H(4,8,9,2) is given
in Fig. 2. The (1,r,L) SC-LDPC codes is defined as
protograph codes defined by base matrix H(1,r, L, k).
Figure 1 shows protograph of (4,8,4) SC-LDPC codes.
The protograph of (1,r,L) SC-LDPC codes have kL
variable nodes and L 4+ 1 — 1 check nodes. Hence, the
design coding rate of (1,r, L) SC-LDPC codes is given
by
kL—(L+1-1) k—1 1-1

R(]'?r’ L) - a3 )
kL k kL

which converges to (k —1)/k as L — oo with vanishing
gap like O(1/L).

Table 2 shows BP threshold values epp(1l,r, L)
of (1,r,L) SC-LDPC codes. As L increases, it is
observed that the design coding rate R(3,6,L) con-
verges to 1/2 and the BP threshold values epp ap-
proach the MAP threshold value of (3,6) LDPC codes
emapr(l,T) ~ 0.488151.

Kudekar et al. observed egp(1,r, L) does not con-
verge to eyap (1, r). There remains a small gap of order
1075 in significant digits. In order to decrease the gap,
Kudekar et al. introduced the (1,r,L,w) SC-LDPC
codes that allows randomized connection of edges of
window size w [3]. It is shown that epp(1,r, L, w) con-
verges to emap(l,r) as L and w tend to infinity as

wlgnoo nggo emapr(l,r, L,w) = emapr (1, 1).
It is known [3] that eprap (1, r) quickly converges to the
Shannon limit 1 — R, i.e.,

lim eMAp(l,r) =1—R.
R=1-1/r
1—o00
Table 1 shows the MAP threshold values of (1,r) LDPC
codes. This implies that SC-LDPC codes achieve the
capacity of the BEC, in the limit of large column and
row weight. On the other hand, infinite column and
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Table 1  The BP and MAP threshold values of (1,r) LDPC
codes. The MAP threshold epjap (1, r) quickly converges to the
Shannon limit 1 — R. While the BP threshold converges to 0.

(1,1) €BP EMAP

(3.6) 0.4294 0.48815
(4,8) 0.3834  0.49774
(5,10) 0.3416  0.49949
(6,12) 0.3075 0.49988
(7,14)  0.2797  0.49997

Table 2 BP threshold values egp of (3,6,L) SC-LDPC and
design coding rate R [3]

L €BP R

1 0.714309  0.166667

2 0.587842  0.300000

4 0.512034  0.388889

8 0.488757  0.441176

16 0.488151  0.469697

32 0.488151  0.484615

64 0.488151  0.492248

128 0.488151  0.496109

row weight are required for the codes to achieve the
capacity.

3. Bounded-Density Codes Achieving Capac-
ity under ML Decoding

In this section, we give the definition of MN codes and
HA codes.

3.1 MacKay-Neal codes

Let Hy be a random binary matrix of size N x $ N with
column weight 1 and row weight r. Let Hy be a random
binary matrix of size N x N with column weight g and
row weight g. An (1,r,g)-MN code is defined as an
LDPC code with parity-check matrix

(Hy Hy) (1)

with 1,r, g > 2 and such that the bits corresponding to
H, are punctured by the non-systematic fashion of the
codes. Sparse parity-check representation is given by
Hys + Hon = 0, with information bits s as state bits
and parity bits n. From (Hs) 'H;s = n, it follows
that the generator matrix of the (1,r,g)-MN code is
given by

Gun = H{ (Hy )T € {0, 1}3V*N, (2)

The MN codes are non-systematic, in other words, only
the parity bits n are transmitted through the channel.

The (1,r,2)-MN codes are called non-systematic
Repeat-Accumulate (RA) codes in [17]. The (1,r,1)-
MN codes are identical to (1,r)-LDGM codes.

We give another definition of MN codes. Both def-
initions are equivalent in terms of DE. The MN codes
can be defined by a multi-edge type LDPC code ensem-
ble [16] with degree distribution pair

r
_ T g
v(e, x1,22) = le + ex$,

pu(a1, w2) = 2iaf.
The design coding rate of an (1, r, g)-MN code is given
by 1.

Murayama et al. [19] and Tanaka et al. [20] re-
ported empirical evidences that MN codes achieve the
capacity of BSC and AWGN channels under ML decod-
ing, respectively by a non-rigorous statistical mechanics
approach known as replica method. From those results,
we expect that (1,r,g) MN codes achieve the capac-
ity of arbitrary MBS channel if respectively 1,r,g > 2
under ML decoding. Hence, we will use 1,r,g > 2.

Let () and ¥ be the erasure probability of mes-
sages from information and parity bit nodes in the ¢-th
round of BP decoding, respectively. DE gives the up-
date equations of density z(© and y*) as follows.

x(é-i—l) _ (1 _ (1 _ x(é))r—l(l _ y(é))g)l—l7

P = el = (1= a1y e
2O =1, O =1,

It is obvious that z(©) = 1,y® = ¢ for £ > 1 for any
e > 0. It follows (¥ does not converge to 0 as £ — oo,
even if € = 0. Hence, MN codes have no BP threshold.

3.2 Hsu-Anastasopoulos Codes

An (1',r’,g)-HA code is a concatenation of an (1/,r’)-
LDPC code and a (g,g)-LDGM code. Let HJ be a
random binary matrix of size i—:N x N with column
weight 1’ and row weight r’. Let H] be a random
binary matrix of size N x N with column weight g and
row weight g. An (1,r,g)-HA code is defined as an
LDPC code with parity-check matrix

@y

with 1,r, g > 2 and such that the bits corresponding to
HJ and H] are punctured. It follows that the parity-
check matrix of the (1',r’, g)-HA code is given by

Hya = HY (H]) ™. (4)

From Egs. (2) and (4) it follows that if we set 1’ =
r, I'I = :|.7 H1 = H3 and H2 = H4, it holds GMN = HHA-
It follows the (1’,r’,g)-HA code is dual code of the
(1,r,g)-MN code.

The HA codes can be defined by a multi-edge type
LDPC code ensemble [16] with degree distribution pair

_ 1.8
v(e, o1, 22, x3) = 125 + €x3,
Ll e
w(xy, za) = et + a5xs.

The design coding rate of an (1,r,g)-HA code is given
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Fig.2 Matrices used for definition of SC-MN and SC-HA codes. For example, H(1=
4,r=8L=9k=2)isa (9+4—1) x 2-9 band binary matrix of band size 8 x 4 and
column weight 2, where the band size is height x width of the band.
by 1 — 2. The (1,r,2)-HA code is referred to an ac-

cumulate LDPC code in [17]. The (1,r,1)-HA code
is identical to an (1,r)-regular LDPC code. Sparse
parity-check representation is given by His = 0 and
Hys = n, with state bits s and parity bits n.

For the arbitrary MBS channels, it is shown that
(1,r,g)-HA codes achieve the capacity under ML de-
coding with bounded 1,r, g [21].

4. Spatially-Coupled MN and HA Codes
4.1 Spatially-Coupled MacKay-Neal Codes

In this section, we propose spatial coupling of MN codes
and evaluate the BP threshold values. For simplicity
we focus on MN codes with 1 = kr, where k € Z. We
define SC-MN codes as follows. First, let S(g, W) be
a (W +g—1) x W binary band matrix of band size
g x g and column weight g. For example S(5,18) is
given in Fig. 2. Next, let V(1,r, L, k) be a binary band
(kL 41 —2) x L matrix of band size 1 x r and column
weight 1. For example, V(8,4,8,2) is given in Fig. 2.
An (1,r,g, L) SC-MN code is defined as a protograph
code which is defined by base matrix

(Vv@a,r,L,x) S(gkL+1—g—1)) (5)

and such that the bits corresponding to V(l,r,f/,k)
are punctured. Equations (1) and (5) are analogous
in such a way that both have the same column-weight
and almost the same row-weight distributions, and one
is sparse matrix and the other is sparse band matrix
under some permutation of rows and columns.

In Fig. 3, we show a protograph of (8,4,5,4) SC-
MN codes. In the protograph of (1,r,g, L) SC-MN
codes, there are V, = L punctured variable nodes
Vi = kj/ + 1 — g+ 1 unpunctured variable nodes, and
C = kL+1-—2 check nodes. Hence, in the limit of large
L, the design coding rate is given as

Vo+ Vi —C
RMN(LLg7 L)= P"‘%
t
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Fig.3 Protograph of (8,4,5,4) SC-MN codes. Red variable
nodes are punctured. Black variable nodes are transmitted.
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L+xL+1-g+1)— (kL +1-2)
kﬁ—g—i—l
ji—g+3 1

=—2""=—- (L :
kL—-g+1 k (L= c0)

The density is given by

1V, +gW

- RMN(L,r,g, L)V,
=1+gk (L — o0).

d™N(1,r,g, L)

The minimum density 4k = 4/RMN(1,2,2,00) is at-
tained when r = g =2 and L = oo.

Table 3 shows the BP threshold values and rates
of (4,2,2,L) SC-MN codes. As increasing L, it is ob-
served that eNp(4,2,2, L) approaches a value close to
1/2. From Eq. (6), it holds that RMN(4, 2,2, 00) = 1/2.
This observation supports that threshold saturation oc-
curs by SC-MN codes.

4.2 Spatially-Coupled Hsu-Anastasopoulos Codes

In this section, we propose spatial coupling of HA codes
and evaluate the BP threshold values. An (1,r,g, L)
SC-HA code is defined as a protograph code which is
defined by base matrix
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Table 3 BP threshold values and design coding rate of
(4,2,2,L) SC-MN codes. From Eq. (6), it holds that
RMN (4,22 00) =1/2.

L eMN(4,2,2,L) RMN(@4,2,2 L)
2 0.561146 0.363636
4 0.511397 0.421053
8 0.500252 0.457143
16 0.499977 0.477612
32 0.499908 0.488550
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Fig.4 Protograph of (8,4,5,9) SC-HA codes. Red variable
nodes are punctured. Black variable nodes are transmitted.
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and such that the bits corresponding to the left sub-
matrix are punctured. Figure 4 shows the protograph
(4,8,5,9) SC-HA codes.

We assume that 7 =: k € Z. The protograph of
the (1,r,g, L) SC-HA codes has V,, = kL punctured
information bit node, V; = (kL + g — 1) unpunctured
bit nodes, and C' = (L +1 — 1) + (kL + g — 1) check
nodes. The design coding rate is given by

R 1) = 2
i
k—1DL-1+1 k-1 .
_koDL-14l (L =) (7)
kL+g—1 k

The density is given by

A+ + Vi
© RHA(L,r,g L)V,

d"(1,r,g, L)

= (14g+1) (Lo ).

k-1

The minimum density k5_—k1 = 5/RUA(2,r,2,00) is at-
tained when 1 =g =2 and L = oco. .

Table 4 shows the BP threshold values of (2, 4,2, L)

SC-HA code and design coding rates. As increasing L,

it is observed that egp (2,4, 2, L) approach a value close

to 1/2. From Eq. (7), it holds that R"4(2,4,2, 00) =

Table 4 BP threshold values and design coding rate of
(2,4,2,L) SC-HA codes. From Eq. (7), it holds that
RUA(2,4,2 00) = 1/2.

L eH8(2,4,2,L) RUA(2,4,2,1)
1 0.695420 0.285714
2 0.594441 0.363636
4 0.516970 0.421053
8 0.500460 0.457143
16 0.499980 0.477612
32 0.499909 0.488550

1/2. This observation supports that threshold satura-
tion occurs by SC-HA codes.

Discussion: We have proposed spatial-coupling of
MN codes and HA codes. It is observed that the BP
threshold values for BEC are very close to the Shan-
non limit. In other words, threshold saturation oc-
curs for SC-MN codes and SC-HA codes. We observed
such threshold saturation for various parameters with
1,r,g > 2. However, these BP threshold values leave a
small gap to the Shannon limit. Such a gap was also
observed when evaluating the BP threshold of the SC-
LDPC codes [3]. Kudekar et al. proved that this is ex-
plained by wiggles appearing in EBP EXIT curves [3].
In order to decrease the gap, they introduced random-
ized SC-LDPC codes (1, r, L, w) that allow connections
of edges with window size w. We observed the same
effect on wiggles at the EBP EXIT curve of SC-MN
codes. We will discuss the above observation in the
next section.

5. Randomized Spatially-Coupled MacKay-
Neal Codes

In this section, we consider randomized SC-MN codes.
Randomized SC-HA codes can be considered in a sim-
ilar way. For simplicity, we focus only on randomized
SC-MN codes.

We define an (1,r,g,L,w) SC-MN code en-
semble as follows. The Tanner graph of a code
in the (1,r,g,L,w) SC-MN code ensemble is con-
structed as follows. At each section i € Z :=
{-..,=2,-1,0,1,2,...}, consider M information
nodes of degree 1, M parity nodes of degree g, and
M check nodes which has r incident information nodes
and g parity nodes. Connect randomly these nodes in
such a way that for i € Z and j = 0,...,w — 1, infor-
mation nodes at section ¢ and check nodes at section
1+ j are connected with % edges and parity nodes
at section 7 and check nodes at section ¢ + j are con-
nected with % edges. Shorten the information and
parity bits at section |i| > L, i.e., set the bits to zero
and do not transmit them. Puncture the information
nodes at section |i| < L, i.e., the bits are not trans-
mitted. Note that this ensemble is nicely represented
by joint degree distributions [25]. The definition of the
(1,r,g, L, w) SC-MN code ensemble is based on that of
(1,r, L,w) randomized SC-LDPC code ensemble. For



1.0 e B
08 b

=

205 -

= :
0.4 i
3 T Ll il ] B

700 01 02 03 04 05 06 0.7 08 09 10

(a)

hEBP (6)

(b)

IEICE TRANS. FUNDAMENTALS, VOL.Exx-A, NO.xx XXXX 200x

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0
0.49998

49999 0.50000 0.50001 0.50002
€

Fig.5 (a): The EBP EXIT curve of the (4,2,2, L,w = 2) SC-MN code ensemble.
(b): A closer look of the EBP EXIT curve of the (4,2,2, L, w) SC-MN code ensemble.

more details on (1,r, L, w) randomized SC-LDPC code
ensemble, we refer the readers to [3, Section II.B].

Denote the number of transmitted bit nodes, punc-
tured bit nodes by Vi, V,, respectively.

Vi=LM, V,= %ﬁM.
The number of check nodes of degree at least 1, denoted

by C, can be counted by the same way as in [3, Lemma
3] as follows.

C=MpL-w+2) (1~ (%)r(é)g)].

The design coding rate RMN(1,r, L, w) is given by

RMN(]_,I‘,L,U)) — W
Vi
1 _2 ’IJJ 1_ L r i g ~
1 L 1

Let xl@ and yy) be the erasure probability of
messages emitting from information-bit and parity-bit
nodes, respectively, at section ¢ at the ¢-th round of BP
decoding in the limit of large M. DE update equations

of the randomized (1,r,g, L, w) SC-MN code are given
as follows. For |i| > L, :vl(-e) = yfz) =0 for £ > 0. For
li| < L, :10(0)—34Z =1for £ >0. For |i| < L,

(0)
LD

Consider fixed points of the DE system, ie., (z :=
(x—p,...,wr),y = (Y—r,...,yr),€) such that x; =
y; =0 for |i| > L, and

SI'—‘

=(

Jj=
1= 1= 1=

yi =e(— Z[l -(1-= Z ivj—k) (1= — > virjk)®
j=0 k=0 k=0

For any ¢ € [0,1], a fixed point (¢,z = 0,y = 0) is
called trivial. Trivial fixed points is corresponds to the
message density (z,y) = (0,0) of successful decoding.
The EBP EXIT curve is defined as the projected plots
(€, hEBF (€)) of fixed points (e, ,v), other than trivial
ones, onto the following EXIT function.

1 L 1 w—1 1 w—1
hPBP (e) =7 > (; d-@a- b > migik)
i=—L =0 k=0
1 w—1 e
: (1 - E yz+g—k) ])

Figure 5 (a) plots the EBP EXIT curve of the
(4,2,2,L,w = 2) SC-MN code ensemble. Consider no
points of the EBP curve (e, h¥BP (€)) are at € € [0, ¢].
This suggests that there are only trivial fixed points
of DE with e € [0,¢] and (z(©,y®) converges to the

1 - L el © -y vl ©  \gpiot trivial fixed point. It follows that the BP threshold
E T w Z Tivi k) T w Yiri—i)®]) e (1,1,g, L,w) is given by € at which the left-most
:0 k=0 k=0 cliff edge of the curve vertically drops [3]. The BP
threshold in Fig. 5 (a) is very close to 1/2. However,

yz(“l) there exists a small gap. A closer look at the cliff edge
_ w1 _ of the green curve given in Fig. 5 (b) reveals the cliff of
l Z 1—(1-= Z 29 L ( Z )E1])e- 1(4,2,2, L = 32, w = 2) SC-MN codes have wiggles. The
w w = “Hi= w = wiggle size decreases by increasing w as seen in Fig. b
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hEBP

67hEBP

0.6 0.7 0.8 0.9 1.0

€ Yi
Fig.6 The EBP EXIT curve (e, hPBF) and (y;, REBF) of the
(4,2,3,L = 16,w = 2) SC-MN code ensemble.
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hEBP

0.1

0.0
0.0 . . . . . . . . 0.9 1.0

€, Y
Fig.7 The EBP EXIT curve (e, hPBP) and (y;, R”BF) of the
(4,2,3,L =16, w = 4) SC-MN code ensemble.

(b).

Figure 6 and 7 plot the EBP EXIT curves (e, A5
and (y;, h®BF) of the (4,2, 3,16, w) SC-MN code ensem-
ble for w = 2 and w = 4, respectively. It is observed
that as decreasing hPPF value, y; starts to collapse from
the boundaries |i| = L and gradually to the center
1 = 0. It is observed that uncollapsed y; takes almost
the same value 0.5. Each time y; collapse, € is affected
a little, which gives rise to a wiggle. By increasing w,
each y; collapses slowly, which gives rise to a smaller
wiggle.

6. Conclusion

We have proposed spatial-coupling of MN (resp. HA)
codes with bounded density. By DE analysis, we ob-
served that the BP threshold values of the SC-MN
(resp. SC-HA) codes for BEC are very close to the

Shannon limit. This empirical evidence supports that
the SC-MN (resp. SC-HA) codes may achieve the Shan-
non limit of the BEC. In other words, threshold satu-
ration occurs for SC-MN codes and SC-HA codes. We
observed such threshold saturation for various param-
eters with 1,r, g > 2.

We further investigate the EBP EXIT curve of ran-
domized SC-MN codes. We observed that the small
gap between BP threshold and the Shannon limit is
caused by wiggles of BP EXIT curve. By increasing
the randomized window size w, the wiggle size largely
decreased.
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