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Constructions of Rank Modulation Codes

Arya Mazumdaf, Alexander Barg§and Gilles Zémot

Abstract—Rank modulation is a way of encoding information the drift in different cells may occur at different speedpes
to correct errors in flash memory devices as well as impulse introduced in the data are adequately accounted for byitrgck
noise in transmission lines. Modeling rank modulation invdves the relative value of adjacent cells rather than the absolut

construction of packings of the space of permutations equiped L L .
with the Kenda|Ftau digstance. P P AUEC \alues of cell charges. Storing information in relativeues

We present several general constructions of codes in permat  Of the charges also simplifies the rewriting of the data bseau
tions that cover a broad range of code parameters. In particlar, we do not need to reach any particular value of the charge as
we show a number of ways in which conventional error-corredng  |ong as we have the desired ranking, thereby reducing tke ris
codes can be modified to correct errors in the Kendall space. ot oyerprogramming. Based on these ideas, Jiang et al. [14],
Codes that we construct afford simple encoding and decoding .
algorithms of essentially the same complexity as requiredot [15] su_ggesteq to use tha_nk modulation _schemte_)r error-
correct errors in the Hamming metric. For instance, from binary ~ correcting coding of data in flash memories. A similar noise
BCH codes we obtain codes correcting Kendall errors in n  model arises in transmission over channels subject to isepul
memory cells that support the order of n!/(log, n!)" messages, noise that changes the value of the signal substantially but
for any constant t = 1,2,.... We also construct families of g |ess effect on the relative magnitude of the neighboring
codes that correct a number of errors that grows with n at . . S .
varying rates, from ©(n) to ©(n?). One of our constructions S|gnals: In an earlier wo_rk devoted to modeling impulse &ois
gives rise to a family of rank modulation codes for which the Chadwick and Kurz[[6] introduced the same error model and
trade-off between the number of messages and the number of considered coding problems for rank modulation. Drift of
correctable Kendall errors approaches the optimal scalingrate.  resistance in memory cells is also the main source of errors
Finally, we list a number of possibilities for constructing codes of ;.\ mitilevel-cell phase-change memoris|[22].
finite length, and give examples of rank modulation codes wiit . o ; .
specific parameters. l_\/lo'uvated by the_apphcat_lon to flash memories, we consider

reliable storage of information in the rank modulation sobe
Relative ranks of cell charges in a block ofcells define a
permutation on the set of elements. Our problem therefore
can be formulated as encoding of data into permutations so
[. INTRODUCTION that it can be recovered from errors introduced by the drift

Recently considerable attention in the literature was tielo (decrease) of the cell charges.
to coding problems for non-volatile memory devices, inahgd ~ To define the error process formally, let) = {1,2...,n}
error correction in various models as well as data manade¥® a set ofn elements and consider the sg} of permu-
ment in memories [3]/]5],/123]<[15]. Non-volatile memasije tations of [n]. In this paper we use a one-line notation for
in particular flash memory devices, store data by injectid(l_ﬁfmUtationS for instance (2,1,3) refers to the permuati
charges of varying levels in memory cells that form the devic(>15)- Referring to the discussion of charge levels of cells,
The current technology supports multi-level cells with tao Permutation(2,1,3) means that the highest-charged cell is
more charge levels. The write procedure into the memory e second one followed by the first and then the third cell.
asymmetric in that it is possible to increase the charge of Bgrmutations can be multiplied by applying them succebsive
individual cell, while to decrease the charge one must erdéethe sefn], namely the action of the permutatianr, where
and overwrite a large block of cells using a mechanism callédo € Sy, results ini — o(w(i)),i = 1,...,n. (Here and
block erasure. This raises the issue of data managemengligewhere we assume that permutations act on the rightly Eve
memory, requiring data encoding for efficient rewriting bét Permutation has an inverse, denoted', ande denotes the
data [12]. A related issue concerns the reliability of thereti  identity permutation.
information which is affected by the drift of the charge of Let o = (o(1),...,0(n)) be a permutation ofn]. An

the cells caused by ageing devices or other reasons. Sift&mentary error occurs when the charge of gellasses the
level of the charge of the cell with rank one smaller than

the rank ofj. If the n-block is encoded into a permutatian,
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permutations om elements equipped with the distande. exists a family of rank modulation codes that correct a aontst
The Kendall metric was studied in statistics[[16] where iswanumber of errors and have size within a constant factor of the
introduced as a measure of proximity of data samples, as watlper (sphere packing) bound.
as in combinatorics and coding theory [3],][10]. The Kendall Regarding the problem of explicit constructions, apartrfro
metric also arises naturally as a Cayley metric on the groapconstruction in[[15] of codes that correct one Kendall rerro
S, if one takes the adjacent transpositions as its generatonso other code families for the Kendall distance are pregentl
The Kendall distance is one of many metrics on peknown. Addressing this issue, we provide several general
mutations considered in the literature; see the suriey [@pnstructions of codes that cover a broad range of paraseter
Coding for the Hamming metric was considered recently in terms of the code length and the number of correctable
[7] following the observation in[[25] that permutation aysa errors. We present constructions of rank modulation cdults t
are useful for error correction in powerline communicatiorcorrect a given number of errors as well as several asyneptoti
Papers([20],[123],.[24] considered coding for the distance results that cover the entire range of possibilities forsteding
on permutations from the perspective of the rank modulatiaf the number of errors with the code’s length. Sédt. Il we
scheme. Generalizations of Gray codes for rank modulatipresent a construction of low-rate rank modulation codas th
are considered in_[26], while an application of LDPC codderm subcodes of Reed-Solomon codes, and can be decoded
to this scheme is proposed in [27]. using their decoding algorithms. In Sdctl Il we presenthen
An (n,d) codeC C X, is a set of permutations iff,, such construction that gives rank modulation codes capable of
that the minimum distance., separating any two of them correcting errors whose multiplicity can be anywhere from
is at leastd. The main questions associated with the coding constant ta)(n'¢),0 < e < 1/2, although the code rate is
problem for the Kendall spacg;,, are to establish the sizebelow the optimal rate of {4). Relying on this constructioe,
of optimal codes that correct a given number of errors analso show that there exist sequences of rank modulatiorscode
more importantly, to construct explicit coding schemesoum derived from binary codes whose parameters exhibit the same
previous work [[8] we addressed the first of these problensgaling rate as[{4) for ang < ¢ < 1. Moreover, we show
analyzing both the finite-length and the asymptotic bountds that almost all linear binary codes can be used to construct
codes. Since the maximum value of the distanc&;jnis (;), rank modulation codes with this optimal trade-off. Finalke
this leaves a number of possibilities for the scaling ratéhef present a third construction of rank modulation codes from
distance for asymptotic analysis, ranging freilm= O(n) to codes in the Hamming space that correct a large number of
d = ©(n?). Define the rate of the code errors. If the number of errors grows @¢n?), then the rate of
the codes obtained from binary codes using this constmctio
R(C€) = log|C]/log(n!) @) attains the optimal scaling Cﬁ){log_l n). Ge?weralizing this

(all logarithms are base 2 unless otherwise mentioned)etndgonstruction to start from nonbinary codes, we design fasil
of rank modulation codes that scale optimally (in the serise o

R(n,d) = coax ©) (2)  the above definition) for all values ef 0 < € < 1.
%(d) = lim R(n,d) 3) Finally, Sect[TV contai_ns some examples of codes obtained
n—00 using the new constructions proposed here.
where the maximum ifi{2) is over all codes with distaicd. Our constructions rely on codes that correct conven-
We have the following result. tional (Hamming) errors, converting them into Kendallegsr
Theorem 1: [3] The limit in (@) exists, and correcting codes. For this reason, the proposed methodsecan
1 it d = O(n) applied to most families of codes designed for the Hamming

. distance, thereby drawing on the rich variety of availale-c

C(d)={1-¢ ifd=0(n'"),0<e<1 (4 structions with their simple encoding and decoding aljonis.
0 if d=0(n?).

[I. CONSTRUCTIONI: RANK MODULATION CODES FROM

Moreover, PERMUTATION POLYNOMIALS
Rin.d) = O(log ™' n) if d=0(n?) Our first construction of rank modulation codes is alge-
" 11=0(og 1 n) if d=0(n). braic in nature. Letg = p™ for some primep and let
F, = {ao,01,...,a4-1} be the finite field ofg elements. A

We remark|[8] that the equality’(d) = 1 — ¢ holds under a polynomialg(z) € F,[x] is called apermutation polynomial
slightly weaker condition, namely, = n'*<a(n), wherea(n) if the valuesg(a) are distinct for distinct values of € F,
grows slower than any positive power of [19, Ch. 7].
Equation [(#) suggests the following definition. Let us say Consider the evaluation map — (f(ao),..., f(ag—1))
that an infinite family of codescales optimallyf there exists which sends permutation polynomials to permutations:of
e € (0,1) such that, for any positiver, 3, all codes of the elements. Evaluations of permutation polynomials of degre
family of length n larger than somen,, have rate at least < k form a subset of g-ary Reed-Solomon code of dimension
1 — e — 8 and minimum distanc€(n'+<=). k + 1. Reed-Solomon codes are a family of error-correcting
The proof of Theoren]1 relied on near-isometric embedodes in the Hamming space with a number of desirable
dings of X,, into other metric spaces that provide insights intproperties including efficient decoding. For an introdoctto
the asymptotic size of codes. We also showed [3] that therem seel[21, Ch. 10].



At the same time, evaluating the size of a rank modulatiarectors inA as permutations (for that, we fix some bijection
code constructed in this way is a difficult problem becaudetween[n| andF;, which will be implicit in the subsequent
it is hard to compute the number of permutation polynomiatiiscussion). We can have = ¢ rather thann = ¢ — 1 if
of a given degree. In this section we formalize a strategy fdesired: for that we add the zero field element in the first
constructing codes along these lines. This does not resultposition of the(q— 1)-tuples of A, and the construction below
very good rank modulation codes; in fact, our later combinaeadily extends.

torial constructions will be better in terms of the size oé th The idea behind the construction is quite simple: theset

codes with given error-correcting capabilities. Nonetle| the s 5 subset of a Reed-Solomon code that correétamming
construction involves some interesting observations Whéc oo Every Kendall error is a transposition, and as such,

why we decided to include it. _ affects at most two coordinates of the codeword (f
A polynomial overF, is calledlinearized of degree if it Therefore the codé, can correct up to/2 errors. By handling
has the form v _ Kendall errors more carefully, we can actually correct up to
L(x) = Zaiz”l t errors. The main result of this part of our work is given by
i=0 the following statement.

Note that a linearized polynomial of degreehas degregr ~ 'heorem 3:The codeC, has lengthn = ¢ — 1 and
when viewed as a standard polynomial. size at leastgl°s»("=2=D] |t corrects all patterns of up
Lemma 2: The number of linearized polynomials ovEr, to ¢ Kendall errors in the rank modulation scheme under a

of degree less than or equal tathat are permutation polyno- décoding algorithm of complexity polynomial im.

mials inTF.. is at least Proof: It is clear that|C,| = |A|, and from Lemmd]2
4 |A| > gllosp(n—2t=1)]
(1 — L + #)qu”l > qV' Leto = (al,ag, ey Ay Qg 1y e e ,an), Whereaj S F;, 1<
p—1 qlp-1) j < n, be a permutation it,, (with the implied bijection be-
Proof: The polynomial £(x) acts onF, as a linear tween[n] andFy) and leto’ = (a1, az,...,ait1,ai,. .., an)

homomorphism. It is injective if and only if it has a trivialbe a permutation obtained from by one Kendall step (an
kernel, in other words if the only root of () in F, is 0. adjacent transposition). We have
Hence,L(z) is a .permlljtatlon polynomial if and only if the o—o =(0,...,0,0,—0,...,0)
only root of L(x) in F, is 0.
The total number of linearized polynomials of degree up twheref = a; — a; 41 € Fy.

v is ¢"*1. We are going to prove that at leasth— p%l + Let

ﬁ) proportion of them are permutation polynomials. To i (1) 8 8
show this, choose the coefficienis, 0 < i < v of L(z) = 111 0
Yo a;z?" uniformly and randomly fronf,,. For a fixeda € P=

Iy, the probability that(a) = 0 is 1/q. Furthermore, the set S
of roots of a linearized polynomial is df,-vector space [21, 111 . .1

p.119], hence the set of non-zero roots is a multiple ef1. _
The number ol -dimensional subspacesBf overF,, is g%}. be ann x n matrix. Note that

The probability that one of these sets is included in the et o P(o—o")T = (0 0.0.0 0)7
roots of £(z) is, from the union bound, o
g—1 1 This means that multiplication by the accumulator maffix
Pr(3a e Fy: L(a) =0) < —— -~ converts one adjacent transposition error into one Hamming

“p—1 ¢ At . . .
p q error. Extending this observation, we claim thaijfo, 7) <t

Hence, the probability thaf(z) is a permutation polynomial with = being some permutation, and any< 2, then the

is greater than or equal to— =, B Hamming weight of the vectaP(c — )7 is not more thar.
Here we again take andr to be vectors with elements from
A. Code construction IF; with the implied bijection betweefn| andF;,.
We use linearized permutation polynomials&f to con- Now let £(z) be a linearized permutation ponnomiaI. and
struct codes in the space, . Note that a linearized polynomial €t 1> @, a?,...,a?7? be the elements df; for some choice

£(x) always maps zero to zero, so that when it is a permutatiBhthe primitive element.. Let

polynomial it can be considered to be a permutation of the o= (L(1),L(a), L(2),...,L(aT2)).
elements off; and also of the elements @f,. Lett be a

positive integer and let = |log,(n — 2t — 1)]. Let P, be the SinceL(a +b) = L(a) + L(b), we have

set of all linearized polynomials of degree v that permute Pol = (£ r r (B oNT
F,. Setn = ¢ — 1 and define the set C F? (L(Bo). LB1), L{B). - L(By-2)

A={(L(a),a €F), L €P;}

where

Bi=> o, i=01,...,q-2
§=0

to be the set of vectors obtained by evaluating the polynismia
in P; at the points ofF;. Form a codeC, by writing the



It is clear thats; # 0, 0 < i <n—1 and alsog;, # 5;, regular of degrees — 1. At the same time it is not distance-
for 0 < iy < iy < n — 1, Therefore, the vectoPo” is a regular, and so the machinery of algebraic combinatoriesdo
permutation of the elements &f,. At the same time, it is the not apply to the analysis of the code structure. The diameter
evaluation vector of a polynomial of degree n — 2t — 1.  of the space¥,, equalsN £ (g) and is realized by pairs of
We conclude that the sétPo”, o € A} is a subset of vectors opposite permutations such @k 2, 3,4) and (4, 3,2, 1).
of an (extended) Reed-Solomon code of lengthidimension ~ The main tool to study properties af; is provided by
n—2t and distanc@t+ 1. Any ¢ errors in a codeword of suchthe inversion vector of the permutation. Anversionin a
a code can be corrected by standard RS decoding algorithmesmutationc € S,, is a pair (¢,j) such thati > j and
in polynomial time. o~1(j) > o71(i). It is easy to see that,.(o,e) = (o), the

The following decoding algorithm of the cod& corrects total number of inversions in. Therefore, for any two permu-
anyt Kendall errors. Suppose € A is read off from memory tationso;, o, we haved, (o1,09) = I(020;, ") = I(o105 ).

aso;. In other words,
Decoding algorithm (Construction 1): dr(oym) = [{(i,4) € [n)? i # j,m (i) > 7' (j),
o Evaluatez = PoT. o i) <o (G}

o Use a Reed-Solomon decoding algorithm to correct up
to ¢ Hamming errors in the vector, obtaining a vector
y (if the Reed-Solomon decoder returns no results, tﬁ%?.
algorithm detects more thanerrors). 17

To a permutatiorr € S,, we associate amversion vector
€ G, 2100,1] x [0,2] x -+ x [0,n — 1], wherex, (i) =
eml:j<i+l,o7j) > i+1)},i=1,...,n—1.

. Computes — P-1yT, ie. _In W(_ers,:_cg(z‘_)J = 1,... )= 1 is the numper of inversions
’ ’ in o in which ¢ + 1 is the first element. For instance, we have
Oi =Yir1 —Yi, 1<i<n—1; op = Yn. o Ty
216437598 10103101

The correctness of the algorithm follows from the constarct
Namely, ifd. (o, 01) < t, theny corresponds to a transforme
version ofo, i.e.,y = Po”. Then the last step of the decode

dt is well known that the mapping from permutations to the
space of inversion vectors is bijective, and any permutatio
can be easily reconstructed from its inversion vertGiearly,

correctly identifies the permutatian [ ]
Some examples of code parameters arising from this theo- n-1 _
rem are given in Seci_IV. (o) =Y @, (i) ()
=1

We note an earlier use of permutation polynomials for
constructing permutation codes il [7]. At the same tim&enote byJ : G, — S, the inverse map frong, to S,,
since the coding problem considered in that paper relies sa thatJ(xz,) = 0. The correspondence between inversion
the Hamming metric rather than the Kendall tau distance, iigctors and permutations was used|inl [15] to construct rank
results have no immediate link to the above construction. modulation codes that correct one error.
For the type of errors that we consider below we introduce

[1l. CONSTRUCTIONII; RANK MODULATION cODES FRom  the following /; distance function oig,, :
THE GRAY MAP

n—1

In this section we present constructions of rank modulation ~ di(,y) = Y _ @) —y(i)l,  (x.y€Gs)  (6)
codes using a weight-preserving embedding of the Kendall i=1
space,, into a subset of integer vectors. To evaluate the errorhere the computations are performed over the integers, and
correcting capability of the resulting codes, we furthekli write ||| for the corresponding weight function (this is not a
codes over integers with codes correcting Hamming errorsproperly defined norm becaugg is not a linear space). Recall
thatd, (o, m) = I(mo~1); hence the relevance of thig dis-
tance for our problem. For instance, tet= (2,1,4,3),00 =
o o i ) (2,3,4,1), thenz,, = (1,0,1),2,, = (1,1,1). To compute

_We begin with a _descrlp.tlon of basic propertl_es of.thﬁ1e distancel, (o1, 02) we note thabl—l = o, and so
distanced, such as its relation to the number of inversions

in the permutation, and weight-preserving embeddings,of I(ooo7 ") =1((1,4,3,2)) = [|(0,1,2)] = 3.
into other metric spaces. Their proofs and a detailed disons Observe that the mapping — @, is a weight-preserving
are found for instance in the books by Comiet [8] or KnUtBijection betweenX. and the sef[g At the same time

[17, SecF. 5.1.1]. i o , ) , the above example shows that this mapping is not distance
The distanced, is a right-invariant metric which means, eserving. Indeed, (o1, 0v) = 3 while di (z,,, 2,,) = 1.

that d.(01,02) = dr(010,020) for any o,01,05 € Su However, a weaker property pointed out in [15] is true,
where the operation is the usual multiplication of permiatet. namely:
) . X y:

Therefore, we can define the weight of the permutatioas
its distance to the identity permutatien= (1,2,...,n). 1There is more than one way to count inversions and to definaiesion

Because of the invariance, the Cayley graphSpf (i.e., vector: for instance, one can define, (i) = |{j : j < i,0(j) > o(i +
h h wh i ind d bv th tati %\E,i:l,...,n—l. In this case, givewr = (2,1,6,4,3,7,5,9,8) we
the graph whose vertices are 'n. exe y the permutations odld havex, = (1,0,2,1,2,0,0,1). The definition in the main text is
whose edges connect permutations one Kendall step apartjeiser suited to our needs in that it supports Lerfilna 4 below.

A. From permutations to inversion vectors



Lemma 4:Let 01,05 € S, then Note the “reflective” nature of the map: the last 2 bits of the
second block of four are a reflection of the last 2 digits of the
dr(01,02) 2 di(Tgy, To)- (7) first block with respect to the horizontal line; the last 3shit
Proof: Let o(m), o(m + 1) be two adjacent elements inof Fhe second block of eight follow a similar rule, and so on.
a permutatiorv. Let i = o(m),j = o(m + 1) and suppose This property, easy to prove froil (8), will be put to use below
thati < j. Form a permutation’ which is the same as (Se€ Propli9).
except that’'(m) = j,0'(m + 1) = 4, so thatd,(o,0’) = 1.
The count of inversions for which is the first element is
unchanged, while the same fgrhas increased by one. We m; = |logi],
then havex, (k) = x,(k),k # j andz,(j) = z,(j) + 1.
Thus, d; (z,/,x,) = 1, and the same conclusion is clearlyand let
true if i > J- . . Wi 1 {0,1}™ = [0,i— 1]
Hence, if the Kendall distance betweenando, is 1 then
the ¢, distance between the corresponding inversion vect§g the inverse Gray map; = ¢; . Clearly, is well defined;

is alsol. Now consider two graph& and G with the same it is injective but not surjective for mosts since the size of
vertex setS,. In G there will be an edge between two verticegs domain is only2:.

if and only if the Kendall distance between themlisOn the Proposition 6: Suppose that, y € {0,1}™:. Then

other hand there will an edge between two vertice&inif

and only if the/; distance between corresponding inversion [i(x) — Pi(y)| > du(x,y), 9)
vectors is1. We have just shown that the set of edgesGof

is a subset of the set of edges @f. The Kendall distance wheredy denotes the Hamming distance.

between two permutations is the minimum distance between Proof: This follows from the fact that ifu,v are two
them in the graphG. A similar statement is true for thé integers such thgu — v| = 1, then their Gray images satisfy

Now, fori=2,...,n, let

distance with the graph’. du(¢(u), ¢(v)) = 1. If the number are such that < v and

This proves the lemma. B |u —v| = d, then by the triangle inequality,

We conclude as follows.

Proposition 5: If there exists a cod& in G, with ¢, di(¢(u), p(v)) < dp(p(u), p(u + 1))
distanced then the set, := {J(z) : « € C} forms a rank 4+ dy (v — 1), 6(v))
modulation code irb,, of cardinality|C| with Kendall distance —d
at leastd.

[

B. From inversion vectors to the Hamming space via Gray Consider a vectorr = (w2|zs|...|®n), Where z; €
Map {0,1}™, ¢ = 2,...,n. The dimension ofr equalsm =

n - ! i
We will need theGray mapwhich is a mapping, from the 2.i—pmi ~ logn!, or more precisely

ordered set of integer§, 2° — 1] to {0, 1}* with the property ma—1

that the images of two successive integers differ in exactly m = Z (2J'+1 —29)j + My (n+1—2"n)
one bit. Suppose thdt,_1bs_2...bp, b; € {0,1},0< i < s, =1

is the binary representation of an integee [0,2° — 1]. Set M —1

by definitionbs = 0 and defineps(u) = (gs—1, gs—2, - - -, 90), = Z 329 +my(n+1—2m)

where j=1
. = (m,—2)2""4+2+m,(n+1—-2M"
gi =(bj +bj+1) (mod2)  (j=0,1,...5=1) (8) ( ) ( )

= (n+1)m, —2m Tt 42,
(note that fors > 4 there are several ways of defining maps
from integers to binary vectors with the required property) On the first line of this calculation we used the fact that agion
the numbersn; there are exactl@’*! —27 numbers equal tg

Example:The Gray map for the first 10 integers looks g, all j < n—1, namely those withi = 27,21 +1 i+l _

follows: o
o 00000000 00000000 1. The remainingn + 1) — 2™~ numbers equain,,.
1 00000001 00000001 For a vectorz € {0,1}™ let
2 00000010 00000011
3] 00000011 00000010 U(z) = V(xa|ws|. .. |2n) = (Y2(22), ..., Yn(@n)).
4 00000100 00000110
5 00000101 _, 00000111
6 00000110 00000101 Proposition 7: Let ¢,y € {0,1}™. Then
7 00000111 00000100
8 00001000 00001100

00001001 00001101
: : where the distancé, is the¢; distance defined if16).



Proof: Using [9), we obtain

n The correctness of this algorithm is justified as follows.
di(¥(z), ¥(y)) = Z [vi(xi) — iyl Supposer € C, is the original permutation written into the
i=2 memory, andi.(c,0’) < t. Let 2, be its inversion vector and
S andH(m_ v.) let  be its Gray image, i.e., a vector such thafx) = x,.
T & v i By Lemma% and Projp] 7 we conclude thiat(x, y) < ¢, and
— dx,y) therefore the decoder of the codecorrectly recoverg: from
e y. Therefores’ will be decoded tar as desired.
m Example: Consider at-error-correcting primitive BCH
code A in the binary Hamming space of length = (n +
1)[logn| — 2lesnl+1 1 2 and designed distancet + 1
(generally, we will need to shorten the code to get to the
desired lengthm). The cardinality of the code satisfies
Now we can formulate a general method to construct rank om

C. The code construction: correcting up&in log n) number
of errors

modulation codes. We begin with a binary cadeof length > CEDE
m and cardinalityM in the Hamming space. .
The previous theorem shows that we can construct a set of
Encoding algorithm (Construction I1): (n, M) rank modulation codes that correcKendall errors.
« Given a message encode it with the codel. We obtain Note that, by the sphere packing bound, the size of any code
a vectorz € {0,1}™. C € X, that corrects Kendall errors satisfie€| = O(n!/n").
o Write z = (z2|xs] . .. |x,), wherex; € {0,1}™. The rank modulation codes constructed from binary BCH
« Evaluater = J(¥(x)) codes have sizé/ = Q(n!/(logn!)t) = Q(n!/(n! log’ n)).

This algorithm is of essentially the same complexity as the SPECIfic examples of code parameters that can be obtained
encoding of the coded, and if this latter code is linear, TOM the above construction are given in Séct IV.

is easy to implement, Both/ and ¥ are injective, so the  Remark (Encoding into permutationsBuppose that the
cardinality of the resulting code i3/. Moreover, each of ¢onstruction in this section is used to encode binary messag
the two mappings can only increase the distance (namely, $&@ permutations (i.e., the codéin the above encoding algo-

(@ and the previous Proposition). Summarizing, we have thghm is an identity map). We obtain an encoding procedure of

following statement. _ binary m-bit messages into permutations @fsymbols. This
Theorem 8:Let A be a binary code of length redundancy of this encoding equals-m/ log(n!). Using the
m = (n+1)|logn| — 20eEnl+1 4o Stirling formula, we have for, > 1
1
cardinality A/ and Hamming distancel. Then the set of logn! < log(v2mn) + nlogn — (” - m) loge
permutations ([, Eq. 6.1.38). Writingm > (n + 1)(logn — 1) — 2n + 2,
Cr={reS,:m=J¥(z)),zec A we can estimate the redundancy as

m__ (3 —loge)n "> 9.

3 -

forms a rank modulation code anelements of cardinality/ 1
with distance at leasf in the Kendall spacet,,.

The resu"jng rank modulation codg can be decoded to Thus the encoding is asymptotically nonredundant. Therredu
correctanyt = |(d—1)/2]| Kendall errors ift Hamming errors dancy is the largest when is a power of 2. It is less than
are correctable with a decoding algorithm of the binary cod®% for alln > 69, less than 7% for alh > 527, etc.

A. Namely, suppose that' is the permutation that represents
a corrupted memory state. To recover the data we perform the CorrectingO(n'**¢) number of errorsp < ¢ < 1/2

B logn! — log n!

following steps. Consider now the case when the number of ertogsows
Decoding algorithm (Construction I1): with n. Since the binary cpdes constructe_d above are of length

aboutn logn, we can obtain rank modulation codesii) that

correct error patterns of Kendall weight= Q(nlogn). But

in fact more is true. We need the following proposition.
Proposition 9: Let x,y € {0,1}"™. Then

« Construct the inversion vectar,.. Form a new inversion
vectory as follows. Fori = 2,...,n, if ¢ (i — 1) €
[0,7—1] is greater thal™: —1 then puty ., (i) = 2™ —1,
else puty, (i) = x, (7).

« Form a vectory € {0,1}",y = (y,|ys|. .. |y,) where (U (), U(y)) > "= 1 (2Lf1’” _ 1).

y; € {0,1}™ is given bye;(y,, (i)). =

« Apply the t-error-correcting decoding algorithm of the Proof: Assume without loss of generality that£ y. We
code A to y. If the decoder returns no result, thefirst claim that, for any sucke,y € {0,1}™¢, the inequality
algorithm detects more thanerrors. Otherwise supposedy (z,y) > w; > 1 implies that|y;(x) — ¥;(y)| > 2wi—L.
thaty is decoded as. This is true because of the reflection property of the stahdar

« Outputo = J(¥(x)). Gray map as exemplified above.




Now consider vectorsz = (x2|z3|...|z,),y = can show that for an§ < e¢ < 1, there exist infinite families
(yslysl .- ly,) in {0,1}™ wherex;,y, € {0,1}™,2 <i < of binary (m, M, d) codesC, with rate R = 1 — ¢, such that
n. Suppose that g (x;,y,) = w; for all i, and Z?:Q w; =w the associated rank modulation co@g for permutations of

wherew = dy (x,y). [n] in Theoren8 has minimum Kendall distanQ¢n'*<).
Hence, Theorem 11:For any0 < e < 1, there exist infinite families
n of binary (m, M) codesC such that(1/m)logM — 1—¢ >
di(¥(z),¥(y)) = Z [i(z;) — Yi(y;)] 0, and the associated rank modulation cdtie constructed
i=2 in Theorem 8 has minimum Kendall distance that scales as
> Z gwi—1 Q(n'*€). Moreover all but an exponentially decaying fraction
i w10 of the binary linear codes are such.
i1 1 The rank modulation codes described above have asymptot-
- 2;2 T _ 205 ically optimal trade-off between the rate and the distance.

Therefore, this family of codes achieves the capacity okran
We do not have control over the number of nonzerfs, so modulation codes (se&l[3, Thm. 3.1)).

let us take the worst case. We have To prove the above theorem we need the help of the
L | nw, - following lemma.
Z QWi > 920 77T — QwoT, )
17 = Lemma 12:Let 0 < o < 1 and letT C [m],|T]| > am
=2 be a coordinate subset. There exists a binary ¢bdélength
As for 3. . _, %, use the trivial upper boundn — 1)/2. m and any ratel? < a such that the projections of any two
Together the last two results conclude the proof. m codewordse,y € C,x # y on T are distinct. Moreover all
We have the following theorem as a result. but an exponentially decaying fraction of binary linear esd

Theorem 10:Let C andC. be the binary and rank modula-of any rate less than are such.

tion codes defined in Theordrh 8. Suppose furthermore that the Proof: The proof is a standard application of the proba-

minimum Hamming distancé of the codeC satisfiesd = em, bilistic method. Construct a random binary ca@lef length

wherem is the blocklength of’. Then the minimum Kendall m and sizeM = 2% randomly and independently selecting

distance of the cod€, is Q(n'*¢). M vectors from{0, 1}"* with uniform probability. Denote by
Proof: We havelogn — 1 < |logn] <logn. Use this in &, the event that two different vectoss y € C agree oril.

the definition ofm to obtain thatn > n(logn—3). Therefore, Clearly Pr(&,,) = 27%™, for all x,y € C. The event&, ,,

d = em > en(logn — 3). From the previous proposition theis dependent on at mo&(M — 1) other such events. Using

minimum Kendall distance of, is at least the Lovasz Local Lemma2], all such events can be avoided,

n—1 i.e.,

5 (26n(10gn—3)/(n—1) _ 1) _ Q(n1+€),

Pr ( ﬂ Ezy) >0,

| ] x,yeC

Examples of specific codes that can be constructed from
this theorem are again deferred to Seci. IV. if

Let us analyze the asymptotic trade-off between the rate e27m(2M —1) <1
and the distance of the codes. We begin with an asymptoti-
cally good family of binary codes, i.e., a sequence of codeg
C;,i = 1,2..., of increasing lengthn for which the rate
log |C;|/m converges to a positive numb&r, and the relative

Hamming distance behaves as, where( 1/2. Such _
9 ’ <e< i H]ence as long a® < «, there exists a code of rate that

families of codes can be efficiently constructed by means o tai irs of vect that T Thi
concatenating several short codes into a longer binary co ains no pairs of vectors, y that agree ofr. This proves

(e.g., [21, Ch. 10]) Using this family in the previous theore the first part of the_lemma. ] ]

we obtain a family of rank modulation codesSh of Kendall 10 Prove the claim regarding random linear codes chose a
distance that behaves 8¢n!+¢), and of rateR (see [1)). The linear codeC spanne_d by the rows (_)f anRxm binary matrix
upper limit of 1/2 on ¢ is due to the fact[21, p. 565] that no& €ach entry of which is chosen independently wittn)) =

binary codes of large size (of positive rate) are capable bf1) = /2. The codeC will not contain two codewords that
correcting a higher proportion of errors. project identically onl" if the mR x |T'| submatrix ofG with

columns indexed byl" has full rank. IfmR < |T| then a

) givenmR x |T'| sub-matrix ofG has full rank with probability

E. Correcting even more)(n'*<), errors,1/2 < e < 1 at leastl — 5. 2—(TI-mR)? [11]. Thus if || grows at least
It is nevertheless possible to extend the above theorema®T = mR + /m, the proportion of matrices! in which

the case ofe > 1/2, obtaining rank modulation codes ofthe (mR x T') submatrix is singular falls exponentially with
distanceQ(n'*€), 1/2 < ¢ < 1 and positive rate. However, m. Even if each of these matrices generates a different code,
this extension is not direct, and results in an existent@ht the proportion of undesirable codes will decline exporaiyti
as opposed to the constructive results above. To be precise, with m. [ ]

M <20 e 4 1/2.



Proof of Thm[Ill: Suppose that,y € {0,1}"™ where « Compute the vectox = 9J(b), whered : {0,1}""! —
m = Z?:Q m; andm; = |logi| as above in this section. Let G, is as follows:

9

b= (bl,bg,...,bnfl) = T = (Il,...,xnfl)

dl( lez wz wz y1)| < n' .
{0 if b; =0 .

T =19 . . , t=1,...,n—1.
for some0 < e < 1. Let0 < 8 < 1. For at least al — 3 i ifbi=1
proportion of indices we can claim that « Find the encoding ofn aso = J(z).

14e€

[hi(x:) — Pi(y,)| < . Theorem 13:Let C(n — 1,M,d > 2t + 1) be a code in
Bn—1) the binary Hamming space and 16t < S, be the set
On the other hand, ift; and y, have the same value inOf permutations obtained from it using the above encoding
the firstt; of them; coordinates, then the construction of th@lgorithm. Then the cod€. C S, has cardinality and
Gray map implies thal); (z;) — v;(y;)| > 2™:~*. Hence for corrects any- Kendall errors where = t2/4 if t > 2 is even

at least al — 3 fraction of thei’s, andr = (t* —1)/4 if ¢ > 3 is odd.
Proof: To prove the claim about error correction, consider

1+e€
omi—ti o _ 1 i the following decoding procedure of the cofg. Let = be a
- 5(” - 1) permutation read off from memory.
e, t; > m; — elogn — log ( L Decoding algorithm (Construction Il1A):
Therefore,z andy must coincide in a well-defined subset « Find the inversion vectog, = (v1,..., %, 1).
of coordinates of size « Form a vectory € {0,1}"~" by putting
[(1-8)(n-1)] [(1-B)(n—1)] n Jo i < i)
2 tZZ ; mz—elogn—logm) Yi = 1 If T > \_'L/QJ
[(A=B)(n—1)] « Decodey with the codeC to obtain a codevectot. If
= Z [logi| the decoder returns no result, the algorithm detects more
i=2 thant errors.
—¢e(l—=p)(n—1)logn — O(n) « Compute the overall decoding result 28%(c)).

=m(l—e—0(1/1 .
m(l = e (1/logn)) Let o be the original permutation, let, be its inversion

Invoking Lemma[I2 now concludes the proof: indeed, itector, and let(c) be the corresponding codeword@f The
implies that there exists a binary code of rate at ldaste above decoding can go wrong only if the Hamming distance
where no such pair of vectorsandy exists. The claim about dr(c(o),y) > t. For this to happen thé, distance between

linear codes also follows immediately. m <z, and x, must be large, in the worst case satisfying the
condition d; (@, z,) > >.._,|i/2]. This gives the claimed
. o result. [ |
F. Construction llI: A quantization map From a binary code in Hamming space of rafe that

In this section we describe another construction of rargorrects any-n errors, the above construction produces a rank
modulation codes from codes in the Hamming space over Bedulation code’, of size 2/ that is able to corredf(n?)
alphabet of sizg > 2. The focus of this construction is on theerrors. The rate of the obtained code equals?(logn)~'.
case when the number of errors is large, for instance, forméeacording to Theorenf]1 this scaling is optimal for the
proportion ofn?. multiplicity of errors considered. Some numerical exaraple

The first result in this section serves as a warm-up for a maxee given in Secf_IV.
involved construction given later. In the first construntioe
use binary codes in a rather simple manner to obtain codes in
permutations. This nevertheless gives codegjrthat correct
a large number of errors. Then we generalize the constructio
by using codes over larger alphabets.

2) Construction IIIB: Rank modulation codes from nonbi-
nary codes: This construction can be further generalized to
obtain codes that are able to correct a wide range of Kendall
errors by observing that the quantization map employed@bov
is a rather coarse tool which can be refined if we rely on codes

1) Construction IlIA: Rank modulation codes from binaryn the g-ary Hamming space fog > 2. As a result, for any
base codesRecall our notatiorg,, for the space of inversion € < 1 we will be able to construct families of rank modulation
vectors and the mag/ : G, — S, that sends them to codes of rateR = R(e) > 0 that correctQ(n'*) Kendall
permutations. Lef € {0,1}"~! be a binary code that encode$£rrors.

k bits inton — 1 bits. Let! > 1 be an integer. Let) = {a1,a2,...,a4} be the
_ _ _ code alphabet. Consider a cadef lengthn’ = 2(1—1)(¢—1)
Encoding algorithm (Construction 111A): over Q and assume that it corrects anyHamming errors

o Letm € {0,1}* be a message. Find its encodibgvith  (i.e., its minimum Hamming distance is at le@st+ 1). Let
the codeC. n = (20+1)(qg—1). Consider the mapping, : Q"' — G,



defined as©y(b) = (V1(b1),V2(b2),...,9n-1(bn-1)), b = vectors equals

(b1,...,bn—1) € Q"', where - .
Jt; > min jt;
0 if i < 3(g—1) ; : iy ;

<(2k+1)(g-1)
k=23,...,1,
i=1,2,3,....q

+(t+1-2(¢g—1s)(s+1)
=(@—-Ds(s+1)+(t+1-2(g—1)s)(s+1)
=(t+1-(¢g—1)s)(s+1).

To construct a rank modulation code from the codeC |n estimating the minimum in the above calculation we have

we perform the following steps. used the fact that the smaller-indexgts should be given the
. . . maximum value before the higher-indexed ones are used.
Encoding algorithm (Construction I11B): Therefore if the?; distance between the received and
« Encode the message into a codeword: € C original inversion vectors is less than or equal rtothen
decodingy’ with the codeC will recover z,. Using [7) we
« Prepend the vectat with 3(¢ — 1) — 1 symbolsa;. complete the proof. ]

_ _ _ _ Asymptotic analysistor large values of the parameters we

« Map the obtainedn — 1)-dimensional vector t&,, using  gptain that the number of errors correctabledyis

the mapJ o O,,. 2

The properties of this construction are summarized in the T 1
following statement.

Theorem 14:Let n’ = 2(I — 1)(¢ — 1),n = (2l + 1)(q —
1),l > 2. Let C(n’,M,d = 2t + 1) be a code in the-
ary Hamming space. Then the code C S, described by
the above construction has cardinality and corrects any
Kendall errors, where

or, in other wordsd(C, ) ~ d?/8¢. In particular, ifd = n’é and
q=0(n'"%),0< e < 1,thenwe getl(C,) = Q(n'*c). If the
codeC has cardinality;™"" then|C,| = ¢/ = ¢R(n=3(a=1)),
Using (1) yields the valuél — ¢)R for the rate of the code
C.. This is only by a factor of? less than the optimal scaling
rate of [4). To achieve the optimal asymptotic rate-distanc
trade-off one need to use @ary code of rate very close to
one and non-vanishing relative distance; more@vaeeds to
ands = [(t+1)/(2(¢ — 1))],s > 0. grow with code lengtm asn!'~¢. _ _
To show an example, let us take the family of linear codes
Proof: We generalize the proof of the previous theorenon Hermitian curves (see e.d.] [4, Ch. 10]). The codes can be

r=@t+1-(¢g—1)s)(s+1)—1

Let 7w be the permutation read off from the memory. constructed over any alphabet of sige= b2, whereb is a
. ) ) _ prime power. Let: be an integerb+1 < u < b>—b+1. The
Decoding algorithm (Construction I11B): lengthn’, dimensionk and Hamming distancé of the codes
« Find the inversion vectox, = (z1,...,2n—1). are as follows:
» Form ag-ary vectory by putting n =641, k= (b+1)u—(1/2)b(b—1)+1, d > n'—(b+1)u.
ap ifi<3(g—1) In the next section we will give a few examples of codes
aj if 2k—1)(g—1)<i< 2k+1)(q—1) with specific parameters. For the moment, let us look at the
L and(2k—1)(j — 1) = (k—1) < 2 scaling order of? andr as functions of the length of the codes
vi= J [ C. obtained from the above arguments. We have: ¢b, so
S (2k—1)(j_1)+k7 qzn2/3, and
k=23...,1 ok b+ Du— (/b0 -1+ 1
fori=1,...,n—1. n b +1
« Decodey’ = (yY3(g_1):---»Yn—1) With the codeC to a b* — (b+ Du
obtain a codevectoe. If the decoder returns no results, n - b3 +1
the algorithm detects more tharerrors. Let us choose: = b2/2, which givesR ~ ia ands ~ La
. . > ~ 32 255
« Find the decoded permutation as= J(6q(c)). wherea = 1 — O(1/b). Finally, we obtain that the rate of the
) ) ] ) codesC,; behaves as
There will be an error in decoding only whep contains at R/
leastt + 1 Hamming errorsy’ contains coordinate3(q — 1) logg™ _ gR(l —o(1))

ton —1 of y. Suppose that;,1 < j <!—1 is the number of logn! 3

Hamming errors in coordinates betwe@j + 1)(¢ — 1) and and the number of correctable Kendall errors ris ~
(2j+3)(g—1). We havezz;l1 t; >t+1andt; <2(¢g—1). (1/64)n*3, which gives the scaling order mentioned in the
The ¢, distance between the received and original inversigmevious paragraph for=1/3.
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By takingu = b**7, for 0 < v < 1, and by shortening the 510, obtaining code€’, with the parameters
Hermitian code to the length(b + 1)u, for A > 1 arbitrarily B
close to1 we obtain a code with rate arbitrarily close to (105,510 - 9¢,2t +1),t =1,2,3, ...

1 with relative minimum distance equal to — 1/X. This we remark that for the case df = 1 better codes were
yields asymptotically optimal scaling, in the sense defiimed constructed in[15]. Namely, there exist single-errorreoting
sectiorll, for values of that range in the intervdD, 1/3). For  codes inS,, of size M > n!/(2n). For instance, fon = 62
values ofe in the rangg(1/3, 1), families of codes with optimal this gives M/ = 2277964 as opposed to oud/ = 2245, A

scaling can similarly be constructed by starting from Algeb Hamming-type upper bound ol has the form

Geometry codes with lengths that exceed larger powers of al

g than ¢3/2, for instance, codes from the Garcia-Stichtenoth M) < ———

curves or other curves with a large number of rational points > i—o Kn(i)
Another general example can be derived from the familyhere

of quadratic residue (QR) codes [21]. Letbe a prime, then

there exist QR codes ovét; of lengthn’ = p, cardinality K,(0)=1

M = (®+1)/2 and distance> ,/p, where/ is a prime that K,1)=n—-1

is a quadratic residue modu}o Using them in Theorern 14 Ko(2) = (n2 —n—2)/2

(after an appropriate shortening), we obtain rank modutati 1

codes inS,, wheren = p + 3(¢ — 1), with cardinality M K.(3) = ("+ > —

and distancel(C;) = Q(p/¢). Let us take a sufficiently large 3

prime p and let¢ be a prime and a quadratic residue modul(see e.g.,[[17, p.15] which also gives a general formula for

p. Suppose that = ©(pz—) for some smalk > 0. Pairs of K, (i) for i < n). The codes constructed above are not close

primes with the needed properties can be shown to exist untethis bound (note however that, except for smatiamming-

the assumption that the generalized Riemann hypothesiseis ttype bounds are usually loose).

(see e.gl18]). Using the corresponding QR cBde Theorem Now let us wuse binary BCH codes in Theorem

[I4, we obtainn = p + 3(¢ — 1) = O(p), d(C,) = O(n2t*) [3. Starting with codes of length’ = 63,255 we

andlog M = ©(%(3 — @) logn), giving the ratel(4 — ). obtain rank modulaton codes with the parameters

Although this trade-off does not achieve the scaling order (64, 36, 13),(64, 30, 19),(64, 24, 25),(64,18,51),(64, 16, 61),

(@), it still accounts for a good asymptotic family of codes. (64,10,85), (256,215,13), (256,207,19), (256,199,25),
(256,191, 33), etc. These codes are not so good for a

IV. EXAMPLES small number of errors, but become better as their distance
Below C, refers to the rank modulation code that we aricreases.
constructing,M = |C.|, and ¢ is the number of Kendall Finally consider examples of codes constructed from The-

errors that it corrects. We write the code parameters asowem [14. As our seed codes we consider the following
triple (n,log M,d) whered = 2t + 1. In the examples we possibilities: products of Reed-Solomon codes and codes on
do not attempt to optimize the parameters of rank modulatibtermitian curves.
codes; rather, our goal is to show that there is a largelet us takeC = A ® B, where A[15,9,7] and B[14, 3, 12]
variety of constructions that can be adapted to the needsané Reed-Solomon codes o¥g. Then the cod€ has length
concrete applications. More codes can be constructed frafn= 14 - 15 = 210, (so! = 8), cardinality 1627 = 21°% and
the codes obtained below by using standard operations sucldistance84, sot = 41. From Theoreni 14 we obtain a rank
shortening or lengthening of codés [3], [15]. Note also that modulation code’, with the parametergn = 255,log M =
design distance of rank modulation codes constructed bel®d8,d > 107). Some further sets of parameters for codes of
may be smaller than their true distance, so all the valuelseof fengthn = 255 obtained as we vargim(3) are as follows:
distance given below are lower estimates of the actual galue dim(B 4 5 6 7 8
From Theorem[I3 we obtain codes with the following im(B)
. logM 144 180 216 252 288
parameters. Ley = 2', thenn = ¢ — 1 andlogM > 4 95 79 67 55 49
I|log(q — 2t — 2)|. For instance, let = 6, then we ob-
tain the triples(63,30,31), (63,24, 47), etc. Takingl = 8, The code parameters obtained for= 255 are better than
we obtain for instance the following sets of parameterthe parameters obtained for the same length in the above
(255,56,127), (255,48,191). examples with binary BCH codes, although decoding product
Better codes are constructed using Theorém 8. Let us tdk8 codes is somewhat more difficult than decoding BCH codes
n = 62, thenm = 253. Taking twice shortened BCH codesOn the other hand, relying on product RS codes offers a great
B; of lengthm, we obtain a range of rank modulation codedeal of flexibility in terms of the resulting parameters ofika
accordi