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Constructions of Rank Modulation Codes
Arya Mazumdar∗, Alexander Barg§ and Gilles Zémora

Abstract—Rank modulation is a way of encoding information
to correct errors in flash memory devices as well as impulse
noise in transmission lines. Modeling rank modulation involves
construction of packings of the space of permutations equipped
with the Kendall tau distance.

We present several general constructions of codes in permuta-
tions that cover a broad range of code parameters. In particular,
we show a number of ways in which conventional error-correcting
codes can be modified to correct errors in the Kendall space.
Codes that we construct afford simple encoding and decoding
algorithms of essentially the same complexity as required to
correct errors in the Hamming metric. For instance, from binary
BCH codes we obtain codes correctingt Kendall errors in n
memory cells that support the order of n!/(log

2
n!)t messages,

for any constant t = 1, 2, . . . . We also construct families of
codes that correct a number of errors that grows with n at
varying rates, from Θ(n) to Θ(n2). One of our constructions
gives rise to a family of rank modulation codes for which the
trade-off between the number of messages and the number of
correctable Kendall errors approaches the optimal scalingrate.
Finally, we list a number of possibilities for constructing codes of
finite length, and give examples of rank modulation codes with
specific parameters.

Index Terms—Flash memory, codes in permutations, rank
modulation, transpositions, Kendall tau distance, Gray map

I. I NTRODUCTION

Recently considerable attention in the literature was devoted
to coding problems for non-volatile memory devices, including
error correction in various models as well as data manage-
ment in memories [3], [5], [13]–[15]. Non-volatile memories,
in particular flash memory devices, store data by injecting
charges of varying levels in memory cells that form the device.
The current technology supports multi-level cells with twoor
more charge levels. The write procedure into the memory is
asymmetric in that it is possible to increase the charge of an
individual cell, while to decrease the charge one must erase
and overwrite a large block of cells using a mechanism called
block erasure. This raises the issue of data management in
memory, requiring data encoding for efficient rewriting of the
data [12]. A related issue concerns the reliability of the stored
information which is affected by the drift of the charge of
the cells caused by ageing devices or other reasons. Since
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the drift in different cells may occur at different speed, errors
introduced in the data are adequately accounted for by tracking
the relative value of adjacent cells rather than the absolute
values of cell charges. Storing information in relative values
of the charges also simplifies the rewriting of the data because
we do not need to reach any particular value of the charge as
long as we have the desired ranking, thereby reducing the risk
of overprogramming. Based on these ideas, Jiang et al. [14],
[15] suggested to use therank modulation schemefor error-
correcting coding of data in flash memories. A similar noise
model arises in transmission over channels subject to impulse
noise that changes the value of the signal substantially but
has less effect on the relative magnitude of the neighboring
signals. In an earlier work devoted to modeling impulse noise,
Chadwick and Kurz [6] introduced the same error model and
considered coding problems for rank modulation. Drift of
resistance in memory cells is also the main source of errors
in multilevel-cell phase-change memories [22].

Motivated by the application to flash memories, we consider
reliable storage of information in the rank modulation scheme.
Relative ranks of cell charges in a block ofn cells define a
permutation on the set ofn elements. Our problem therefore
can be formulated as encoding of data into permutations so
that it can be recovered from errors introduced by the drift
(decrease) of the cell charges.

To define the error process formally, let[n] = {1, 2 . . . , n}
be a set ofn elements and consider the setSn of permu-
tations of [n]. In this paper we use a one-line notation for
permutations: for instance (2,1,3) refers to the permutation
(

123
213

)

. Referring to the discussion of charge levels of cells,
permutation(2, 1, 3) means that the highest-charged cell is
the second one followed by the first and then the third cell.
Permutations can be multiplied by applying them successively
to the set[n], namely the action of the permutationπσ, where
π, σ ∈ Sn, results ini 7→ σ(π(i)), i = 1, . . . , n. (Here and
elsewhere we assume that permutations act on the right). Every
permutation has an inverse, denotedσ−1, and e denotes the
identity permutation.

Let σ = (σ(1), . . . , σ(n)) be a permutation of[n]. An
elementary error occurs when the charge of cellj passes the
level of the charge of the cell with rank one smaller than
the rank ofj. If the n-block is encoded into a permutation,σ,
this error corresponds to the exchanging of the locations ofthe
elementsσ(j) andσ(j + 1) in the permutation. For instance,
let σ = (3, 1, 4, 2) then the effect of the errorπ = (2, 1, 3, 4) is
to exchange the locations of the two highest-ranked elements,
i.e., πσ = (1, 3, 4, 2).

Accordingly, define theKendall tau distancedτ (σ, π) from
σ to another permutationπ as the minimum number of trans-
positions of pairwise adjacent elements required to change
σ into π. Denote byXn = (Sn, dτ ) the metric space of
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permutations onn elements equipped with the distancedτ .
The Kendall metric was studied in statistics [16] where it was
introduced as a measure of proximity of data samples, as well
as in combinatorics and coding theory [3], [10]. The Kendall
metric also arises naturally as a Cayley metric on the group
Sn if one takes the adjacent transpositions as its generators.

The Kendall distance is one of many metrics on per-
mutations considered in the literature; see the survey [9].
Coding for the Hamming metric was considered recently in
[7] following the observation in [25] that permutation arrays
are useful for error correction in powerline communication.
Papers [20], [23], [24] considered coding for theℓ∞ distance
on permutations from the perspective of the rank modulation
scheme. Generalizations of Gray codes for rank modulation
are considered in [26], while an application of LDPC codes
to this scheme is proposed in [27].

An (n, d) codeC ⊂ Xn is a set of permutations inSn such
that the minimum distancedτ separating any two of them
is at leastd. The main questions associated with the coding
problem for the Kendall spaceXn are to establish the size
of optimal codes that correct a given number of errors and,
more importantly, to construct explicit coding schemes. Inour
previous work [3] we addressed the first of these problems,
analyzing both the finite-length and the asymptotic bounds on
codes. Since the maximum value of the distance inXn is

(

n
2

)

,
this leaves a number of possibilities for the scaling rate ofthe
distance for asymptotic analysis, ranging fromd = O(n) to
d = Θ(n2). Define the rate of the code

R(C) = log |C|/ log(n!) (1)

(all logarithms are base 2 unless otherwise mentioned) and let

R(n, d) = max
C⊂Xn

R(C) (2)

C (d) = lim
n→∞

R(n, d) (3)

where the maximum in (2) is over all codes with distance≥ d.
We have the following result.

Theorem 1: [3] The limit in (3) exists, and

C (d) =











1 if d = O(n)

1− ǫ if d = Θ(n1+ǫ), 0 < ǫ < 1

0 if d = Θ(n2).

(4)

Moreover,

R(n, d) =

{

O(log−1 n) if d = Θ(n2)

1−O(log−1 n) if d = O(n).

We remark [3] that the equalityC (d) = 1 − ǫ holds under a
slightly weaker condition, namely,d = n1+ǫα(n), whereα(n)
grows slower than any positive power ofn.

Equation (4) suggests the following definition. Let us say
that an infinite family of codesscales optimallyif there exists
ǫ ∈ (0, 1) such that, for any positiveα, β, all codes of the
family of length n larger than somen0, have rate at least
1− ǫ− β and minimum distanceΩ(n1+ǫ−α).

The proof of Theorem 1 relied on near-isometric embed-
dings ofXn into other metric spaces that provide insights into
the asymptotic size of codes. We also showed [3] that there

exists a family of rank modulation codes that correct a constant
number of errors and have size within a constant factor of the
upper (sphere packing) bound.

Regarding the problem of explicit constructions, apart from
a construction in [15] of codes that correct one Kendall error,
no other code families for the Kendall distance are presently
known. Addressing this issue, we provide several general
constructions of codes that cover a broad range of parameters
in terms of the code lengthn and the number of correctable
errors. We present constructions of rank modulation codes that
correct a given number of errors as well as several asymptotic
results that cover the entire range of possibilities for thescaling
of the number of errors with the code’s length. Sect. II we
present a construction of low-rate rank modulation codes that
form subcodes of Reed-Solomon codes, and can be decoded
using their decoding algorithms. In Sect. III we present another
construction that gives rank modulation codes capable of
correcting errors whose multiplicity can be anywhere from
a constant toO(n1+ǫ), 0 < ǫ < 1/2, although the code rate is
below the optimal rate of (4). Relying on this construction,we
also show that there exist sequences of rank modulation codes
derived from binary codes whose parameters exhibit the same
scaling rate as (4) for any0 < ǫ < 1. Moreover, we show
that almost all linear binary codes can be used to construct
rank modulation codes with this optimal trade-off. Finally, we
present a third construction of rank modulation codes from
codes in the Hamming space that correct a large number of
errors. If the number of errors grows asΘ(n2), then the rate of
the codes obtained from binary codes using this construction
attains the optimal scaling ofO(log−1 n). Generalizing this
construction to start from nonbinary codes, we design families
of rank modulation codes that scale optimally (in the sense of
the above definition) for all values ofǫ, 0 < ǫ < 1.

Finally, Sect. IV contains some examples of codes obtained
using the new constructions proposed here.

Our constructions rely on codes that correct conven-
tional (Hamming) errors, converting them into Kendall-error-
correcting codes. For this reason, the proposed methods canbe
applied to most families of codes designed for the Hamming
distance, thereby drawing on the rich variety of available con-
structions with their simple encoding and decoding algorithms.

II. CONSTRUCTION I: RANK MODULATION CODES FROM

PERMUTATION POLYNOMIALS

Our first construction of rank modulation codes is alge-
braic in nature. Letq = pm for some primep and let
Fq = {α0, α1, . . . , αq−1} be the finite field ofq elements. A
polynomialg(x) ∈ Fq[x] is called apermutation polynomial
if the valuesg(a) are distinct for distinct values ofa ∈ Fq

[19, Ch. 7].
Consider the evaluation mapf 7→ (f(α0), . . . , f(αq−1))

which sends permutation polynomials to permutations ofn
elements. Evaluations of permutation polynomials of degree
≤ k form a subset of aq-ary Reed-Solomon code of dimension
k + 1. Reed-Solomon codes are a family of error-correcting
codes in the Hamming space with a number of desirable
properties including efficient decoding. For an introduction to
them see [21, Ch. 10].
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At the same time, evaluating the size of a rank modulation
code constructed in this way is a difficult problem because
it is hard to compute the number of permutation polynomials
of a given degree. In this section we formalize a strategy for
constructing codes along these lines. This does not result in
very good rank modulation codes; in fact, our later combina-
torial constructions will be better in terms of the size of the
codes with given error-correcting capabilities. Nonetheless, the
construction involves some interesting observations which is
why we decided to include it.

A polynomial overFq is called linearized of degreeν if it
has the form

L(x) =
ν

∑

i=0

aix
pi

Note that a linearized polynomial of degreeν has degreepν

when viewed as a standard polynomial.
Lemma 2:The number of linearized polynomials overFq

of degree less than or equal toν that are permutation polyno-
mials in Fq is at least

(

1− 1

p− 1
+

1

q(p− 1)

)

qν+1 ≥ qν .

Proof: The polynomialL(x) acts on Fq as a linear
homomorphism. It is injective if and only if it has a trivial
kernel, in other words if the only root ofL(x) in Fq is 0.
Hence,L(x) is a permutation polynomial if and only if the
only root ofL(x) in Fq is 0.

The total number of linearized polynomials of degree up to
ν is qν+1. We are going to prove that at least a(1 − 1

p−1 +
1

q(p−1) ) proportion of them are permutation polynomials. To
show this, choose the coefficientsai, 0 ≤ i ≤ ν of L(x) =
∑ν

i=0 aix
pi

uniformly and randomly fromFq. For a fixedα ∈
F
∗
q , the probability thatL(α) = 0 is 1/q. Furthermore, the set

of roots of a linearized polynomial is anFp-vector space [21,
p.119], hence the set of non-zero roots is a multiple ofp− 1.
The number of1-dimensional subspaces ofFq overFp is q−1

p−1 .
The probability that one of these sets is included in the set of
roots ofL(x) is, from the union bound,

Pr(∃α ∈ F
∗
q : L(α) = 0) ≤ q − 1

p− 1
· 1
q
.

Hence, the probability thatL(x) is a permutation polynomial
is greater than or equal to1− q−1

q(p−1) .

A. Code construction

We use linearized permutation polynomials ofFq to con-
struct codes in the spaceXn. Note that a linearized polynomial
L(x) always maps zero to zero, so that when it is a permutation
polynomial it can be considered to be a permutation of the
elements ofFq and also of the elements ofF∗

q . Let t be a
positive integer and letν = ⌊logp(n− 2t− 1)⌋. Let Pt be the
set of all linearized polynomials of degree≤ ν that permute
Fq. Setn = q − 1 and define the setA ⊂ F

n
q

A = {(L(a), a ∈ F
∗
q), L ∈ Pt}

to be the set of vectors obtained by evaluating the polynomials
in Pt at the points ofF∗

q . Form a codeCτ by writing the

vectors inA as permutations (for that, we fix some bijection
between[n] andF∗

q , which will be implicit in the subsequent
discussion). We can haven = q rather thann = q − 1 if
desired: for that we add the zero field element in the first
position of the(q−1)-tuples ofA, and the construction below
readily extends.

The idea behind the construction is quite simple: the setA
is a subset of a Reed-Solomon code that correctst Hamming
errors. Every Kendall error is a transposition, and as such,
affects at most two coordinates of the codeword ofCτ .
Therefore the codeCτ can correct up tot/2 errors. By handling
Kendall errors more carefully, we can actually correct up to
t errors. The main result of this part of our work is given by
the following statement.

Theorem 3:The codeCτ has lengthn = q − 1 and
size at leastq⌊logp(n−2t−1)⌋. It corrects all patterns of up
to t Kendall errors in the rank modulation scheme under a
decoding algorithm of complexity polynomial inn.

Proof: It is clear that|Cτ | = |A|, and from Lemma 2
|A| ≥ q⌊logp(n−2t−1)⌋.

Let σ = (a1, a2, . . . , ai, ai+1, . . . , an), whereaj ∈ F
∗
q , 1 ≤

j ≤ n, be a permutation inXn (with the implied bijection be-
tween [n] andF∗

q) and letσ′ = (a1, a2, . . . , ai+1, ai, . . . , an)
be a permutation obtained fromσ by one Kendall step (an
adjacent transposition). We have

σ − σ′ = (0, . . . , 0, θ,−θ, . . . , 0)
whereθ = ai − ai+1 ∈ F

∗
q .

Let

P =

















1 0 0 · · 0
1 1 0 · · 0
1 1 1 · · 0
· · · · · ·
· · · · · ·
1 1 1 · · 1

















be ann× n matrix. Note that

P (σ − σ′)T = (0, . . . , 0, θ, 0, . . . , 0)T .

This means that multiplication by the accumulator matrixP
converts one adjacent transposition error into one Hamming
error. Extending this observation, we claim that ifdτ (σ, π) ≤ t
with π being some permutation, and anyt ≤ n

2 , then the
Hamming weight of the vectorP (σ−π)T is not more thant.
Here we again takeσ andπ to be vectors with elements from
F
∗
q with the implied bijection between[n] andF∗

q .
Now let L(x) be a linearized permutation polynomial and

let 1, α, α2, . . . , αq−2 be the elements ofF∗
q for some choice

of the primitive elementα. Let

σ = (L(1),L(α),L(α2), . . . ,L(αq−2)).

SinceL(a+ b) = L(a) + L(b), we have

PσT = (L(β0),L(β1),L(β2), . . . ,L(βq−2))
T

where

βi =
i

∑

j=0

αj , i = 0, 1, . . . , q − 2.
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It is clear thatβi 6= 0, 0 ≤ i ≤ n − 1 and alsoβi1 6= βi2
for 0 ≤ i1 < i2 ≤ n − 1, Therefore, the vectorPσT is a
permutation of the elements ofF∗

q . At the same time, it is the
evaluation vector of a polynomial of degree≤ n − 2t − 1.
We conclude that the set{PσT , σ ∈ A} is a subset of vectors
of an (extended) Reed-Solomon code of lengthn, dimension
n−2t and distance2t+1. Any t errors in a codeword of such
a code can be corrected by standard RS decoding algorithms
in polynomial time.

The following decoding algorithm of the codeCτ corrects
any t Kendall errors. Supposeσ ∈ A is read off from memory
asσ1.

Decoding algorithm (Construction I):

• Evaluatez = PσT
1 .

• Use a Reed-Solomon decoding algorithm to correct up
to t Hamming errors in the vectorz, obtaining a vector
y (if the Reed-Solomon decoder returns no results, the
algorithm detects more thant errors).

• Computeσ = P−1yT , i.e.,

σi = yi+1 − yi, 1 ≤ i ≤ n− 1; σn = yn.

The correctness of the algorithm follows from the construction.
Namely, ifdτ (σ, σ1) ≤ t, theny corresponds to a transformed
version ofσ, i.e.,y = PσT . Then the last step of the decoder
correctly identifies the permutationσ.

Some examples of code parameters arising from this theo-
rem are given in Sect. IV.

We note an earlier use of permutation polynomials for
constructing permutation codes in [7]. At the same time,
since the coding problem considered in that paper relies on
the Hamming metric rather than the Kendall tau distance, its
results have no immediate link to the above construction.

III. C ONSTRUCTION II: RANK MODULATION CODES FROM

THE GRAY MAP

In this section we present constructions of rank modulation
codes using a weight-preserving embedding of the Kendall
spaceXn into a subset of integer vectors. To evaluate the error-
correcting capability of the resulting codes, we further link
codes over integers with codes correcting Hamming errors.

A. From permutations to inversion vectors

We begin with a description of basic properties of the
distancedτ such as its relation to the number of inversions
in the permutation, and weight-preserving embeddings ofSn

into other metric spaces. Their proofs and a detailed discussion
are found for instance in the books by Comtet [8] or Knuth
[17, Sect. 5.1.1].

The distancedτ is a right-invariant metric which means
that dτ (σ1, σ2) = dτ (σ1σ, σ2σ) for any σ, σ1, σ2 ∈ Sn

where the operation is the usual multiplication of permutations.
Therefore, we can define the weight of the permutationσ as
its distance to the identity permutatione = (1, 2, . . . , n).

Because of the invariance, the Cayley graph ofSn (i.e.,
the graph whose vertices are indexed by the permutations and
whose edges connect permutations one Kendall step apart) is

regular of degreen− 1. At the same time it is not distance-
regular, and so the machinery of algebraic combinatorics does
not apply to the analysis of the code structure. The diameter
of the spaceXn equalsN ,

(

n
2

)

and is realized by pairs of
opposite permutations such as(1, 2, 3, 4) and (4, 3, 2, 1).

The main tool to study properties ofdτ is provided by
the inversion vector of the permutation. Aninversion in a
permutationσ ∈ Sn is a pair (i, j) such thati > j and
σ−1(j) > σ−1(i). It is easy to see thatdτ (σ, e) = I(σ), the
total number of inversions inσ. Therefore, for any two permu-
tationsσ1, σ2 we havedτ (σ1, σ2) = I(σ2σ

−1
1 ) = I(σ1σ

−1
2 ).

In other words,

dτ (σ, π) = |{(i, j) ∈ [n]2 : i 6= j, π−1(i) > π−1(j),

σ−1(i) < σ−1(j)}|.
To a permutationσ ∈ Sn we associate aninversion vector

xσ ∈ Gn , [0, 1] × [0, 2] × · · · × [0, n − 1], wherexσ(i) =
|{j ∈ [n] : j < i+1, σ−1(j) > σ−1(i+1)}|, i = 1, . . . , n−1.
In words,xσ(i), i = 1, . . . , n− 1 is the number of inversions
in σ in which i+1 is the first element. For instance, we have

σ xσ

2 1 6 4 3 7 5 9 8 1 0 1 0 3 1 0 1
It is well known that the mapping from permutations to the
space of inversion vectors is bijective, and any permutation
can be easily reconstructed from its inversion vector1. Clearly,

I(σ) =

n−1
∑

i=1

xσ(i). (5)

Denote byJ : Gn → Sn the inverse map fromGn to Sn,
so thatJ(xσ) = σ. The correspondence between inversion
vectors and permutations was used in [15] to construct rank
modulation codes that correct one error.

For the type of errors that we consider below we introduce
the following ℓ1 distance function onGn :

d1(x,y) =

n−1
∑

i=1

|x(i)− y(i)|, (x,y ∈ Gn) (6)

where the computations are performed over the integers, and
write ‖x‖ for the corresponding weight function (this is not a
properly defined norm becauseGn is not a linear space). Recall
that dτ (σ, π) = I(πσ−1); hence the relevance of theℓ1 dis-
tance for our problem. For instance, letσ1 = (2, 1, 4, 3), σ2 =
(2, 3, 4, 1), thenxσ1 = (1, 0, 1),xσ2 = (1, 1, 1). To compute
the distancedτ (σ1, σ2) we note thatσ−1

1 = σ1 and so

I(σ2σ
−1
1 ) = I((1, 4, 3, 2)) = ‖(0, 1, 2)‖ = 3.

Observe that the mappingσ → xσ is a weight-preserving
bijection betweenXn and the setGn. At the same time,
the above example shows that this mapping is not distance
preserving. Indeed,dτ (σ1, σ2) = 3 while d1(xσ1 ,xσ2) = 1.
However, a weaker property pointed out in [15] is true,
namely:

1There is more than one way to count inversions and to define theinversion
vector: for instance, one can definexσ(i) = |{j : j ≤ i, σ(j) > σ(i +
1)}|, i = 1, . . . , n − 1. In this case, givenσ = (2, 1, 6, 4, 3, 7, 5, 9, 8) we
would havexσ = (1, 0, 2, 1, 2, 0, 0, 1). The definition in the main text is
better suited to our needs in that it supports Lemma 4 below.
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Lemma 4:Let σ1, σ2 ∈ Sn, then

dτ (σ1, σ2) ≥ d1(xσ1 ,xσ2). (7)

Proof: Let σ(m), σ(m + 1) be two adjacent elements in
a permutationσ. Let i = σ(m), j = σ(m + 1) and suppose
that i < j. Form a permutationσ′ which is the same asσ
except thatσ′(m) = j, σ′(m+ 1) = i, so thatdτ (σ, σ′) = 1.
The count of inversions for whichi is the first element is
unchanged, while the same forj has increased by one. We
then havexσ′(k) = xσ(k), k 6= j andxσ′(j) = xσ(j) + 1.
Thus, d1(xσ′ ,xσ) = 1, and the same conclusion is clearly
true if i > j.

Hence, if the Kendall distance betweenσ1 andσ2 is 1 then
the ℓ1 distance between the corresponding inversion vectors
is also1. Now consider two graphsG andG′ with the same
vertex setSn. In G there will be an edge between two vertices
if and only if the Kendall distance between them is1. On the
other hand there will an edge between two vertices inG′ if
and only if theℓ1 distance between corresponding inversion
vectors is1. We have just shown that the set of edges ofG
is a subset of the set of edges ofG′. The Kendall distance
between two permutations is the minimum distance between
them in the graphG. A similar statement is true for theℓ1
distance with the graphG′.

This proves the lemma.
We conclude as follows.
Proposition 5: If there exists a codeC in Gn with ℓ1

distanced then the setCτ := {J(x) : x ∈ C} forms a rank
modulation code inSn of cardinality|C| with Kendall distance
at leastd.

B. From inversion vectors to the Hamming space via Gray
Map

We will need theGray mapwhich is a mappingφs from the
ordered set of integers[0, 2s − 1] to {0, 1}s with the property
that the images of two successive integers differ in exactly
one bit. Suppose thatbs−1bs−2 . . . b0, bi ∈ {0, 1}, 0 ≤ i < s,
is the binary representation of an integeru ∈ [0, 2s − 1]. Set
by definitionbs = 0 and defineφs(u) = (gs−1, gs−2, . . . , g0),
where

gj = (bj + bj+1) (mod 2) (j = 0, 1, . . . s− 1) (8)

(note that fors ≥ 4 there are several ways of defining maps
from integers to binary vectors with the required property).

Example:The Gray map for the first 10 integers looks as
follows:

0|
1|
2|
3|
4|
5|
6|
7|
8|
9|
...

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1

...

−→

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 1

...

Note the “reflective” nature of the map: the last 2 bits of the
second block of four are a reflection of the last 2 digits of the
first block with respect to the horizontal line; the last 3 bits
of the second block of eight follow a similar rule, and so on.
This property, easy to prove from (8), will be put to use below
(see Prop. 9).

Now, for i = 2, . . . , n, let

mi = ⌊log i⌋,

and let

ψi : {0, 1}mi → [0, i− 1]

be the inverse Gray mapψi = φ−1
i . Clearlyψi is well defined;

it is injective but not surjective for mosti’s since the size of
its domain is only2mi.

Proposition 6: Suppose thatx,y ∈ {0, 1}mi. Then

|ψi(x)− ψi(y)| ≥ dH(x,y), (9)

wheredH denotes the Hamming distance.
Proof: This follows from the fact that ifu, v are two

integers such that|u− v| = 1, then their Gray images satisfy
dH(φ(u), φ(v)) = 1. If the number are such thatu < v and
|u− v| = d, then by the triangle inequality,

dH(φ(u), φ(v)) ≤ dH(φ(u), φ(u + 1))

+ · · ·+ dH(φ(v − 1), φ(v))

= d

Consider a vectorx = (x2|x3| . . . |xn), where xi ∈
{0, 1}mi, i = 2, . . . , n. The dimension ofx equalsm =
∑n

i=2mi ≈ logn!, or more precisely

m =

mn−1
∑

j=1

(2j+1 − 2j)j +mn(n+ 1− 2mn)

=

mn−1
∑

j=1

j2j +mn(n+ 1− 2mn)

= (mn − 2)2mn + 2 +mn(n+ 1− 2mn)

= (n+ 1)mn − 2mn+1 + 2.

On the first line of this calculation we used the fact that among
the numbersmi there are exactly2j+1−2j numbers equal toj
for all j ≤ n−1, namely those withi = 2j, 2j+1, . . . , 2j+1−
1. The remaining(n+ 1)− 2mn numbers equalmn.

For a vectorx ∈ {0, 1}m let

Ψ(x) = Ψ(x2|x3| . . . |xn) = (ψ2(x2), . . . , ψn(xn)).

Proposition 7: Let x,y ∈ {0, 1}m. Then

d1(Ψ(x),Ψ(y)) ≥ dH(x,y),

where the distanced1 is the ℓ1 distance defined in (6).
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Proof: Using (9), we obtain

d1(Ψ(x),Ψ(y)) =

n
∑

i=2

|ψi(xi)− ψi(yi)|

≥
n
∑

i=2

dH(xi,yi)

= d(x,y).

C. The code construction: correcting up toO(n logn) number
of errors

Now we can formulate a general method to construct rank
modulation codes. We begin with a binary codeA of length
m and cardinalityM in the Hamming space.

Encoding algorithm (Construction II):

• Given a messagem encode it with the codeA. We obtain
a vectorx ∈ {0, 1}m.

• Write x = (x2|x3| . . . |xn), wherexi ∈ {0, 1}mi.
• Evaluateπ = J(Ψ(x))

This algorithm is of essentially the same complexity as the
encoding of the codeA, and if this latter code is linear,
is easy to implement, BothJ and Ψ are injective, so the
cardinality of the resulting code isM . Moreover, each of
the two mappings can only increase the distance (namely, see
(7) and the previous Proposition). Summarizing, we have the
following statement.

Theorem 8:Let A be a binary code of length

m = (n+ 1)⌊logn⌋ − 2⌊logn⌋+1 + 2,

cardinality M and Hamming distanced. Then the set of
permutations

Cτ =
{

π ∈ Sn : π = J(Ψ(x)),x ∈ A
}

forms a rank modulation code onn elements of cardinalityM
with distance at leastd in the Kendall spaceXn.

The resulting rank modulation codeCτ can be decoded to
correct anyt = ⌊(d−1)/2⌋ Kendall errors ift Hamming errors
are correctable with a decoding algorithm of the binary code
A. Namely, suppose thatσ′ is the permutation that represents
a corrupted memory state. To recover the data we perform the
following steps.

Decoding algorithm (Construction II):

• Construct the inversion vectorxσ′ . Form a new inversion
vector y as follows. Fori = 2, . . . , n, if xσ′(i − 1) ∈
[0, i−1] is greater than2mi−1 then putyσ′(i) = 2mi−1,
else putyσ′(i) = xσ′(i).

• Form a vectory ∈ {0, 1}m,y = (y2|y3| . . . |yn) where
yi ∈ {0, 1}mi is given byφi(yσ′(i)).

• Apply the t-error-correcting decoding algorithm of the
code A to y. If the decoder returns no result, the
algorithm detects more thant errors. Otherwise suppose
thaty is decoded asx.

• Outputσ = J(Ψ(x)).

The correctness of this algorithm is justified as follows.
Supposeσ ∈ Cτ is the original permutation written into the
memory, anddτ (σ, σ′) ≤ t. Let xσ be its inversion vector and
let x be its Gray image, i.e., a vector such thatΨ(x) = xσ.
By Lemma 4 and Prop. 7 we conclude thatdH(x,y) ≤ t, and
therefore the decoder of the codeA correctly recoversx from
y. Thereforeσ′ will be decoded toσ as desired.

Example: Consider at-error-correcting primitive BCH
codeA in the binary Hamming space of lengthm = (n +
1)⌊logn⌋ − 2⌊logn⌋+1 + 2 and designed distance2t + 1
(generally, we will need to shorten the code to get to the
desired lengthm). The cardinality of the code satisfies

M ≥ 2m

(m+ 1)t
.

The previous theorem shows that we can construct a set of
(n,M) rank modulation codes that correctt Kendall errors.
Note that, by the sphere packing bound, the size of any code
C ∈ Xn that correctst Kendall errors satisfies|C| = O(n!/nt).
The rank modulation codes constructed from binary BCH
codes have sizeM = Ω(n!/(logn!)t) = Ω(n!/(nt logt n)).

Specific examples of code parameters that can be obtained
from the above construction are given in Sect. IV.

Remark (Encoding into permutations):Suppose that the
construction in this section is used to encode binary messages
into permutations (i.e., the codeA in the above encoding algo-
rithm is an identity map). We obtain an encoding procedure of
binarym-bit messages into permutations ofn symbols. This
redundancy of this encoding equals1−m/ log(n!). Using the
Stirling formula, we have forn ≥ 1

logn! ≤ log(
√
2πn) + n logn−

(

n− 1

12n

)

log e

( [1], Eq. 6.1.38). Writingm ≥ (n+ 1)(logn− 1)− 2n+ 2,
we can estimate the redundancy as

1− m

logn!
≤ (3− log e)n

logn!
, n ≥ 2.

Thus the encoding is asymptotically nonredundant. The redun-
dancy is the largest whenn is a power of 2. It is less than
10% for alln ≥ 69, less than 7% for alln ≥ 527, etc.

D. CorrectingO(n1+ǫ) number of errors,0 < ǫ < 1/2

Consider now the case when the number of errorst grows
with n. Since the binary codes constructed above are of length
aboutn logn, we can obtain rank modulation codes inXn that
correct error patterns of Kendall weightt = Ω(n logn). But
in fact more is true. We need the following proposition.

Proposition 9: Let x,y ∈ {0, 1}m. Then

d1(Ψ(x),Ψ(y)) ≥ n− 1

2

(

2
dH(x,y)

n−1 − 1
)

.

Proof: Assume without loss of generality thatx 6= y. We
first claim that, for any suchx,y ∈ {0, 1}mi, the inequality
dH(x,y) ≥ wi ≥ 1 implies that |ψi(x) − ψi(y)| ≥ 2wi−1.
This is true because of the reflection property of the standard
Gray map as exemplified above.
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Now consider vectorsx = (x2|x3| . . . |xn),y =
(y2|y3| . . . |yn) in {0, 1}m wherexi,yi ∈ {0, 1}mi, 2 ≤ i ≤
n. Suppose thatdH(xi,yi) = wi for all i, and

∑n
i=2 wi = w

wherew = dH(x,y).
Hence,

d1(Ψ(x),Ψ(y)) =

n
∑

i=2

|ψi(xi)− ψi(yi)|

≥
∑

i:wi>0

2wi−1

=

n
∑

i=2

2wi−1 −
∑

i:wi=0

1

2

We do not have control over the number of nonzerowi’s, so
let us take the worst case. We have

n
∑

i=2

1

n− 1
2wi ≥ 2

∑
n
i=2

wi
n−1 = 2

w
n−1 .

As for
∑

i:wi=0
1
2 , use the trivial upper bound(n − 1)/2.

Together the last two results conclude the proof.
We have the following theorem as a result.

Theorem 10:Let C andCτ be the binary and rank modula-
tion codes defined in Theorem 8. Suppose furthermore that the
minimum Hamming distanced of the codeC satisfiesd = ǫm,
wherem is the blocklength ofC. Then the minimum Kendall
distance of the codeCτ is Ω(n1+ǫ).

Proof: We havelogn− 1 ≤ ⌊logn⌋ ≤ logn. Use this in
the definition ofm to obtain thatm ≥ n(logn−3). Therefore,
d = ǫm ≥ ǫn(logn − 3). From the previous proposition the
minimum Kendall distance ofCτ is at least

n− 1

2

(

2ǫn(logn−3)/(n−1) − 1
)

= Ω(n1+ǫ).

Examples of specific codes that can be constructed from
this theorem are again deferred to Sect. IV.

Let us analyze the asymptotic trade-off between the rate
and the distance of the codes. We begin with an asymptoti-
cally good family of binary codes, i.e., a sequence of codes
Ci, i = 1, 2 . . . , of increasing lengthm for which the rate
log |Ci|/m converges to a positive numberR, and the relative
Hamming distance behaves asǫm, where0 < ǫ < 1/2. Such
families of codes can be efficiently constructed by means of
concatenating several short codes into a longer binary code
(e.g., [21, Ch. 10]) Using this family in the previous theorem,
we obtain a family of rank modulation codes inSn of Kendall
distance that behaves asΩ(n1+ǫ), and of rateR (see (1)). The
upper limit of 1/2 on ǫ is due to the fact [21, p. 565] that no
binary codes of large size (of positive rate) are capable of
correcting a higher proportion of errors.

E. Correcting even more,O(n1+ǫ), errors, 1/2 ≤ ǫ < 1

It is nevertheless possible to extend the above theorem to
the case ofǫ ≥ 1/2, obtaining rank modulation codes of
distanceΩ(n1+ǫ), 1/2 ≤ ǫ < 1 and positive rate. However,
this extension is not direct, and results in an existential claim
as opposed to the constructive results above. To be precise,one

can show that for any0 ≤ ε < 1, there exist infinite families
of binary (m,M, d) codesC, with rateR = 1 − ǫ, such that
the associated rank modulation codeCτ for permutations of
[n] in Theorem 8 has minimum Kendall distanceΩ(n1+ε).

Theorem 11:For any0 < ǫ < 1, there exist infinite families
of binary (m,M) codesC such that(1/m) logM → 1− ǫ >
0, and the associated rank modulation codeCτ constructed
in Theorem 8 has minimum Kendall distance that scales as
Ω(n1+ǫ). Moreover all but an exponentially decaying fraction
of the binary linear codes are such.

The rank modulation codes described above have asymptot-
ically optimal trade-off between the rate and the distance.
Therefore, this family of codes achieves the capacity of rank
modulation codes (see [3, Thm. 3.1]).

To prove the above theorem we need the help of the
following lemma.

Lemma 12:Let 0 ≤ α ≤ 1 and letT ⊂ [m], |T | ≥ αm
be a coordinate subset. There exists a binary codeC of length
m and any rateR < α such that the projections of any two
codewordsx,y ∈ C,x 6= y on T are distinct. Moreover all
but an exponentially decaying fraction of binary linear codes
of any rate less thanα are such.

Proof: The proof is a standard application of the proba-
bilistic method. Construct a random binary codeC of length
m and sizeM = 2mR randomly and independently selecting
M vectors from{0, 1}m with uniform probability. Denote by
Ex,y the event that two different vectorsx,y ∈ C agree onT .
Clearly Pr(Ex,y) = 2−αm, for all x,y ∈ C. The eventEx,y
is dependent on at most2(M − 1) other such events. Using
the Lovász Local Lemma [2], all such events can be avoided,
i.e.,

Pr
(

⋂

x,y∈C

Ēx,y
)

> 0,

if

e2−αm(2M − 1) ≤ 1

or

M ≤ 2αm−1/e+ 1/2.

Hence as long asR < α, there exists a code of rateR that
contains no pairs of vectorsx,y that agree onT . This proves
the first part of the lemma.

To prove the claim regarding random linear codes chose a
linear codeC spanned by the rows of anmR×m binary matrix
G each entry of which is chosen independently withP (0) =
P (1) = 1/2. The codeC will not contain two codewords that
project identically onT if the mR× |T | submatrix ofG with
columns indexed byT has full rank. IfmR < |T | then a
givenmR×|T | sub-matrix ofG has full rank with probability
at least1 − 5 · 2−(|T |−mR)2 [11]. Thus if |T | grows at least
as T = mR +

√
m, the proportion of matricesG in which

the (mR × T ) submatrix is singular falls exponentially with
m. Even if each of these matrices generates a different code,
the proportion of undesirable codes will decline exponentially
with m.
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Proof of Thm. 11: Suppose thatx,y ∈ {0, 1}m where
m =

∑n
i=2mi andmi = ⌊log i⌋ as above in this section. Let

d1(Ψ(x),Ψ(y)) =

n
∑

i=2

|ψi(xi)− ψi(yi)| ≤ n1+ǫ

for some0 ≤ ǫ ≤ 1. Let 0 < β < 1. For at least a1 − β
proportion of indicesi we can claim that

|ψi(xi)− ψi(yi)| ≤
n1+ǫ

β(n− 1)
.

On the other hand, ifxi and yi have the same value in
the first ti of themi coordinates, then the construction of the
Gray map implies that|ψi(xi)−ψi(yi)| ≥ 2mi−ti . Hence for
at least a1− β fraction of thei’s,

2mi−ti ≤ n1+ǫ

β(n− 1)
,

i.e., ti ≥ mi − ǫ logn− log n
β(n−1) .

Therefore,x andy must coincide in a well-defined subset
of coordinates of size

⌈(1−β)(n−1)⌉
∑

i=2

ti ≥
⌈(1−β)(n−1)⌉

∑

i=2

(

mi − ǫ logn− log
n

β(n− 1)

)

=

⌈(1−β)(n−1)⌉
∑

i=2

⌊log i⌋

− ǫ(1− β)(n − 1) logn−O(n)

= m(1− ǫ−O(1/ logn)).

Invoking Lemma 12 now concludes the proof: indeed, it
implies that there exists a binary code of rate at least1 − ǫ
where no such pair of vectorsx andy exists. The claim about
linear codes also follows immediately.

F. Construction III: A quantization map

In this section we describe another construction of rank
modulation codes from codes in the Hamming space over an
alphabet of sizeq ≥ 2. The focus of this construction is on the
case when the number of errors is large, for instance, forms a
proportion ofn2.

The first result in this section serves as a warm-up for a more
involved construction given later. In the first construction we
use binary codes in a rather simple manner to obtain codes in
permutations. This nevertheless gives codes inXn that correct
a large number of errors. Then we generalize the construction
by using codes over larger alphabets.

1) Construction IIIA: Rank modulation codes from binary
base codes:Recall our notationGn for the space of inversion
vectors and the mapJ : Gn → Sn that sends them to
permutations. LetC ∈ {0, 1}n−1 be a binary code that encodes
k bits inton− 1 bits.

Encoding algorithm (Construction IIIA):

• Let m ∈ {0, 1}k be a message. Find its encodingb with
the codeC.

• Compute the vectorx = ϑ(b), whereϑ : {0, 1}n−1 →
Gn is as follows:

b = (b1, b2, . . . , bn−1)
ϑ7→ x = (x1, . . . , xn−1)

xi =

{

0 if bi = 0

i if bi = 1
, i = 1, . . . , n− 1.

• Find the encoding ofm asσ = J(x).

Theorem 13:Let C(n − 1,M, d ≥ 2t + 1) be a code in
the binary Hamming space and letCτ ⊂ Sn be the set
of permutations obtained from it using the above encoding
algorithm. Then the codeCτ ⊂ Sn has cardinalityM and
corrects anyr Kendall errors wherer = t2/4 if t ≥ 2 is even
andr = (t2 − 1)/4 if t ≥ 3 is odd.

Proof: To prove the claim about error correction, consider
the following decoding procedure of the codeCτ . Let π be a
permutation read off from memory.

Decoding algorithm (Construction IIIA):

• Find the inversion vectorxπ = (x1, . . . , xn−1).
• Form a vectory ∈ {0, 1}n−1 by putting

yi =

{

0 if xi ≤ ⌊i/2⌋
1 if xi > ⌊i/2⌋.

• Decodey with the codeC to obtain a codevectorc. If
the decoder returns no result, the algorithm detects more
than t errors.

• Compute the overall decoding result asJ(ϑ(c)).

Let σ be the original permutation, letxσ be its inversion
vector, and letc(σ) be the corresponding codeword ofC. The
above decoding can go wrong only if the Hamming distance
dH(c(σ),y) > t. For this to happen theℓ1 distance between
xπ and xσ must be large, in the worst case satisfying the
condition d1(xπ,xσ) >

∑t
i=1⌊i/2⌋. This gives the claimed

result.
From a binary code in Hamming space of rateR that

corrects anyτn errors, the above construction produces a rank
modulation codeCτ of size2Rn that is able to correctΩ(n2)
errors. The rate of the obtained code equals≈ R(logn)−1.
According to Theorem 1 this scaling is optimal for the
multiplicity of errors considered. Some numerical examples
are given in Sect. IV.

2) Construction IIIB: Rank modulation codes from nonbi-
nary codes:This construction can be further generalized to
obtain codes that are able to correct a wide range of Kendall
errors by observing that the quantization map employed above
is a rather coarse tool which can be refined if we rely on codes
in the q-ary Hamming space forq > 2. As a result, for any
ǫ < 1 we will be able to construct families of rank modulation
codes of rateR = R(ǫ) > 0 that correctΩ(n1+ǫ) Kendall
errors.

Let l > 1 be an integer. LetQ = {a1, a2, . . . , aq} be the
code alphabet. Consider a codeC of lengthn′ = 2(l−1)(q−1)
over Q and assume that it corrects anyt Hamming errors
(i.e., its minimum Hamming distance is at least2t + 1). Let
n = (2l+1)(q− 1). Consider the mappingΘq : Q

n−1 → Gn,
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defined asΘq(b) = (ϑ1(b1), ϑ2(b2), . . . , ϑn−1(bn−1)), b =
(b1, . . . , bn−1) ∈ Qn−1, where

ϑi(aj) =



















0 if i < 3(q − 1)

(2k − 1)(j − 1) if (2k − 1)(q − 1) ≤ i

< (2k + 1)(q − 1)

k = 2, 3, . . . , l,

j = 1, 2, 3, . . . , q.

To construct a rank modulation codeCτ from the codeC
we perform the following steps.

Encoding algorithm (Construction IIIB):

• Encode the messagem into a codewordc ∈ C

• Prepend the vectorc with 3(q − 1)− 1 symbolsa1.

• Map the obtained(n−1)-dimensional vector toSn using
the mapJ ◦Θq.

The properties of this construction are summarized in the
following statement.

Theorem 14:Let n′ = 2(l − 1)(q − 1), n = (2l + 1)(q −
1), l ≥ 2. Let C(n′,M, d = 2t + 1) be a code in theq-
ary Hamming space. Then the codeCτ ⊂ Sn described by
the above construction has cardinalityM and corrects anyr
Kendall errors, where

r = (t+ 1− (q − 1)s)(s+ 1)− 1

ands = ⌊(t+ 1)/(2(q − 1))⌋, s ≥ 0.

Proof: We generalize the proof of the previous theorem.
Let π be the permutation read off from the memory.

Decoding algorithm (Construction IIIB):

• Find the inversion vectorxπ = (x1, . . . , xn−1).
• Form aq-ary vectory by putting

yi =































a1 if i < 3(q − 1)

aj if (2k − 1)(q − 1) ≤ i < (2k + 1)(q − 1)

and (2k − 1)(j − 1)− (k − 1) ≤ xi

≤ (2k − 1)(j − 1) + k,

k = 2, 3 . . . , l

for i = 1, . . . , n− 1.
• Decodey′ = (y3(q−1), . . . , yn−1) with the codeC to

obtain a codevectorc. If the decoder returns no results,
the algorithm detects more thant errors.

• Find the decoded permutation asσ = J(Θq(c)).

There will be an error in decoding only wheny′ contains at
leastt+ 1 Hamming errors.y′ contains coordinates3(q − 1)
to n− 1 of y. Suppose thattj , 1 ≤ j ≤ l− 1 is the number of
Hamming errors in coordinates between(2j + 1)(q − 1) and
(2j+3)(q− 1). We have

∑l−1
j=1 tj ≥ t+1 andtj ≤ 2(q− 1).

The ℓ1 distance between the received and original inversion

vectors equals

l−1
∑

j=1

jtj ≥ min
tj≤2(q−1)
∑

j
tj≥t+1

l−1
∑

j=1

jtj

= 2(q − 1)(1 + 2 + · · ·+ s)

+ (t+ 1− 2(q − 1)s)(s+ 1)

= (q − 1)s(s+ 1) + (t+ 1− 2(q − 1)s)(s+ 1)

= (t+ 1− (q − 1)s)(s+ 1).

In estimating the minimum in the above calculation we have
used the fact that the smaller-indexedtj ’s should be given the
maximum value before the higher-indexed ones are used.

Therefore if the ℓ1 distance between the received and
original inversion vectors is less than or equal tor then
decodingy′ with the codeC will recover xσ. Using (7) we
complete the proof.

Asymptotic analysis:For large values of the parameters we
obtain that the number of errors correctable byCτ is

r ≈ t2

4q

or, in other words,d(Cτ ) ≈ d2/8q. In particular, ifd = n′δ and
q = O(n1−ǫ), 0 < ǫ < 1, then we getd(Cτ ) = Ω(n1+ǫ). If the
codeC has cardinalityqRn′

then|Cτ | = qRn′

= qR(n−3(q−1)).
Using (1) yields the value(1 − ǫ)R for the rate of the code
Cτ . This is only by a factor ofR less than the optimal scaling
rate of (4). To achieve the optimal asymptotic rate-distance
trade-off one need to use aq-ary code of rate very close to
one and non-vanishing relative distance; moreoverq needs to
grow with code lengthn asn1−ǫ.

To show an example, let us take the family of linear codes
on Hermitian curves (see e.g., [4, Ch. 10]). The codes can be
constructed over any alphabet of sizeq = b2, where b is a
prime power. Letu be an integer,b+1 ≤ u < b2− b+1. The
lengthn′, dimensionk and Hamming distanced of the codes
are as follows:

n′ = b3+1, k = (b+1)u−(1/2)b(b−1)+1, d ≥ n′−(b+1)u.

In the next section we will give a few examples of codes
with specific parameters. For the moment, let us look at the
scaling order ofR andr as functions of the length of the codes
Cτ obtained from the above arguments. We haven ≈ qb, so
q ≈ n2/3, and

R =
k

n′
=

(b+ 1)u− (1/2)b(b− 1) + 1

b3 + 1
,

d

n′
≥ b3 − (b+ 1)u

b3 + 1
.

Let us chooseu = b2/2, which givesR ≈ 1
2α and δ ≈ 1

2α,
whereα = 1−O(1/b). Finally, we obtain that the rate of the
codesCτ behaves as

log qRn′

logn!
=

2

3
R(1− o(1))

and the number of correctable Kendall errors isr ≈
(1/64)n4/3, which gives the scaling order mentioned in the
previous paragraph forǫ = 1/3.
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By taking u = b1+γ , for 0 < γ < 1, and by shortening the
Hermitian code to the lengthλ(b + 1)u, for λ > 1 arbitrarily
close to 1 we obtain a code with rate arbitrarily close to
1 with relative minimum distance equal to1 − 1/λ. This
yields asymptotically optimal scaling, in the sense definedin
section I, for values ofǫ that range in the interval(0, 1/3). For
values ofǫ in the range(1/3, 1), families of codes with optimal
scaling can similarly be constructed by starting from Algebraic
Geometry codes with lengths that exceed larger powers of
q than q3/2, for instance, codes from the Garcia-Stichtenoth
curves or other curves with a large number of rational points.

Another general example can be derived from the family
of quadratic residue (QR) codes [21]. Letp be a prime, then
there exist QR codes overFℓ of length n′ = p, cardinality
M = ℓ(p+1)/2 and distance≥ √

p, whereℓ is a prime that
is a quadratic residue modulop. Using them in Theorem 14
(after an appropriate shortening), we obtain rank modulation
codes inSn, wheren = p + 3(ℓ − 1), with cardinalityM
and distanced(Cτ ) = Ω(p/ℓ). Let us take a sufficiently large
prime p and letℓ be a prime and a quadratic residue modulo
p. Suppose thatℓ = Θ(p

1
2−α) for some smallα > 0. Pairs of

primes with the needed properties can be shown to exist under
the assumption that the generalized Riemann hypothesis is true
(see e.g. [18]). Using the corresponding QR codeC in Theorem
14, we obtainn = p + 3(ℓ − 1) = Θ(p), d(Cτ ) = Θ(n

1
2+α)

and logM = Θ(n2 (
1
2 − α) logn), giving the rate1

2 (
1
2 − α).

Although this trade-off does not achieve the scaling order of
(4), it still accounts for a good asymptotic family of codes.

IV. EXAMPLES

Below Cτ refers to the rank modulation code that we are
constructing,M = |Cτ |, and t is the number of Kendall
errors that it corrects. We write the code parameters as a
triple (n, logM,d) whered = 2t + 1. In the examples we
do not attempt to optimize the parameters of rank modulation
codes; rather, our goal is to show that there is a large
variety of constructions that can be adapted to the needs of
concrete applications. More codes can be constructed from
the codes obtained below by using standard operations such as
shortening or lengthening of codes [3], [15]. Note also thatthe
design distance of rank modulation codes constructed below
may be smaller than their true distance, so all the values of the
distance given below are lower estimates of the actual values.

From Theorem 3 we obtain codes with the following
parameters. Letq = 2l, then n = q − 1 and logM ≥
l⌊log(q − 2t − 2)⌋. For instance, letl = 6, then we ob-
tain the triples(63, 30, 31), (63, 24, 47), etc. Taking l = 8,
we obtain for instance the following sets of parameters:
(255, 56, 127), (255, 48, 191).

Better codes are constructed using Theorem 8. Let us take
n = 62, thenm = 253. Taking twice shortened BCH codes
Bt of lengthm, we obtain a range of rank modulation codes
according to the designed distance ofBt. In particular, there
are rank modulation codes inX62 with the parameters

(62, 253− 8t, 2t+ 1), t = 1, 2, 3, . . . .

Similarly, takingn = 105, we can construct a suite of rank
modulation codes from shortened BCH codes of lengthm =

510, obtaining codesCτ with the parameters

(105, 510− 9t, 2t+ 1), t = 1, 2, 3, . . . .

We remark that for the case oft = 1 better codes were
constructed in [15]. Namely, there exist single-error-correcting
codes inSn of sizeM ≥ n!/(2n). For instance, forn = 62
this givesM = 2277.064 as opposed to ourM = 2245. A
Hamming-type upper bound onM has the form

M(t) ≤ n!
∑t

i=0Kn(i)

where

Kn(0) = 1

Kn(1) = n− 1

Kn(2) = (n2 − n− 2)/2

Kn(3) =

(

n+ 1

3

)

− n

(see e.g., [17, p.15] which also gives a general formula for
Kn(i) for i ≤ n). The codes constructed above are not close
to this bound (note however that, except for smallt, Hamming-
type bounds are usually loose).

Now let us use binary BCH codes in Theorem
13. Starting with codes of lengthn′ = 63, 255 we
obtain rank modulation codes with the parameters
(64, 36, 13),(64, 30, 19),(64, 24, 25),(64, 18, 51),(64, 16, 61),
(64, 10, 85), (256, 215, 13), (256, 207, 19), (256, 199, 25),
(256, 191, 33), etc. These codes are not so good for a
small number of errors, but become better as their distance
increases.

Finally consider examples of codes constructed from The-
orem 14. As our seed codes we consider the following
possibilities: products of Reed-Solomon codes and codes on
Hermitian curves.

Let us takeC = A⊗ B, whereA[15, 9, 7] andB[14, 3, 12]
are Reed-Solomon codes overF16. Then the codeC has length
n′ = 14 · 15 = 210, (so l = 8), cardinality1627 = 2108 and
distance84, so t = 41. From Theorem 14 we obtain a rank
modulation codeCτ with the parameters(n = 255, logM =
108, d ≥ 107). Some further sets of parameters for codes of
lengthn = 255 obtained as we varydim(B) are as follows:

dim(B) 4 5 6 7 8
logM 144 180 216 252 288

d 95 79 67 55 49

The code parameters obtained forn = 255 are better than
the parameters obtained for the same length in the above
examples with binary BCH codes, although decoding product
RS codes is somewhat more difficult than decoding BCH codes
On the other hand, relying on product RS codes offers a great
deal of flexibility in terms of the resulting parameters of rank
modulation codes.

We have seen above that Hermitian codes account for some
of the best asymptotic code families when used in Theorem
14. They can also be used to obtain good finite-length rank
modulation codes. To give an example, letC be a projective
Hermitian code of length4097 overF28 . We havedim(C) =



11

17a − 119, d(C) ≥ 4097 − 17a for any integera such that
17 ≤ a ≤ 240; see [4, p. 441]. Let us delete any 17 coordinates
(puncture the code) to get a codeC′ with

n′ = 4080 = 16(q − 1),

dim(C′) = dim(C),
dH(C′) ≥ n′ − 17a.

We haven = n′+3(q−1) = 4845. For a ∈ {60, . . . , 100} we
obtain a suite of rank modulation codes with the parameters
(n, 7208, 6119), (n, 7344, 6071), . . . , (n, 12648, 4079).

As a final remark, note that most existing coding schemes
for the Hamming space, binary or not, can be used in one or
more of our constructions to produce rank modulation codes.
The decoding complexity of the obtained codes essentially
equals the decoding complexity of decoding the original codes
for correcting Hamming errors or for low error probability.
This includes codes for which the Hamming distance is not
known or not relevant for the decoding performance, such as
LDPC and polar coding schemes. In this case, the performance
of rank modulation schemes should be studied by computer
simulations, similarly to the analysis of the codes used as
building elements in the constructions.

V. CONCLUSION

We have constructed a number of large classes of rank
modulation codes, associating them with binary andq-ary
codes in the Hamming space. If the latter codes possess
efficient decoding algorithms, then the methods discussed
above translate these algorithms to decoding algorithms of
rank modulation codes of essentially the same complexity.
Our constructions also afford simple encoding of the data
into permutations which essentially reduces to the encoding
of linear error-correcting codes in the Hamming space. Thus,
the existing theory of error-correcting codes can be used to
design practical error-correcting codes and procedures for the
rank modulation scheme.

A direction of research that has not been addressed in
the literature including the present work, is to construct an
adequate model of a probabilistic communication channel that
is associated with the Kendall tau distance. We believe thatthe
underpinnings of the channel model should be related to the
process of charge dissipation of cells in flash memory devices.
Once a reasonably simple probabilistic description of the error
process is formally modelled, the next task will be to examine
the performance on that channel of code families constructed
in this work.
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