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Abstract

We determine the optimal entanglement rate of quantum state merging when assuming that the
state is unknown except for its membership in a certain set of states. We find that merging is possible
at the lowest rate allowed by the individual states. Additionally, we establish a lower bound for the
classical cost of state merging under state uncertainty. To this end we give an elementary proof for
the cost in case of a perfectly known state which makes no use of the “resource framework”. As
applications of our main result, we determine the capacity for one-way entanglement distillation if the
source is not perfectly known. Moreover, we give another achievability proof for the entanglement
generation capacity over compound quantum channels.
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1 Introduction

Quantum state merging was introduced by Horodecki, Oppenheim, and Winter [19] 20] in order to quan-
tify the amount of partial quantum information contained in bipartite quantum states. L.e. for a bipartite
ii.d. quantum source with generic state pap shared by communication parties A (“sender”) and B (“re-
ceiver”), we want to know how much quantum communication is needed per copy when transferring A’s
share to B so that source output is completely available to B.

A convenient way of measuring quantum communication within this scenario is quantifying the entan-
glement cost (cf. Ref. [20]): The parties A and B are free to use local operations together with certain
exchange of classical messages (LOCC) and moreover they may use preexistent pure entanglement. The
protocol performs state merging and produces/returns pure entanglement. The optimal rate for this task
was determined in Ref. [20] as the conditional von Neumann entropy S(A|B). In this way, the conditional
von Neumann entropy obtains an operational interpretation as the net amount of entanglement resources
needed to merge the states. Moreover, the puzzling fact that for some states S(A|B) < 0 can occur can
be interpreted naturally within the state merging paradigm: Merging protocols achieving negative rates
produce rather than consume entanglement during the process.

Additionally, the optimal (i.e. the lowest possible) classical communication rate for a merging procedure
achieving quantum rate S(A|B) was determined in Ref. [20] as well. It turned out that I(A; E), the
quantum mutual information between the A-part and an environment purifying pap is optimal in this
case.

Another important aspect is that many other protocols can be derived (mostly by reduction) from quan-
tum state merging. Here we just mention some of the examples from [20] like distributed compression,
quantum source coding with side information at the decoder, and entanglement generation over quantum
multiple access channels.

However, these results rely on the assumption of idealized conditions. The authors of Ref. [20] assumed
the source to be memoryless and perfectly known. Both of these conditions will hardly be fulfilled in
real-life communication settings.

In this paper, we drop the second condition and determine the optimal average cost of entanglement per
copy under partial ignorance of the state to be merged. We consider a scenario, where statistical proper-
ties of the ensemble emitted by the source are not perfectly known to the merging partners. Rather it is
assumed, that they only know that the state belongs to a certain set of states. Thus they have to use a
protocol which works well for every member of this set. This model can be seen as a source analogue to
the notion of compound quantum channels which were considered in Refs.[7] and [§].

Our main technical result is a generalization of the original one-shot bound given in Ref. [20], which
respects state uncertainty. The question of the optimal classical communication cost in this case is ad-
dressed as well.

The results of this paper gather their relevance from the fact, that other related communication protocols
can be obtained by modifying state merging protocols. Our generalization to sets of states can be used
to generate protocols which are successful in the corresponding “compound” scenarios. These in turn
are stepping stones to tackle the much more involved “arbitrarily varying” models. If one considers, for
example, the problem of determining capacities of arbitrarily varying channels, it is well known that good
codes for particular compound channels can be transformed in good random codes for arbitrarily varying



channels via Ahlswede’s robustification technique [3]. The robustification technique can be applied in the
quantum case as well. It is exactly this idea that was employed in Ref. [4] in order to determine the
random code capacity for entanglement transmission over arbitrarily varying quantum channels. This in
turn can be used to show that either the deterministic classical capacity of the arbitrarily varying quantum
channel is zero or the deterministic and random code capacities for entanglement transmission of these
channels are equal, a quantum version of Ahlswede’s famous dichotomy [2].

We mention this here, because this is up to date the only method allowing us to prove such results. The
ingenious and very direct method to prove the coding theorem for classical arbitrarily varying channels
developed by Csiszér and Narayan [I1] does not carry over to the quantum case.

1.1 Related work

The present result relies, as it was in the single state case, on a variant of the so-called decoupling ap-
proach, an idea which originally appeared in Ref. [25] and was successfully applied to several scenarios.
The idea is, in short, to consider not only the bipartite states to merge, but purifications of them, where
the purifying systems are not allowed to be affected by A or B. In this way, the question of success of the
procedure is broken down to successful decoupling of the subsystems under control of A from the purifying
environment. Techniques which were developed earlier 7] 8] for proving coding theorems for compound
quantum channels based on the decoupling approach, can be used here as well.

The quantum state merging protocol can be further generalized, by replacing the classical communica-
tion channels involved by quantum channels. This leads to the so-called fully quantum Slepian Wolf or
“mother” protocol [I], which together with a corresponding “father” protocol forms the head of a whole
hierarchy of quantum protocols.

1.2 Outline

In Section 2 we provide precise definitions for the model considered in this work. At the end of the
section, our main result is stated. Section [B] contains the technical groundwork for the proof of our main
result. There, we generalize the original one-shot result for single states from Ref. [20] to the case, where
the set of possible states to merge is finite. With these results at hand, we prove our main result in Section
[ where we first establish the direct part in case that the set of possible states to merge is finite. Then
we extend this result to arbitrary sets of states using finite approximations in the set of quantum states.
The converse statement directly carries over from the known result for single states. Section [Blis devoted
to the classical communication cost of quantum state merging. There we review the single state case and
add an elementary proof to the corresponding result from Ref. [20]. Unfortunately, the protocol class used
to establish the achievability proof for the quantum cost turns out to be too narrow. We point out, that
contrary to the single state case, it is suboptimal regarding the classical communication requirements.
We conclude our work by demonstrating some applications of our main result in Sect. [6] where we deter-
mine the entanglement distillation capacity in case, that the source from which is distilled is not perfectly
known. Finally, we give another proof for the direct part of the entanglement generation coding theorem
for compound quantum channels. There we use the correspondence between distillation of entanglement
from quantum states and entanglement generation over quantum channels.

1.3 Notations and Conventions

All the Hilbert spaces which appear in this work are assumed to be finite dimensional and over the field
of complex numbers. For any two Hilbert spaces H and K, B(#, ) denotes the set of linear operators
mapping H to K and B(H) denotes the set of linear operators on H. The set of states (i.e. positive
semidefinite operators of trace one) on H is denoted by S(H). With a Hilbert space K, the set of channels
(i.e. completely positive (cp) and trace preserving maps) from B(H) to B(K) is denoted by C(H, K), the
set of trace non-increasing cp maps by C+(#H,K). With a little abuse of notation, we write idy, for the



identical channel on B(H). Because we mainly deal with systems containing several relevant subsystems,
we freely make use of the following convention: An Hilbert space Hxyz is always thought to be the
space of a composite system consisting of systems with Hilbert spaces Hx, Hy and Hz. We use a similar
notation for states of composite systems. A state denoted pxy for instance is a bipartite state with
marginals px and py and so on. Pure states on H are identified with state vectors, e.g. the symbol
sometimes denotes the state |¢) (1| and sometimes a state vector ¢ € H corresponding to |¢) (¢)|. The
fidelity is defined by

F(p.o) = [lVpvol

for quantum states p and o on a Hilbert space H. We frequently use the fact that if one of the input
states is pure, the fidelity takes the form of an inner product

F(p, [¢) () = (&, pt) . (1)
For other properties of the fidelity see Ref. [2I]. The von Neumann entropy of a state p is defined

S(p) == —tr(plogp)

where log(:) denotes the base two logarithm throughout this work (accordingly exp(-) is defined to base
two as well). For certain other information quantities we choose a notation which indicates the states on
which they are evaluated. For a state pxy on Hxy we denote the quantum mutual information by

I(X;Y, pxy) = S(px) + S(py) — S(pxv),
and the conditional von Neumann entropy by
S(XVY, pxy) == S(pxy) = S(py)-
For a channel N € C(H,K) and and a state p € S(H), the coherent information is denoted by
Le(p, N) := S(N(p)) = S((idwn @ N)(0) (#]));

where ¢ is an arbitrary purification of p on ‘H ® H. We further denote the hermitian conjugate of an
operator a by a* and the complex conjugate of a complex number z by Z. We use [N] as the shortcut for
the set {1,...,N} for N € N.

Concluding this section, we specify the notion of one-way LOCC channels. As references, we recommend
Ref. [22] (were the following definitions can be found stated in the Heisenberg picture), and the more
recent treatment Ref. [9]. Readers not familiar with LOCC channels may also consult the appendix on
the same topic included in this paper, where the following definitions are stated more extensively.

A quantum instrument (or just instrument) on a Hilbert space H can be defined as a family {7z }2_, C
C*(H,K) of trace non-increasing cp maps with an output space K such that their sum is a channel, i.e.
Zszl Ti(+) is trace preserving. We will only consider finite families (i.e. D finite) in this paper. For
bipartite Hilbert spaces Hap and Kap, a channel N € C(Hap,Kap) is called an LOCC channel with
one-way classical communication from A to B (or A — B one-way LOCC for short), if it is a combination
of an instrument {A;}2_; C CH(Ha,K4) on A’s systems and a family of quantum channels {B;}£_, on
B’s systems in the following manner. To each member A, of the instrument there is assigned a channel
By resulting in the form

D
N(p) =2 Av® Bi(p) (p € S(Hap)). (2)
k=1

The interpretation of () is, that B chooses a channel for his system which depends on which of the D
operations has been realized on A’s system.

The amount of A — B classical communication required for application of M is therefore determined by
the possible measurement outcomes assigned to the operations A1, ..., Ap, i.e. a message of lenght [log D]
bits has to be communicated.



2 Definitions and main result

Let X C S(Hag) be a set of bipartite states with subsystems distributed to (possibly) distant communi-
cation partners A and B. An (I, k;)-merging for X is an one-way LOCC channel

M2 B(KS5) ® B(HSR) = B(Khp) © B(HE ),

with local operations on the A- and the B-subscripted spaces and classical A — B communication, where
Ky ~ K% for i = 0,1 and k; := dim K9/ dim K. A real number R is called an achievable entanglement
rate for X, if there exists a sequence of (I, k;)-mergings with

1. limsuptlog(k;) < R
l—o0

2. InfF(My @ idy g0 (9h ® V{5 p), &) © VEipp) — 1 for I — oo,
P

where ¢}, € S (IC%B) and ¢} € S (ICZ’fB) are maximally entangled states on their spaces. We demand that the
Schmidt ranks of these states do not grow more than exponentially fast for [ — oo, i.e. dim IC?L"Z, dim IC}L"Z <
2!¢ for all I € N and some constant C' > 0. Note that the fraction dim IC%J / dim ICZJ equals, by definition,
the fraction of the Schmidt ranks of the input and output entanglement resources ¢}, and ¢!. Therefore,
the expression %log(kl) corresponds to the number of maximally entangled qubits (ebits) per input copy
consumed (or gathered) by the action of M.

The infimum in the second condition is evaluated over a set X}, which contains a purification Y 4pg on a
space Happ for each pap in X. ¥ g is the state 1 app where the A-part is located on a Hilbert space
‘Hp under B’s control. The fidelity measure in[2l) is independent of the choice of the purifications (which
will be shown in the next section). We frequently use the abbreviation

Fr(pap, M) := F(M ®idy; (¢o @ YaBE), 1 ® Ve BE)

for a state pap and a merging channel M for psp and frequently not specify the space Hg explicitly.
The maximally entangled input and output states ¢g and ¢, are considered to be determined by M. The
optimal entanglement rate C, (X)), i.e.

Cn(X) :=1inf{R: R is an achievable entanglement rate for X'}

is called the merging cost of X.
The main result of this paper is the following theorem, which quantifies the merging cost of any set X of
bipartite states.

Theorem 1. Let X C S(Hap) be a set of states on Hap. Then

Cm(X) = sup S(A|B;p) (3)

holds.

To prove the achievability part of the above Theorem [I] we show that we find universal protocols
for state merging within the class of LOCC operations which was used by the authors of Ref. [20]. We
give a brief outline of our proof of Theorem Il In Sect. Bl we state and prove some important facts
about the fidelity measure under consideration. We follow this path and recall the decoupling lemma
given in Ref. [20] in Sect. On this basis we establish a one-shot bound for finite sets of states
in Section To this end we utilize techniques developed in Refs. [7] and [8] for proving coding
theorems for compound quantum channels. In Sect. [A.2 we provide the direct part of our merging
theorem for finite sets of states and extend these results to arbitrary sets in Sect. B3l The converse
theorem easily carries over from the one given in Ref. [20], and we just provide the missing link in Sect. L4l



3 One-shot result

3.1 Properties of the fidelity measure
In this section we aim to prove some important properties of the merging fidelity.

Lemma 1. Let M : B(K% 5 @ Hap) = B(K4p @ Hp'p) be a channel, ¢po € S(K%p). and ¢1 € S(Kh4p)

maximally entangled states. Then the following assertions hold

1. For any state pap € S(Hap) on Hap with purification Yvapr € S(Hagr),

z
FM ®idy, (0o @ YaBE), 1 @ ¥UpBE) = Z ltr(p.pap)|?
z=1

holds, where p1,...pz are elements of B(Hag) which depend on M, ¢y and ¢1.

2. Merging fidelity is a convex function of the input state. For any two states p1 and p2 on Hap and
A€ 0,1]

Fn(Ap1 + (1= X)p2, M) < A (pr, M) + (1 = A) E(p2, M)
holds.
Proof. Let

Z
M() = ma()m?

be a Kraus decomposition of M with operators m, € B(IC%B ® HAB,IC}L,B ® Hpp) for every z €
{1,...,Z}. We define channels ¥V and W which incorporate the input and output states ¢y and ¢;.
Let V € C(Hap,KY 5 ® Hp ) be the channel constituted by Kraus operators v, € B(Hap, K4z @ Hp B)
defined by

0,2 = my(Po ® x)
for every 1 <2< Z, x € Hap and W(-) := w(-)w* with
wz = ¢ @ (U ® ]]-'HB)J;

for every x € Hap. Here, U € B(Ha,Hp:) is the isometry which identifies Ha and Hp. With these
definitions at hand we have

F(M ®idy,(¢o @ YaBE), »1 @ Yp/BE)

F(V ®idy,(YaBe), W ®idy, (VABE))
z

(W @ L), (V2 @ Lagy) [) (Y] (V2 @ L) (0 @ Ly )9) - (4)

z=1

The r.h.s. of @) is due to the fact that the fidelity admits a representation in terms of an inner product
if one of the inputs is pure, see eq. (). Each of the summands on the r.h.s. of eq. (] can be written as

(W, (W'vy @ L) [9) (Y] (Vw @ Lag)) = (O, (W v, @ Ly )Y0) (b, (W v, @ Loy )1)
= [tr((w*v: ® L3) [¥) (W)I?
= |tr(w*v.pas)|®. (5)




Inserting the r.h.s. of eq. () into (@) yields

z
F(M ®idy,(¢o @ YaBE), o1 @ Y BE) = Z ltr(w*v.pas)|?,
z=1

which is the desired result, if we set p, = w*v, for every z. The second assertion of the lemma is a direct
consequence of the first one together with the fact that the fidelity takes only values in [0, 1]. O

3.2 Protocol and decoupling for single states

In this section we briefly recall a result given in Ref. [20] which marks the starting point for our investiga-
tions. Fortunately, the protocol constructed there, which is of relatively simple structure, can be modified
for our purposes. Let dg be the dimension of the Hilbert space H4. For an integer 0 < L < d4 we use
the term L-merging if we speak of a channel

M :B(Hap) = B(Kap) ® B(Hp'B)

which is of the form

D
M(p) = ar ® ur(p)ai ® uj, (6)

k=0

for every p € S(Hap). Here D is defined D := |44 | and K4 and Kp are Hilbert spaces with dim K4 =
dimKp =L and K4 C H 4 is a subspace of H 4, where

o {ax}P_, C B(Ha,Ka)is aset of rank L partial isometries (except ag which has rank dq —L-D < L)
with pairwise orthogonal initial subspaces (in the following, we call such channels L-instrument for
short).

o {ug}P , C B(Hp,Kp ® Hpp) is a family of isometries.

We abbreviate the corresponding operation with Ay := ax(-)a; for every k. Let ¥ app be a purification
of pap on a Hilbert space Hapg. For notational simplicity we define abbreviations

pr = tr(agpaay) and Ph g o= tra, (Ar ® idy, (YaBE)).

for every k € {0, ..., D}. The following lemma is taken from Ref. [20], we repeat it here including a sketch
of the proof which we give for the convenience of the reader.

Lemma 2 (cf. Ref. [20], Prop. 3). Let pap be a bipartite state on Hap and {ax}t_, C B(Ha,Ka) an
L-instrument. There exists a family {uy}£_, of isometries completing {ay}_, to an L-merging M which
satisfies

F(M @ idy, (Yapp), ¢ @ Yppe) > 1—Q,

) : (7)
1

Here, the state ¢y, is mazimally entangled on Kap and 7p, denotes the mazimally mized state on K4 (i.e.

where Q is defined by

. L
PAE — 5= TL & PE
da

i D
Q1—2<po+z

k=1

T = LCTA).



In the following proof, the well known relations (see Ref. [17])
F(p,o)=1—p—oli and (8)
lp— ol <2¢/1—F(p,0) (9)
between trace distance and fidelity of any two states p and ¢ on a Hilbert space H are used.

Proof. For every k, 0 < k < D, the (sub-normalized) state Ay ® idy (Y apg) is a purification of ple and
¢ ®vYp pE is a purification of 7, ® pp. These facts and Uhlmann’s theorem [27] (see Ref. [2] for the finite
dimensional version) guarantee that for every k € {0, ..., D} there exists an isometry uy : Hg — KpQHp'p
satisfying

F(A, @ Uy, @ idy, (b aBr), o1 @ Y pE) = F(php 7L ® pR), (10)

where Uy (-) = up(-)uy. The rest is mostly done by lower bounding the fidelity in terms of the trace
distance. Given the case that py > 0 for k, using (8) we have

1
F(plziXEuﬂ—L ®pE) = ka (p_kpljﬁEuﬂ—L ® pE)
> pr — [l — pre7r @ pilh- (11)

In case that py = 0 for k, F(p% g, 7 ® pr) = 0. Taking the sum over all k we arrive at

D D
F (Z A @ Uy, @ idy, (YaBE), o1 @ 1/UE;/BE) =Y F(phip:m ® pp) (12)
k=0 k=0
D
> 1= |lphs — e ® pelh (13)
k=0
D
>1—2po— Y o —peme @ pilr. (14)
k=1

Eq. (I2) follows from the linearity of the fidelity in one of the inputs given the other one is pure and ([I0Q)).

For ([I3) we used () along with the fact that ZkD:O Ay is a channel implying >, pr = 1. The r.h.s. of
(@) holds because the trace distance of any two states is upper bounded by 2 which ensures

p%E — Pomr @ prll1 < 2po.

It remains to show that ||p% 5 — pemr @ pelli < 2+ [|p8E — %WL ® pg|1, which can be seen as follows. It
holds that

L L
0 — pemr ® pellr < llphe — 7 @ pell + Pk — |
dA dA

L
<2-|php - 7.7 ® pEll1,
A
where the first inequality is obtained by adding a zero and applying the triangle inequality together with
the fact that every quantum state has trace norm one. The second line is by monotonicity of the trace
norm under the action of channels. O



3.3 One shot bound for finite sets of states

In this section we consider a finite set X := {pAB,i}£i1 of states on Hap and derive a bound for the
minimal merging fidelity of the states in X which is based on Lemma@l The main ingredient for the proof
is the observation, that a good merging scheme for the averaged state

N
_ 1
PaB = 7 EpAB,i (15)

will be good for every single member of X'. This is due to convexity of the merging fidelity (see Lemma
). Now let ¢ apg; be any purification of pap; on Hapg for every i € [N]. The state

_ _ 1 X
[Yapr) Wasrl = N Z lYaBE.) (YaBE,j| @ |ei) (el (16)

i,7=1

with {e;}¥, being an orthonormal basis in C¥ is a purification of p45 on Hapr with Hp := Hrp @ CV.
The following lemma provides a lower bound for the fidelity of an L-merging of p, 5 in terms of quantities
determined by the states in X.

Lemma 3. Let {pap i} be a set of states on Hap. Then for the corresponding averaged state p,p and
purifications YApg.1, .., Yape.N, Lemmald also holds with Q) replaced by

Q=2 p0+%z ST /Liy T
k=11i,j=1
where Lyj := L - min,,c; jy{rank(pg,m)} and
Ti(jk) = HPZE,ij - %WL @ PE.ij z
Here we used the definitions
VaBE,ij = [YaBEi) (VaBEj|s PEij = tTu,s (YaBE,ij), and

p]ZE,ij =t ((ak ® ]]'HBE)wABE,ij (az ® ]]-HBE))
fori,j € [N],k € [D].
Proof. Define
PR = TH,p (EABR)? and EZR =y, ((ak ® ]]‘HBR)EABR(G’Z ® ]lHBR))

for every k € [D]. We bound the trace distance terms on the r.h.s. of ([@) for pap with its purification



introduced in eq. (IG). Explicitly, for every k € [D], we have
HPAR TaTL® PRH

@[ 1 < L
a
=lw > {Pﬁxmj T ®pE7iJ} ® les) (€5

ij=1 L

L
{plixE,ij e PE,z'g} ® les) (e;]

1,j=1 1
©1 <L 4 L
< N Z PAEij — EWL @ PE,ij )
7,7=1
@1 & .
= N ”2:1 Tt ©Pei 2

where L;; := L -min{rank(pg ), rank(pg ;)} for every 1 <4, j < N. The above (in)equalities are justified
by the following arguments. (a) by definition of o and p%, (b) by use of the triangle inequality and (c)
because the trace norm is multiplicative with respect to tensor products and the equality || |e;) (e;] |1 =1
for all 1 < i,5 < N. The well known relation |||y < +/7||z|l2 between the trace- and Hilbert-Schmidt
norms with 7 being the rank of x justifies (d), if the rank of the matrix

k L
PAEij — @WL ® PE,ij

is smaller or equal than L;; for all 4,j € [N]. This is fulfilled, which can be seen as follows. Let with an
orthonormal basis { i, }{™™# of Hp,

1/)ABEZ-—Z1/JABk®fk (17)

be a Schmidt decomposition of Y 4pg ; for every 1 < ¢ < N, with the Schmidt coefficients incorporated in
the first tensor factors. This is always possible since we are free in the choice of the purifications. Using
([I@), one can verify, that

& L
PAEj — EWL @ PE,ij

< ; L
= Z Z (aktrHB WAB k) <¢,(4JJ)3,1|) <¢AB b z/’AB ) _AWL) @ | fr) (fil -

k=11=1

holds for every ¢,j € [N]. This expression can be interpreted as an r; x r; block matrix with each block
an L x L matrix. It has therefore rank smaller or equal L - min{r;, r;}. O

Let L € {1,...,da} be fixed and an arbitrary but fixed L-instrument A := {A;}2_; C C+(H4,K4) be
given. Every unitary v € Y(H4) defines a channel V € C(H ) via V(-) := v(-)v*. With these definitions,
for every v, we get an L-instrument A(v) with

A(v) = {Ax o V}iLo.
Every collection of isometric channels {Uy}£_ C C(Hp,Kp @ Hp'p) completes A(v) to an L-merging

D
D> Ao VU (18)

k=0

10



We define the function
D
Fnlp, AQw)) = mox Fn(paz, > AoV aU() (19)
Flk=0 k=1

for every v € U(Ha), p € S(Hap). The maximization in ([9) is over all collections {Uy}_, C C(Hp, Kp®
Hp p) of isometric channels.

The expected merging fidelity under random selection of such L-mergings according to the normalized
Haar measure on $4(H 4) is bounded in the following lemma, which is the key technical result for the proof
of the merging theorem.

Lemma 4. For L € {1,...,da}, a set {pap.i}X, of states on Hap and Yapg.; a purification of pap; on
Hapg for each i, we have
%) (20)

N
- L
‘/L[(’HA) Fm(pABa A(U)) dv>1-2 (a +2- ; \/L . rank(pE,i)HpB7i|

where the integration is with respect to the normalized Haar measure on U(Ha).
To prove the claim of Lemma [] the following two lemmas are needed.
Lemma 5 (Ref. [7], Lemma 3.2). Let L and D be N x N-matrices with nonnegative entries such that
Lj < Ljj, Ly <Ly and D;j < max{D;;,D;;}
foralli,je{l,...N}. Then
Ny N
Z N\/m < 22 Lii Dy
i,j=1 i=1
Lemma 6. Let 7 and £ be elements of a bipartite Hilbert space H @ H'. Then

[tz (I7) €DII3 < e [trae (x) (D13

S

Proof of Lemmal@. Choose an orthonormal basis {e,,}%,_; in H' where d := dim(H’). The elements ¢
and v can be decomposed in the form

d
= Z(pm@)em and
m=1
d
V= m @em
m=1

with suitable elements 1, ..., o4 and ¥1, ..., g in ‘H. With these decompositions

d
e (|0} (W) = D lom) (Wal - tr(lem) (enl)-

m,n=1

11



Therefore

d
b3 () WDIZ = 11 D lom) (Wl 13 (21)
d
= [tr < > (em) @ml)*(lon) Wml)) | (22)
m,n=1

d
= | Z <90m7</7n> <1/)n71/)m> | (23)

m,n=1

To show the assertion of the lemma consider 2 d x d matrices X and Y with entries X, := (©m, ©n)

resp. Yin := (¥m, ¥p) for 0 < m,n < d. Then the r.h.s. of [23) can be read as tr(XY'), and we have

d
Z (PmPn) (Yn, Ym)| = [tr(XY)]
m,n=1
< [ X 20V ll2 (24)
< max |Z]]3,
Ze{X.,Y}

where the r.h.s. of ([24]) is an application of the Cauchy-Schwarz inequality. It is easy to see that || X3 =
[trae (|) (e)IIF and [[Y]]3 = [[tra: ([¢0) ()13, so we are done. O

Proof of Lemmal[§ First we have to convince ourselves, that F,(p4p,A(-)) depends measurably on v €
U(Ha). For each fixed set {Uy}E_ ), the function Fm(ﬁAB,Zszl A oV @ Uy) clearly is continuous in
v, therefore, F, (04, A(v)) as a maximum over such functions is lower semicontinous, which implies its
measurability.

Using Lemma Bl we get

Fm(ﬁABv'A(U)) 2 1- Qv

with error

Here pf := tr((Ao o V)(pa)),

Tz(gk% = HPE&E,U‘,U - %WL @ PE,ij )
and
Phap.ije = Ak o V(tra, (YaBp.ij))-
By virtue of Jensen’s inequality
D

N 3
1 k)
Quavza( [ ppave £ (Ly [ T a
/U'(HA) U(Ha) N i j=1 ! U(Ha) ’

k=11,



holds. It remains to bound the expectations in the right hand side of the above inequality. This was
already done in Lemma 6 of Ref. [20]. We have

L? L
[ b o Sl (aned wasesDlB and [ pdo < £ (25)
U(Ha) A U(Ha) A

Abbreviating Dyj = [[tra; (| apE.i) (bape,;|)|3 for every i, 5 € [N], @3) implies

L 1& Y L2
Qudv<2| =+ — Lij - =Dy (26)
/L[(HA) dA N;i,jzzl J di J
L 1<
<2|— — Li:D;; | . 27
2|ty X VEDS 27)

The second inequality follows from the fact that the summands on the r.h.s. of (26]) are independent of
k and D% < 1 by definition of D. By definition of L;;, clearly L;; = min{L;;, L;;} for all 7, and so
the first assumption of Lemma [l is fulfilled. The second assumption (i.e. D;; < max{D;;, D;;}) holds by
Lemma 6 Using Lemma Bl we obtain

N
L
Qo dv<2|—+2 L -rank(pg.q)lps.il3 | -
/il(HA) da ; \/

Note that we replaced ||pag,i||2 by ||pB,ill2 for every i, which is admissible, because they are complementary
marginals of a pure state [5]. O

Corollary 2. Lemmal[f provides the desired bound on the worst-case merging fidelity for finite sets. If we
choose M to be composed of the L-instrument A() for some © which fulfills the bound on the right hand
side of (Z0), and {Uy}L_, which is a maximizer realizing Fy,(pap, A(0)) for v (see eq. (I9)), we have

N
_ L
Fp(Pap M) >1-2 <a +2) \/L : rank(pE,i)|pB,z‘||§>
=1

which implies, together with the convexity property of F,, (see Lemma[l),

N
L
in I, i >1-2N | —+2 L -rank(pg,; A3 -
min Fy(pa s M) = (dA+ > /L -rank(pe. o ||2>

4 Proof of the merging theorem

4.1 Typical subspaces

Here we state some properties of frequency typical projections which will be needed in the achievability
proof. The concept of typicality is standard in classical and quantum information theory. Therefore we
provide just the needed properties which can be found (along with basic definitions) in Ref. [7] (see
Ref.[10] for the properties of types and typical sequences).

Lemma 7. There exists a real number ¢ > 0 such that for every Hilbert space H of dimension d the
following holds: For each state p on H, § € (0,1) and | € N there is a projection qs; € B(H®') (its
so-called frequency typical projection) with

13



1. tr(q(s,lp@’l) >1— 9—1(es®=h(1))
2. qs1p®'qs; < 2715 =2 @) gy,

3. 2US(P)=w(8)=h(D) < rank(gs,;) < 2l(S(p)+¢(9))

where the functions ¢(6) — 0 for § = 0 and h(l) = 0 for | = co. Ezplicitly they are given by

() = %log(d +1) and (0) = —510g%

for alll € N and § € (0,3).

4.2 Proof of the direct part in case of finite sets of states

In this section we prove the optimal merging rate theorem using our one-shot result from Lemma [l We
first consider a finite set X := {pap.i}Y; C S(Hap) with purifications Yapg 1,...,0ape.N € Hape. For
these states we introduce some sort of “typical reductions”. We define

1 ®1

= i .
\/W‘Jz,aleBE,w

7l o
YaBEis =

- l
where w; 5 1= tr(qzl-)éw?fBEﬁi),
- L 71 < L 71
PB,is ‘= tr’H%lE(wABE,i,J)v and PEi,s *— trﬂng(U)ABE,i,a)-

foralli e {1,...,N},l € Nand§ € (0, %) Here ‘ﬁ,é is given by the typical projectors ¢4, ¢p,; and qg ; of
the corresponding marginals of Yapg,i

Gi = qA,i ®qB,i D qE,;

(here and in the following, the indices 0, [, ¢ are sometimes omitted for the sake of brevity). The following
lemma provides some bounds needed later

Lemma 8. With the definitions given above, we have
1wy > 1 —4- 27Ut kD)
2. |75, sll2 < wi_(;‘l2_%(S(pB,i)_BS"(‘s)_h(l))
3. rank(pl, ; 5) < 9l(S(pas,i)+¢(9))
forallie{1,..,N}, 6€(0,%) and | € N.

Note, that the functions ¢ and h in Lemmal[fldepend on the dimensions of the individual Hilbert space,
however the above lemma clearly holds if we take the functions ¢ and h in Lemmald with d = dim(Hapg).

Proof. 1.) Some simple algebra shows that
§=1apr —qu®qp®1lp —q; ® 15 D qp
~1a®4p ®qp — 44 ® 45 O 45
> 1ape — @5 ®lpe —1la®qp ® 1p
—2(1ap ® g5)

14



holds. Therefore

wisy = tr(GYSe.) (28)
2 1- tr(Qj zpflz) - tr(Qé prlz) - 2t1‘(q§ nglz) (29)
>1— 4.9 =hD) (30)
2.) We first show, that
tr (trq-[%iﬂ (qlT/)%égqu)z) <tr ((QBP%lqlB) ) (31)
holds. Note, that
try et (¢4 ® 13y @ q)YSpE(dh © 1a, ® q)) = try et ((d4 ® Ly ® )5 5gs) - (32)

Additionally, we have tngz ((qA ® Ly, ® qk) ABE) < pB , because
E

1 l ! L
p% _ tfﬂ% ((QA @ 1a, @ ql) %BE) = trH§L ( qi @ Ly, ®QE¢ABE)
1
+ tI',H%iE (qA & ]]-'HB ® qE %BE)
1L 1L l
—i—tI'H%i: (qA ® ]]-'HB ® dE %BE) ’

where all of the summands on the r.h.s. are nonnegative operators. Therefore

2
tr (trH%(@W%gE,i%P) =tr ((qlBtfH%(Qfax ® Ly, ® qlEib%BE,i)QB) )

<tr ((qu%lqlB)(ther (¢4 ® Ly, ® oS z)Qfe))

tr ((¢pr5'dn))

which proves eq. ([BI). The above inequalities rely on the fact, that tr(A(-)) and ¢h(-)¢k are positive
maps, if A is a nonnegative operator. Finally we arrive at
< 2 -2 < ! 1 \2
165,52 = w, 5tr (trH% (Qi,zs?/ff?BE,i,anga) )
—2 ! [
< w; 5tr ((qB,i,ép%,i,éqB,i,6)2) (33)
-2 ! —2U(S(pp,i)—p (s
< w; ite(gp g 5) - 272 PE D720 (34)
< w;§l2*l(5(l’3,i)*3¢(5))

where the r.h.s. of eq. (B3]) follows from BII), and (34 results from Lemma[72 applied twice. The last of
the above inequalities follows from Lemma [73 .
3.) follows from the third claim in Lemma [[land the fact that S(pap.:) = S(pg,) holds. O

Theorem 3. For a finite collection X := {pap i}, of states on Hap, it holds

< : .
Con(X) < max S(A|B: pap,).

Proof. The proof is similar to the corresponding one given in Ref. [20], but uses the one-shot bound given
in Lemma @l We show, that the for every e > 0, the number max;c[n] S(A|B; pap,i) + € is an achievable
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rate for a merging of X. First assume, that max;en) S(A|B; pag,i) < 0. Let § € (0, 3) such that & < ¢(4).
It suffices to consider € with 0 < € < |maxj<;<n S(A|B, pap,;)|- Define

L= Lexp (—l (max S(A|B;pap.i) + e>>J .
1€[N]

According to Lemma [ along with Corollary [, there is an L;-merging M; which fulfills
min] FM;® id;_[%l("zjfélBE,i,é)a oL, @ ilB’BE,i,é) >1-NQ

€[N
with
L al
Q:=2 (m +2) \/Ll 'fank(ﬁ%,i,sﬂﬁs,m@) : (35)
A i=1
With help of Lemma [§ it is easy to bound the summands on the r.h.s. of eq. ([B5). Explicitly it holds
L oLy,
dim(H%) ~ tr(ga) ~
9—%5¢(5)

~ ~ 2
\/Ll : rank(pE,i,5)||pB,i,6H2 < 1 _ 4.2
Therefore

Zlél[lj{}] F (Ml ® idygl (15543}3,1‘,5)7 oL, @ 1LIB'BE,1‘,6) >1- f(I,N,0)

holds, where

LS
f(I,N,6) :=2N [ 276 L oN 2 2 (36)
T 1 4.92-Ucs>—h(D)

for , N € N and ¢ € (0, %) The desired bound for the merging fidelity of the original set X of states
follows from Winter’s gentle measurement Lemma (cf. Ref. [2§], Lemma 9). Explicitly, it holds

min P, Mi) 2 1= J(1,N,0). (37)
1S ’

where f(I,N,6) = 2¢/f(I,N,8) — 2v/32.2-Uc>=r), It remains to consider the case
max;eq1,.. N} S(A|B;pap,i) > 0. The above argument can be used with additional assistance of a suffi-

cient amount of entanglement shared by the merging partners. Let ¢x be a maximally entangled state
shared by A and B of Schmidt rank K := 2/maxie(n) S(AIB.2as,)1+1 then for every i the state

OK @ PAB.;

has negative conditional von Neumann entropy. Therefore the above argument holds for these states
giving an L;-merging M; with

Ly = exp <—l <1I<n%v S(A|B, pa,i) — Lgl%v S(A|BapAB,i)—‘ -1+ e>) (38)

and mine (v F((0x ® pap,i)®', My) is lower bounded by a function as on the r.h.s. of eq. (7). Some
unitaries which rearrange the tensor factors do the rest. Because

1 K!
-1 — | = A|B i 10
oz () = maxS(AIB. pana) + e+ o) (39)

we are done O
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4.3 Proof of the direct part for arbitrary sets of states

In this section we aim to show that the achievability part of Theorem [ does hold for any arbitrary set
X of states as well. This can be achieved by approximating X by a sequence of (finite) nets and using
the result obtained in the previous sections. The argument parallels the one given in case of compound
quantum channels in Ref. [8].

A 7-net in S(H) is a finite set {p;}}¥.; such that for each state p on H there is at least one i € {1,..., N}
with ||p — pill1 < 7. We find such a finite set for every 7 > 0 due to compactness of S(#). For our proof
we have to ensure, that we find 7-nets with cardinality upper bounded in an appropriate sense. This is
the claim of the next lemma, which is a special case of Lemma 2.6 in Ref. [23].

Lemma 9. For any 7 € (0,1] there is a T-net {p;}}V., in S(H) with cardinality

2d?
N< (é)
o

Proof. The proof is exactly the same as the one given in Ref. [7] with the sets and norms replaced by the
ones which are treated here. O

Let X C S(Hap) be an arbitrary set of states on Hp. For a z-net )ET, which fulfills the bound given

in Lemma/[d] i.e.
R 6 2d% 5
1< (%)
-

X, = {p; € X, :3p € X with ||p; — p|h < %}. (40)

where dap := dim(H ap), we define the set

The following lemma provides some statements concerning 7-nets needed later.
Lemma 10. Let X C S(Hap) be a set of bipartite states on Hap and X, for T € (0, %], the set defined
in [40). It holds

11X < (&),

2. For every p € S(Hap) there is a state p; in X, satisfying

102" = pF! |y <17,

3. |supS(A|B,p) — max S(A|B,pi;)| <7+ 2-7log (dATB), and
pEX pi€X,

4. Let M be any merging operation for states on Hap. Then

min Fo(pf', M) 2 1= €= inf F, (p%, M) > 1= 2V~ 4Vl -7 (41)
| in

piE€EX~

Proof. The first assertion is obvious from the definition of X, together with Lemma The argument
which proves the second one is exactly the same as done in Ref. [7] for channels. The third claim is a
consequence of Fannes’ inequality. Namely, to every positive real number 7 we find states p’ in X and p;
in X, such that

lp" = pillh <7 (42)
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and

peX
Eq. (#2) implies

S(A|B, p') — S(A|B, ps) < 27 log (dAB)
.

via twofold application of Fannes inequality [I5]. Therefore

sup S(A|B, p) — 7 < S(A[B, ) (44)
peEX

S(AIB. ) + 2r1og(2) (45)

which proves the assertion. To verify the last claim of the lemma we first fix a purification corresponding
to every member of X, (remember that we are free in our choice of the purifications). Let ¥ apg; be a
purification of pap; on Hapg for 1 <i < N. Let pap an arbitrary element of X', then we find at least
one element of X, satisfying

lpas,i —pasl1 <. (46)

As a consequence of Uhlmann’s theorem, there exists a purification Yapg of pap on Hapg such that

F(p%;, pAB )= (¢ABE= ABE i) (47)

Now let ¢g and ¢; the maximally entangled input and output states associated with M, then

Fyn(p3p, M) (48)
=FM® ’d?-t@l (o @ V35E), 01 V5 pg) (49)
>1— M ld%%l (g0 @ V355) — ¢1 @ Vi pplh (50)

where the last inequality follows from the bound given in eq. (§). By an application of the triangle
inequality, the trace distance on the r.h.s. of eq. (B0) is upper bounded by

IM ® idyei(do @ U35p) — 61 @ U5 gl SIM @ idyei(do @ wj%lBE R
+ [M® ZdH®l(¢0 ® (VS5E — %gE,i))Hl
+llor ® (Wi pg — 1/’B'BE,i)”l- (51)

By monotonicity of the trace distance under the use of channels and eq. (6], each of the two last
summands can be upper bounded by ||’L/)ABE P 1/)%3}3”1, and

VS 5e.: — r vS5Elh < 2\/1 - PA%,wP%g) (52)

HpAB J —paglh

< 2\/F (53)

holds. Eq. (B2) is justified by [@T) along with the relation given in eq. (@), and (B3] is by the second
claim of the present lemma. The first summand is upper bounded by

IM @ idyyei (do @ VB — 1 ©URpe lh < 2Ve (54)
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again with eq. ([@) and the assumptions. Eqns. &), (B3]) and (&4 justify

pA';ngFm(p%B, M) >1-2Ve—aVir (55)
|

Theorem 4. Let X C S(Hap) be a set of states on Hap. For the merging cost of X it holds
C(X) < sup S(A|B, p). (56)

peEX

Proof. We show that

sup S(A|B, p) + ¢
peX

is an achievable rate for every e satisfying 0 < e < [sup,cy S(A|B,p)|. Fix 7 € (0,1) for the moment
and consider the corresponding set X given in (@) which approximates X'. According to the proof of
Theorem [ we find, for [ large enough, an (I, k;)-merging with

€
- N
i = e (l (1%1%)1(% S(AIB, pi) + 2>)

< exp (l (sug S(A|B, p) + % + 7+ 27log
pe

dim(Z‘[AB) >) , (57)

where the second inequality is from Lemma Another consequence of Lemma [I0 is the inequality
inf F (0%, Mi) > 1= 2/F(L, N7 6) = 41 7. (58)
pe

If we now choose a sequence {7}y such that lim; o 77 = 0 and lim_, /1 - 7, = 0 hold, and additionally
N, is growing polynomially (which is possible because Lemma [@ holds), then (&) and (B8] show that
sup e v S(A|B, p) + € is achievable. O

4.4 Proof of the converse part

Because we have shown that any rate above the least upper bound of the entanglement costs of the
members of & achievable, our converse follows immediately from the original converse for single states
from Ref. [20]. The argument given there is based on the fact that entanglement measures must be
monotone under LOCC operations along with an application of Fannes’ inequality. As the proof is carried
out in detail there, we just extend the argument to our present case.

Let 6 > 0 and xyap a member of X which satisfies

S(A|B,xap) = sup S(A|B, p) — 0. (59)
peX
Following the argument of the single state converse, we arrive at

Tlog(k) > S(A|B, xa) ~ 9()2vE(1 ~ log(2v®))
— sup S(A|B, p) — 6 — g(1)2/e(1 — log(2v/4)) (60)

peEX

with a function g which is O(1) for | — oo. Therefore the entanglement cost of X is least
sup e v S(A|B, p) — ¢ for every § > 0.
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5 Classical communication cost of state merging

Having determined the optimal entanglement cost of a state merging process, we consider the classical
cost of state merging in this section. By classical cost, we mean the rate of classical communication from A
to B, which is at least required for an asymptotically perfect merging process. More precisely, if {M;}7°,
is a sequence of A — B one-way LOCCs for a set X', where A distinguishes a number of D; measurement
outcomes (see Section 2] eq. (2])) within the application of M, the classical cost is given by

R. = limsup l log D;.
l—o0 l

In case of a single state pap, the minimum rate of classical communication for merging protocols achieving
entanglement rate R, = S(A|B,pap) was determined in Ref. [20] as R. = I(4; E, pag), where pag is
the marginal on the subsystems belonging to A and E of an arbitrary purification ¥ agg of pap. In this
section we deal with the case of a set of states to be merged and for the sake of simplicity, we restrict
ourselves to finite sets of states. Clearly, the classical communication cost of a merging procedure for a
set X of states is lower bounded by the maximum of the communication costs for the individual states in
X. This is a direct consequence of the known result for single states, which was given in Ref. [20]. The
original proof given there is based on properties of the closely related “mother protocol” [I] and general
assertions within the resource framework from Ref. [14]. Here, we give a more elementary proof for the
reader not familiar with the results of Refs. [I4] and [I]. Moreover, this result and a converse statement
for the case that A and B are restricted to L-mergings show, that the protocol class we considered to
show achievability of the merging cost, is suboptimal regarding the classical cost.

Proposition 5 (cf. Ref. [20], Theorem 8). Let pap € S(Hap) be a bipartite state with purification Yapg
on a space Hapg and e € (0,1). If M(-) :== 20 Ay @ Bi(-) is an A — B one-way LOCC such that

FM® id?—[%l@K RYSEE), oL @Y pp) > 1—¢ (61)

holds with mazimally entangled states ¢x, ¢, of Schmidt rank K resp. L, then

1 1
7 log(D) > I(A; E, pag) — 6\/€ <7 log(KL) + 1ogdim7{A3> — 3n(2Ve) (62)
holds, where the function 1 is defined on [0,1] by
—rlogz O0<z <l
= - ° 63
77(95) {loge %<{ES1 ( )

and n(0) := 0.
Proof. The proof is inspired by ideas from Ref. [I8]. Fix € € (0,1) and [ € N. Let ¢x € KY%p5 and
¢1, € K 5 maximally entangled input resp. output states of the protocol such that with notations
bo = oK @ YPipp, and Y1 = ¢ @YFipp
eq. (GI) reads
F(M @ idyn (o). 1) = 1~ . (64)
We use the abbreviations H% , == K% @ HEL, pr, = tr(Ag ® idys,  (Yo)) for k € [D], and T' = {k € [D] :

pr # 0}. Tt is well known, that the von Neumann entropy is an almost convex function, i.e. for a state p
defined as a mixture p := Zfil pip; of quantum states,

N
S(@) < H(p1,...pn) + Y _piS(pi)

i=1
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holds, where H(py, ..., pn) is the Shannon entropy of the probability distribution on [N] given by p1, ..., pn.
Using this fact, we obtain the lower bound

log D > H(p1,...,pD)

>S5 (Z A ® idy‘]gE(U)o)) - mS <iAk ® idH%E(ﬂfo)) (65)
kET kET Pk

on log D. We separately bound the terms on the r.h.s. of eq. (G5). With definitions 7x 4 := trxo (¢x),
Tk,B = trxo (Px) and mp 4 = tris (¢r) (these are maximally mixed states of rank K resp. L) and

A() = > per Ax(+), we obtain

S (Z A ® idH%E(iﬁo)) > S(1r,5 @ pPh) — S(A(Tr,a @ p31) (66)
keT

>log K +1S(ppEr) — log L — Aq(e) (67)

= log =~ 15(pa) ~ M (¢) (68)

where Aq(-) := 2y/"log(L) +n(2+/-). Here eq. (66) is by the Araki-Lieb inequality [5], and eq. (G8) is due
to the fact that S(pa) = S(ppg) holds. Eq. (G1) is justified as follows. Using the relation between fidelity
and trace distance from (@) along with the fact, that the latter is monotone under taking partial traces,

([©4) implies
(T4 ® p§) = mr,all < 2V, (69)
This, via application of Fannes’ inequality leads to
S(A(rx.a ® p3') < S(rr,a) - 2Velog L —n(2V/e), (70)

where 7 is the function defined in (63). To bound the second term on the r.h.s. of (GH), we use Stinespring
extensions of the individual trace decreasing channels which constitute M. Let for each k € [D],

vp  KG @HS — KLY @ Her
be a Stinespring extension of Aj; and
up : Ky @ HG — K @ HG 5 @ Her (71)

be a Stinespring extension of By. Here H¢- is a Hilbert space associated to A and Her belongs to B. We
fix notations Vi (+) := vg(-)v; and Uy, := uk(-)uf and denote the normalized outputs of these extensions by

1 .
Vi = p—kvk QUL ® Zd,H%z (%o) (72)

for every k € T'. Note that Vy,...,Vp are trace decreasing, while U, ...,Up are channels. For every k € T,
we have

S (plkAk ® idH%E(ibo)) =S (plktfﬂc,Vk ® idH%E(iﬁo))

= 5 (& t0n, Vi @ Us @ idyyo0 (1)
= S(trae, ), (73)
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where the second equality is by the fact that uy is an isometry and consequently the action of Uy, does
does not change the entropy. Note, that ([@4) implies, because fidelity is linear in the first input here,
existence of a positive number ¢ for every k € T, such that

1
F <p_kAk ® B, ® id’H%l (o), 1/11> =1-c (74)

and ), . prcr < € hold. Because 74 is a purification of pikAk ® By ® id,,ei (o) and ¥y is already pure,
E
Uhlmann’s Theorem ensures existence of a pure state @, on Her @ Hor with

F(y, 1 @ px) = max{| (yx,0) |? : 0 purification of g on K} @ HE! 5 @ Hor @ Heon'}

=F (pik.Ak ® B ® ldH%L ('(/JQ), ’lﬁl) (75)

for every k € T. From eqns. (74) and (73] we conclude, again via the well known relation between fidelity
and trace distance from (@),

lve — Y1 @ @rlli < 24/ck, (76)

which implies, again via Fannes’ inequality and monotonicity of the trace distance under partial tracing

S(trag., i) < S @ try,, @) + Aa(cr)
< S(trq.[c,wk) —|—A2(Ck). (77)

where As(-) = 24/ log(dim H% 5z dim Her) + 1(24/). Consequently, we have

> oS (pik-Ak ®idH<;3E(¢o)> = > peS(trag, )

keT keT

< Z PrS(trag,, or) + Da(e). (78)
keT

The above equality is by (@3], the inequality follows by (7)) and the fact, that that As is monotone
and concave (see the definition of 7 in [63)). It remains to bound ), ., pxS(tra,, wx). Abbreviating

Hyp = K4 @ HE' ® Her, an argument very similar to the one above gives (again via (Z6) and an
application of Fannes’ inequality) the bound

S(trag, (V) = S(tryy (Y1 ® pr)) — As(ck)
=S(rLp®pSly® tra., ox) — Asz(ck) (79)

with the function Az(-) := 2y/-(log(K) + llog(dim Hap - dim Her)) + 2n(y/%). And, using monotonicity
and concavity of Az together with (7)), we obtain

> peS(trag, () > log(L) +1S(pas) + Y pS(trag, or) — As(e) (80)
keT keT

where we used, that S(pp'5) = S(pap) holds. If we now look at Zszl Vi QU ® id,H%z(') as an one-way
LOCC-channel with local operations on systems belonging to A and E on one side and B on the other
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side which 3 the pure input state 1 to the state described by the pure state mixture ), ., pryx, we have

S(mx @ pF') = S(trico gaget o)
D
=5 (tthE (Z Vi ® idy, E(%)))
k=1

1 .
> piS (p_ktthEVk ® de%E(iﬁo))

keT
1 .
= Z Pk S (p—ktr'HLEVk ®Z/{k ® Zd';_[%l (¢O)> (81)
keT
= Zpk S (tthE%) . (82)
keT

The second of the above equalities is due to the fact, that Eszl Vi (+) is trace preserving, the inequality is
by concavity of the von Neumann entropy. Eq. (&) is because the von Neumann entropy is not changed
by application of unitary channels in the input. The last equality is by the definitions introduced in (2)).
With B0), (82)) and the equality S(pap) = S(pr), we obtain

S(rx ® pi') > log(L) +1S(pr) + _ peS(tra,, ex) — Aa(e). (83)
keT
Rearranging the terms in inequality (83]) and using (78) leads to the bound
1 : K
ZPkS (p—k.Ak ® ZdH%E(ibo)) <log T+ 1(S(par) — S(pE)) + Az(e) + Asz(e). (84)
keT
Here, we additionally used the fact, that S(pp) = S(pag) holds. Combining the bounds from (G7) and

B4) with (€8, we arrive at

(Al(e) + AQ(E) + Ag(&)) (85)

1 1
YlogD >I(A;E pag) — 7

In fact, we find Stinespring extensions on spaces H¢r and Her with
dimHer = K - L - dimHYy (86)
dimHen = K - L - dimHZ dim HY. (87)
Using the definition of Ay, As and As with the above dimensions, we conclude

log KL
l

%logD > I(A; B, pap) — 6V ( + logdimHAB> —3n(2V/e), (88)

which we aimed to prove. O

Remark 1. [t is worth noting here, that the lower bound for the classical cost established in the proof
of Proposition [0 does not explicitly rely on the entanglement rate of the protocol. Consequently, there is
no chance to significantly reduce the required classical communication by admitting a higher entanglement
rate, as long as one demands the protocol to be asymptotically perfect.

In contrast to the above result, the following lemma indicates the limitations of the class of protocols
used for establishing the achievability of the merging cost.
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Lemma 11. Let {papi}Y, be a set of states on Hap. For every ¢ € (0,1) and § > 0, there exists a
number ly(e,0), such that if | > 1y and M(-) := Zszl A @ B(+) is an L-merging for states on ’H%B for
some L € {1,...,dim(HS")} with

i B3, M) > 1 - )
then
1 1 K
Z > ) Z -
plog(D) 2 max S(paq) + ylog 4 — 0 (90)
holds.

Proof. First we consider for an arbitrary but fixed number [ € N and an arbitrary single state pap. Let
M C [D] be a set of indices which fulfills

F (Z A @ By, ®’L'd,H%z(¢K & 1/J§IBE)7¢L ®1/)§/IBE> >1—c¢
keM
We use abbreviations

Yo = dx @ w%gE and pg = trK%®H%ZE (o) =K ® P%l

Without any loss we assume that M contains no index &k with tr(Ax(pg)) = 0. Because we are concerned
with an L-merging for vy here, we have

A () = ugpr()prug,
for every k in M where {py}rens is a set of mutually orthogonal projections of rank L. We have
tr(Ax(po)) = tr(pepo),

and

tr(gpo) = Y tr(Ak(po)), (91)

keM

where we used the definition ¢ := 37, -, px. It holds

L—e< D F(Ar®Bi ®idye (Vo). b1 ® ¥ ps)

keM

< Z F(Ax(po), L) (92)
keM

< Z tr(Ax(po)) (93)
keM

= tr(gpo)- (94)

Here, ([@2) follows from the monotonicity of the fidelity under partial traces, ([@3)) by the fact that it is
homogeneous in its inputs. The last equality is by (@I). We may w.l.o.g. assume, that pg is of the form

8@1 ® 1/1%3 p With some maximally entangled state ¢g, otherwise one could add a maximally entangled
system to achieve this. In this case, Eq. (@4]) would hold with the projector 1 ® ¢ instead of ¢, and
this can be done without changing in the asymptotic rates. The well known fact, that subspaces of large
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probability, asymptotically, cannot have dimension substantially smaller than the typical subspace (see
Ref. [10], Lemma 2.14) guarantees

1

Hlogtr(q) > S(ro) + S(pa) ~ 5 (95)
if [ is sufficiently large. If we take into account, that ¢ is a sum of |M| mutually orthogonal projections of
rank L (i.e. tr(q) = L - |M]), we have

1 1 K
7log|M| ZS(PA)—jlogf—& (96)

If we now consider a set X := {pap;}, and and repeat the above argument with sets My, ..., My for
this case we arrive at

1 1 1 K
- > | > ) — = log — —
; logD > i log 121%)5\[|MZ| > 121%)5\[ S(pai) i log T 0 (97)

which concludes our proof. O

Theorem 6 (classical cost of L-merging). Let X := {pap.i}X, be a set of bipartite states on Hap and
d > 0. For a merging procedure, where A and B are restricted to L-mergings (together with adding some
further input pure entanglement) and entanglement rate

Ry = max S(A|B,pag,i) + 0 (98)

is achieved, the optimal rate of classical communication is

R. = 1I§niaé)§v S(pA)i) + 1I£Iliaé)§v S(A|B,pAB7i) + 9.

Proof. The converse statement follows directly from Lemma [Tl If {M;}7°, is a merging which fulfills the
assumptions of the Theorem, then

FM; @id§) (o, @ V3 5p.,), 01, @ U5 gg) > 1—o(%)

with maximally entangled states ¢, resp. ¢r, of Schmidt ranks for K; an L; for every i € [N], I € N,
and

) 1 K\
fimsup. 1 log (fl) = max S(AIB,pas) +9 (99)

hold. With ([@9) and Lemma [ITlit follows
1
i - > ; )+ 0.
hﬁségp i log(D;) > 1I§n%>§v S(pai)+ 121%)5\[ S(A|B,pap.i)+ 0

To prove achievability, we step back to Section Because A and B are using an L;-merging for every
[, the distinct number of measurement results A has to communicate to B is given by

_ dim H%l

D
1 7

The argument in Section[3.2]shows, that the desired quantum rate can be achieved by choosing L-mergings
for the mixtures

1
- .+ ~
PAB = N ;pAB,iv
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where ﬁiﬁ\B,i is the %—typically reduced state for ¢ ® pap,; for every I € N some ¢ € (0, %) We can

therefore assume H%l to be restricted to the support of 4. Clearly, it holds

N

rank gy < Z rank ﬁf“-
i=1

~
< N - max rank .
> 1SN pA,z

0
< N -exp (l (1311%\,5(7% ®pa,i) + —>) :

2
Therefore
p <Y L(S(rr) + max S(pas) + 2 (100)
v gy e (1St + max S(ead) + 3
and
1 1 /K, N ¢
Z < . 2 A
 log(Dy) < max S(pai) +log 5 (Lz) + ot
< max S(paq)+ max S(AIB,pap.i) +9 (101)
if [ is large enough. O

The converse statement in the preceding Theorem is more strict than the one given in Prop. The
following example shows, that there are sets X', where the optimal classical cost is surely not achieved by
using L-mergings. However, here we achieve the desired classical rate just by simple modifications of the
protocol.

Example 7. Consider the set {papi,pap2} C S(Hap) consisting of two members pap1 = ¢r and
PAB,2 = Typ T, where ¢r, s a mazimally entangled state of Schmidt rank L on a subspace of Hap and
war 18 the mazimally mized state. We assume, that L > M and

supp(pa,1) L supp(pa,2) (102)
holds. In this case, we have
max 1(4; B, pari) = S(paz) + S(AIB, pas.2) (103)
< S(panr) + S(A|B,pap.2) (104)
= max S(pa.i) + max S(A|B, pap.q). (105)

Since the supports of the A-marginals are orthogonal, A can perfectly distinguish his parts of the states
(using one copy) and therefore get state knowledge. The rest is done by tracing out remaining entanglement
to make both mergings have the same entanglement cost.

6 Applications

In this section we give some indications how the result obtained so far has impact on other problems in
quantum Shannon theory. As an example we provide another achievability proof for the entanglement
generating capacity of a compound quantum channel with uninformed users. The original proof[8] was
based on an one-shot result for entanglement transmission, a closely related concept (actually their ca-
pacities were shown to be equal). Here we follow another line of reasoning, namely we use the close
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correspondence between the task of distilling entanglement from bipartite sources and generating entan-
glement over quantum channels. To this end we prove a compound version of the so-called hashing bound
which is known as a prominent lower bound on distillable entanglement for perfectly known states [13].
For convenience we restrict ourselves to the case of finite sets of states and finite compound channels. The
results are easily generalized to arbitrary sets using approximation techniques as it was done in Sect.

6.1 Entanglement distillation under state uncertainty

Following Ref. [13], we define a (I, k;)-protocol for one-way distillation of states on Hp as a combination
of an instrument {A;}r_, C CHHS', K') and a set of quantum channels {By}2_, € C(HE', K) of the
form

D
T:ZAk ® By,

k=1

such that dim(ICl) = k. Foraset X C S(Hap) of states on Hp a nonnegative number R is an achievable
(one-way) entanglement distillation rate, if there is a sequence {7;}7°, of (, k;)-entanglement distillation
protocols such that

1. liminf$ log(k;) > R
l—o00

2. lim inf F(7;(p®"), 1) = 1

l—o0pEX

where ¢; is a maximally entangled state on K! ® K!. The number
D_,(X) :=sup{R : R is an achievable rate for one-way entanglement distillation}.

is called the (one way) entanglement capacity of X. The following lemma is a compound analog to
Theorem 3.1 in Ref [13].

Lemma 12. Let X = {p;}}¥.; C S(Hagp) be a (finite) set of bipartite states on Hap. Then
> _ )
Do (X) 2 — max S(A|B, p:) (106)

Proof. Tt suffices to consider the case of a set with maxi<;<n S(A|B, p;) < 0, since rate 0 can always be

achieved by using a trivial protocol which distills no entanglement at all. Let M := Zszl A @ Uy, be an
L-merging for & satisfying

: : l !
e FM®idy e (VXpE.) & @ VEpp:) > 1~ ¢ (107)

Then 7(-) := S0 Ax @ Ry(-) with Ry, := tryer o (U ® idH%z) for every k is a one-way entanglement
B'BE
distillation protocol for X satisfying
F(T(pz@l)v(bl)
> F(M @ idye (V3pp,). 0 ® V5 pp.) (108)
> 1—e

for every 1 <4 < N. Eq. (I08) is justified by the fact that taking partial traces cannot decrease fidelity.
Following the proof of Theorem 4, we find for ¢ > 0 and [ € N large enough an L;-merging M, for X such
that

L > {exp <—l(11§nizg<§v S(A|B, p;) + e+ 0(l°))>J (109)
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and

Inin_ F(M; ® idy (VS 5E.:) @YV pE,) > 1—o(l%). (110)

holds. Eqns. (I08) and ([I11) give

. ®! (0
(in F(Ti(pi™), é1) 2 1= ofl7). (111)
The achievability of — max;<;<ny S(A|B, p;) follows from (I09) and (IITI). O

The above lemma provides the main building block for determining the one-way entanglement capacity
for sets of states, which is done in the following theorem.

Theorem 8. Let X := {p;}}\, C S(Hap). Then

1
D_,(X) = lim -DW (x®h (112)
I—o0 [
with
1) o mi (@) 4)
DW(x) - min. max (E) A;'S(A|B, p;”7) (113)
j:)x].l #0

where the minimization is over quantum instruments T of the form T := {73}5:1 on Ha with definitions

i i 1 )
A = (T (trag, 1)) and pf = 7 @ ids (p) (114)

J
for1<j<Jand1<i<N with \j #0. In fact, we can restrict ourselves to J < dim(Ha)?* (see [13]).
Remark 2. One easily verifies, that the limit in (I113) exists. Clearly,
D(l)(X®k) + D(l)(X®l) < D(l)(X®(k+l)) (115)
holds for any k,1 € N, because if T®) and TY are instruments on ’H%k resp. H%l, then T® @ TW 4s an
instrument on Hf(kﬂ). The rest is by Fekete’s Lemma [16].

Proof of Theorem[8 We begin with the direct part of the Theorem. Our proof parallels the one given in
Ref. [I3] for the single state case. However, for the direct part, we use Lemma [[2] instead of the single
state hashing bound. To prove achievability, let 7 := {7;};_, be any instrument on Ha, P :={P;}/_, a
set of channels of the form

Pi(x) == x @ lej) (e (116)

for every x € S(Hp) and 1 < j < J, where ey, ...,e; are members of an orthonormal basis of a Hilbert
space Hp: located at B’s site. Define states

J
pi= TiaPip)= > ANl @le;) (el
7=1 30
for 1 < i < N. These preprocessed states have conditional von Neumann entropy

SABB' 5i)= > AVsA|B,p\").
FA#0
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Direct application of Lemma gives achievability. The converse statement can be proven just by the
same arguments as given in Ref. [I3], we give the proof for convenience. We consider an arbitrary (I, k;)
one-way distillation protocol with rate R, given by a LOCC channel with A — B classical communication

J
T() = T ®Ry()
j=1
with 7; € CHHS',K) and R; € C(HE',K) , 1 < j < J, such that for a given 7 € (0, 3)
E(T(pf"),¢) 21~7 (i€ {L...N}) (117)

holds, where ¢ is a maximally entangled state on K ® K and dim IC = |2!%|. We fix notations

A i 1
N = (T e Ry ), and ) i= 5Ty Ry,

J

i 1 .
Pg) = Wﬂ ®’dygl(m®l)

J
for i € [N], j € [J] with )\;i) # 0. Application of 7 on p; results in the state
00 .= Z Agi)w§i).
FA£0
Using the relation from (@), (IT7) implies, that
199 — ¢l < 2v/7

holds for all ¢ € [N], which leads us to

IS(A1B,00) — S(A|B,¢)| < ¢ (118)

with € := 2(2y/7 log(dim K?) + 7(2+/7)) via twofold application of Fannes’ inequality. Eq. ([[IX) along
with S(A|B, ¢) = —1 - R implies

IR < —S(A|B, QW) +4y/T - IR + 2n(2/7). (119)
Moreover, we have
SAB,QD) > 3 APs(4|B,w)
3A#0
> S AWsAlB, Y, (120)
FA£0

where the first inequality is by concavity of the map p — S(A|B, p) for quantum states, the second is by
application of the quantum data processing inequality. Combining (IT9)) and (I20)), we obtain

U< — ma AV S(AIB, o) + 471+ R+ 29(2/7)
1€ X
3A #0
< -—minmax Y AS(AB, ")+ 4v7L R+ 2n(2v/7)
> T i€[N] _ A(“;ﬁo J J
J: i

< DW(X®Y 4+ 4y/71 - R + 2n(24/7)
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Remark 3. Theorem [8 shows, that one may have to pay an additional price for imperfect knowledge of
the state. Namely, the capacity for a set X is, in general, strictly smaller than the minimum over the
single-state capacities of the individual states in X, as can be seen from eq. (I13).

6.2 Entanglement generation over compound quantum channels

Finally, we give another proof for the direct part of the coding theorem for entanglement generation over
compound channels, which was originally given in Ref. [8], Theorem 13. We first recall some definitions
from Ref. [8]. Let J be a compound quantum channel generated by a set 3 C C(Ha,Hp) of channels.
We consider the uninformed user scenario, where precise knowledge about the identity of the channel is
available neither to encoder nor decoder. An entanglement generating (I, k;)-code for J is a pair (R!, ¢!)
where R! € C(Hgl, K!) is a channel with k; = dim K! and ¢; a pure state on K! ®’H§l. A positive number
R is an achievable rate for entanglement generation over J if there is a sequence of (I, k;)-entanglement
generating codes satisfying

1. liminf %log ki > R, and
l—00

2. lim inf F(¢y, (idit @ RYoN®) () = 1, where ¢; denotes a maximally entangled state on X! ® kL.

l—ocoN €T

The number
E(7) :=sup{R : R is an achievable rate for entanglement generation over J}.

is called the entanglement generating capacity of J.
Theorem 9 (cf. Ref. [§], Th. 13). Let J := {N;}Y, be a finite compound quantum channel, 3 C
C(HA,HB). Then

1
E(3) > lim — max min L(p, N%) (121)
Hoolpes(;.[glﬂgigN

holds

Proof. First note that the limit on the r.h.s of (I2I)) exists by standard arguments (see Ref. [§], Remark
2). We just have to prove that the number

1glgnNIc(p7/\fi) —e

is an achievable rate for every state p on H 4 and every € > 0, the rest is by standard blocking arguments.
There is nothing to prove for sets with 11<ni<nNIC(p,./\/i) < 0. Therefore let p be a state on H with
_7‘_

ming<;<n I.(p, Ni) > 0. Consider the set X := {p;}}¥, of bipartite states in Hp, where p; is defined
pi = (idw, @ Ni)(x) (122)

for 1 < i < N. Here yx is the pure state on H4 ® H such that the partial trace over any of the two
subsystems results in the state p. We show that a good entanglement distillation protocol for the set X
of bipartite states generated by J implies the existence of a good entanglement generation code for J.
Following the proof of Lemma [I2] there exists an (I, k;)-distillation protocol T = ZkD:O A @ Ry for X
with Ay, € CHHS', K!) and Ry, € C(HE', KY) for k € {1,..., D} with D determined by dim H 4 and dim K
such that

dim K' > {exp (z <lgi§nN I.(p, Ni) — e) >J (123)

30



and

min F(T(p.),01) = 1= ofl") (124)

with ¢; being the maximally entangled state on K'. Notice, that in eq. [I23)), we used the identity
I.(p,Ni) = =S(A|B, p;)
for every i € {1,..., N}. The definitions given in eq. (I22]) imply
A @ Ri(p) = (idier @ R o N3) (A @ id’H%l(X)>

for every 0 < k < D and 1 <1i < N. Therefore,

D
F(T(pi), ) = ) Flidt @ Ris o NP Ak @ idy 20 (X)), 1)
k=0
= S peFidi @ Ri o NP (n), 1) (125)
k:pr#0

holds for every ¢, where we used the definitions
1 .
pe = (o)), mnd @ = (e © ) ()

for pr, # 0, 0 < k < D. Notice, that g, ..., pp are pure states, because the operations Aj are pure since
they arise from an L-merging (see the proof of Lemmal[l2). Again because the fidelities are affine functions

of the first input, (I24)) and ({28 imply

N
> pF <id,a ® Ry, 0 %ZM@(%% ¢l> >1—o0(1°. (126)
i=1

k:pr#0

The r.h.s. of equation ([[25) is, in fact, an average of fidelities of entanglement generating codes
(R1,%1), .-+, (Rp, pp) with probabilities p1,...,pp. This implies the existence of a number k' € {1, ..., D}
such that with ¢ := ¢ and R := Ry

1£rz;ignNF (idx: ® RoNE (), 1) > 1 —0(1°) (127)

holds. Eqns. (IZ1) and ([I23) show that

@%nNIc(p,M) —€

is an achievable rate. O

To conclude this section we compare the proof of Theorem [0 given above with the one given in Ref. [§].

The original achievability proof relies on the fact that good entanglement generation codes can be deduced
from entanglement transmission codes working good on maximally mixed states on certain subspaces of
the input space of the channels. The passage to arbitrary states is done by a compound version of the
so-called BSST-Lemma [6]. Indeed, one of the results from Ref. [§] is that the entanglement transmission
capacity Q(J) equals F(J) for every compound channel J.
The proof given above follows a more direct route by taking advantage of a direct correspondence between
entanglement distillation from bipartite states and entanglement generation over quantum channels, which
is very close even in the compound setting. In this way, we have demonstrated, that quantum state merging
provides a genuine approach to problems of entanglement generation over quantum channels even in the
compound setting.
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7 Conclusion

In this work, we have extended the concept of quantum state merging to the case, where the users are
partially ignorant of the parameters which describe the state they keep. We have determined the optimal
entanglement cost of state merging in this setting, and found out that, in principle, a merging process
is possible with the worst case merging cost in the set representing this uncertainty. We also derived a
lower bound on the classical cost for merging with state uncertainty, based on an elementary proof of the
corresponding result for single states. Whether or not this bound is achievable in general, is left as an open
question. In particular, we have shown, that the class of protocols (called “L-mergings” in this work),
which contains protocols optimal for the quantum as well the classical part of the state merging problem
in case of perfectly known states is suboptimal in its classical costs for situations with state uncertainty.
However, in some special cases, protocols which are minor variations of the L-merging concept achieve
this bound.

Despite this, the protocol preserved its good reputation as a communication primitive regarding the
quantum performance. We were able, to apply our results to prove corresponding assertions in other
communication settings as entanglement distillation under state uncertainty as well as entanglement gen-
eration under channel uncertainty. To apply these results in more complicated situations as multiuser
settings (e.g. entanglement generation over quantum multiple access channels) is an interesting topic for
further research activities.
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8 Appendix: LOCC Channels

In this section, we give a short account to the class of one-way LOCC channels which we use in our
considerations. For further information, we recommend the survey article by Keyl [22] (and references
therein). A more recent general treatment can be found in Ref. [9].

Crucial for the definition of LOCC channels is the concept of an instrument. Instruments (or operation
valued measures[I2]) were introduced to model the situation, where a measurement is made, and not only
the measurement results but also the state transformations according to the measurement values are taken
into account. To each measurement result ¢, there is assigned a positive trace non-increasing cp map Z;
which transforms the input state. In this paper, we restrict ourselves to finite sets of possible measurement
results.

Definition 1. A (finite) instrument A is a map
A: T — CHH,K)

with a finite index set I and Hilbert spaces H, IC, such that ), ; A; is trace preserving. The instrument
A is completely determined by the family {A;}icr. We will sometimes write A = {A;}icr to denote the
instrument A.
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For bipartite systems, an instrument at, say, A’s (the sender’s) site can be combined with a parameter-
dependent channel use, which is defined by a function

B:T—C(Hp,Kp)

i.e. each B; is a completely positive and trace preserving map. A one-way LOCC channel is then defined as
a combination of an instrument and a parameter-dependent channel. This leads to the following definition.

Definition 2. A channel N € C(Hap,Kap) is called A — B one-way LOCC channel, if it takes the form

N(p) = 3" A @ Bilp) (0 € S(Han)), (128)

il
where A = {A;}icr, Ai € CHHa,Ka), is an instrument and {B;}icr is a parameter-dependent channel.

A one-way LOCC can also again be considered as a “one-way local” instrument[9] with members
{A; @ B;}icr. There is a convenient way of handling one-way LOCCs. One can equivalently write the
instrument A used on A’s site in channel form

Alp) = ZAi(P) ® le;) (eil (p€S(Ha))

icl

with an orthonormal basis {e;}icr C CHI. If the basis is assigned to a system on B’s site (which models
a classical communication and coherent storage of the measurement results at the receiver’s system), the
parameter-dependent channel can be written in the form

B(p) =Y lei) (eil @ Bi(p) (p € S(Hp))

iel
(this map may not not be trace-preserving). Then we have for p € S(Hap)

N(p) = (idx, ® B) o (A®idy,,)(p)
= Z Ai @ Bj(p) @ |es) (eil lej) (e
jiel
- ZAi ® Bi(p) @ |ei) (eq]
iel

where the second line includes a permutation of the tensor factors. Tracing out the classical information
exchanged within the application of the map (i.e. the system with space cH ‘) leads back to the form given
in Eq. (I28). The more general class of two-way LOCC channels exhibits a more intricate definition for
which we refer to Refs. [22], [9].

Moreover, Def. 2] should not be confused with the definition of the class of separable channels. A channel
M e C(Hap,Kap) is called separable, if it takes the form

M(p) = A @ Bi(p) (p € S(Han)) (129)

iel

where A; € CY(Ha,K4) and B; € CH(Hp,Kp) for all i € I. From eqns. ([[28) and [[29), the difference
between the one-way LOCC and separable channels can be observed. While separable channels allow gen-
eral trace decreasing cp maps for both parties, the receiver party is restricted to usage of trace preserving
cp maps (i.e. channels) in the one-way LOCC class of channels.
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