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Abstract—We consider the diamond network where a source
communicates with the destination through N non-interfering
half-duplex relays. Deriving a simple approximation to the
capacity of the network, we show that simple schedules having
exactly two states and avoiding broadcast and multiple access
communication can still achieve a significant constant fraction of
the capacity of the 2 relay network, independent of the channel
SNRs. The results are extended to the case of 3 relays for
the special class of antisymmetric networks. We also study the
structure of (approximately) optimal relaying strategies for such
networks. Simulations show that these schedules have at most
N + 1 states, which we conjecture to be true in general. We
prove the conjecture for N = 2 and for special cases for N = 3.1

I. INTRODUCTION

Calculating the capacity of wireless relay networks is a hard

problem; calculating the capacity when the relays are half-

duplex is even harder. Indeed, in half duplex relay networks,

an additional dimension of optimization comes into play:

scheduling the relay states, i.e., whether each relay transmits

(T ) or listens (L) at any given time instance [5]. For exam-

ple, for the N -relay diamond network in Fig. 1, there exist

2N possible combinations of L, T states, and any capacity

achieving strategy would need to optimize for how long each

of these occurs.

In this paper, we consider half-duplex diamond networks

[7]. Our position is the following: at least for small diamond

networks, there might be no need for such an exponential

size optimization. We base this claim on two observations.

First, following the network simplification approach of [4], we

show that even very simple schedules that use only two states

and employ point-to-point connections (no broadcasting and

no multiple access) can (approximately) achieve a rate that

is a significant multiplicative fraction of the capacity of the

whole network. This multiplicative fraction is independent of

the strength of the links in the 2 and 3 relay diamond networks

and the operating SNR. Second, the approximately optimal

schedule may have at most N + 1 active states, instead of

the possible 2N . For example, for 2 relays, although 4 states

are possible, at most 3 are employed (this directly follows

from the work in [2]), while for 3 relays, only 4 out of the

8 possible states are employed. This conjecture is supported

by experimental results, as well as analytic proofs for some

special cases.

The aim of this paper is to show that even with reduced

schedule complexity, significant rates are achievable for small
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Fig. 1. The Gaussian N -relay half-duplex diamond network.

half-duplex diamond networks. In the rest of the paper: Sec-

tion II provides the framework of our work, i.e., the network

model, a simple approximation to the capacity of the half-

duplex diamond network, the rate achieved by the simple

strategies of interest and a Linear Programming (LP) problem

formulation; Section III establishes lower bounds on the rates

achieved by the simple strategies; Section IV presents our

conjecture regarding the linear number of active states in the

(approximately) optimal schedule.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

We consider the Gaussian N -relay diamond network where

a source S transmits information to a destination D with the

help of half-duplex relays. At any given time t, each relay Ri

can either listen (L) or transmit (T ), but not both; we denote

by Mi[t] ∈ {L, T} its state. We denote by Ms[t] and Md[t]
the states of the source and the destination, respectively.

Let Xs[t] be the signal transmitted by S at time t, Xi[t] be

the signal transmitted by relay Ri, Yd[t] and Yi[t] the signals

received by D and Ri, respectively. Then

Xi[t] = 0 when Mi[t] = L

Yi[t] = hisXs[t] + Zi[t] when Mi[t] = L

= 0 when Mi[t] = T

Yd[t] =

N∑
i=1

hidXi[t] + Z[t] when Md[t] = L

= 0 when Md[t] = T

where his, hid are the complex channel coefficients between

S and Ri and Ri and D, respectively. Zi[t] and Z[t] are

independent and identically distributed white Gaussian random

processes of power spectral density N0/2 Watts/Hz.

The power constraints for the source and all the relays are

fixed to P . We can then calculate the individual link capacities

from S to Ri as Ris = log(1+ |his|2P ) and from Ri to D as

Rid = log(1 + |hid|2P ). [N ] represents the set {1, 2, · · · , N}
and the relays are ordered such that Ris ≥ Rjs for i < j.

Finally, unless otherwise stated, the term “constant” will mean



a quantity that depends only on the number of relays and is

independent of the channel SNRs.

B. An Approximation to the Capacity

For half-duplex relay networks, the capacity depends not

only on the strength of the channel coefficients, but crucially

also on the L-T scheduling. Let m ∈ M = {L, T}N denote a

particular state of the relays and let L(m) and T (m) be the set

of relays in listening and transmitting state in m, respectively.

In a particular schedule, let p(m) denote the fraction of time

the relays are in state m. Let CN
hd be the capacity of the N -

relay half-duplex diamond network. [6, Section VI] derives an

upper bound on the capacity of arbitrary half-duplex wireless

networks, which combined with the simplification approach

developed in [4] for diamond networks, yields the following

upper bound on CN
hd.

Lemma 2.1: We have CN
hd ≤ CN

LP +G(N) where G(N) =
N + 3 logN − 2.75 and

CN
LP = max

p(m)

m∈M

min
Λ⊆[N ]

∑
m∈M

p(m)

(
max

i∈Λ̄∩L(m)
Ris + max

i∈Λ∩T (m)
Rid

)

The minimization is over all the 2N subsets Λ of the relay

nodes [N ] = {R1, . . . ,RN} and the maximization is over all

schedules p(.) such that
∑

m∈M p(m) = 1. Starting with the

cutset-upper bound to the capacity of the network similar to

[4], the main idea in the proof is to show that the values

of the broadcast and multiple-access cuts can be bounded

by the maximum capacity of the individual constituent links

within a certain constant gap. Following [1], [6], we can also

show that CN
LP is achievable by quantize-map-and-forward

scheme within an additive constant gap. This is because CN
LP

is smaller than the cutset-upper bound to the capacity of the

network and these works show that the cutset-upper bound

is achievable within a certain gap. Therefore, we get the

following approximation for the capacity CN
hd

Theorem 2.2: For a N relay half-duplex diamond network,

there exist constants G(N) and G′(N) such that

CN
LP −G′(N) ≤ CN

hd ≤ CN
LP +G(N) (1)

Thus CN
LP , which only depends on the individual capacities

of the links {Ris, Rid}, can approximate CN
hd upto constant

additive terms.

C. Simple Strategies

We define simple strategies to be relaying strategies that

use exactly two states and avoid broadcast at the source and

multiple access at the destination. Concretely, we look at the

rates achievable under the Decode-Forward scheme:

1-relay simple strategy: Let Cs1,i be the maximum

achievable rate over the one hop network S-Ri-D when the

relay node Ri decodes the source message, re-encodes and

transmits it to D. Let p1, p2 be the fraction of time Ri is in

the L and T state, respectively. Then

Cs1,i = max
p1,p2

p1+p2=1

min(Risp1, Ridp2)

Solving the maximization, we can easily conclude that Cs1,i =
RisRid/(Ris + Rid). We define Cs1 to be the maximum

achievable rate by this strategy which uses decode and forward

at a single relay, i.e.

Cs1 = max
i∈[N ]

Cs1,i (2)

2-relay simple strategy: With two relays, we use the

Mutihop-Decode-Forward (MDF) strategy as defined in [2],

[8]. A pair of relays Ri and Rj (i < j) are operated in a

complementary fashion, using only the two states {L, T} and

{T, L}. Each of the relay performs decode-and-forward. Let

p1, p2 be the fraction of time (Ri, Rj) are in the states (L, T )
and (T, L) respectively. Then the maximum rate achieved by

this strategy is given by

Cs2,ij = max
p1,p2

p1+p2=1

min(p1Ris, p2Rid) + min(p2Rjs, p1Rjd)

Note that the first term is the rate carried by the first relay

and the second term is the rate carried by the second relay.

Assuming Ris ≥ Rjs, the maximization can be solved to

obtain ([2], [8])

Cs2,ij =
Ris(Rjs +Rid)

Ris +Rid
if RisRjs < RidRjd

=
Rid(Ris +Rjd)

Ris +Rid
if RisRjs ≥ RidRjd, Rjd < Rid

=
Rjd(Rjs +Rid)

Rjs +Rjd
if RisRjs ≥ RidRjd, Rjd ≥ Rid

The best achievable rate Cs2 by this strategy is given by a

maximization over all possible choices for the two relays, i.e.,

Cs2 = max
i,j∈[N ],i<j

Cs2,ij (3)

Finally, suppose we can show that a particular relaying strategy

achieves a rate C ′. Then the next result, which follows easily

from Theorem 2.2, can be used to prove bounds on the rates

achievable by our simple strategies.

Lemma 2.3: If C ′ ≥ αCN
LP , then C ′ ≥ αCN

hd − αG(N).

D. Linear Programming Formulation

CN
LP can be reformulated as a linear program as follows.

LP1 : Maximize C

2N∑
i=1

pi

(
max

j∈Λ∩L(mi)
Rjs + max

j∈Λ̄∩T (mi)
Rjd

)
≥ C; ∀Λ ⊆ [N ]

2N∑
i=1

pi = 1; ∀i, pi ≥ 0, C ≥ 0

The 2N variables of type p(m) have been numbered as pi with

mi being the corresponding state. LP1 can be visualized in a

matrix form as follows. (All vectors are column vectors)

Maximize cT [pC] (LP1)

A[pC] ≥ b; [pC] ≥ 0

where the objective function vector cT is of size 1×(2N +1),
with all zero entries except the last one which is +1. A is a

(2N + 1)× (2N + 1) matrix with

Ak,i = max
j∈Λ(k)∩L(mi)

Rjs + max
j∈Λ(k)∩T (mi)

Rjd

for 1 ≤ k ≤ 2N ; 1 ≤ i ≤ 2N



= −1 for 1 ≤ k ≤ 2N ; i = 2N + 1

= −1 for k = 2N + 1; 1 ≤ i ≤ 2N

= 0 for k = 2N + 1; i = 2N + 1

where Λ(k) is the k-th subset of [N ]. b is a (2N + 1) × 1
vector with all zero entries except the last one which is -

1. The variable vector [pC] consists of the 2N variables

{p1, p2, · · · , p2N } and the (approximate) capacity variable C.

The dual of LP1, denoted by DLP1, is a minimization problem

defined as follows.

Minimize cT [pd Cd] (DLP1)

A[pd Cd] ≤ b; [pd Cd] ≥ 0

The definitions of A,b, c are the same as above and [pd Cd]
is the corresponding variable vector in the dual program.

III. PERFORMANCE OF SIMPLE STRATEGIES

In [4], it was shown that for full-duplex N -relay diamond

networks, we can always find a k-relay subnetwork that ap-

proximately achieves k
k+1 fraction of the full-duplex network

capacity within an additive constant factor; for half-duplex,

this implies the following lemma.

Lemma 3.1: For a N -relay half-duplex diamond network,

there exist a k relay subnetwork that approximately achieves
k

2(k+1) of the capacity of the whole network within constant

additive factors.

Therefore, a 1-relay subnetwork can approximately achieve

1/4 and a 2 relay subnetwork 1/3 of the network’s capacity

for any N . Network simplification [4] for half-duplex relays

involves both using fewer relays and fewer number of states in

the schedule. Therefore, what we show below can be thought

of as improved simplification bounds for N = 2 and N = 3.

A. 2 Relay Networks

As shown in [2], the linear program for C2
LP can be solved

exactly to obtain closed form expressions. Using them, we can

prove the following result.

Lemma 3.2: For a 2-relay half-duplex diamond network, for

some constants c1, c2,

Cs1 ≥ 1

2
C2

hd − c1, Cs2 ≥ 8

9
C2

hd − c2

Proof: We show that Cs1 ≥ 1
2C

2
LP and Cs2 ≥ 8

9C
2
LP ,

whence the result follows from Lemma 2.3. For brevity,

assume {R1s, R2s, R1d, R2d} = {a, b, c, d}. Note that a ≥ b.
We will show the proofs for the case (ab < cd). The other

cases are similar. In this case, we have

Cs1,1 + Cs1,2

C2
LP

− 1 =
ac
a+c +

bd
b+d

ac(b+d)+bd(a−b)
(b+d)(a+c−b)

− 1

=
bc(b+ d)(cd− ab)

(ac(b+ d) + bd(a− b))(a+ c)(b+ d)
≥ 0

Hence, Cs1 = max{Cs1,1 + Cs1,2} ≥ 1
2C

2
LP . For the other

claim, since there are only two relays, Cs2 = Cs2,12. For the

case of (ab < cd), we have

9Cs2

8C2
LP

− 1 =
9ab2(a− b) + abc(a+ c) + df1(a, b, c)

8(a+ c)(ac(b+ d) + bd(a− b))

where f1(a, b, c) = a2b − ab2 + a2c − 8abc + 8b2c + ac2.

Writing f1 as a quadratic expression in c, we have

f1(a, b, c) = ac2 + (a2 − 8ab+ 8b2)c+ ab(a− b)

Clearly, if a2 − 8ab+ 8b2 ≥ 0, then f1(a, b, c) ≥ 0. Since the

equation x2 − 8x+ 8 = 0 has two roots approximately equal

to 1.17 and 6.82, as long as a/b ∈ [1, 1.17] ∪ [6.82,+∞],
a2 − 8ab + 8b2 ≥ 0 and hence f1(a, b, c) ≥ 0. On the other

hand, we can also look at f1 as a quadratic function in c and

look at its discriminant as a function of a, b. We have

Δa,b = (a2 − 8ab+ 8b2)2 − 4a(ab(a− b))

= (a− 2b)2(a2 − 16ab+ 16b2)

Since the roots of x2 − 16x+ 16 = 0 are approximately 1.07

and 14.92, the discriminant Δa,b < 0 if 1.07 ≤ a/b ≤ 14.92,

in which case f1 as a function of c is non-negative. Since

the interval [1, 1.17] ∪ [6.82,+∞] ∪ [1.07, 14.92] covers all

possible values of a/b, we can conclude that f1(a, b, c) ≥ 0
in all cases. Hence

9Cs2

8C2
LP

− 1 ≥ 0 =⇒ Cs2

C2
LP

≥ 8

9

which proves the second claim of the lemma.

The multiplicative ratios are essentially the best we can obtain.

Lemma 3.3: There exist 2-relay half-duplex diamond net-

works where

Cs1 =
1

2
C2

LP , Cs2 ≈ 8

9
C2

LP

Proof: For the first claim, consider the network where

R1s = a,R2s = b, R1d = b, R2d = a for some a, b ∈ R
+,

(a > b). In this case, Cs1/C
2
LP = ab/(a+b)

2ab/(a+b) = 1/2. For the

second claim, consider the network with R1s = 2a,R2s =
a,R1d = a,R2d = ka for some k > 2. Then, plugging in the

expressions for capacities, we have

Cs1

C2
LP

=
4(2 + 2k)

3(2 + 3k)
→ 8

9
as k → ∞

To summarize, we have shown that for the 2-relay diamond

network, we can universally achieve approximately 50% of the

capacity using the 1-relay simple strategy and 88% by using

the 2-relay simple strategy, independent of the channel SNRs.

B. 3 Relay Antisymmetric Networks

For the case of N = 3 relays, it is difficult to obtain

closed form expressions for C3
LP involving the six terms

(R1s, R2s, R3s, R1d, R2d, R3d). We distinguish the relay net-

works according to the order of the relative values of these

capacities. Assuming that R1s ≥ R2s ≥ R3s, the Rid values

can occur in six possible permutations. Although bounds can

be obtained for each of the cases separately, we present here

the results for the special case of antisymmetric networks
where R1s ≥ R2s ≥ R3s and R1d ≤ R2d ≤ R3d.

Lemma 3.4: For the anti-symmetric 3-relay half-duplex di-

amond network, for some constants c3, c4,

Cs1 ≥ 1

3
C3

hd − c3, Cs2 ≥ 1

2
C3

hd − c4

Proof: To prove the result we show that Cs1 ≥ 1
3C

3
LP

and Cs2 ≥ 1
2C

3
LP whence the result follows from Lemma 2.3.



Redefine {R1s, R2s, R3s, R1d, R2d, R3d} = {a, b, c, d, e, f}.

and let x = max{d, e}, y = max{e, f}, z = max{d, f}, t =
max{d, e, f}. For the anti-symmetric network, a ≥ b ≥ c and

d ≤ e ≤ f . Hence x = e and y, z, t = f . The LP1 matrix for

the network is shown below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a b a b c 0 −1
a a+ f a b a+ f b+ f 0 f −1
a a a+ e c a+ e 0 c+ e e −1
b b c b+ d 0 b+ d c+ d d −1
a a+ f a+ e 0 a+ y f e y −1
b b+ f 0 b+ d f b+ z d z −1
c 0 c+ e c+ d e d c+ x x −1
0 f e d y z x t −1
−1 −1 −1 −1 −1 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We will construct three upper bounds to the optimum value of

this program by picking three different dual feasible solutions.

They are

ᾱd = [
d

d+ a− b
, 0, 0,

a− b

d+ a− b
, 0, 0, 0, 0,

ad+ ab− b2

d+ a− b
]

γ̄d = [0, 0, 0, 0, 0, 0,
f − e

c+ f − e
,

c

c+ f − e
,
fc+ fe− e2

c+ f − e
]

The third one β̄d is defined as follows. When e �= d or b �= c,

β̄d = [0, 0, 0,
e− d

e− d+ b− c
, 0, 0,

b− c

e− d+ b− c
, 0,

(b+ d)(e− d) + (c+ d)(b− c)

e− d+ b− c
]

and when e = d, b = c, we define

β̄ = [0, 0, 0,
1

2
, 0, 0,

1

2
, 0, b+ d]

Let α0 = ad+ab−b2

d+a−b , γ0 = fc+fe−e2

c+f−e and β0 =
(b+d)(e−d)+(c+d)(b−c)

e−d+b−c or b + d depending on the parameter

values. It can be verified that these three solutions are dual

feasible and hence by weak duality [3] their objective values

are upper bounds to C3
LP . Hence, α0, β0, γ0 ≥ C3

LP , which

implies min{α0, β0, γ0} ≥ C3
LP .

We claim that the following holds,
ad
a+d

α0
+ 2

be
b+e

β0
+

cf
c+f

γ0
≥ 4

3
This can be shown by expanding the terms and using the fact

that a ≥ b ≥ c and d ≤ e ≤ f . Therefore

4Cs1

min{α0, β0, γ0} ≥
ad
a+d

β0
+ 2

be
b+e

γ0
+

cf
c+f

α0
≥ 4

3

which implies that Cs1 ≥ 1
3C

3
LP . Now for the second claim,

let us consider the pairs of relays (R1,R2) and (R2,R3). If

C ′ = Cs2,12 + Cs2,23, using the expressions above for the

2-relay simply strategy, we have

C ′ =
a(b+ d)

a+ d
+

b(e+ c)

b+ e
if

e

b
≥ a

d
≥ c

f

=
e(b+ d)

b+ e
+

b(e+ c)

b+ e
if

a

d
≥ e

b
≥ c

f

=
e(b+ d)

b+ e
+

f(e+ c)

f + c
if

a

d
≥ c

f
≥ e

b

If

(
e

b
≥ a

d
≥ c

f

)

C ′

C3
LP

≥ Cs2,12 + Cs2,23

α0
=

n1(a, b, c, d, e, f)

d1(a, b, c, d, e, f)
≥ 1

If

(
a

d
≥ e

b
≥ c

f

)

C ′

C3
LP

≥ Cs2,12

α0
+

Cs2,23

γ0
=

n2(a, b, c, d, e, f)

d2(a, b, c, d, e, f)
≥ 1

If

(
a

d
≥ c

f
≥ e

b

)

C ′

C3
LP

≥ Cs2,12 + Cs2,23

γ0
=

n3(a, b, c, d, e, f)

d3(a, b, c, d, e, f)
≥ 1

where n1, n2, n3, d1, d2, d3 are polynomials in (a, b, c, d, e, f)
and the last inequalities in each of the three cases follows from

substitution and expansion of terms and using the fact that

a ≥ b ≥ c and d ≤ e ≤ f . Therefore Cs2,12 + Cs2,23 ≥ C3
LP .

Picking the maximum of the two pairs, we get

Cs2 ≥ max{Cs2,12, Cs2,23} ≥ 1

2
C3

LP

The best lower bound multiplicative ratios we have been

able to establish are the following.

Lemma 3.5: There exist 3-relay half-duplex diamond net-

works where

Cs1 ≈ 0.4C3
LP , Cs2 ≈ 0.625C3

LP

Proof: Consider the network a = kr, b = 3r, c = 3r, d =
2r, e = 5r, f = 5r for some k > 30, r > 0. For this case,

C3
LP = (5k−9)r

k−1 , Cs1 = 2kr
k+2 , Cs2 = 25r

8 . Therefore, as k →
∞,

Cs1

C3
LP

→ 2

5
= 0.4,

Cs2

C3
LP

→ 5

8
= 0.625

To summarize, we have shown that for the 3-relay antisym-

metric diamond network, we can universally achieve approxi-

mately 33% of the capacity using the 1-relay simple strategy
and 50% by using the 2-relay simple strategy, independent of

the channel SNRs.

IV. THE COMPLEXITY OF OPTIMAL SCHEDULES

In general, the optimal schedule in LP1 corresponding to

CN
LP can have 2N active states; we here present our conjecture

that in fact, there always exists an optimal schedule with a

linear number of active states. If true, this offers a significant

reduction (from exponential to linear) to the number of states

needed for optimal operation, making it more feasible to

implement such schedules in practice.

Conjecture: For a N relay half-duplex diamond network,

there exists a schedule that optimizes the value of CN
LP and

has at most N + 1 active states.

We support this conjecture in two ways:

Experimental results: Fig. 2 shows numerical evaluation

results for LP1. We plot the average number of active states

in the optimal schedule as a function of the number of relays

N . The average is taken over several random instances of the

networks, where the SNRs of the source to relay and relay to

destination channels are chosen independently and uniformly
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Fig. 2. Average, minimum and maximum number of active states for CN
LP

at random from the interval [1, 1000]. For each value of N , the

maximum and the minimum number of active states is found

to be N + 1 and 2, respectively.

Proof for special cases: For the case of N = 2 relays,

the claim follows easily by directly evaluating the optimal

schedule [2] and checking that there are at most three states.

We have not been able to come up with a general proof for

N > 2. In what follows, we prove the conjecture for a special

case of N = 3. Redefine {R1s, R2s, R3s, R1d, R2d, R3d} =
{a, b, c, d, e, f} Consider the case when the point to point

capacities of all the relay to destination links dominates those

of the source to relay links or vice-versa.

Lemma 4.1: For a 3-relay half-duplex diamond network

where min{d, e, f} ≥ max{a, b, c} or min{a, b, c} ≥
max{d, e, f}, the optimal solution for LP1 has exactly 4 non-

zero states.

Proof: Assume min{d, e, f} ≥ max{a, b, c}. The matrix

corresponding to LP1 is the same as the one mentioned

in the proof of Lemma 3.4. Name the rows of the matrix

as I1, · · · , I9 and columns as J1, · · · , J9. Consider the sub-

matrix S formed using rows I1, I4, I7, I8, I9 and columns

J1, J2, J3, J4, J9 and the corresponding form of LP1 with

equality.

S[p1 p2 p3 p4 C] = [0 0 0 0 − 1]

This can be solved to get the following result.

{p1, p2, p3, p4} = { Δ1

(a− b+ d)(b− c+ e)(c+ f)
,

c

c+ f
,

bc+ (b− c)f

(b− c+ e)(c+ f)
,
e(a− b)(c+ f) + (b− c)(ac+ f(a− c))

(a− b+ d)(b− c+ e)(c+ f)
}

and

C =
(a((c+ d)(e− d) + b(c+ e)) + d(b(c+ e) + c(e− d)))fe

(a+ d)(b+ e− d)(c+ f − e)

− e (ad(e− d) + be(a+ d))

(a+ d)(b+ e− d)(c+ f − e)
= a(p1 + p2 + p3) + bp4

where

Δ1 = b2c− c2f + def + bc(e+ f − d) + a(c(c+ f − e)− b(2c+ f))

Since a ≥ b ≥ c, p2, p3, p4 ≥ 0. Further, since min{d, e, f} ≥
max{a, b, c} = a, we have f = a+ l1, e = a+ l2, d = a+ l3,

for some l1, l2, l3 ≥ 0. Therefore,

Δ1 = (a2 − bc)(a− b) + l1(a(a− b) + c(b− c) + ac)+

l2(a(a− c) + bc) + l3(a
2 − bc) + a(l1l2 + l2l3 + l3l1) + l1l2l3

Since a ≥ b ≥ c, Δ1 ≥ 0 and C ≥ 0. If we define p =
{p1, p2, p3, p4, 0, 0, 0, 0} and C is the same as above, then

I1[pC] = I4[pC] = I7[pC] = I8[pC] = 0

It can be explicitly verified that this implies

I2[pC], I3[pC], I5[pC], I6[pC] ≥ 0

In other words [pC] is a feasible solution for LP1. We will

now consider the dual program and solve for the submatrix

of the dual consisting of columns J1, J2, J3, J4, J9 and rows

I1, I4, I7, I8, I9, which is the transpose of S considered above.

Note that the dual variables in the DP1 correspond to the rows

in LP1. The corresponding form of DLP1 with equality is

ST [pd1 p
d
2 p

d
3 p

d
4 C] = [0 0 0 0 − 1]

On solving, we get

{pd1, pd4,pd7, pd8} = { d

a− b+ d
,

(a− b)e

(a− b+ d)(b− c+ e)
,

(a− b)(b− c)f

(a− b+ d)(b− c+ e)(c+ f)
,

(a− b)(b− c)c

(a− b+ d)(b− c+ e)(c+ f)
}

and where

Cd = apd1 + bpd4 + cpd7 = C

Clearly, pd1, p
d
4, p

d
7, p

d
8 ≥ 0. If we define pd =

{pd1, 0, 0, pd4, 0, 0, pd7, pd8}, then

JT
1 [pd Cd] = JT

2 [pd Cd] = JT
3 [pd Cd] = JT

4 [pd Cd] = 0

Again, it can be explicitly verified that this implies

JT
5 [pd Cd], JT

6 [pd Cd], JT
7 [pd Cd], JT

8 [pd Cd] ≤ 0

In other words, [pd Cd] is feasible for DLP1. Thus, the objec-

tive value of C = Cd corresponds to both a dual feasible and

primal feasible solution, which means it is the optimum value

of LP1. Since the optimal schedule given by [pC] has just 4

non-zero states and there are 3 relays, the conjecture is valid

for this case. The case when min{a, b, c} ≥ max{d, e, f} can

be proved in a similar manner by reordering the relays so that

the relay to destination link capacities are in sorted order.
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