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Abstract—We consider a distributed antenna system where L
antenna terminals (ATs) are connected to a Central Processor
(CP) via digital error-free links of finite capacity R0, and serve
L user terminals (UTs). This system model has been widely
investigated both for the uplink and the downlink, which are
instances of the general multiple-access relay and broadcast
relay networks. In this work we focus on the downlink, and
propose a novel downlink precoding scheme nicknamed “Reverse
Quantized Compute and Forward” (RQCoF). For this scheme
we obtain achievable rates and compare with the state of the
art available in the literature. We also provide simulation results
for a realistic network with fading and pathloss with K > L
UTs, and show that channel-based user selection produces large
benefits and essentially removes the problem of rank deficiency
in the system matrix.1

I. SYSTEM AND PROBLEM DEFINITION

We consider a distributed antenna system (DAS) with K
user terminals (UTs) and L “antenna terminals” (ATs). All
UTs and ATs have a single antenna each. The ATs are
connected with a central processor (CP) via wired links of
fixed rate R0. We study the downlink scenario, where the CP
wishes to deliver independent messages to the UTs. This is a
simple instance of a broadcast relay network, where the ATs
operate as relays. In this work we focus on the symmetric
rate, i.e., all messages have the same rate and assume that the
CP and all UTs have perfect channel state information (more
general results are provided in [1]). If R0 →∞, the problem
reduces to the well-known vector Gaussian broadcast channel,
the capacity region of which is achieved by Dirty Paper Coding
(DPC). However, for fixed finite R0, DPC and other widely
considered linear precoding schemes cannot be applied in a
straightforward manner. A simple DAS system, the so-called
Soft-Handoff model, was investigated in [2], by introducing a
“compressed” version of DPC (CDPC), where the CP performs
joint DPC under per-antenna power constraint and then sends
the compressed (or quantized) codewords to the corresponding
ATs via the wired links. While this scheme is expected to be
near-optimal for very large R0, it is generally suboptimal at
finite (possibly small) R0. Also, DPC is notoriously difficult
to be implemented in practice, due to the nested lattice coding
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construction and lattice quantization steps involved (See for
example [3], [4]).

Motivated by Compute-and-Forward (CoF) [5] (or quantized
compute-and-forward (QCoF) [6]), we propose a novel coding
strategy named Reverse QCoF (RQCoF) for the DAS downlink
with finite backhaul link capacity R0. In QCoF and RQCoF
the coding block length n can be arbitrarily large but the
shaping block length is restricted to 1 (scalar quantization [6]).
However, we would like to point out that the same approach
can be straightforwardly applied to CoF based schemes, where
also the shaping dimension becomes large (in this case, we
would refer to the scheme as Reverse CoF (RCoF)).

A. Overview of QCoF

Let Zp = Z mod pZ denote the finite field of size p, with
p a prime number, ⊕ denote addition over Zp, and g : Zp → R
be the natural mapping of the elements of Zp onto {0, 1, ..., p−
1} ⊂ R. For a lattice Λ, let QΛ(x) = argminλ∈Λ{‖x −
λ‖} denote the associated lattice quantizer, V = {x ∈ Rn

:
QΛ(x) = 0} the Voronoi region and define [x] mod Λ = x−
QΛ(x). For κ ∈ R, consider the two nested one-dimensional
lattices Λs = {x = κpz : z ∈ Z} and Λc = {x = κz : z ∈
Z}, and define the constellation set S , Λc ∩ Vs, where Vs
is the Voronoi region of Λs, i.e., the interval [−κp/2, κp/2).
The modulation mapping m : Zp → S is defined by v =
m(u) , [κg(u)] mod Λs. The inverse function m−1(·) is
referred to as the demodulation mapping, and it is given by
u = m−1(v) , g−1([v/κ] mod pZ) with v ∈ S.

Consider the (real-valued) L-user Gaussian multiple access
channel with inputs {x`,i : i = 1, ..., n} for ` = 1, ..., L, output
{yi : i = 1, ..., n} and coefficients h = (h1, ..., hL)T ∈ RL,
defined by

yi =

L∑
i=1

h`x`,i + zi, for i = 1, . . . , n, (1)

where the zi’s are i.i.d. ∼ N (0, 1). All users encode their
information messages {w` ∈ Zk

p : ` = 1, . . . , L} using
the same linear code C over Zp (i.e., denoting information
sequences and codewords by row vectors, we have c` = w`G
where G is a generator matrix for C), and produce their
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channel inputs according to

x`,i = [m(c`,i) + d`,i] mod Λs, i = 1, . . . , n, (2)

where c`,i is the i-th symbol of c` and d`,i’s are i.i.d. dithering
symbols ∼ Uniform(Vs), known at the receiver. The channel
inputs x`,i are uniformly distributed over Vs and have second
moment SNR , E[|x`,i|2] = κ2p2/12. The receiver’s goal is
to recover a linear combination c =

⊕
q`c` of the transmitted

users’ codewords, for some coefficients q` ∈ Zp. For this
purpose, the receiver selects the integer coefficients vector
a = (a1, ..., aL)T ∈ ZL and produces the sequence of
quantized observations

ui = m−1
([
QΛc

(
αyi − aTdi

)]
mod Λs

)
, (3)

for i = 1, . . . , n. It easy to show [6] that (3) is equivalent to

ui =
( L⊕

`=1

q`c`,i

)
⊕ z̃i, (4)

with q` = g−1([a`] mod pZ). Here, z̃i = m−1([QΛc
(ε)]

mod Λs) where ε denotes the effective noise, capturing a
Gaussian additive noise and non-integer penalty, and its vari-
ance [6] is

σ2
ε = aT(SNR−1I + hhT)−1a. (5)

By [6, Th. 1], the achievable computation rate of QCoF is
given by

RQCoF = log p−H(z̃). (6)

Also, by [5, Th. 4], the achievable computation rate of CoF
is given by

RCoF(σ
2
ε) =

1

2
log(SNR/σ2

ε). (7)

We showed in [6] that, for fixed large SNR � 1 and
sufficiently large p (e.g., p ≥ 251), the (6) and (7) differ
approximately by the shaping gain, i.e., ≈ 0.25 bits per real
dimension.

Remark 1: In order to achieve the CoF rate, p must grow to
infinity in the lattice construction and the rank of the system
matrix Q is the same as the rank of A over R, by [5, Th. 11].

II. REVERSE QUANTIZED COMPUTE-AND-FORWARD

The main idea is that each UT decodes a linear combination
(over the finite field) of the messages sent by the ATs using
QCoF. In short, we exchange the role of the ATs and UTs and
use QCoF in the reverse direction. However, decoding linear
combination of the information messages is useful only when
these combinations can be shared such that the individual
messages can be recovered, provided that the resulting system
of linear equations is invertible over Zp. Since the UTs do
not cooperate, sharing the decoded linear combinations is
impossible in the downlink. Nevertheless, thanks to algebraic
structure of QCoF (or CoF), the messages from the ATs can
be the precoded versions of the original information messages
and hence, using an appropriate invertible precoding over Zp

at the CP, the effect of the linear combination can be undone

at the transmitter, so that every UT obtains just its own desired
message. We present coding strategies considered in this
work, assuming the K = L and (real-valued) channel matrix
H ∈ RL×L. Let Q denote the system matrix whose elements
in the `-th row, denoted by qT

` = (q`,1, ..., q`,L), indicate the
coefficients of the linear combination decoded at the `-th UT as
given in (4). For the time being we assume that these matrices
are full rank over Zp, although they may be rank deficient
since each UT chooses its own linear combination coefficients
independently of the other nodes. The case of rank deficiency
will be handled later. Let z̃` be the discrete additive noise (over
Zp) at the `-th UT. The detailed description of “reverse” QCoF
(RQCoF) is as follows.
• For the given Q, the CP precodes the user information

messages {w` ∈ Zk
p : ` = 1, ..., L} using the inverse

system matrix Q−1. The precoded L-dimensional vectors
of information symbols to be transmitted by the ATs are
given by

(µ1,i, ..., µL,i)
T = Q−1(w1,i, ..., wL,i)

T, for i = 1, . . . , k.
(8)

• The CP forwards each block µ` = (µ`,1, ..., µ`,k) to the
`-th AT, during n time slots, corresponding to the duration
of a codeword sent on the wireless channel. Therefore,
we have the rate constraint (k/n) log p ≤ R0.

• After receiving k symbols, the `-th AT locally encodes
its information symbols µ` using the same linear code C
over Zp (i.e., c` = µ`G), and produces its channel input
according to

x`,i = [m(c`,i) + d`,i] mod Λs, for i = 1, . . . , n.
(9)

• By [6, Th. 1], the `-th UT can recover a noiseless linear
combination of ATs’ information symbols if R ≤ log p−
max`{H(z̃`)}. This is given by

qT
` (µ1,i, ..., µL,i)

T = qT
` Q
−1(w1,i, ..., wL,i)

T

= w`,i, for i = 1, . . . , k.

(10)

Hence, the `-th UT can successfully recover its desired
message.

The following rate is achievable by RQCoF:

RRQCoF = min{R0, log p−max
`
{H(z̃`)}. (11)

Similarly, from (7), we can get an achievable rate per user of
RCoF

RRCoF = min{R0,min
`
{RCoF(σ

2
ε`

)}}. (12)

Finally, the achievable rate of RQCoF (or RCoF) is maximized
by minimizing the variance of effective noise in (5) with
respect to A subject to the system matrix Q is full rank
over Zp. This problem was solved in [6] using the LLL
algorithm [7], possibly followed by Phost or Schnorr-Euchner
enumeration (See [8]) of the non-zero lattice points in a sphere
centered at the origin, with radius equal to the shortest vector
found by LLL.



III. COMPRESSED INTEGER-FORCING BEAMFORMING

In short, the idea underlying RQCoF is that each UT con-
verts its own downlink channel into a discrete additive-noise
multiple access channel over Zp. Since each UT is interested
only in its own message, the CP can precode the messages
using zero-forcing linear precoding over Zp, at no transmit
power additional cost (unlike linear zero-forcing over R). It
is known that the performance of CoF (and therefore QCoF)
is quite sensitive to the channel coefficients, due to the non-
integer penalty, since the channel coefficients are not exactly
matched to the integer coefficients of linear combinations [5],
[6]. The same problem arises in RQCoF (or RCoF), due to
their formal equivalence. In [9], it was shown that integer-
forcing linear receiver (IFLR) can eliminate this penalty by
forcing the effective channel matrix to be integer. Here, we
propose a new beamforming strategy named Integer-Forcing
Beamforming (IFBF), that produces a similar effect for the
downlink.

We present the IFBF idea assuming R0 = ∞, as the dual
scheme of IFLR, and consider finite R0 later. In IFBF, the
beamforming vectors W = [w1, ...,wL] are chosen such that
the effective channel matrix H̃ = HW is integer-valued.
Then, the channel matrix is inverted over Zq by using RQCoF,
as previously presented. In this case, since H̃ ∈ ZL×L,
RQCoF does not suffer from the non-integer penalty. Further,
we extend IFBF to the case of finite R0 by using quantization,
as in done in [2], where CP forwards the quantized sequences
to the ATs for which the quantization noise is determined
from standard rate-distortion theory bounds. It is assumed that
H ∈ RL×L is full rank and the detailed description of IFBF
is as follows. For a given A ∈ ZL×L (optimized later), the
CP uses the beamforming matrix W = H−1A and the system
matrix Q = [A] mod pZ as in Section I-A.

Assuming that Q is full rank over Zp, the CP produces the
downlink streams x` = {x`,i : i = 1, . . . , n}, for ` = 1, . . . , L
as follows.
• The CP precodes the user information messages {w` ∈
Zk

p : ` = 1, ..., L} using the inverse system matrix Q−1:

(µ1,i, ..., µL,i)
T = Q−1(w1,i, ..., wL,i)

T, (13)

for i = 1, . . . , k.
• The CP encodes the precoded information messages using

the same linear code C over Zp (i.e., c` = µ`G) and
produces the downlink stream according to

x`,i = [m(c`,i) + d`,i] mod Λs, for i = 1, . . . , n.
(14)

Using the predefined W, the CP produces the precoded
channel inputs {v`,i : i = 1, . . . , n} using

(v1,i, . . . , vL,i)
T = W(x1,i, . . . , xL,i)

T, for i = 1, . . . , n,

and forwards them to the ATs via the wired links. Consistently
with our system definition, we impose a per-antenna power
constraint equal to SNR (with suitable normalization). Hence,

the second moment of x`,i is determined as

E[|x`,i|2] = SNR/max
`
{‖H−1a`‖2}, (15)

which guarantees that the power of the signal transmitted from
the `-th AT has the required power E[|v`,i|2] = SNR. The
received signal at the `-th UT is given by

y`,i = aT` x`,i + z`,i, for i = 1, . . . , n. (16)

Notice that thanks to the IFBF the non-integer penalty is equal
to zero. So, every UT can recover its desired messages by
decoding the linear combination of ATs’ messages with integer
coefficients a` as shown in (10). Finally, the achievable rate of
IFBF with RQCoF can be obtained by numerically computing
the entropy of discrete additive noise over Zp corresponding
to effective noise ε` ∼ N (0,max`{||H−1a`||2}) where the
impact of power constraint is included in the effective noise.
The following rate is achievable by IFBF with RQCoF:

RIFBF = log p−max
`
{H(z̃`)} (17)

for any full-rank matrix Q, where z̃` = m−1([QΛc(ε`)]
mod Λs). From (7), the following rate is achievable by IFBF
with RCoF:

RIFBF =
1

2
log(SNR/max

`
{||H−1a`||2}) (18)

for any full-rank integer matrix A.
For the case of finite R0, we propose a “compressed” IFBF

(CIFBF) where the CP forwards the quantized channel inputs
v̂`,i = v`,i + ẑ`,i for i = 1, . . . , n, to the `-th AT, where
{ẑ`,i : i = 1, . . . , n} denotes the quantization noise sequence,
with variance (quantization mean-square error) equal to σ2

ẑ .
From the standard rate-distortion theory, the CP can forward
the {v̂`,i : i = 1, ..., n} to the `-th AT if

R0 ≥ I(v`; v̂`), (19)

where the index i is omitted for brevity. Using the well-known
maximum entropy argument on (19) we have the bound

I(v`; v̂`) ≤
1

2
log(SNR/σ2

ẑ). (20)

From (19) and (20), we obtain σ2
ẑ = SNR/22R0 and

E[|v`,i|2] = SNR/(1 + 1/(22R0 − 1)), due to the power
constraint. Accordingly, we have

E[|x`,i|2] = SNR/max
`
{||H−1a`||2}(1+1/(22R0−1)). (21)

Also, the effective noise at the `-th UT is given by

ε`,i = z`,i +

L∑
k=1

h`,kẑk,i, (22)

where the second term captures the impact of quantization
noise and its variance is

σ2
ε`

= 1 + ||h`||2SNR/22R0 . (23)

Finally, the achievable rate of CIFBF with RQCoF can be
obtained numerically computing the entropy of discrete ad-
ditive noise over Zp corresponding to the effective noise



ε′` ∼ N (0, σ2
ε′`

) where the impact of power constraint and
quantization noise are included in the effective noise:

σ2
ε′`

= max
`
{||H−1a`||2}(1 + (1 + ||h`||2SNR)/(22R0 − 1)).

(24)
The following rate is achievable by CIFBF with RQCoF:

RCIFBF = log p−max
`
{H(z̃`)} (25)

for any full-rank matrix Q, where z̃` = m−1([QΛc(ε′`)]
mod Λs). From the (7), the following rate is achievable by
CIFBF with RCoF:

RCIFBF = RIFBF−
1

2
max

`
{log(1+(1+ ||h`||2SNR)/(22R0−1))}

for any full-rank integer matrix A. Finally, the achievable rate
is maximized by minimizing the max`{||H−1a`||2} subject to
full-rank constraint. This problem can be thought of as finding
the L linearly independent “shortest lattice points” of the L-
dimensional lattice generated by H−1. This can be efficiently
obtained using the LLL algorithm [7]. Specifically, for a given
lattice Λ defined by Λ = {x = H−1z : z ∈ ZL}, a reduced
basis of lattice is obtained through a unimodular matrix U such
that Λ = {x = H−1Uz : z ∈ ZL}. Let F = H−1U generates
the same lattice but has “reduced” columns, i.e., the columns
of F have small 2-norm. The solution of the original problem
can be chosen as a` = u` where u` denotes the `-th column
of U. While finding the optimal reduced basis for a lattice
(e.g., finding the optimal U) is an NP-hard problem, the LLL
algorithm finds a good reduced basis with low-complexity [7].

Remark 2: In CIFBF, relays (i.e., the distributed antenna
elements) have very low-complexity and are oblivious to
codebooks since they just forward the received signals from
CP, not requiring modulation and encoding.

Remark 3: In terms of performance, it is worthwhile under-
stand the impact of non-integer penalty and quantization noise
depending on parameters R0, SNR, and so on. As R0 → ∞,
the effect of quantization noise vanishes and thus, CIFBF
would be better than RCoF. However, when R0 is small, RCoF
without beamforming may perform better than CIFBF since
quantization noise would be severe in this case. A numerical
result in a particular case is provided in Fig. 1.

IV. SCHEDULING AND NUMERICAL RESULTS

For the sake of comparison with CDPC we consider the
same Soft-Handoff model of [2], with L ATs and L UTs for
which the received signal at the `-th UT is given by

y`,i = x`,i + γx`−1,i + z`,i, (26)

where γ ∈ [0, 1] represents the inter-cell interference level and
z`,i ∼ CN (0, 1). The extension of results in previous sections
to the (complex-valued) Soft-Handoff model is easy and done
in the usual way [1]. In this example, thanks to the dual-
diagonal structure of the channel matrix, the system matrix
is guaranteed to have rank L. In Fig. 1, we compare various
coding strategies where the upper bound and achievable rates
for CDPC are provided by [2]. It is remarkable that RCoF can
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achieve the upper bound when R0 ≤ 4 bits and outperforms
the other schemes up to R0 ≈ 6 bits. Notice that when γ = 1
(e.g., integer channel matrix), RCoF almost achieves the upper
bound, showing better performance than other schemes. Also,
from the Fig. 2, we can see that RCoF is a good scheme when
R0 is small and SNR is high, i.e., small cell networks with
finite-backhaul capacity. Not surprisingly, RQCoF approaches
the performance of RCoF within the shaping loss of ≈ 0.25
bits/symbol, as already noticed in the uplink case [6].

For the RQCoF, there would be a concern on rank-deficiency
of system matrices Q in particular when p is small, since
every UT selects its own linear combination coefficients in-
dependently of the other nodes. This problem can be avoid
by scheduling since it can select a group of UTs (or ATs)
for which the system matrix is invertible. In fact, this is a
complex combinatorial optimization problem, which in some
cases, can be formulated as the maximization of linear function
over matroid constraint [10] and thus, greedy algorithm yields
provably good performance. The following is the example that



greedy algorithm is optimal. Consider a DAS system with
K UTs and L ATs where K ≥ L and we consider the
user selection that finds the subset of UTs to maximize the
symmetric rate subject to full-rank constraint of system matrix.
Independently of the user selection algorithm, we can obtain
the coefficients of the linear combination of the k-th UT (e.g.,
k-th row of Q) and the variance of effective noise (i.e., σ2

εk
for k = 1, . . . ,K) that determines the achievable rate, for
the given H ∈ RK×L. Let K be the subset of row indices
[1 : K]. Also, let Q(K) denote the submatrix of Q consisting
of k-th rows for k ∈ K. Assuming that Q has rank L, the user
selection problem of finding L UTs can be formulated as

arg min
K⊂[1:K]

max{σ2
εk

: k ∈ K} (27)

subject to Rankp(Q(K)) = L (28)

We first give the definition of matroid and subsequently, show
that the above problem is equivalent to the maximization of
linear function over matroid constraint. Matroids are structures
that generalize the concept of linear independence for general
sets. Formally, we have [10]:

Definition 1: A matroid M is a tuple M = (Ω, I), where
Ω is a finite ground set and I ⊆ 2Ω (the power set of Ω) is a
collection of independent sets, such that:

1) I is nonempty, in particular, φ ∈ I
2) I is downward closed; i.e., if Y ∈ I and X ⊆ Y , then
X ∈ I

3) if X ,Y ∈ I, and |X | < |Y|, then ∃y ∈ Y \ X such that
X ∪ {y} ∈ I.

Let Ω = [1 : K] and I = {K ⊂ [1 : K] :
Q(K) has linearly independent rows}. From Definition 1,
M = (Ω, I) forms a so-called linear matroid. Then, the
optimization problem (27)-(28) is equivalent to

arg max
K⊂[1:K]

∑
k∈K

1/σ2
εk

(29)

subject to K ∈ I (30)

This can be easily proved by the fact that Q has rank L and
constraint is matroid. Rado and Edmonds proved that the Best-
In-Greedy algorithm (See Algorithm 1) finds an optimal solu-
tion [10]. Detailed scheduling algorithms for various scenarios
are omitted because of space limitation (See [1]).

Algorithm 1 Best-In-Greedy Algorithm
Input: M = (Ω, I) and wk = 1/σ2

εk
for k ∈ [1 : K]

step 0.Sort [1 : K] such that w1 ≥ w2 ≥ · · · ≥ wK

Initially k = 1 and K = φ
step 1. If Rankp(Q(K ∪ {k})) > Rankp(Q(K)), then K ←

K ∪ {k}
step 2.Set k = k + 1
step 3.Repeat until Rankp(Q(K)) = L

In Fig. 3, we consider a DAS with channel matrix H ∈
R20×5, with i.i.d. Gaussian distributed elements ∼ N (0, 1).
In our simulation we assumed that if the resulting system
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Fig. 3. Achievable rates per user as a function of SNRs, for finite capacity
R0 = 3 bits and p = 17 for RQCoF.

matrix after greedy selection is rank deficient then the achieved
symmetric rate of all users is zero, for that specific channel
realization. Then, we computed the average achievable rate
with user selection, by Monte Carlo averaging with respect to
the random channel matrix. Random selection indicates that 5
UTs are randomly and uniformly chosen out of the 20 UTs.
As shown in Fig. 3, RCoF has the rank-deficiency when using
random selection, although the rank of the resulting 5 × 5
matrix over R is equal to 5 with probability 1. However, it is
remarkable that RQCoF with greedy user selection does not
suffer from the rank-deficiency problem, even for relatively
small values of p (e.g., p = 17). This is indicated by the fact
that the gap from the RCoF is essentially equal to the the
shaping loss, as in the case where the full-rank system matrix
is guaranteed by assumption.
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