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Abstract—In this paper, we investigate how constraints on the
randomization in the encoding process affect the secrecy rates
achievable over wiretap channels. In particular, we characterize
the secrecy capacity with a rate-limited local source of random-
ness and a less capable eavesdropper’s channel, which shows that
limited rate incurs a secrecy rate penalty but does not preclude
secrecy. We also discuss a more practical aspect of rate-limited
randomization in the context of cooperative jamming. Finally, we
show that secure communication is possible with a non-uniform
source for randomness; this suggests the possibility of designing
robust coding schemes.

I. INTRODUCTION

The wiretap channel model [1], [2] has attracted much
attention in recent years because of its potential to strengthen
the security of communication systems [3]], [4]. Although this
model provides a convenient abstraction to design codes for
secure communication (see [3]] and reference therein), it relies
on two implicit simplifying assumptions. First, the model
assumes that the transmitter knows the statistics of the channel.
Second, the model assumes that the transmitter has access
to an arbitrary local source of randomness, whose statistics
can be optimized as part of the code design. In practice,
however, these assumptions are unlikely to be perfectly guar-
anteed. For instance, an eavesdropper has little incentive to
help characterize the channel statistics and, realistically, the
legitimate parties may only have approximate knowledge of
the true statistics. Similarly, the statistics of the local source
of randomness may be imperfectly known, or the source may
only provide a limited rate of randomness.

Secure communications with imperfect channel knowledge
have already been the subject of previous investigations. For
instance, several works have studied compound wiretap chan-
nels (see [6] and references therein), in which the transmitter
only knows that its channel belongs to a set of possible
channels. Secure communication is often possible but the
best channel to the eavesdropper usually limits secrecy rates.
Other works have investigated the secrecy capacity of state-
dependent channels under different assumptions regarding
state information (see [3l], [4] and references therein). In
another approach, [7] has shown the existence of universal
wiretap codes, which guarantee secrecy and reliability as soon
as the channel capacity of the eavesdropper’s channel is low
enough.
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In contrast to the problem of channel knowledge, little
attention has been devoted to the problem of imperfect local
sources of randomness. In particular, the questions of how
much randomness is required to guarantee secrecy and how
sensitive are secure communication codes to imperfections in
randomness are still largely open.

In this paper, we provide partial answers to these questions.
Our main contributions are 1) the characterization of secrecy
capacity with a rate-limited source of randomness and a less
capable eavesdropper’s channel, 2) practical considerations on
the effect of limited randomness for cooperative jamming,
and 3) the derivation of a sufficient condition for secure
communication with a non-uniform randomization.

The remainder of the paper is organized as follows. Sec-
tion [II} introduces the wiretap channel model used to analyze
the effect of constrained randomization and presents our results
on the secrecy-capacity of wiretap channels with a rate-limited
local source of randomness. Section [[II] discusses rate-limited
randomness in the context of cooperative jamming. Finally,
Section [IV] discusses the possibility of secure communication
with a non-uniform local source of randomness that cannot be
processed.

II. RATE-LIMITED RANDOMNESS: THEORETICAL
CONSIDERATIONS

Unless otherwise specified, we consider a discrete wiretap
channel (X, Wyzx,Y x Z), characterized by a finite input
alphabet X', two finite output alphabets ) and Z, and transition
probabilities pyz|x. As illustrated in Figure|l} we assume that
the transmitter (Alice) wishes to transmit a secret message
to the receiver observing Y” (Bob), in the presence of an
cavesdropper observing Z" (Eve). The channel (X, Wyx, Y)
is called the main channel while the channel (X s Wzx Z) is
called the eavesdropper’s channel. We assume the eavesdrop-
per’s channel is less capable, that is for any input X we have
I(X;Z) < I(X;Y). The encoding process may be stochastic,
but the only source of randomness is a discrete memoryles
source (R,pr) with known alphabet R and known statistics
pr. This model captures a situation in which the transmitter

The assumption of a memoryless source is a matter of convenience, and
the proofs in the appendices generalize easily to arbitrary sources.
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Fig. 1.

Communication over a randomness-limited wiretap channel.

does not have access to a infinite pool of random numbers,
and those must be generated on-the-fly during encoding from
a source of randomness (thermal noise, photon counting). In
addition, it forces us to specify explicitly how to use the
randomness provided by the source in the encoding process.

Definition 1: A (2"% n) wiretap code C,, for the discrete
wiretap channel (X, pyz|x,Y x Z) with local source of ran-
domness (R, pr) consists of the following.

o a message alphabet M = [1,2"#];

« an encoding function e : M x R™ — &A™;

« a decoding function f : " — MU {?}.

The performance of C,, is measured in terms of the average
probability of error P.(C,) = ]P’(M + M|Cn) and of the

secrecy leakage L(C,) = 1(M;Z"|C,)

Definition 2: A rate R is achievable if there exists a se-
quence of (2" n) wiretap codes {C,,},>1 such that

nlgr;o . (Cr) =0 and nlgI;O L(C,) =0.

The (strong) secrecy capacity with rate-limited randomness C
is defined as the supremum of all achievable rates.

Remark 1: The definition of a wiretap code above implic-
itly allows the encoder to process the observations obtained
from the local source of randomness. In particular, the encoder
can remove a possible bias in the randomness. What happens
when the encoder does not perfectly process the local source
is discussed in Section

Proposition 1: The secrecy capacity of a wiretap channel
(X, Wyzix, Y x Z) with a rate-limited source of local ran-
domness (R, pr) and a less capable eavesdropper’s channeﬂ
is

Cs = (I(X; Y]UW) — I(X; Z|W))

max
puvxyz€P
where the set P is the set of distributions py xyz that factorize
as puxvz = pupvijuPx|vWyzx and with I(X; Z|U) < H(R).
Proof: See Appendix [A] and Appendix [ |
Remark 2: Using standard techniques, one can show that
the cardinality of U is bounded by || < 2.
The expression in Proposition [I] is similar to that obtained
in [2, Corollary 2]. The effect of the local source of ran-
domness explicitly appears in the expression through the

2We used the less capable assumption to avoid dealing with the problem of
channel prefixing. Days before submitting the current paper, [§] was posted
on ArXiv and independently solved the general case. Proposition [T] appears
as [8l Corollary 12].

Fig. 2.

Cooperative jamming with rate-limited randomness.

auxiliary time-sharing random variable U and the constraint
I(X; Z|U) < H(R). Proposition [1] confirms the optimal struc-
ture of the encoder, which performs two distinct operations:

1) Uniformization: the encoder generates nearly-uniform
random numbers U, at rate H(R) from the local source
of randomness;

2) Randomization: the encoder uses a fraction I(X;Z|U)
of the randomness rate to randomize the choice of a
codeword;

The identification of the optimal encoder structure suggest
that non-uniform randomization may affect the performance
of a code, which we discuss in Section Proposition |1| also
highlights that the common folklore in information-theoretic
security, according to which secrecy is achievable provided the
randomization can exhaust the capacity of the Eve’s channel,
is somewhat misleading. If the source provides a non-zero rate
of randomness (H(R) > 0), then the secrecy capacity with a
rate-limited source of randomness is positive if and only if
the secrecy capacity with unlimited randomness is positive.
Intuitively, this happens because the channel seen by Eve is
an “effective channel”, which is partly controlled by Alice
through time-sharing and the choice of the codebook.

Also note that if the rate of randomness vanishes, then
no secure communication is possible. This confirms that,
except for pathological channels (for instance, one for which
I(X;Z) = 0 for any X), one cannot replace the local source
of randomness by a pseudo-random number generator without
losing the information-theoretic secrecy guarantees.

III. RATE-LIMITED RANDOMNESS: PRACTICAL
CONSIDERATIONS

It is legitimate to wonder how the results of previous
sections generalize to continuous channels and, in particular,
to Gaussian channels. There are no conceptual difficulties
in analyzing the randomization part of the encoder since
I(X;Z|U) remains finite with a power constraint; however,
the simulation of Gaussian noise plays a key role in multi-
user wiretap channels [9] as a means to perform cooperative
jamming.

We analyze the situation illustrated in Figure |2} in which
an eavesdropper observes the output of an AWGN channel
with noise variance o? and suffers from the added interference
of a cooperative jammer (Adam). The signal obtained by the



eavesdropper is then
Z" =X"4+C"+ N7,

where X" is the codeword transmitted by Alice, C" is the
interference introduced by Adam, and N7 is the channel noise.
Cooperative jamming would consist in generating C™ i.i.d.
according to a Gaussian distribution. With a local source of
randomness, the following results holds.

Proposition 2: With a local source of randomness (R, pgr),
a cooperative jammer can induce artificial Gaussian noise with
power p < g222HR)—1

Sketch of proof: The result follows by remarking that the

objective of cooperative jamming is to increase the variance of
Gaussian noise at the eavesdropper’s terminal; therefore, the
distribution of C™ + NP should be close to Gaussian, but C"
itself need not be Gaussian. In particular, the sequences C” can
be chosen from a codebook with average power constraint p;
the result of channel resolvability over Gaussian channels [[10]]
guarantees there exists a codebook with rate arbitrarily close to
1 log(1+ %) so that the distribution of C™+ N is arbitrarily
close to N'(02 + p). Since the rate of the codebook is given
by the rate of the source H(R), the result follows. [ |
Consequently, rate-limited randomness effectively translates
into a power constraint on the Gaussian artificial noise that the
encoder introduces to jam the eavesdropper. Therefore, rate-
limited randomness reduces the effectiveness of cooperating
jamming but does not preclude it.

IV. NON-UNIFORM RATE-LIMITED RANDOMNESS

The result of Proposition |1| suggests that one should always
“uniformize” the local source of randomness to create uni-
formly distributed random numbers. This operation, however,
may be imperfect and one may wonder whether achieving
secrecy is then still possible. A situation where the random
numbers may not be perfectly uniform is if the local source
of randomness is another message source; understanding this
setting is crucial to assess whether secrecy constraints incur
an overall rate loss or not [4].

For simplicity, we assume that the output of uniformization
is a random variable U,. € [1,2"%+] with perhaps non-uniform
distribution py,. In this case, we show that secrecy is still
achievable, but at a lower rate limited by the Rényi entropy
rate of order two L Ry(UL,) where

>

uefl,2nkr]

Ry(U,) £ —log pu, (u)?

Proposition 3: A secrecy rate R is achievable when ran-
domization is performed with randomness U, if it satisfies

R< max (I(X;Y[U)—I(X; Z|U)),

puxvyz€P

where P is the set of distributions I(X;Y|U) that factorize as
pupxjuWyzx and such that I(X; Z|U) < L+ Ry(U,.).

Proof: See Appendix [ |
It is not straightforward to establish a converse for Proposi-
tion 3| because typical converse arguments make no assumption

regarding the internal structure of the encoder. In particular, it
seems difficult to include a constraint that would prevent any
processing of U,..

In general, 2Ry(U,) < 1H(U,), and the constraint in
Proposition [3]is therefore more stringent than in Proposition [I]
The effect can be quite dramatic, and the following example
shows that the gap between the rates in Proposition [I| and
Proposition [3] can be large.

Example 1: Assume the encoder performs randomization
with a biased local source of randomness, which produces
random numbers U, € [1,2"%] such that

1— 27naR
onR |

where « €]0; 5[ is a parameter that controls the uniformity of
the distribution. Note that

Jim LRy(U,) = aR whereas lim 1H(U,) = R.

P(U, =1) =2""% and P(U, =) = if i # 1,

Consequently, without proper uniformization, the achievable
rates predicted in Proposition [3| could be arbitrarily small.
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APPENDIX A
CONVERSE PROOF FOR PROPOSITION [I]
Let € > 0 and let R be an achievable rate. Then, there exists
a (2" n) code C, such that P.(C,) < € and L(C,) < e
Following the converse technique in [2], we obtain

R LS (1(M VY= 2 )-1(M Zi Y1 201) ) 6 ),
=1
where YI=1 £ {Y;}/2, Z7F1 £ {Z3" . and §(c) is a

function of e that goes to zero with e. Next, by definition of
the encoder e and by independence of R™ and M,

CH(XIM) = H(e(M,RY)IM) < TH(RY) = H(R). (1)

Now, we also have

CH(X M)
- %H(X”) - %H(M) + %H(M|X”)
> %H(X") - %H(M) + %H(M|X”) + %H(M; 7" = 8(e)
_ %H(X”) - %H(M|Z") —5(e) + %H(M|X")
- %H(X”) - %H(MX”|Z") + %H(X”U\AZ”)
4 %H(M|X”) — 5(e)
- %]I(X”; 7"+ %H(X"|MZ") — 8(e)
> L0 27— 6(e), @



where the last inequality follows because M — X" — Z7
forms a Markov chain and H(M|X"Z") = H(M|X™). Then,

%]I(X”; yal)
- % z:; (B1(zijz ) —m(zix"2+1) )
% i (H(Zi‘Yi—12i+l) _ H(Zi|yi—12i+1xi)>

- %il(xi;zi\w—lz”l), 3)
=1

WV

where the inequality follows because conditioning does not
increase entropy and Zit1Yi~1 — X; — Z; forms a Markov
chain. Let us now define a random variable Q independent of
all others and uniformly distributed on [1,n]. For i € [1,n],
we also define U; £ Yi~1Zi*1 and V; £ U,;M. Combining
inequalities (I), (Z), and (@), and substituting the definition of
Q, U;, V; above, we obtain

(VQ; YqlQUq) — I(VqQ; Zg|QUgq) +d(e)  (4)
(XqQ:Zq|QUgq) —d(e). 5)
Finally, define U £ UgQ, VvV £ VpQ., X £ Xq, Y £ Yq and
72 Zq. Note that U — V — X — YZ forms a Markov chain

and that the statistics pyz|x are those of the original channel
Wyz|x. Substituting these definitions in @) and (5), we obtain

R <

<I
H(R) > I

R<I(V;YIU) = I(V; Z[U) + 6(e)
H(R) > I(X; Z|U) — 5(c).

Because the eavesdropper’s channel is less capable, then
I(V;Y[U) — I(V; Z|U) < I(X;Y[U) — I(X; Z|U). Since € can
be chosen arbitrarily small, we obtained the desired converse.

APPENDIX B
ACHIEVABILITY PROOF FOR PROPOSITION[]]

The proof relies on binning, superposition coding, and
stochastic encoding as in [2, Lemma 2]; however, since the
local source of randomness is explicit and since we impose
a strong secrecy criterion, some details must be laid out
carefully. We denote the set of e-strongly typical sequences
with respect to px by T2(X) and the set of conditional e-
strongly typical sequence with respect to pyx and z™ € T(X)
by THY|z™).

We first show the existence of a code C, assuming an
unlimited amount of uniform randomness is available. We fix a
joint distribution pux on U x X such thaf|I(X; Z|U) < H(R)
and I(X;Y|U) — I(X; Z|]U) > 0, and we construct a code
C,, for the broadcast channel with confidential messages
(X, pyzx, Y x Z2). Lete > 0, R > 0, R. >0, Ry >0
and n € N. We randomly construct a code as follows. We
generate 2770 sequences independently at random according

3If such a probability distribution does not exist, then the result of
Proposition |1} is trivial and there is nothing to prove.

to pu, which we label u" (i) for i € [[1,2"%0]. For each se-
quence 1" (i), we generate 2"+ %) sequences independently
a random according to px|u. which we label z" (4, j, k) with
j € [1,2"F] and k € [1,2"%r]. To transmit a message
i € [1,2"F°] and j € [1,2"F], the transmitter obtains a
realization k of a uniform random number U, € [1,2""],
and transmits ™ (%, j, k) over the channel. Upon receiving y",
Bob decodes i as the received index if it is the unique one
such that (u"(i),y™) € T/(UY); otherwise he declares an
error. Bob then decode (j, k) as the other pair of indices if
it is the unique one such that (2"(i,7,k),y") € TH(UXY).
Similarly, upon receiving 2", Eve decodes ¢ as the received
index if it is the unique one such that (u"(i),2") € TUZ);
otherwise she declares an error.

Lemma 1: If Ry < min(I(U;Y),I(U;Z)) and R+ R, <
I(X;Y|U), then E(P.(C,)) < 27" for some o > 0.

Proof: The proof follows from a standard random coding
argument and is omitted. [ ]

Lemma 2: If R, > I(X;Z|U), then we have
Ec, (V(pmzn, pmpzn)) < 27°" for some B > 0, where V
denotes the variational distance.

Proof: Lemma 2] is a special case of Lemma [4] proved in
Appendix [ |
Using Markov’s inequality, we conclude that there exists
at least one code C, satisfying the rate inequalities in
Lemma |I| and Lemma |2 such that P.(C,) < 3-27°" and
V(pmmozn, PMPMozn) < 3 - 278" Finally, the uniform
numbers U,. can be approximately obtained from (R, pr) with
an appropriate function ¢.

Lemma 3 (adapted from [I1]): If R, < H(R), then there
exists ¢ such that V(pqS(R");pUT) < 27™ for some 1 > 0.
Consequently, it is not hard to show that, even if the code C,
is used with ¢(R™) in place of U,., then

PE(C’”) < 27" and V(pMMoZ"7pMpM0Z") < 27,

for some # > 0. The fact that L(C,,) < 27%" for some £’ > 0
follows from [12, Lemma 1]. Combining all rate constraints
in the previous lemmas, and since € can be chosen arbitrarily
small, we see that any rate R < I(X;Y|U) — I(X; Z|U) such
that I(X; Z|U) < H(R) is achievable. Note that the constraint
on Iy plays no role since it represents a negligible rate of time
sharing information to synchronize transmitter and receiver.

APPENDIX C
PROOF OF PROPOSITION

The proof is similar to that Appendix [B] with Lemma [4] in
place of Lemma 2] Lemma 2] is obtained in the special case
of U, uniform.

Lemma 4: If 1Ry(U,) > I(X;Z[U), then we have

Ec, (V(pmzn, pmpzn)) < 278" for some 8 > 0.
The proof relies on a careful analysis and modification of
the “cloud-mixing” lemma [13] and the notation is that of
Appendix We define the distribution gyrxnz» on U™ x
X" x Z™ as

qunXxnzn (Un, xn7 Zn) = WZ" |X™ (Zn|1'n)pxnun (./,Cn, Un).



First note that the variational distance V(pmzn, pmpzn) can
be bounded as follows.
V(pmzn, pmpzn)
< V(pmurzn, pmpunzn)
=Eurm (V(pzrimur,pznjun))
< Eurm (V(pzojmuns azojur) + V(gzoun, pzojun))
< 2Bunm (V(pzemuns gzojun))

Then, let U7 be the sequence in U™ corresponding to My = 1.
By symmetry of the random code construction, the average
of the variational distance V(pmzn,pmpzn) over randomly
generated codes C,, satisfies

Ec, (V(pmzn, pmpzn))
< 2Ec, (V(pzrjur=urm=1, 4z ur=uz)),

where
gnRy

Z Wznixn (2

The average over the random codes can be split between the
average of U} and the random code C,,(u}) for a fixed value
of w7, so that

Pzrjur=unrM= 1( 2" (1,1,k))pu, (k).

Ec, (V(pzrjur—urm=1, 4z~ ur=ur))

Z pur (UD)Ec, (ury (V(Pzr jun=up M=1, 427 [un=uz ) )
u U™

< 2P(U™ ¢ TA(U))

+ Z pur (UD)Ec, () (V(Pzr|ur—up =1, @27 un—uz ) )

up €T(U)
where the last inequality follows from the fact that the varia-
tional distance is always less than 2. By construction, the first
term on the right-hand side vanishes as n gets large; we now
proceed to bound the expectation in the second term. First note
that, for any 2" € Z",

EC”(u{L (pZ”|U":uILM:1(Zn))
onkr
=Ec,up) | Y Wznxe (2"[2"(1,1,k))pur (k)
k=1
gnkr
ZEC wry (Wznxn (272" (1,1, k))) pur (k)

= anlun:u? (Zn)

We now let 1 denote the indicator function and we define
on Ry

p(l) Z WanXn (17 ]'7 k))pu'r(k)
H(2"(1,1,k),2") € TXXZ|u1)},
21LR7<
(2) Z Wznlxn (171’k))pu7(k)

{(«"(1,1,k),

2") ¢ TI(XZ|u)},

so that we can upper bound V(pznmn:u?M:l, qzn|un=u?)
as

V(pzrjun—upM=1,4zn[un=uy )

D>

= ETH(ZIu)

>

2 €T Z|ul)

Ly

ZzneT(Z|uy)

[Pz jur—up m=1(2") = qzrjur—ar (z")| (6)

PO~ E (0 ()| )

D) - E (). (®)

Taking the expectation of the term in (6) over C, (u}), we
obtain

El >

2 ETN(Z|ul)

’pzMun:uyMﬂ(zn) — 4zr|unr=uy (Zn)|

< Z E (maX(Pzwun:ufM:l (z"), qzn|un=up (Zn)))
2 ETNZ|ul)

= 2

2 ETH(Z|ut)

QZ"\U":UT’(Zn)v

which vanishes as n goes to infinity. Similarly, taking the
expectation of the term in (§) over C, (u}), we obtain

El )

2 €T Z|u)

< E< > [pPeEn B () \)
zmezn
> lE(p(Q) (Z"))

ZneZn

>

ZneZn

- ¥

(z™,2") gTHXZ|uy)

(") —E(p2 ()]

E (WZn‘Xn (Zn|Xn(1, 17 1))

H{(X"(1,1,1),2") ¢ THXZ[ut))

Qann\unfu"(Z ;")

which vanishes as n goes to infinity. Finally, we focus on
the expectation of the term in over Cp(u}). For z" €
THZ|u}), Jensen’s inequality and the concavity of z +— \/z
guarantee that

E([p0e —E(p0em)|) < Varp® zm).

In addition,

on Ry

ar(pV(2")) = > pu.k

Var szlxn( n|Xn(1,1,k))

HX"(1, 1, k), 2") € TI(XZ|u)})



Note that

Var (Wznxn (2" X" (1,1, k) H{(X" (1,1, k), 2") € T/(XZ[u)})

= Z anlun:u? (x")

zneX"
n n n n m n 2
(Wzn xn (2" 2")1{(2", 2") € THXZ[u})})
x:(xn, 2™ ) ETHXZ|uY)

@ g n(zIx)-5()

>

ani(an,2m) ETH(XZ )
< 9-n(HZ|X)=5()

© - nmzixmziw-so),

pX"|U"=UT' ((En)Wanxn (Zn |£Cn)2

pPxn |U":u1’ (I‘n)WZn |Xn (Zn \x")

qznjun=up (z")

where (a) and (b) follow from the AEP; therefore,
2nRr

Var<p(1>(z")) < 2 nEZNFHZIW =5 3™y (k)2
k=1

< 9~ n(EZIX)+EZ|U)=5(e) + H2GH)

and

>

2 eTHZlu})

E (‘p(”(z”) ~E (p(” (2")) D

< QnE(Z|W) - 3 (HZIX)+HZ|W)—6(e)+ M2

— o~ 3(R20_1x;Zu)-5(e))

Hence, if % > I(X; Z|U) 4 6(e), the sum vanishes as n
goes to infinity, which concludes the proof. Note that if U, is

uniform, then Ry(U,.) = nR,, and we obtain Lemma
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