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Entropy functions and determinant inequalities
Terence Chan, Dongning Guo, and Raymond Yeung

Abstract—In this paper, we show that the characterisation of
all determinant inequalities for n × n positive definite matrices
is equivalent to determining the smallest closed and convexcone
containing all entropy functions induced by n scalar Gaussian
random variables. We have obtained inner and outer bounds
on the cone by using representable functions and entropic
functions. In particular, these bounds are tight and explicit for
n ≤ 3, implying that determinant inequalities for 3× 3 positive
definite matrices are completely characterized by Shannon-type
information inequalities.

Index Terms—Entropy, Gaussian distribution, rank functions

I. I NTRODUCTION

Let n be a positive integer and denote the ground set by
N = {1, ..., n} throughout this paper. SupposeK is ann×n
positive definite matrix. For any subsetα ⊆ N , let Kα be
the sub-matrix ofK obtained by removing those rows and
columns of K indexed byN \ α and its determinant be
denoted by|Kα|. Note that whenα is the empty set, we will
simply defineKα as the scalar of value 1. There are many
determinant inequalities in the existing literature that involve
only the principle minors of the matrix. These include

1) Hadamard inequality

|K| ≤
n
∏

i=1

|Ki| (1)

2) Szasz inequality





∏

β⊆N :|β|=l

|Kβ|





1

(k−1
l−1)

≥





∏

β⊆N :|β|=l+1

|Kβ|





1

(k−1
l )

(2)

for any 1 ≤ l < k.

As pointed out in [1], [2] and to be illustrated in Section
II, many of such determinant inequalities (including the above
two inequalities) can be proved via an information-theoretic
approach. Despite that many determinant inequalities can be
found in this approach, a complete characterisation of all de-
terminant inequalities is still missing. In this paper, we aim to
understand determinant inequalities by using the information
inequality framework proposed in [3].

II. I NFORMATION INEQUALITY FRAMEWORK

The framework proposed in [3] provides a geometric ap-
proach to understanding information inequalities.1 Its idea will
be illustrated shortly.

1See [4, Ch. 13-16] for a comprehensive treatment.

Definition 1 (Rank functions):A rank function over the
ground setN is a real-valued function defined on all subsets
of N . Therank function spaceover the ground setN , denoted
by R

2n , is the set of all rank functions overN .

As usual,R2n will be treated as a2n-dimensional Euclidean
space, so that concepts such as metric and limits can be defined
accordingly.

Definition 2 (Entropic functions):Let g be a rank function
over N . Then g is called entropic if there exists a set of
discrete random variables{Xi, i ∈ N} such thatg(α) is the
Shannon entropy2 H(Xi, i ∈ α), or H(Xα) for short, for all
α ⊆ N .

On the other hand, if{Xi, i ∈ N} is a set of continuous
scalar random variables such thatg(α) is the differential
entropyh(Xα) for all α ⊆ N , theng is calleds-entropic.

Definition 3 (Entropic regions):Consider any nonempty fi-
nite ground setN . Define the following “entropy regions”:

Γ∗
n = {g ∈ R

2n : g is entropic} (3)

γ∗
s,n = {g ∈ R

2n : g is s-entropic}. (4)

Understanding the above entropic regions is one of the most
fundamental problems in information theory. It is equivalent
to determining the set of all information inequalities [3].

In this paper, we will use the following notation. For any
subsetS ⊆ R

2n , W(S) is defined as the set of all rank
functionsg∗ such thatg∗ = c · g for somec > 0 andg ∈ S.
The closure ofW(S) will be denoted byW(S). Finally, the
smallest closed and convex cone containingS will be denoted
by con(S). Clearly,

S ⊆ W(S) ⊆ W(S) ⊆ con(S). (5)

Theorem 1 (Geometric framework [3]):A linear informa-
tion inequality

∑

α⊆N

cαH(Xα) ≥ 0

is valid for all discrete random variables{X1, . . . , Xn} if and
only if for all g ∈ Γ∗

n
∑

α⊆N

cαg(α) ≥ 0.

By Theorem 1, characterising the set of all valid information
inequalities is thus equivalent to characterising the setΓ∗

n.
Similar results can be obtained for the setγ∗

s,n. In the
following, we will extend this geometric framework to study
determinant inequalities.

2All logarithms used in the paper is in the base 2.

http://arxiv.org/abs/1201.5241v1
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Definition 4 (Log-determinant function):A rank functiong
over N is called log-determinantif there exists ann × n
positive definite matrixK such that

g(α) = log |Kα| (6)

for all α ⊆ N .

Let Ψn be the set of all log-determinant functions overN .
Then, we have the following theorem.

Theorem 2:Let {cα, α ⊆ N} be any real numbers. The
determinant inequality

∏

α⊆N

|Kα|cα ≥ 1 (7)

holds for all positive definite matrixK if and only if
∑

α⊆N

cαg(α) ≥ 0 (8)

for all g ∈ con(Ψn).

Proof: By taking logarithm on both sides of the inequal-
ity, (7) is equivalent to that

∑

α⊆N

cα log |Kα| ≥ 0 (9)

for all positive definite matrixK. As (9) is a linear inequality,
it is satisfied by allg ∈ Ψn if and only if it is satisfied by all
g ∈ con(Ψn). The theorem then follows.

In other words, the characterisation of the set of all determi-
nant inequalities is equivalent to determining the setcon(Ψn).
In the rest of the paper, we will obtain inner and outer bounds
on con(Ψn).

To achieve our goal, we will take an information theoretic
approach [2]. The idea is very simple: Let{X1, . . . , Xn} be
a set of scalar Gaussian random variables whose covariance
matrix is equal to(1/2πe)K. Then the differential entropy of
Xα is given by

h(Xα) =
1

2
log |Kα|. (10)

Definition 5 (Scalar Gaussian function):A function g ∈
R

2n is called s-Gaussianif there exists scalar Gaussian
variables{X1, . . . , Xn} where

g(α) = h(Xα) (11)

for all α ⊆ N .

From (10), a rank functiong is log-determinant if and only
if 1

2g is s-Gaussian. LetΥs,n be the set of alls-Gaussian
functions. Then

con(Ψn) = con(Υs,n).

Consequently, we have the following theorem.

Theorem 3:The determinant inequality
∏

α⊆N

|Kα|cα ≥ 1

holds for all positive definite matrixK if and only if
∑

α⊆N

cαh(Xα) ≥ 0

for all scalar Gaussian variables{X1, . . . , Xn}.

In fact, the Hadamard inequality and Szasz inequality are
respectively the counterparts of the following basic informa-
tion inequalities3 [5]

n
∑

i=1

h(Xi) ≥ h(X1, . . . , Xn) (12)

1
(

k
l

)

∑

β⊆N :|β|=l

h(Yβ)

l
≥ 1
(

k
l+1

)

∑

β⊆N :|β|=l+1

h(Yβ)

l + 1
. (13)

In the following sections, we will obtain inner and outer
bounds on the setcon(Υs,n). The following corollaries of
Theorem 2 show how these bounds can be used for proving
or disproving a determinant inequality.

Corollary 1 (Proving an inequality):SupposeS contains
con(Υs,n) as a subset. The determinant inequality (7) holds
for all positive definite matrixK if

∑

α⊆N

cαg(α) ≥ 0

for all g ∈ S.

Therefore, any explicit outer bound oncon(Υs,n) can lead
to the discovery of new determinant inequalities. On the other
hand, an inner bound oncon(Υs,n) can be used for disproving
a determinant inequality.

Corollary 2 (Disproving an inequality):Suppose
T ⊆ con(Υs,n). The determinant inequality (7) does
not hold for all positive definite matrices if there existsg ∈ T
such that

∑

α⊆N

cαg(α) < 0.

III. A N INNER BOUND AND AN OUTER BOUND

As discussed earlier, log-determinant functions are essen-
tially the same ass-Gaussian functions. Our objective is
thus to characterisecon(Υs,n), or at least to understand its
basic properties. Since scalar Gaussian random variables are
continuous scalar random variables, the next lemma follows
immediately from the definition.

Lemma 1 (Outer bound):

Υs,n ⊆ γ∗
s,n, (14)

3Han’s inequality was originally proved for discrete randomvariables.
However, by using the same proving technique, it can also be proved to hold
for all continuous random variables [1]. Alternative, its validity also follows
from [6]: If a balanced information inequality (including Han’s inequality)
holds for all discrete random variables, then its “continuous counterpart” (i.e.,
the inequality by replacing discrete entropies with differential entropies) also
holds for all continuous random variables.
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and consequently,

con(Υs,n) ⊆ con(γ∗
s,n). (15)

It is well known thatΓ
∗
n (i.e., the closure ofΓ∗

n) is a closed
and convex cone [3]. It was established in [6] that

con(γ∗
s,n) = con(Γ

∗
n, φ

n
1 , . . . , φ

n
n) (16)

where

φn
i (α) =

{

−1 if i ∈ α

0 otherwise.

In the following, we prove an inner bound oncon(Υs,n) by
using representable functions.

Definition 6 (s-representable function):A rank functiong
over N is called s-representableif there exists real-valued
vectors (of the same length){A1, . . . , An} such that for all
α ⊆ N ,

g(α) = dim 〈Ai, i ∈ α〉.
In other words,g(α) is the maximum number of independent
vectors in the set{Ai, i ∈ α}.

Theorem 4 (Inner bound):If g is s-representable, then

g ∈ W(Υs,n).

Proof: Suppose the length of each row vectorAi is k.
Let

{W1, . . . ,Wk, V1, . . . , Vn}
be a set of independent standard Gaussian random variables.
Therefore, its covariance matrix is the(n+k)×(n+k) identity
matrix. Let c > 0. For eachi = 1, . . . , n, define a real-valued
continuous random variable as follows

Xi ,
1√
c
Ai[W1, . . . ,Wk]

⊤ + Vi.

Let X = [X1, . . . , Xn]
⊤. Then

X =
1√
c
A[W1, . . . ,Wk]

⊤ +V

whereA is ann× k matrix whoseith row is Ai and

V = [V1, . . . , Vn]
⊤.

SinceXi is zero-mean,

Cov(X) = E[XX
⊤]

=
1

c
E
[

A[W1, . . . ,Wk]
⊤[W1, . . . ,Wk]A

⊤
]

+ I

=
1

c
AA⊤ + I.

Consequently,

det(Cov(X)) = det

(

1

c
D + I

)

(17)

whereD is the diagonal matrix obtained by using singular-
value decomposition (SVD) overAA⊤. Let d1 ≥ d2 ≥ · · · ≥
dn ≥ 0 be the diagonal entries ofD andr be the rank of the

matrix AA⊤ (or equivalently, the rank ofA). Hence,di > 0
if and only if i ≤ r. Then

det(Cov(X)) =
r
∏

i=1

(

di
c
+ 1

)

. (18)

It is easy to see that

lim
c→0

h(X1, . . . , Xn)
1
2 log 1/c

= lim
c→0

1
2 log ((2πe)

n det(Cov(X)))
1
2 log 1/c

(19)

= lim
c→0

log (det(Cov(X)))

log 1/c
(20)

= lim
c→0

∑r

i=1 log
(

di

c
+ 1
)

log 1/c
(21)

= r. (22)

Similarly, for anyα ⊆ {1, . . . , n}, we can prove that

lim
c→0

h(Xα)
1
2 log 1/c

= dim 〈Ai, i ∈ α〉 = g(α).

Thus,g ∈ W(Υs,n) and the theorem is proved.

Lemma 2:Let {X1, . . . , Xn} be a set of scalar jointly
continuous random variables with differential entropy function
g. For anyc1, . . . , cn > 0, define the set of random variables
{Y1, . . . , Yn} by

Yi = Xi/ci, ∀i ∈ N ,

and letg∗ be the differential entropy function of{Y1, . . . , Yn}.
Then

g∗(α) = g(α) +
∑

i∈α

log ci (23)

= g(α)−
∑

i∈N

(log ci)φ
n
i (α) (24)

for all α ⊆ N . Consequently, ifg is s-Gaussian, then so isg∗.

Proof: Let fX1,...,Xn
and fY1,...,Yn

be respectively the
probability density functions (pdfs) of{X1, . . . , Xn} and
{Y1, . . . , Yn}. Then

fY1,...,Yn
(y1, . . . , yn)

=

(

n
∏

i=1

ci

)

fX1,...,Xn
(c1y1, . . . , cnyn), (25)

and (23) can be directly verified.

Corollary 3:

con(Ωs,n, φ
n
1 , . . . , φ

n
n) ⊆ con(Υs,n) ⊆ con(γ∗

s,n)

= con(Γ
∗
n, φ

n
1 , . . . , φ

n
n) (26)

whereΩs,n is the set of alls-representable functions.

Proof: A direct consequence of Lemmas 1 and 2, Theo-
rem 4 and (16).



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Proposition 1 (Tightness of inner and outer bounds):For
n ≤ 3,

con(Ωs,n, φ
n
1 , . . . , φ

n
n) = con(Υs,n)

= con(γ∗
s,n) = con(Γ

∗
n, φ

n
1 , . . . , φ

n
n). (27)

Proof: By Corollary 3, to prove the proposition, it suffices
to prove that forn ≤ 3,

con(Γ
∗
n) ⊆ con(Ωs,n). (28)

In [16], the coneΓ
∗
n (whenn ≤ 3) was explicitly determined

by identifying the set of extreme vectors of the cone. It can
be proved that all the extreme vectors ares-representable4 and
hence is a subset ofcon(Ωs,n). Consequently, (28) holds and
the proposition follows.

Proposition 1 does not hold whenn ≥ 4. In fact,
con(Ωs,n, φ

n
1 , . . . , φ

n
n) is in general a proper subset of

con(Υs,n) when n ≥ 4. In [12], it was proved that all
s-representable functions satisfy the Ingleton inequalities. It
can also be directly verified that all the functionsφn

i also
satisfy the Ingleton inequalities. Therefore, all the functions
in con(Ωs,n, φ

n
1 , . . . , φ

n
n) also satisfy the Ingleton inequalities.

However, in [10], it was proved that there existsg ∈ Υs,n

for n = 4 that violates the the Ingleton inequality. Thus,
con(Ωs,n, φ

n
1 , . . . , φ

n
n) is indeed a proper subset ofcon(Υs,n).

IV. A NOTHER OUTER BOUND

By definition, the setcon(Ψn) (which is the focus of
our interest) is close under addition. However, this is not
necessarily true forΨn. In fact, W(Ψn) is not necessarily
equal tocon(Ψn).

In the previous section, we showed that the setΨn is es-
sentially equivalent to the set ofs-Gaussian functions, defined
via sets of scalar Gaussian random variables. It turns out that,
if we relax the constraint by allowing the Gaussian random
variables to be vectors, instead of scalars, we will obtain an
outer bound forΨn and alsocon(Ψn).

Definition 7 (Vector Gaussian function):A function g ∈
R

2n is calledv-Gaussianif there existsn Gaussian random
vectors{X1, . . . , Xn} such that

g(α) = h(Xα) (29)

for all α ⊆ N .

Lemma 3:con(Υv,n) = W(Υv,n).

Proof: It is clear from the definition thatW(Υv,n) ⊆
con(Υv,n). Now, consider positive integersk, ℓ1, ℓ2 and
g1, g2 ∈ Υv,n. It is easy to see that

ℓ1g1 + ℓ2g2 ∈ Υv,n.

4In [16], the extreme vectors are proved to be representable with respect to a
finite field. However, it can be verified easily that they are alsos-representable
with respect to the real fieldR.

Hence,
ℓ1
k
g1 +

ℓ2
k
g2 ∈ W(Υv,n).

Sincek, ℓ1, ℓ2 are arbitrary positive integers, for any positive
numbersc1, c2 > 0,

c1g1 + c2g2 ∈ W(Υv,n)

and the lemma follows.

Theorem 5 (Another outer bound):

con(Υs,n) ⊆ W(Υv,n). (30)

Proof: A direct consequence of thatΥs,n ⊆ Υv,n and
Lemma 3.

So far, we have established two outer bounds (15) and (30)
for con(Υs,n). In the following, we will prove that (30) is in
fact a tighter one.

Definition 8: A rank functiong is calledv-entropicif there
exists a set of random vectors{X1, . . . , Xn}, not necessarily
of the same length, such that

g(α) = h(Xα).

Also, let

γ∗
v,n(N ) = {g ∈ R

2n : g is v-entropic}. (31)

Clearly,W(Υv,n) = con(Υv,n) ⊆ con(γ∗
v,n). Thus,

con(Υs,n) ⊆ W(Υv,n) ⊆ con(γ∗
v,n).

To show that (30) is tighter, it suffices to prove the following
result.

Theorem 6:γ∗
v,n = γ∗

s,n = con(Γ
∗
n, φ

n
1 , . . . , φ

n
n).

Theorem 6 basically states that replacing the real-valued
random variablesXi in the vectorX by random vectors does
not enlarge the closure of the space of differential entropy
vectors. The discrete counterpart of this result is trivial,
because as far as the probability masses and the entropy are
concerned, a discrete random vector can be replaced by a
scalar discrete random variable. However, in the continuous
domain, it is not clear how a probability density function on
R

2 or more generallyRm can be mapped to a pdf onR without
changing the entropies. In particular, there does not exista
continuous mapping fromR2 to R [9].

The proof of Theorem 6 exploits the relationship between
the differential entropy of a continuous vector and the entropy
of a discrete vector obtained through quantisation. Moreover,
the entropy of the discrete random variable is equal to the
differential entropy of a continuous random variable with
piece-wise constant pdf. Given then-tuple Z whose entries
are vectors, we “quantise”Z by a discrete vector and then
construct a continuous vector withn scalar entries whose
entropy vector arbitrarily approximates that ofZ. Before we
prove the theorem, we need several intermediate supporting
results.
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Lemma 4 (Closeness in addition):If g1 and g2 are v-
entropic (or entropic) functions overN , then their sumg1+g2
is alsov-entropic (or entropic).

Proof: Direct verification.

Proposition 2: If g∗ ∈ γ∗
v,n, then for anyc > 0, c · g∗ ∈

γ∗
v,n.

Proof: Let X = (X1, . . . , Xn) be a real-valued random
vector with a probability density function. For any positive
integer j, let X

(1), . . . ,X(j) be j independent replicas of
X (by a replica we mean a random object with identical
distribution). Similarly, letU = (U1, . . . , Un) be a real-valued
random vector such thatU1, . . . , Un are mutually independent
and each of them is uniformly distributed on the interval[0, 1].
Again, for any positive integerj, let U

(1), . . . ,U (j) be j
independent replicas ofU . It is easy to see that the joint
density function ofU (1), . . . ,U (j) is uniform on a hypercube
with unit volume and hence has zero differential entropy.

Consider anyc > 0. Let T be a binary random variable
such that

P {T = 1} = c/j andP {T = 0} = 1− c/j

wherej is a positive integer. Assume thatT is independent
of

(X(1),U (1) . . . ,X(j),U (j)).

Let Z = (Z1, . . . , Zn) where eachZi is a random vector of
lengthj such that for anyi = 1, . . . , n,

Zi =

{

(U
(1)
i , . . . , U

(j)
i ) if T = 0

(X
(1)
i , . . . , X

(j)
i ) otherwise.

(32)

Z is evidently continuous with a pdf, which is a mixture of
two pdfs induced by that ofX andU . For anyα ⊆ N , we
can directly verify that

h(Zα|T = 0) = h(U (1)
α , . . . , U (j)

α ) (33)

= 0 (34)

and

h(Zα|T = 1) = h(X(1)
α , . . . , X(j)

α ) (35)

= jh(Xα). (36)

Consequently,

h(Zα|T ) = ch(Xα). (37)

Hence,

ch(Xα) = lim
j→∞

h(Zα|T ) (38)

≤ lim
j→∞

h(Zα) (39)

≤ lim
j→∞

h(Zα|T ) + hb(c/j) (40)

= ch(Xα), (41)

wherehb(x) is the entropy of a binary random variable with
probabilitiesx and 1 − x. Thus, limj→∞ h(Zα) = ch(Xα).
Let gj andg∗ be respectively the entropy function induced by

{Z1, . . . , Zn} and {X1, . . . , Xn}. Then gj is v-entropic by
definition and

lim
j→∞

gj = c · g∗.

Hence,c · g∗ ∈ γ∗
v,n for all c > 0 and our proposition follows.

Proposition 3: γ∗
v,n is a closed and convex cone.

Proof: For any r ∈ γ∗
v,n, by definition, there exists a

sequence ofv-entropic functions{ri}∞i=1 such that

lim
i→∞

ri = r.

Thus, for anyc > 0,

lim
i→∞

c · ri = c · r.

Then, by Proposition 2,c · ri ∈ γ∗
v,n and consequently,c · r ∈

γ∗
v,n.

Consider anyg∗1 , g
∗
2 ∈ γ∗

v,n, andc1, c2 > 0. Since

c1 · g∗1 andc2 · g∗2 ∈ γ∗
v,n,

there exists sequences ofv-entropic functions{ri1}∞i=1 and
{ri2}∞i=1 such that

lim
i→∞

riℓ = cℓ · g∗ℓ .

By Lemma 4,ri1 + ri2 is alsov-entropic. Thus,

c1 · g∗1 + c2 · g∗2 ∈ γ∗
v,n.

The proposition is proved.

Definition 9 (m-Quantization):Given m > 0, let the m-
quantization of any real numberx be denoted as:

[x]m =
⌊mx⌋
m

(42)

where⌊t⌋ denotes the largest integer not exceedingt. Simi-
larly, let them-quantization of a real vectorx = (x1, . . . , xn)
be the element-wisem-quantization of the vector, denoted by
[x]m, i.e.,

[x]m = ([x1]m, . . . , [xn]m) . (43)

Evidently, [x]m can only take values from the set
{

0,± 1

m
,± 2

m
, . . .

}

. (44)

Hence for every real-valued random variableX , [X ]m is a
discrete random variable taking value in the set (44). By
definition,

∑

i∈Z

P

{

[X ]m =
i

m

}

= 1. (45)

Proposition 4 (Renyi [7]): If X is a real-valued random
vector of dimensionn with a probability density function, then

lim
m→∞

H([X ]m)− n logm = h(X) . (46)

Under the assumption that the pdf of a random variableX
is Riemann-integrable, Proposition 4 is established in [8]by
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treatingH([X ]m)− n logm as the approximation of the Rie-
mann integration of−

∫

fX(x) log fX(x)dx. It is nontrivial to
establish the result in general, where the pdf is not necessarily
Rieman-integrable. An example of such a pdf can be defined
by using the Smith-Volterra-Cantor set. Nonetheless (46) can
be shown to hold using the Lebesgue convergence theorem
along with some truncation arguments [7].

Lemma 5:Let {X1, . . . , Xn} be a set of discrete random
variables such that its entropy function isg. For any positive
numbersc1, . . . , cn, let g∗ be defined as

g∗(α) = g(α)−
∑

i∈α

log ci.

Theng∗ is s-entropic.

Proof: As Xi is discrete, we may assume without loss of
generality that the sample space ofXi is the set of integers
Z. Let p(x1, . . . , xn) be the probability mass function of
{X1, . . . , Xn}. Construct a set of continuous scalar random
variables{Y1, . . . , Yn} whose probability density function is
defined as follows:

fY1,...,Yn
(y1, . . . , ym) ,

(

n
∏

i=1

ci

)

p(⌊c1y1⌋, . . . , ⌊cnyn⌋).

It can then be directly verified that

h(Yα) = H(Xα)−
n
∑

i=1

log ci, ∀α ⊆ N .

Consequently,g∗ is s-entropic.

Proof of Theorem 6:Clearly,γ∗
s,n ⊆ γ∗

v,n. We will now
prove thatγ∗

v,n ⊆ γ∗
s,n. Let Z = (Z1, . . . , Zn) consist ofn

random vectors, where

Zi = (Zi,1, . . . , Zi,ki
).

Let us define them-quantization ofZi, denoted as[Zi]m,
be the element-wisem-quantization ofZi, i.e., it consists of
[Zi,j ]m for j = 1, . . . , ki. By Proposition 4,

lim
m→∞

[

H([Zi]m, i ∈ α)−
(

∑

i∈α

ki

)

logm

]

= h(Zα). (47)

Let g∗, rm, gm ∈ R
2n be such that

g∗(α) = h(Zα) (48)

rm(α) = H([Zi]m, i ∈ α) (49)

gm(α) = rm(α) −
(

∑

i∈α

ki

)

logm. (50)

By (47), limm→∞ gm = g∗. Also, sincerm ∈ Γ∗
n, gm ∈ γ∗

s,n

by Lemma 5. Consequently,g∗ ∈ γ∗
s,n. We have thus proved

that γ∗
v,n ⊆ γ∗

s,n and as a result,γ∗
v,n = γ∗

s,n. Finally, by
Proposition 3,γ∗

v,n is a closed and convex cone and is equal
to con(γ∗

s,n). Then by (16),

γ∗
v,n = con(Γ

∗
n, φ

n
1 , . . . , φ

n
n). (51)

The theorem is proved.

In Theorem 4, we have constructed an inner bound for
con(Υs,n) by usings-representable functions. The same trick
can also be used for constructing an inner bound for the set
W(Υv,n).

Definition 10: A rank function g over N is called v-
representableif for i = 1, . . . , n, there exists a set of real-
valued vectors (of the same length){Ai,1, . . . Ai,ki

} such that
for all α ⊆ N ,

g(α) = dim 〈Ai,j , i ∈ α, j = 1, . . . , ki〉.

The following theorem is a counterpart of Theorem 4. The
proving technique is the same as before. We will omit the
proof for brevity.

Theorem 7 (Inner bound onW(Υv,n)): Suppose thatg is
v-representable, theng ∈ W(Υv,n) .

Theorem 7 is of great interest. Characterising the set ofv-
representable functions have been a very important problem
in linear algebra and information theory. It is also extremely
difficult. For many years, it is only known thatv-representable
functions are polymatroidal and satisfies the Ingleton inequal-
ities [11], [12]. The set of representable functions is only
known whenn ≤ 4. However, there were some recent break-
through in this areas. In [13], [14], many new subspace rank
inequalities which are required to be satisfied by representable
functions are discovered. In particular, via a computer-assisted
mechanical approach, the set of all representable functions
when n ≤ 5 has been completely characterised. Interesting
properties about the set ofv-representable functions were also
obtained [15]. Theorems 4 and 7 thus opens a new door
to exploit results obtained about representable functionsto
characterise the set of Gaussian functions.

Corollary 4 (Inner bound onW(Υv,n)):

con(Ωv,n, φ
n
1 , . . . , φ

n
n) ⊆ W(Υv,n)

whereΩv,n is the set of allv-representable functions.

Remark 1:While

con(Ωs,n, φ
n
1 , . . . , φ

n
n) ⊆ con(Υs,n),

it is still an open question whether

con(Ωv,n, φ
n
1 , . . . , φ

n
n) ⊆ con(Υs,n)

or not.

We will end this section with a discussion of a related
concept in a recent work [10]. Gaussian rank functions were
studied in [10]. However, their definitions are slightly different
from ours.

Definition 11 (Normalised joint entropy [10]):Let
{X1, . . . , Xn} be a set of n jointly distributed vector
valued Gaussian random variables such that each vectorXi

is a vector of lengthT . Its normalised Gaussian entropy
functiong is a function inR2n such that

g(α) ,
1

T
h(Xα).
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The only difference between Definitions 5 and 11 is the
scalar multiplier1/T . Hence, a normalised Gaussian entropy
function must be contained in the setW(Υv,n). In one sense,
our proposed definition is slightly more general as we do not
require all the random vectorsXi to have the same length.
On the other hand, the “normalising factor”1/T in Definition
11 can lead to some interesting results. For example, while
we cannot prove that the closure ofW(Υs,n) is closed and
convex, [10] proved that the closure of the set of all normalised
Gaussian entropy functions is indeed closed and convex.

Proposition 5: Let Υ∗
N,n

5 be the set of all normalised
Gaussian entropy functions. Then

con(Υ∗
N,n) = con(Υv,n).

Proof: It can be directly verified from definitions that
con(Υ∗

N,n) ⊆ con(Υv,n). Now, consider anyg ∈ Υv,n.
Then by definition, there existsn Gaussian random vectors
{X1, . . . , Xn} such that

g(α) = h(Xα) (52)

for all α ⊆ N . Let ℓi be the length of the random vectorXi.
Assume without loss of generality thatℓ1 ≥ ℓi for all i.

Let k =
∑n

i=1(ℓ1 − ℓi) and Y1, . . . , Yk be a set of scalar
Gaussian random variables with identity covariance matrixand
independent of{X1, . . . , Xn}. For eachi = 1, . . . , n, let ri =
∑i

j=1(ℓ1 − ℓi) and

Zi =

{

Xi if ℓi = ℓ1

(Xi, Yri+1, . . . , Yri+1
) otherwise.

Clearly, eachZi is a Gaussian vector with the same length
ℓ1. Let g∗ be the normalised entropy function induced by
{Z1, . . . , Zn}. It is easy to verify thatℓ1g∗ = g. Consequently,
Υv,n ⊆ con(Υ∗

N,n) and the proposition thus follows.

Remark 2:Our Proposition 1 can also be derived from
[10, Theorem 5], which proved that for anyg ∈ Υv,n when
n = 3, there exists aθ∗ > 0 such that for allθ ≥ θ∗,
1
θ
g is vector Gaussian. However, their proof techniques are

completely different.

V. CONCLUSION

In this paper, we took an information theoretic approach to
study determinant inequalities for positive definite matrices.
We showed that characterising all such inequalities for ann×n
positive definite matrix is equivalent to characterising the set of
all scalar Gaussian entropy functions forn random variables.
While a complete and explicit characterisation of the set isstill
missing, we obtained inner and outer bounds respectively by
means of linearly representable functions and vector Gaussian
entropy functions.

It turns out that forn ≤ 3, the set of all scalar Gaussian
entropy functions is the same as the set of all differential
entropy functions. The latter set is completely characterized

5The subscriptN is a mnemonic for the word “normalised”.

by Shannon-type information inequalities. Consequently,the
aforementioned inner and outer bounds agree with each other.
For n ≥ 4, we showed the contrary, and the problem is
seeming very difficult.
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