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Abstract

We study data processing inequalities that are derived from a certain class of generalized
information measures, where a series of convex functions and multiplicative likelihood ratios are
nested alternately. While these information measures can be viewed as a special case of the
most general Zakai–Ziv generalized information measure, this special nested structure calls for
attention and motivates our study. Specifically, a certain choice of the convex functions leads to
an information measure that extends the notion of the Bhattacharyya distance (or the Chernoff
divergence): While the ordinary Bhattacharyya distance is based on the (weighted) geometric
mean of two replicas of the channel’s conditional distribution, the more general information
measure allows an arbitrary number of such replicas. We apply the data processing inequality
induced by this information measure to a detailed study of lower bounds of parameter estimation
under additive white Gaussian noise (AWGN) and show that in certain cases, tighter bounds can
be obtained by using more than two replicas. While the resulting lower bound may not compete
favorably with the best bounds available for the ordinary AWGN channel, the advantage of the
new lower bound, relative to the other bounds, becomes significant in the presence of channel
uncertainty, like unknown fading. This different behavior in the presence of channel uncertainty
is explained by the convexity property of the information measure.

Index Terms: Data processing inequality, Chernoff divergence, Bhattacharyya distance, Gal-
lager function, parameter estimation, fading.
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1 Introduction

In classical Shannon theory, data processing inequalities (in various forms) are frequently used

to prove converses to coding theorems and to establish fundamental properties of information

measures, like the entropy, the mutual information, and the Kullback–Leibler divergence [5]. A

very well–known example is the converse to the joint source–channel coding theorem, which sets

the stage for the separation theorem of Information Theory: When a source with rate–distortion

function R(D) is encoded and transmitted across a channel with capacity C, the distortion of the

reconstruction at the decoder must obey the inequality R(D) ≤ C, or equivalently, D ≥ R−1(C).

This lower bound is achievable (e,g., by separate source coding and channel coding) in the limit of

large block length.

Ziv and Zakai [24] (see also Csiszár [6], [7], [8] for related work) have observed that in order to

obtain a wider class of data processing inequalities, the (negative) logarithm function, that plays a

role in the classical mutual information, can be replaced by an arbitrary convex functionQ, provided

that it obeys certain regularity conditions. This generalized mutual information, IQ(X;Y ), was

further generalized in [22] to be based on multivariate convex functions, as opposed to the univariate

convex functions in [24]. In analogy to the classical converse to the joint source–channel coding

theorem, one can then define a generalized rate–distortion function RQ(D) (as the minimum of

the generalized mutual information between the source and the reproduction, s.t. some distortion

constraint) and a generalized channel capacity CQ (as the maximum generalized mutual information

between the channel input and output) and establish another lower bound on the distortion via

the inequality RQ(D) ≤ CQ that stems from the data processing inequality of IQ. While this lower

bound obviously cannot be tighter than its classical counterpart in the limit of long blocks (which

is asymptotically achievable), Ziv and Zakai have demonstrated that for short block codes (e.g.,

codes of block length 1), sharper lower bounds can certainly be obtained (see also [14] for more

recent developments).

Gurantz, in his M.Sc. work [10] (supervised by Ziv and Zakai), continued the work in [24] at a

specific direction: He constructed a special class of generalized information functionals defined by

iteratively alternating between applications of convex functions and multiplications by likelihood
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ratios1 (or more generally, Radon–Nykodim derivatives). After proving that this functional obeys

a data processing inequality, Gurantz demonstrated how it can be used to improve on the Arimoto

bound for coding above capacity [2] and on the Gallager upper bound of random coding [9] by a

pre-factor of 1/2.

Motivated by the belief that the interesting nested structure of Gurantz’ information functional

can be further exploited, we continue, in this work, to investigate this information measure and we

further study its properties and potential.

We begin by putting the Gurantz’ functional in the broader perspective of the other information

measures due to Ziv and Zakai [22], [24] (Section 2). Specifically, we first discuss two possible

methods to define a generalized mutual information from the Gurantz’ functional, each one with its

advantages and disadvantages. We then show that both of these generalized mutual informations

can be viewed as special cases of the generalized mutual information of [22], which is based on

multivariate convex functions. The proof of this fact then naturally suggests a way to broaden the

scope and define a family of information measures with a tree structure of convex functions and

likelihood ratios.

We then focus on a concrete choice of the convex functions (Section 3) in the Gurantz’ informa-

tion measure (in particular, power functions), which turn out to yield an information measure that

extends the notion of the Bhattacharyya distance (or the Chernoff divergence): While the ordinary

Bhattacharyya distance is based on the (weighted) geometric mean of two replicas of the channel’s

conditional distribution (see, e.g., [17, eq. (2.3.15)]), the more general information measure consid-

ered here, allows an arbitrary number of such replicas. This generalized Bhattacharyya distance is

also intimately related to the Gallager function E0(ρ,Q) [9], [17], which is indeed another informa-

tion measure obeying a data processing inequality [13, Proposition 2], since it is yet another special

case of the information measures in [22].

Finally, we apply the data processing inequality, induced by the above described generalized

Bhattacharyya distance, to a detailed study of lower bounds on parameter estimation under additive

white Gaussian noise (AWGN) and show that in certain cases, tighter bounds can be obtained by

using more than two replicas (Section 4). In this particular case, it turns out that three is the

1The exact form of this will be given in the sequel.
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optimum number of replicas in the high SNR regime. While the resulting lower bound may still not

compete favorably with the best available bounds for the ordinary AWGN channel, the advantage

of the new lower bound, relative to the other bounds, becomes apparent in the presence of channel

uncertainty, like in the case of an AWGN channel with unknown fading. This different behavior,

in the presence of channel uncertainty, is explained by the convexity property of the information

measure.

2 Preliminaries and Basic Observations

In [10], a generalized information functional was defined in the following manner: Let X and Y be

random variables taking on values in alphabets X and Y, respectively, where here and throughout

the sequel, all alphabets may either be finite, countably infinite, or uncountably infinite, like inter-

vals or the entire real line. Let x1, x2, . . . , xk be a given list of symbols (possibly with repetitions)

from X . Let Q1, Q2, . . . , Qk be a collection of univariate functions, defined on the positive reals,

with the following properties, holding for all i:

1. limt→0 tQi(1/t) = 0.

2. |Qi(0)| < ∞.

3. Either the function Q̂i
∆
= Q1 ◦ Q2 ◦ . . . ◦ Qi is monotonically non-decreasing and Qi+1 is

convex, or Q̂i is monotonically non–increasing and Qi+1 is concave (here, the notation ◦
means function composition).

Now, define the Gurantz’ functional as

G(Y |x, x1, . . . , xk) =

∫

Y
dy · PY |X(y|x)×

Q1

(

PY |X(y|x1)
PY |X(y|x) ·Q2

(

PY |X(y|x2)
PY |X(y|x1)

·Q3

(

. . . Qk

(

PY |X(y|xk)
PY |X(y|xk−1)

)

. . .

)))

,

where here and throughout, it is understood that integrals and probability density functions should

be replaced, in the countable alphabet case, by summations and probability mass functions, re-

spectively.
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The data processing inequality associated with the Gurantz’ functional is the following: Let

X → Y → Z be a Markov chain and let Q1 be a convex function which, together with Q2, . . . , Qk,

complies with rules 1–3 above. Then,

G(Y |x, x1, . . . , xk) ≥ G(Z|x, x1, . . . , xk). (1)

The direct proof of this inequality is fairly straightforward [10]: First, observe that

G(Y |x, x1, . . . , xk) = G(Y,Z|x, x1, . . . , xk) (2)

due to the Markov property. Then, one can easily obtain a sequence of lower bounds on the right–

hand–side (r.h.s.) of eq. (2) by successive applications of Jensen’s inequality, where at each stage,

the expectation with respect to (w.r.t.) PY |Xi,Z propagates into the next convex function and then

partially cancels out with the factor PY,Z|Xi
(y, z|xi) at the denominator of the likelihood ratio.

Note that according to the definition ofG(Y |x, x1, . . . , xk), x is the random variable that controls

the distribution of Y (as the averaging is w.r.t. PY |X(·|x)), whereas x1, . . . , xk can be viewed as

‘dummy’ variables. One way to define a generalized mutual information based on G, which is

a functional of {PXY (x, y)}, is by assigning a certain probability distribution to (x, x1, . . . , xk).

Let P (x, x1, . . . , xk) = PX(x)P (x1, . . . , xk|x), where PX(·) is the actual distribution of the random

variable X and P (x1, . . . , xk|x) is an arbitrary conditional distribution of (X1, . . . ,Xk) given X = x,

for example, P (x1, . . . , xk|x) =
∏k

i=1 PX(xi) or P (x1, . . . , xk|x) =
∏k

i=1 δ(xi − fi(x)) for some

deterministic functions {fi}. Now, for a given choice of {P (x1, . . . , xk|x)}, the Gurantz’ mutual

information IG(X;Y ) can be defined as

IG(X;Y ) = EG(Y |X,X1, . . . ,Xk) (3)

where the expectation is w.r.t. the above defined joint distribution of the random variablesX, X1,...,

Xk. This generalized mutual information is now a well–defined functional of PXY = PX ×PY |X . In

principle, one may apply the generalized data processing inequality IG(X;Y ) ≥ IG(X;Z) for any

given choice of {P (x1, . . . , xk|x)} (consider these as parameters) and then optimize the resulting

distortion bound w.r.t. the choice of these parameters.

Our first observation is that IG(X;Y ) is a special case of the Zakai–Ziv generalized mutual

information [22], defined as

IZZ(X;Y ) = EQ

(

µ1(X,Y )

PXY (X,Y )
, . . . ,

µk(X,Y )

PXY (X,Y )

)

, (4)
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where Q is a multivariate convex function of k variables and µi(·, ·), i = 1, 2, . . . , k, are arbitrary

measures on X × Y.

To see why this is true, consider the following: For each convex (resp., concave) function Qi(t),

define the bivariate perspective function Q̃i(s, t) = s ·Qi(t/s), where s > 0, which is a convex (resp.,

concave) function as well, and jointly in both variables [3, Subsection 3.2.6]. Thus,

G(Y |x1, . . . , xk)

=

∫

Y
dyPY |X(y|x)Q1

(

PY |X(y|x1)
PY |X(y|x) Q2 (. . .)

)

=

∫

Y
dy · PY |X(y|x′)

PY |X(y|x)
PY |X(y|x′)Q1

(

PY |X(y|x1)/PY |X(y|x′)
PY |X(y|x)/PY |X(y|x′) Q2 (. . .)

)

=

∫

Y
dy · PY |X(y|x′)Q̃1

(

PY |X(y|x)
PY |X(y|x′) ,

PY |X(y|x1)
PY |X(y|x′)Q2 (. . .)

)

=

∫

Y
dy · PY |X(y|x′)Q̃1

(

PY |X(y|x)
PY |X(y|x′) , Q̃2

(

PY |X(y|x1)
PY |X(y|x′) ,

PY |X(y|x2)
PY |X(y|x′)Q3 (. . .)

))

= . . .

=

∫

Y
dy · PY |X(y|x′)Q̃1

(

PY |X(y|x)
PY |X(y|x′) , Q̃2

(

. . . Q̃k

(

PY |X(y|xk−1)

PY |X(y|x′) ,
PY |X(y|xk)
PY |X(y|x′)

)

. . .

))

(5)

Now, under the assumed properties of the functions {Qi}, it is easy to see that

Q̂(t0, t1, . . . , tk)
∆
= Q̃1(t0, Q̃2(t1, Q̃3(t2, . . . Q̃k(tk−1, tk) . . .))) (6)

is jointly convex in (t0, t1, . . . , tk). Thus, upon taking the expectation of the last line of (5) w.r.t.

PX(x′), we have (after multiplying the numerator and the denominator of each likelihood ratio by

PX(x′)) that EG(Y |X,x1, . . . , xk) is an instance of IZZ(X;Y ) for every given (x1, . . . , xk), with

the assignments µi(x, y) = PX(x)PY |X(y|xi), i = 1, 2, . . . , k.

We can represent the general structure of information functionals, such as IG and IZZ , as well

as the forms in the different lines of eq. (5), graphically, in terms of factor trees (i.e., factor graphs

which are trees) that obey the following rules.

1. There are two types of nodes, variable nodes and function nodes, and each edge of the tree

connects a variable node and a function node.

2. The root of the tree is a function node whereas the leaves are variable nodes.
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3. Each function node is represented by a convex function Qi and each variable node is repre-

sented by a likelihood ratio p(y|xk)/p(y|xl), whose shorthand notation here will be Lk,l.

4. There is a directed edge from function node Qi to variable node Lj,k (denoted Qi → Lj,k) if

the information measure includes a product of the form Qi(·) · Lj,k.

5. There is a directed edge from variable node Li,j to function node Qk (denoted Li,j → Qk) if

Li,j multiplies an argument of Qk.

6. For every path Li,j → Qk → Ll,m, j must be equal to l (namely, xj = xl).

7. For all direct offsprings of the root, {Li,j}, the second subscript j is the same.

Now observe that IG and IZZ correspond to two extreme cases: While IZZ corresponds to a factor

tree where all k leaves are connected directly to the root, IG corresponds to a simple chain (i.e.,

every node has one offspring and there is only one leaf), which alternates between variable nodes

and function nodes. The form that appears in the last line of (5) corresponds to a binary tree with

a comb structure, i.e., every node that is not a leaf has two offsprings, one of which is a leaf. More

generally, every factor graph with a tree structure, that complies with the above rules, corresponds

to a valid information measure that satisfies a data processing inequality. For example, the factor

graph of Fig. 1 corresponds to the information measure
∫

Y
dy · p(y|xa)Q1

(

p(y|xb)
p(y|xa)

Q2

(

p(y|xd)
p(y|xb)

,
p(y|xe)
p(y|xb)

)

,
p(y|xc)
p(y|xa)

Q3

(

p(y|xf )
p(y|xc)

))

. (7)

Q1

Lc,a

Lb,a

Q3

Q2

Ld,b

Le,b

Lf,c

Figure 1: The factor graph that represents the generalized mutual information of eq. (7).

In view of the observation that EG(Y |X,x1, . . . , xk) a special case of the IZZ(X;Y ), there is

another way to use it to obtain data processing inequalities for communication systems. According
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to [22, Theorems 3.1 and 5.1], the following is true: Let U → X → Y be a Markov chain and let

V = g(Y ) where g is a deterministic function. Let µi(x, y), i = 1, 2, . . . , k, be arbitrary measures and

define µi(u, y) = PU (u)
∑

x PX|U (x|u)µi(x, y)/PX (x), µi(u, v) =
∑

y: g(y)=v µi(u, y), i = 1, . . . , k.

Then,

IZZ(X;Y ) ≥ IZZ(U ;V ). (8)

As described informally in the Introduction, the maximum of the left–hand side (l.h.s.) over PX and

the minimum of the r.h.s. over PV |U (subject to some distortion constraint) can be thought of as

generalized channel capacity and generalized rate–distortion function, respectively, as in [22]. Now,

consider the special case where IZZ is based on a multivariate convex function Q̂ as defined in (6),

where each bivariate convex function Q̃i is the perspective of a certain univariate convex function,

i.e., Q̃i(s, t) = s ·Qi(t/s). Then by a similar argument as above (going the other direction), we get

another information measure in the spirit of Gurantz:

IG(X;Y ) =

∫

X×Y
dxdy · PXY (x, y)Q1

(

µ1(x, y)

PXY (x, y)
Q2

(

µ2(x, y)

µ1(x, y)
. . . Qk

(

µk(x, y)

µk−1(x, y)

)

. . .

))

. (9)

Since it is a special case of IZZ(X;Y ), then it obviously satisfies a strong2 data processing inequality

IG(X;Y ) ≥ IG(U ;V ). Assuming, in addition, that the encoder is given by a deterministic function

x = f(u), we can choose µi(x, y) = PX(x)PY |X(y|xi), where xi = f(ui) is a specific member in X
and then µ(y|ui) = PY |X(y|f(ui)). We then obtain

∫

X×Y
dxdy · PXY (x, y)Q1

(

PY |X(y|f(u1))
PY |X(y|x) Q2

(

. . . Qk

(

PY |X(y|f(uk))
PY |X(y|f(uk−1))

)

. . .

))

≥
∫

X×Y
dudv · PUV (u, v)Q1

(

PV |U(v|u1)
PV |U (v|u)

Q2

(

. . . Qk

(

PV |U (v|uk)
PV |U (v|uk−1)

)

. . .

))

. (10)

Multiplying both sides by
∏

i PU (ui) and integrating over {ui}, we get

EQ1

(

PY |X(Y |X1)

PY |X(Y |X)
Q2

(

. . . Qk

(

PY |X(Y |Xk)

PY |X(Y |Xk−1))

)

. . .

))

≥ EQ1

(

PV |U (V |U1)

PV |U (V |U)
Q2

(

. . . Qk

(

PV |U (V |Uk)

PV |U(V |Uk−1)

)

. . .

))

. (11)

where the expectation on the l.h.s. is w.r.t. PXY (x, y)
∏

i PX(xi), and the expectation on the r.h.s.

is w.r.t. PUV (u, v)
∏

i PU (ui). This is different from the data processing theorem in [10], because it

allows ‘moving’ in both directions of the Markov chain and not only to the right.

2By “strong data processing inequality” we use the terminology of [22], meaning that for a Markov chain U →
X → Y and V = g(Y ), we have IG(X; Y ) ≥ IG(U ;Y ) ≥ IG(U ; V ).
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To summarize, we have seen two approaches to derive data processing inequalities from the

inequality G(Y |u, u1, . . . , uk) ≥ G(V |u, u1, . . . , uk) for a Markov chain U → Y → V (where have

slightly changed the notation relative to eq. (1)): According to the first approach, one allows an

arbitrary distribution PU1,...Uk|U and averages both sides w.r.t. PU × PU1,...Uk|U . This defines the

IG(U ;Y ) and IG(U ;V ) as functionals of PUY and PUV , respectively, where PU1,...Uk|U serve as free

parameters that can be optimized, to get the tightest distortion bound. The advantage of this

approach is the free choice of PU1,...Uk|U , which gives many degrees of freedom. The disadvantage

is that IG(U ;Y ) depends on the source and the encoder and there is no apparent way to prove

a strong data processing theorem, in general, i.e., to prove that IG(U ;Y ) can be further upper

bounded by IG(X;Y ) (whatever its definition may be) and thereby define a channel capacity,

that is independent of the source (in addition to a generalized rate distortion function, which is

min IG(U ;V ) s.t. some distortion constraint). The inequality IG(U ;Y ) ≥ IG(U ;V ) is relevant to

situations where there is no encoder to be optimized, namely, when the channel from U to Y is

given and cannot be shaped by encoding. This happens, for example, in parameter estimation

problems.

According to the second approach, one limits PU1,...Uk|U (u1, . . . , uk|u) to be
∏k

i=1 PU (ui). This

leaves no degrees of freedom, but it admits a strong data processing theorem, and hence allows

to define both a generalized rate–distortion function and a generalized channel capacity, whose

calculations are completely decoupled of each other. It is also much simpler to use. This type of

data processing inequality is more suitable for coded communication systems, where there is also

an encoder to optimize.

From this point onward, we essentially confine ourselves to the second option, mainly for reasons

of simplicity.

3 Choice of the Convex Functions

An interesting and convenient choice of the functions {Qi} is the following: Q1(t) = −ta1 , and

Qi(t) = tai for i ≥ 2, where 0 ≤ ai ≤ 1, i = 1, . . . , k. In this case, Q̃i(t) = −t
∏i

j=1
aj is monotonically

9



decreasing and Qi+1 is concave, so this choice complies with the rules. In this case, we have:

G(Y |x0, x1, . . . , xk) = −
∫

Y
dyPY |X(y|x0)×

(

PY |X(y|x1)
PY |X(y|x0)

(

PY |X(y|x2)
PY |X(y|x1)

(

. . .

(

PY |X(y|xk)
PY |X(y|xk−1)

)ak)ak−1

. . .

)a2
)a1

= −
∫

Y
dy

k
∏

i=0

P bi
Y |X(y|xi) (12)

where {bi} are given by:

b0 = 1− a1

b1 = (1− a2)a1

b2 = (1− a3)a1a2

. . .

bk−1 = (1− ak)

k−1
∏

i=1

ai

bk =
k
∏

i=1

ai (13)

Note that the coefficients b0, . . . , bk are all non–negative and their sum is equal to 1. Conversely,

for every set of coefficients {bi} with these properties, one can find a1, . . . , ak, all in [0, 1], using the

following inverse transformation:

a1 = 1− b0

a2 = 1− b1
1− b0

. . .

ak = 1− bk−1

1−∑k−2
i=0 bi

. (14)

This allows us parametrize the information measure directly in terms of an arbitrary set of non–

negative numbers {bi} summing to unity, without worrying about {ai}. The resulting informa-

tion measure can then be viewed as an extension of the Chernoff divergence between two condi-

tional densities, PY |X(y|x0) and PY |X(y|x1), to a general number of densities, where the powers

of {PY |X(y|xi)} always sum up to unity. Specializing this to the case bi = 1/(k + 1) for all

i = 0, 1, . . . , k, eq. (12) extends the Bhattacharyya distance. Following the discussion of the second

10



option at the end of Section 2, if, in addition, we assign PX1,...,Xk|X0
(x1, . . . , xk|x0) =

∏k
i=1 PX(xi),

then IG(X;Y ) = EG(Y,X,X1, . . . ,Xk) = −e−E0(k,PX), where E0 is the Gallager function [9]

E0(ρ, PX ) = − ln

{

∫

Y
dy

[
∫

X
dxPX(x)P

1/(1+ρ)
Y |X (y|x)

]1+ρ
}

. (15)

Thus, IG(X;Y ) extends, not only the Chernoff divergence, but also the Gallager function, albeit

only at integer values of the parameter ρ. Indeed, it was shown in [13, Proposition 2] that the

Gallager function (for every real ρ ≥ 0) satisfies a data processing inequality, because it is also a

special case of IZZ(X;Y ). In other words, the generalized Chernoff divergence can be obtained as

a special case of IZZ(X;Y ) in two different ways: one is via IG and the other is via the Gallager

function. The advantage of working with Gallager’s function for integer values of ρ, is that an inte-

gral raised to an integer power (k+1) can be expressed in terms of (k+1)–dimensional integration

over the (k + 1) replicas, x0,x1,...,xk, that in turn can be commuted with the additional out–most

integration over Y. In some situations, this enables explicit calculations more conveniently.

4 Application to Estimation Theory

In this section, we apply the data processing inequality associated with the generalized Bhat-

tacharyya distance to obtain a Bayesian lower bound on the estimation error of parameter estima-

tors of a parameter u modulated in a signal x(t, u) that is in turn corrupted by Gaussian white

noise. As mentioned earlier, we essentially adopt the second approach discussed at the end of

Section 2: Although we use the data processing inequality IG(U ;V ) ≤ IG(U ;Y ), in some of our

derivations, we eventually further upper bound IG(U ;Y ) by a universal bound, that is independent

of the modulation scheme x(t, ·), so in a way, it conveys the notion of generalized capacity. The

model we focus on is the following.

The source symbol U , which is uniformly distributed in U = [−1/2,+1/2], plays the role of a

random parameter to be estimated. For reasons of convenience, we define the distortion measure

between a realization u of the source and an estimate v (both in U) as

d(u, v) = [(u− v) mod 1]2. (16)

where

t mod 1
∆
=

〈

t+
1

2

〉

− 1

2
(17)

11



〈r〉 being the fractional part of r, that is, 〈r〉 = r − ⌊r⌋. Note that in the high–resolution limit

(corresponding to the high signal–to–noise (SNR) limit), the modulo 1 operation has a negligible

effect, and hence d(u, v) becomes essentially equivalent to the ordinary quadratic distortion. Indeed,

most of our results in the sequel, refer to the high SNR regime. At any rate, under the modulo 1

quadratic distortion measure, it is convenient to visualize U as being evenly distributed across the

circumference of a circle of radius 1/(2π) (or as a phase parameter) and then d(u, v) is the squared

length of the shorter arc (or the smaller angel) between the two corresponding points on the circle.

The channel is assumed to be an AWGN channel, namely, the channel output is given by

y(t) = x(t, u) + n(t), 0 ≤ t < T, (18)

where x(t, u) is an arbitrary waveform of unlimited bandwidth, parametrized by u and n(t) is

AWGN with two–sided spectral density N0/2. The energy

E =

∫ T

O
x2(t, u)dt (19)

is assumed to be independent of u (for reasons of simplicity). The estimator v is assumed to be a

functional of the channel output waveform {y(t), 0 ≤ t < T}.

Before deriving lower bounds on the estimation error, Ed(U, V ), we first need to derive the gen-

eralized rate–distortion function and the generalized channel capacity pertaining to the generalized

Bhattacharyya distance. This will be done in the next two subsections.

4.1 Derivation of R(D)

The “rate–distortion function” R(D) w.r.t. the information measure under discussion is given by

the minimum of

I(U ;V ) = −
∫ +1/2

−1/2
dv

[

∫ +1/2

−1/2
duP

1/(k+1)
V |U (v|u)

]k+1

subject to the constraints Ed(U, V ) ≤ D and
∫ +1/2
−1/2 dvPV |U (v|u) = 1. As explained in [24], it is

enough to consider channels of the form PV |U (v|u) = f(v − u). Defining w = (v − u) mod 1, the

12



problem is then equivalent to

max

∫ +1/2

−1/2
dw · f1/(k+1)(w)

s.t.

∫ +1/2

−1/2
dw · w2f(w) ≤ D

∫ +1/2

−1/2
dw · f(w) = 1. (20)

This problem is easily solved using calculus of variations [1]. Suppose that f∗ is the optimum

density and let f = f∗ + δg, where g satisfies

∫ +1/2

−1/2
dw · g(w) = 0. (21)

Defining the Lagrangian

J(f) = −
∫ +1/2

−1/2
dw · f1/(k+1)(w) + λ

∫ +1/2

−1/2
dw · w2f(w) + ν

∫ +1/2

−1/2
dw · f(w), (22)

the condition for f∗ being an extremum is ∂J(f + δg)/∂δ|δ=0 = 0 for all g. Now,

∂J(f + δg)

∂δ

∣

∣

∣

∣

δ=0

=

∫ +1/2

−1/2
dw · g(w)

[

− 1

(k + 1)fk/(k+1)(w)
+ λw2 + ν

]

= 0. (23)

For this integral to vanish for every g, one must have

− 1

(k + 1)fk/(k+1)(w)
+ λw2 + ν = const. (24)

This means that f∗ is of the form

f∗(w) =
C(s)

(1 + sw2)1+1/k
, (25)

where

C(s) =

[

∫ +1/2

−1/2

dw

(1 + sw2)1+1/k

]−1

, (26)

and the parameter s is determined such that

C(s)

∫ +1/2

−1/2

w2dw

(1 + sw2)1+1/k
= D. (27)

Define also

F (s) =

∫ +1/2

−1/2

w2dw

(1 + sw2)1+1/k
. (28)

13



Let us denote then Ds = C(s)F (s). Then,

−R(Ds) =

[

∫ +1/2

−1/2
dw[f∗(w)]1/(k+1)

]k+1

= C(s)

[

∫ +1/2

−1/2

dw

(1 + sw2)1/k

]k+1

= C(s)[G(s)]k+1, (29)

where we have defined

G(s) =

∫ +1/2

−1/2

dw

(1 + sw2)1/k
. (30)

To summarize, we have obtained a parametric representation of R(D) via the variable s:

Ds = C(s)F (s) (31)

R(Ds) = −C(s)[G(s)]k+1, (32)

For later use, we point out that the functions C(s), F (s), and G(s) are intimately related. First,

observe that

G(s) =

∫ +1/2

−1/2

(1 + sw2)dw

(1 + sw2)1+1/k

=
1

C(s)
+ sF (s). (33)

Also, using integration by parts,

G(s) = w(1 + sw2)−1/k

∣

∣

∣

∣

+1/2

−1/2

+
2s

k
· F (s)

=
(

1 +
s

4

)−1/k
+

2s

k
· F (s). (34)

Thus,
1

C(s)
+ sF (s) =

(

1 +
s

4

)−1/k
+

2s

k
· F (s), (35)

which gives a direct relationship between C(s) and F (s) whenever k 6= 2. For k = 2, the terms

pertaining to F (s) cancel out, but we then have an explicit formula for C(s).

While in general, R(D) is given only a parametric form and not directly, in the limits of very

low and very high distortion, one can approximate R(D) directly as an explicit function of D. In

particular, it is shown in Appendix A that in the low resolution regime,

D(R) ≈ 1

12
− 1

15

√
1 +R, (36)
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where it should be kept in mind that for this information measure, R takes on values in the interval

[−1, 0]. Here and throughout the sequel, the notation A ≈ B means that A/B tends to unity as a

certain parameter (in this case, R) tends to a certain limit (in this case, −1), which will always be

clear from the context. Here, the term 1/12 is the variance of U , which is uniform over [−1/2,+1/2],

as no useful information is available except the prior.

In the high–resolution regime (R → 0), the behavior depends on whether k = 1, k = 2, or

k > 2. In Appendix B, derivations are provided for all three cases. For k = 1, the rate–distortion

function is approximated as

R(D) ≈ −4c1
√
D. (37)

or equivalently, the distortion–rate function is

D(R) ≈ R2

16c21
, (38)

where

c1 =

∫ +∞

−∞

dt

(1 + t2)2
. (39)

For k > 2, we have

R(D) ≈ −4

(

k

k − 2

)k

·D or D(R) ≈ −1

4

(

1− 2

k

)k

·R, (40)

The case k = 2 lacks an explicit closed–form direct relation between R and D, but it shows that

logD ≈ log[−R(D)], (41)

which means that the relation between R and D is essentially linear, like in the case k > 2, but

in a slightly weaker sense. It is also easy to extend all the derivations to higher–order moments

modulo 1 (see Appendix C for the high resolution analysis).

4.2 Derivation of IG(U ; Y )

As mentioned earlier, the channel is assumed to be an AWGN channel with unlimited bandwidth.

The probability law of the channel from U to Y is given by

PY |U(y|u) ∝ exp

{

− 1

N0

∫ T

0
[y(t)− x(t, u)]2dt

}

, (42)
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where y in the l.h.s. designates the entire channel output waveform {y(t), 0 ≤ t < T}, and ∝ means

that the constant of proportionality does not depend on u. Let us denote

ρ(u, u′) =
1

E
·
∫ T

0
x(t, u)x(t, u′)dt. (43)

Consider the integral

∫

dy
k
∏

i=0

[PY |U(y|ui)]1/(k+1)

= E

{

∏k
i=1[PY |U (y|ui)]1/(k+1)

PY |U(y|u0)k/(k+1)

∣

∣

∣

∣

U = u0

}

= E

{

exp

[

k

(k + 1)N0

∫ T

0
[y(t)− x(t, u0)]

2dt− 1

(k + 1)N0

k
∑

i=1

∫ T

0
[y(t)− x(t, uk)]

2dt

]

∣

∣

∣

∣

U = u0

}

= E exp

{

2

(k + 1)N0

∫ T

0
[x(t, u0) + n(t)]

[

k
∑

i=1

x(t, ui)− kx(t, u0)

]

dt

}

= exp







− E

N0



1− 1

(k + 1)2

k
∑

i=0

k
∑

j=0

ρ(ui, uj)











, (44)

where the last passage is associated with the calculation of the moment–generating function of the

Gaussian random variable

Z =

∫ T

0
n(t)

[

k
∑

i=1

x(t, ui)− kx(t, u0)

]

dt (45)

which has zero mean and variance N0

2

∫ T
0 [
∑k

i=1 x(t, ui)− kx(t, u0)]
2dt.

The next step, in principle, is take another expectation over the last line of (44) w.r.t. the

randomness of {Ui}. This can be done explicitly for some specific classes of signals (e.g., when U

is a phase parameter of a sinusoid), but in general, it is not a trivial task. As in [1] and [22], we

then resort to a lower bound (hence an upper bound on IG(U ;Y )) based on Jensen’s inequality, by

raising the expectation operator to the exponent. Denoting

x̄(t) = E{x(t, U)} =

∫ +1/2

−1/2
du · x(t, u), (46)

it is easily observed that since {Ui} are independent, then for all i 6= j:

Eρ(Ui, Uj) =
1

E
·E
{∫ T

0
x(t, Ui)x(t, Uj)dt

}

=
1

E

∫ T

0
[x̄(t)]2dt

∆
= ̺. (47)
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Note that the parameter ̺ is always between 0 and 1 and it depends only on the parametric family

of signals.3 Specifically, continuing from the last line of (44), we have

E exp







− E

N0



1− 1

(k + 1)2

k
∑

i=0

k
∑

j=0

ρ(Ui, Uj)











= exp

{

− E

N0

[

1− 1

k + 1

]}

·E exp







E

N0(k + 1)2

∑

i 6=j

ρ(Ui, Uj)







≥ exp

{

− E

N0
· k

k + 1

}

· exp







E

N0(k + 1)2

∑

i 6=j

Eρ(Ui, Uj)







= exp

{

− E

N0
· k

(k + 1)
(1− ̺)

}

. (48)

Note that the expression E(1−̺), that appears in the exponent, is equal to
∫ T
0 Var{x(t, U)}dt, which

is a measure of the variability, or the sensitivity of the x(t, u) to the parameter u (in analogy the

Cramér–Rao bound that depends on the energy of the derivative of the signal w.r.t. u, as another

measure of sensitivity). Accordingly, classes of signals with smaller values of ̺ (or equivalently,

higher values of the integrated variance of x(t, U)) are expected to yield higher value of IG(U ;Y ),

and hence smaller estimation error, at least as far as our bounds predict, and since ̺ cannot be

negative, the best classes of signals, in this sense, are those for which ̺ = 0. Note also that for

Jensen’s inequality to be reasonably tight, the random variables {ρ(Ui, Uj)} should be all close to

their expectation ̺ with very high probability, and if this expectation vanishes, as suggested, then

{ρ(Ui, Uj)} should all be nearly zero with very high probability. We will get back to classes of

signals with this desirable rapidly vanishing correlation property later on.

4.3 Estimation Error Bounds for the AWGN Channel

We now equate R(D) to IG(U ;Y ) in order to obtain estimation error bounds in the high SNR

regime, where the high–resolution expressions of R(D) are relevant. As discussed above, in this

regime, we will neglect the effect of the modulo 1 operation in the definition of the distortion

measure, and will refer to it hereafter as the ordinary quadratic distortion measure. The choice

k = 1 yields IG(U ;Y ) ≤ −e−(1−̺)E/(2N0) (see also [22]), and following eq. (38), this yields

E(U − V )2 ≥ D
(

−e−(1−̺)E/(2N0)
)

=
e−(1−̺)E/N0

16c21
, (49)

3For example, if x(t, u) = x0(t− u) is a rectangular pulse of duration ∆ then ̺ = ∆/T .
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and so, the exponential decay of the lower bound is according to e−(1−̺)E/N0 . For k = 2, according

to eq. (41), we have logD ≈ 2(1 − ̺)E/(3N0), which means an exponential decay according to

e−2(1−̺)E/(3N0), which is better. For k ≥ 3, we use (40) and the resulting bound decays according

to exp{−(1 − ρ)kE/[(k + 1)N0]}, which is better than the result of k = 1, but not as good as

the one of k = 2. Thus, the best choice of k for the high SNR regime is k = 2, namely, a

generalized Bhattacharyya distance with k+1 = 3 replicas, rather the two replicas of the ordinary

Bhattacharyya distance.

Note that since ̺ ≥ 0, as mentioned earlier, then for any family of signals, the exponential

function e−2E/(3N0) is a universal lower bound (at high SNR) in the sense that it applies, not only

to every estimator of U , but also to every parametric family of signals {x(t, u)}, i.e., to every

modulation scheme without being dependent on this modulation scheme (see also [22]). This is

in contrast to most of the estimation error bounds in the literature. In other words, it sets a

fundamental limit on the entire communication system and not only on the receiver end for a

given transmitter. Indeed, for some classes of signals, an MSE with exponential decay in E/N0 is

attainable at least in the high SNR regime, although there might be gaps in the actual exponential

rates compared to the above mentioned bound. For example, in [15], it is discussed that in the case

of time delay estimation (x(t, u) = x0(t− u)), it is possible to achieve an MSE of the exponential

order of e−E/(3N0) by allowing the pulse s0(t) to have bandwidth that grows exponentially with

T .4 Thus, by improving the lower bound exp(−E/N0) (a special case of the above with k = 1)

to exp[−2E/(3N0)], we are halving the gap between the exponential rates of the upper bound and

the lower bound, from 2E/(3N0) to E/(3N0).

Our asymptotic lower bound should be compared to other lower bounds available in the liter-

ature. One natural candidate would be the Weiss–Weinstein bound (WWB) [18], [19], [20], which

for the model under discussion at high SNR, reads [18, p. 66]:

WWB = sup
h 6=0

h2 exp{−[1− r(h)]E/(2N0)}
2(1 − exp{−[1 − r(2h)]E/(2N0)})

, (50)

where r(h) = ρ(u, u+h) =
∫ T
0 x(t, u)x(t, u+h)dt/E is assumed to depend only on h and not on u.

While this is an excellent bound for a given modulation scheme {x(t, u), u ∈ U}, it does not seem
4 Other examples include chirp–like signals, e.g., x(t, u) = sin(ueRt) (for some given R > 0), as well as chaotic

signals parametrized by their initial condition – see [11], [12] and references therein.
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to lend itself easily to the derivation of universal lower bounds, as discussed above. To this end, in

principle, the WWB should be minimized over all feasible correlation functions r(·), which is not

a trivial task. A reasonable compromise is to first minimize the WWB over r(·) for a given h, and

then to maximize the resulting expression over h (i.e., max–min instead of min–max). Since the

expression of the bound is a monotonically increasing function of both r(h) and r(2h), and since

both r(h) and r(2h) cannot be smaller than −1, we end up with

WWB =
e−E/N0

2(1 − e−E/N0)
(51)

as a modulation–independent bound. This is a faster exponential decay rate (and hence weaker

asymptotically) than that of our proposed bound for k = 2.

It is possible, however, to obtain a universal lower bound stronger than both bounds by a simple

channel–coding argument, which is in the spirit of the Ziv–Zakai bound [23]. This bound is given

by (see Appendix D for the derivation):

E(U − V )2 ≥ 1

8M2
·Q
(

√

E

N0
· M

M − 2

)

, (52)

where

Q(x)
∆
=

1√
2π

∫ ∞

x
e−t2/2dt (53)

and where M is a free parameter, an even integer not smaller than 4, which is subjected to opti-

mization. Throughout the sequel, we refer to this bound as the channel–coding bound. In the high

SNR regime, the exponential order of the channel–coding bound (for fixed M) is

exp

{

− E

2N0
· M

M − 2

}

, (54)

which for large enough M becomes arbitrarily close to e−E/(2N0), and hence better than the data–

processing bound of e−2E/(3N0). Note that the Ziv–Zakai bound [23] would be weaker in this context

of universal lower bounds, since it is based on binary hypothesis testing (M/2 = 2), yielding an

exponent of e−E/N0 .

In view of this comparison, it is natural to ask then what is benefit of our data processing lower

bound. The answer is that the potential of the data–processing bound is much better exploited

in situations of channel uncertainty, like in channels with fading. This is the subject of the next

subsection.
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4.4 Estimation Error Bounds for the AWGN Channel with Fading

It turns out that the feature that makes the data–processing–theorem approach to error lower

bounds more powerful, relatively to other approaches, is the convexity property of the generalized

mutual information (in this case, IG(U ;Y )) w.r.t. the channel PY |U . Suppose that the channel

actually depends on an additional random parameter A (independent of U), that is known to

neither the transmitter nor the receiver, namely,

PY |U(y|u) =
∫ +∞

−∞
da · PA(a)PY |U,A(y|u, a). (55)

where PA(a) is the density of A. If we think of IG(U ;Y ) as a functional of PY |U , denoted

I(PY |U(·|u)), then it is a convex functional, namely,

I(PY |U(·|u)) = I
(∫ +∞

−∞
daPA(a)PY |U,A(·|u, a)

)

≤
∫ +∞

−∞
daPA(a)I(PY |U,A(·|u, a)). (56)

This is a desirable property because the r.h.s. reflects a situation where A is known to both parties,

whereas the l.h.s. pertains to the situation where A is unknown, so the lower bound associated with

the case where A is unknown is always tighter than the expectation of the lower bound pertaining

to a known A. The WWB, on the other hand, does not have this convexity property, as we shall

see.

Consider now the case whereA is a fading parameter, drawn only once and kept fixed throughout

the entire observation time T . More precisely, our model is the same as before except that now the

signal is subjected to fading according to

y(t) = a · x(t, u) + n(t), 0 ≤ t < T, (57)

where a and u are realizations of the random variables A and U , respectively. For the sake of

convenience in the analysis, we assume that A is a zero–mean Gaussian random variable with

variance σ2 (other densities are, of course, possible too).

We next compare the three corresponding bounds in this case. The overall channel from U to

Y is

PY |U (y|u) ∝
∫ +∞

−∞
da · e

a2/(2σ2)

√
2πσ2

· exp
{

− 1

N0

∫ T

0
[y(t)− a · x(t, u)]2dt

}

. (58)
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Carrying out the integration, we readily obtain

PY |U (y|u) ∝ exp

{

θ

[∫ T

0
y(t)x(t, u)dt

]2
}

, (59)

where

θ
∆
=

2σ2

N2
0 (1 + 2σ2E/N0)

. (60)

Thus,

− IG(U ;Y ) = E

{

exp

{

θ

k + 1

k
∑

i=1

[∫ T

0
y(t)x(t, ui)dt

]2

−

θk

k + 1

[
∫ T

0
y(t)x(t, u0)dt

]2
}

∣

∣

∣

∣

U = u0

}

. (61)

Upon substituting y(t) = Ax(t, u0) + n(t), one obtains, after some straightforward algebra

− IG(U ;Y ) = E exp

{

θ

k + 1

(

A2E2
k
∑

i=1

ρ2(U0, Ui) + 2AE

k
∑

i=1

ρ(U0, Ui)Zi +

k
∑

i=1

Z2
i

)

−

θk

k + 1
(A2E2 + 2AEZ0 + Z2

0 )

}

, (62)

where

Zi =

∫ T

0
n(t)x(t, ui)dt, i = 0, 1, 2, . . . , k, (63)

and where the expectation is w.r.t. the randomness of A, {Ui} and {Zi}. Obviously, given

A and {Ui}, the random variables {Zi} are jointly Gaussian with zero–mean with covariances

N0

2 Eρ(Ui, Uj). Motivated by the discussion at the end of Subsection 4.2, we now adopt the as-

sumption of signals with rapidly vanishing correlation. In other words, we assume that ρ(u, u+ h)

vanishes so rapidly5 as a function of h for every u, that it is safe to neglect ρ(Ui, Uj) altogether for

all i 6= j. This would make {Zi} independent and simplify the above expression to

− IG(U ;Y ) = E

[

exp

{

−θkE2A2

k + 1

}

exp

{

− θk

k + 1
(Z2

0 + 2AEZ0)

}]

·
(

E exp

{

− θZ2
1

k + 1

})k

(64)

Upon calculating the expectation (w.r.t. both A and {Zi}), we obtain

− IG(U ;Y ) =

[

(k + 1)(1 + 2σ2E/N0)

k + 1 + 2kσ2E/N0

]k/2

×
√

(k + 1)(1 + 2σ2E/N0)

(k + 1)(1 + 2σ2E/N0) + 2kσ2E/N0
· 1
√

1 + 2µσ2
, (65)

5Consider an asymptotic regime under which, the signal x(t, u) depends on an additional (design) parameter ∆, so
that for every h 6= 0, ρ(h) → 0 as ∆ tends to a certain limit, and that this limit is taken before the limit E/N0 → ∞.
For example, if x(t, u) = x0(t−u) is a rectangular pulse of amplitude

√

E/∆ and duration ∆, then ρ(h) = [1−|h|/∆]+
which obviously vanishes as ∆ → 0 for every h 6= 0.

21



where

µ
∆
=

2kσ2(E/N0)
2

2(2k + 1)σ2E/N0 + k + 1
. (66)

Considering the high–SNR regime (E/N0 ≫ 1), this is approximated as

− IG(U ;Y ) ≈ 1√
2

(

1 +
1

k

)(k+1)/2

· 1

σ
√

E/N0

∆
=

fk

σ
√

E/N0

. (67)

Applying the high–resolution approximation of D(R) for k ≥ 3, we get:

E(U − V )2 ≥ gk
σ

·
√

N0

E
, (68)

where

gk =
1

4
√
2

(

1− 2

k

)k (

1 +
1

k

)(k+1)/2

. (69)

A simple numerical study indicates that {gk} is monotonically increasing and so the best bound is

obtained for k → ∞ (infinitely many replicas), where the constant is:

g∞ = lim
k→∞

gk =
1

4
√
2
· e−2 ·

√
e =

1

4
√
2e3/2

= 0.03944. (70)

Thus, our asymptotic lower bound for high SNR is

lim inf
E/N0→∞

√

E

N0
·E(U − V )2 ≥ 0.03944

σ
. (71)

The WWB [18, p. 51], in its more general form, is given by

WWB = sup
h 6=0, s∈[0,1]

h2e2µ(s,h)

eµ(2s,h) + eµ(2−2s,−h) − 2eµ(s,2h)
, (72)

where

eµ(s,h) = E

[

PY |U(Y |U + h)

PY |U(Y |U)

]s

, s ∈ [0, 1] (73)

which for the fading channel under the high SNR regime of rapidly vanishing correlation signals,

can be shown (using similar calculations as above) to be given by

eµ(s,h) ≈
{ √

1+2σ2E/N0

(1+2sσ2E/N0)(1+2[1−s]σ2E/N0)
h 6= 0

1 h = 0
(74)

The problem is that, unless s = 1/2, either 2s > 1 or 2− 2s > 1, and so correspondingly, for large

enough values of E/N0, either eµ(2s,h) or eµ(2−2s,−h) at the denominator diverge, and the WWB

becomes useless. Thus, the only feasible choice of s is s = 1/2, in which case, the WWB becomes

WWB = sup
h 6=0

h2e2µ(1/2,h)

2[1− eµ(1/2,2h)]
. (75)
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But eµ(1/2,h) is exactly our information measure for k = 1, and so,

WWB =
f2
1N0/(σ

2E)

2[1− f1/(σ
√

E/N0)]
. (76)

As can be seen, the WWB decays according to (E/N0)
−1 rather than (E/N0)

−1/2 and hence inferior

to the data processing bound.

The channel–coding bound is based on a universal lower bound on the probability of error,

which holds for every signal set. The problem is that under fading, we are not aware of such a

universal lower bound. The only remaining alternative then is to use a lower bound corresponding

to the case where A is known to the receiver, and then to take the expectation w.r.t. A, although

one might argue that this comparison is not quite fair. Nonetheless, the derivation of this appears

in Appendix E and the result is

lim inf
E/N0→∞

√

E

N0
·E(U − V )2 ≥ 1

128π
√
2σ

=
0.001758

σ
. (77)

Thus, the data processing bound is better by a factor of 22.4 (13.5dB).

Yet another comparison, perhaps more fair, can be made with a related bound, which based on

binary hypothesis testing, but has the advantage of avoiding the use of the Chebychev inequality,

that was used in the channel–coding bound. This is the Chazan–Zakai–Ziv bound (CZZB), an

improved version of the Ziv–Zakai bound [23]. According to the CZZB, applied to our problem (see

Appendix F for the derivation),

lim inf
E/N0→∞

√

E

N0
·E(U − V )2 ≥ 0.00716

σ
, (78)

which is again significantly smaller than our bound. Thus, we observe that while the WWB and

the CZZB are excellent bounds for ordinary channels without fading, when it comes to channels

with fading, the proposed data–processing bound has an advantage.

5 Conclusion

In this work, we have explored a certain class of information measures [10], which although being

a special case of the Zakai–Ziv information measures [22], it has an interesting structure that calls

for attention. We first put this class of information measures in the broader perspective, relating
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it to other information measures, like those of [22], and then, by a specific choice of the convex

functions, we defined a generalized notion of the Chernoff divergence that is based on an arbitrary

number of replicas of the channel. Relations have be drawn between the generalized Chernoff

divergence and the Gallager function, the ordinary Chernoff divergence, and even more specifically,

the Bhattacharyya distance. We have also suggested a somewhat more general structured class

based on factor trees. We then applied the data processing inequality, based on the generalized

Chernoff divergence, and demonstrated that sometimes bounds can be improved by using more

than k + 1 = 2 replicas. In particular, for the AWGN three replicas is the optimum number

in the AWGN model, thus improving on [22], where only two replicas were used (the ordinary

Bhattacharyya distance). While this bound still falls short compared to other bounds available

from estimation theory, the data processing bound seems to be more powerful than others when it

comes to channels with uncertainty, like fading channels. In this case, the limit of k → ∞ gives the

best result.
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Appendix A

Low Resolution Analysis

Low resolution analysis corresponds to very small values of s, which can be handled by a first

order Taylor series expansion of the functions F (s), C(s) and G(s). Specifically,

C(s) ≈ 1 +
k + 1

12k
· s (A.1)

F (s) ≈ 1

12
− k + 1

80k
· s (A.2)

Gk+1(s) ≈ 1− k + 1

12k
· s. (A.3)

Thus,

Ds = C(s)F (s) ≈ 1

12
− k + 1

180k
· s (A.4)
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and

−R(Ds) = C(s)[G(s)]k+1 ≈ 1−
(

k + 1

12k

)2

· s2 (A.5)

or

s ≈ 12k

k + 1

√
R+ 1. (A.6)

and so

D(R) ≈ 1

12
− 1

15

√
R+ 1. (A.7)

Appendix B

High Resolution Analysis

High resolution corresponds to s ≫ 1. In this case, we have

1

C(s)
=

∫ +1/2

−1/2

dw

(1 + sw2)1+1/k

=
1√
s

∫ +
√
s/2

−√
s/2

d(
√
sw)

(1 + (
√
sw)2)1+1/k

≈ 1√
s

∫ +∞

−∞

dt

(1 + t2)1+1/k

∆
=

ck√
s
, (B.1)

Now, according to the relations between the functions C, F and G, derived in Subsection 4.1, we

have:

G(s) =
1

(1 + s/4)1/k
+

2s

k
F (s)

≈ 41/k

s1/k
+

2s

k
F (s) (B.2)

and also

G(s) =
1

C(s)
+ sF (s) ≈ ck√

s
+ sF (s). (B.3)

Comparing the two expressions of G(s), we get

ck√
s
+ sF (s) ≈ 41/k

s1/k
+

2s

k
F (s), (B.4)

which leads to the equation

sF (s)

(

1− 2

k

)

≈ 41/k

s1/k
− ck√

s
. (B.5)
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At this stage, we have to handle separately the cases k = 1, k = 2 and k > 2.

Let us consider the case k = 1 first. In this case, the last equation reads

− sF (s) ≈ 4

s
− c1√

s
≈ − c1√

s
(B.6)

and so,

F (s) ≈ c1
s3/2

. (B.7)

Thus, from the distortion equation,

Ds = C(s)F (s) ≈
√
s

c1
· c1

s3/2
=

1

s
, (B.8)

or equivalently, s = 1/Ds. Now,

G(s) =
1

C(s)
+ sF (s) ≈ c1√

s
+ s · c1

s3/2
=

2c1√
s
. (B.9)

From the rate equation, we have

−R(Ds) = C(s)[G(s)]2

≈
√
s

c1
· 4c

2
1

s

=
4c1√
s
= 4c1

√

Ds, (B.10)

which means

R(D) ≈ −4c1
√
D. (B.11)

or equivalently, the distortion–rate function is

D(R) ≈ R2

16c21
, (B.12)

where it should be kept in mind that R takes on values in the range [−1, 0] in this case.

The case k = 2 is handled as follows:

G(s) =

∫ +1/2

−1/2

dw√
1 + sw2

=
1√
s
ln

√

s/4 + 1 +
√
s/2

√

s/4 + 1−√
s/2

=
1√
s
ln

(

1 +
s

2
+

√

s
(s

4
+ 1
)

)

, (B.13)

and so, for s large G(s) ≈ (ln s)/
√
s. By comparing the two expressions for G(s), we find that

C(s) =
√

1 + s/4 ≈ √
s/2. Consequently,

F (s) =
G(s)− 1/C(s)

s
≈ ln s

s3/2
. (B.14)
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Thus, Ds = F (s)C(s) ≈ (ln s)/(2s) and −R(Ds) = C(s)G3(s) ≈ (ln3 s)/(2s). In the high–resolution

limit, the logarithmic terms are relatively negligible and so, we can deduce that

lim
s→∞

logDs

log[−R(Ds)]
= lim

D→0

logD

log[−R(D)]
= 1. (B.15)

Finally, we examine the case k > 2. Returning to eq. (B.5), now we have:

sF (s)

(

1− 2

k

)

≈ 41/k

s1/k
, (B.16)

and so

F (s) ≈ k41/k

(k − 2)s1+1/k
. (B.17)

and

G(s) ≈ ck√
s
+

k41/k

(k − 2)s1/k
≈ k41/k

(k − 2)s1/k
. (B.18)

The distortion equation then gives

Ds = C(s)F (s) =

√
s

ck
· k41/k

(k − 2)s1+1/k

=
k41/k

(k − 2)cks1/2+1/k

(B.19)

and the rate equation yields

−R(Ds) = C(s)[G(s)]k+1

≈
√
s

ck
·
[

k41/k

(k − 2)s1/k

]k+1

=
41+1/k

cks1/2+1/k
·
(

k

k − 2

)k+1

= 4

(

k

k − 2

)k

·Ds, (B.20)

Thus, the rate–distortion function and the distortion–rate function are approximated as

R(D) ≈ −4

(

k

k − 2

)k

·D; D(R) ≈ −1

4

(

1− 2

k

)k

·R, (B.21)
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Appendix C

Higher Order Moments

The high–resolution analysis can easily be extended to handle general moments of the estimation

error, E|U − V |p, p > 0 (p should not necessarily be integer). This gives for large s,

C(s) ≈ s1/p

c
; c

∆
=

∫ +1/2

−1/2

dt

[1 + |t|p]1+1/k
(C.1)

and
(

1− p

k

)

sF (s) ≈ 2p/k

s1/k
− c

s1/p
. (C.2)

Here, we have to handle separately the cases k < p and k > p (and the case k = p will not be

covered here, but since p is allowed to be non–integer, it can be approached by either p ↓ k or

p ↑ k). In the case k < p, we have

(p

k
− 1
)

sF (s) ≈ c

s1/p
(C.3)

and so

F (s) ≈ kc

p− k
· 1

s1+1/p
. (C.4)

Thus,

Ds = C(s)F (s) =
k

(p− k)s
. (C.5)

Now,

G(s) =
1

C(s)
+ sF (s) ≈ c

s1/p
+

kc

(p− k)s1/p
=

pc

(p− k)s1/p
(C.6)

and so

−R(Ds) = C(s)[G(s)]k+1 ≈ ck
(

p

p− k

)k+1

· 1

sk/p
. (C.7)

Thus,

D(R) ≈ S1(k, p)[−R]p/k. (C.8)

where

S1(k, p) =
k

cp(p− k)
·
(

1− k

p

)p(1+1/k)

. (C.9)

Note that in terms of the asymptotic behavior for small values of −R, the best choice of k is the

largest integer strictly less than p. For p integer, this means k = p − 1. As for the case k > p, we
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get:
(

1− p

k

)

sF (s) ≈ 2p/k

s1/k
(C.10)

or

F (s) ≈ k2p/k

(k − p)s1+1/k
. (C.11)

So

Ds = C(s)F (s) ≈ k2p/k

(k − p)cs1+1/k−1/p
(C.12)

Here,

G(s) =
c

s1/p
+

k2p/k

(k − p)s1/k
≈ ck2p/k(k − p)s1/k. (C.13)

Then,

−R(Ds) = C(s)[G(s)]k+1 ≈ 2p
(

k

k − p

)k

Ds, (C.14)

and we get

D(R) ≈ −S2(k, p)R, (C.15)

where

S2(k, p) = 2−p
(

1− p

k

)k
. (C.16)

Appendix D

Derivation of the Channel–Coding Bound

For a given positive integer M , consider the following chain of inequalities:

E(U − V )2

≥
(

1

2M

)2

Pr

{

|U − V | ≥ 1

2M

}

=
1

4M2
·
∫ +1/2

−1/2
du · Pr

{

|U − V | ≥ 1

2M

∣

∣

∣

∣

U = u

}

=
1

4M2
·
M−1
∑

i=0

∫ +1/(2M)

−1/(2M)
du · Pr

{

|U − V | ≥ 1

2M

∣

∣

∣

∣

U =
2i+ 1

2M
− 1

2
+ u

}

=
1

4M
·
∫ +1/(2M)

−1/(2M)
du · 1

M

M−1
∑

i=0

Pr

{

|U − V | ≥ 1

2M

∣

∣

∣

∣

U =
2i+ 1

2M
− 1

2
+ u

}

. (D.1)

Now, note that the integrand of the last expression has a simple interpretation: Consider the

codebook of signals {x(t, ui)}, 0 ≤ t < T , i = 0, 1, . . . ,M − 1 where ui = (2i+ 1)/(2M) − 1/2 + u,
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and consider the (suboptimum) decoder that first estimates U by an arbitrary estimator V and

then decodes the message according to the ui that is nearest to V . The integrand in the last line

above is simply the probability of error of that decoder. This probability of error is lower bounded

[17, p. 174, eqs. (3.73) and (3.75)] according to

1

M

M−1
∑

i=0

Pr

{

|U − V | ≥ 1

2M

∣

∣

∣

∣

U =
2i+ 1

2M
− 1

2
+ u

}

≥ 1

2
Q

(
√

E

N0
· M/2

M/2− 1

)

=
1

2
Q

(

√

E

N0
· M

M − 2

)

, (D.2)

where now M/2 should be an integer at least as large as 2, namely, M = 4, 6, 8, . . ., Thus,

E(U − V )2 ≥ 1

4M
·
∫ +1/(2M)

−1/(2M
du

1

2
·Q
(

√

E

N0
· M

M − 2

)

=
1

8M2
·Q
(

√

E

N0
· M

M − 2

)

. (D.3)

Appendix E

Channel–Coding Bound for the AWGN Fading Channel

For a given value of the fading parameter A = a, the earlier derivation of the channel–coding

bound implies

E(U − V )2 ≥ 1

8M2
·Q





√

a2E

N0
· M

M − 2



 . (E.1)
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Averaging over A and using Craig’s formula (see, e.g., [16]), we have

E(U − V )2 ≥ 1

8M2

∫ +∞

−∞
da

e−a2/(2σ2)

√
2πσ2

Q

(

√

a2
E

N0
· M

M − 2

)

=
1

8πM2

∫ +∞

−∞
da

e−a2/(2σ2)

√
2πσ2

∫ π

0
dθ · exp

{

− a2EM

2(M − 2)N0 sin
2 θ

}

=
1

8πM2

∫ π

0
dθ

∫ +∞

−∞
da

e−a2/(2σ2)

√
2πσ2

· exp
{

− a2EM

2(M − 2)N0 sin
2 θ

}

=
1

8πM2

∫ π

0

dθ
√

1 + σ2EM/[(M − 2)N0 sin
2 θ]

=
1

8πM2

∫ π

0

dθ sin θ
√

sin2 θ + Eσ2M/[N0(M − 2)]

>
1

8πM2

∫ π

0

dθ sin θ
√

1 + σ2EM/[N0(M − 2)]

=
1

8πM2
√

1 + σ2EM/[N0(M − 2)]
. (E.2)

For E/N0 large, this is approximately,

1

8πσ
√

E/N0

√

M − 2

M5
,

which is maximized (for even M > 2) by M = 4 to yield

lim inf
E/N0→∞

√

E

N0
·E(U − V )2 ≥ 1

128π
√
2σ

=
0.001758

σ
. (E.3)

Appendix F

Derivation of the Chazan–Zakai–Ziv Bound

The CZZB [4] asserts that

E(U − V )2 ≥
∫ 1

0
dh · h

∫ 1/2−h

−1/2
du · Pe(u, u + h), (F.1)

where Pe(u, u+ h) is the probability of error associated with optimum hypothesis testing between

the hypotheses y(t) = Ax(t, u) + n(t) and y(t) = Ax(t, u + h) + n(t), assuming equal priors.

Let us denote the probabilities of error of the two kinds by Pe(u → u + h) and Pe(u + h → h).

Then, according to the Shannon–Gallager–Berlekamp theorem [17, p. 159, Theorem 3.5.1], for every
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s ∈ [0, 1], at least one of the two following inequalities must hold:

Pe(u → u+ h) >
1

4
exp[µ(s, h)− sµ′(s, h)− s

√

2µ′′(s, h)]
∆
= A(s) (F.2)

Pe(u+ h → u) >
1

4
exp[µ(s, h) + (1− s)µ′(s, h)− (1− s)

√

2µ′′(s, h)]
∆
= B(s) (F.3)

where µ′(s, h) and µ′′(s, h) denote the first two partial derivatives of µ(s, h) w.r.t s, and where

for rapidly–vanishing–correlation signals, µ(s, h) is given by the (first line of) eq. (74). Since

µ(1/2, h) = ln[f1/(σ
√

E/N0), µ
′(1/2, h) = 0 and µ′′(1/2) ≈ 1/4 at the high SNR limit, this implies

that

Pe(u, u+ h) =
Pe(u → u+ h) + Pe(u+ h → u)

2

> sup
0≤s≤1

1

2
min{A(s), B(s)}

≥ 1

2
min{A(1/2), B(1/2)}

=
1

8
exp{µ(1/2, h) − 0.5 ·

√

2µ′′(1/2, h)}

≈ 1

8e
√
2
· f1

σ
√

E/N0

=
0.042977

σ
√

E/N0

, (F.4)

and so,

E(U − V )2 ≥ 0.042977

σ
√

E/N0

∫ 1

0
h(1− h)dh =

0.00716

σ
√

E/N0

, (F.5)
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