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Abstract—It is well known that transfer polynomials play an
important role in the network code design problem. In this
paper we provide a graph theoretical description of the terms of
such polynomials. We consider acyclic networks with arbitrary
number of receivers and min-cut h between each source-receiver
pair. We show that the associated polynomial can be described
in terms of certain subgraphs of the network. 1

I. INTRODUCTION
It is well known in the network coding literature that the

problem of designing a linear network code that allows to
multicast information from a source to a set of receivers over
a specific network, can be reduced to the problem of assigning
values to variables so that a multivariate polynomial becomes
nonzero [2], [4]. Thus, inherently, each linear network coding
instance over a network is mapped to a polynomial, which we
will call network polynomial.
In this paper we try to understand how the structure of these

polynomials relates to the underlying network graph. We show
that every monomial of the network polynomial is associated
with a subgraph of the network with certain properties. For
example, for networks with one receiver we show that there
is, in fact, a bijection between the monomials of the network
polynomial and sets of edge-disjoint paths.
Network polynomials play a significant role in network

code design. In the seminal paper [2] it was shown that
the existence of a network code over a graph relates to
roots of such polynomials. The size of the network coding
alphabet used also depends on algebraic properties of such
polynomials [5], [6]. These polynomials arise not only in
graphs, but also in deterministic networks [1], [3], [5]; In this
paper as well, we provide a new method that relates alphabet
size and code construction for special classes of networks
to polynomial structure and properties. Thus we believe that
studying properties of such polynomials is interesting, not only
from a theoretical point of view, but also because of possible
applications.
The rest of this paper is organized as follows. Section II re-

views the algebraic framework, using a line-graph perspective;
Section III looks at transfer polynomials of a single receiver;
Section IV looks at multiple receivers; Section V presents a
specific application and Section VI concludes the paper.
1This work was supported by the National Science Foundation under grant

No PP00P2128639.

II. MODEL AND BACKGROUND

In this section we describe the network model, and briefly
review known results from [2], [4] from a line graph perspec-
tive; we use similar notation to [4].

a) Setup: We consider a directed acyclic graph G =
(V,E), where a source S would like to multicast information
to N receivers R1, . . ., RN . We use the terms “graph” and
“network” interchangeably. We are interested in scalar linear
coding over a finite field Fq, i.e., the source has h symbols
{u1, . . . , uh} that she would like to send to all receivers, and
intermediate network nodes are allowed to linearly combine
their incoming symbols using coefficients from the field Fq.
The min-cut from the source to each receiver is greater or
equal to h, i.e., there exist h edge-disjoint paths from the
source to each receiver.

b) Line Graph: Unless otherwise specified, in this paper
we will work with the line graph of the original network. Given
a graph G = (V,E), the associated line graph is defined as the
graph H = (VL, EL) whose vertex set VL is the same as the
edge set of the graph G, i.e., VL = E. Two vertices e, e′ ∈ VL

are connected by an arc if and only if the starting point(head)
of e′ is the same as the ending point(tail) of e in the graph G.
Without loss of generality, we can assume that H has h

nodes, known as source nodes [4], each of which has a symbol
ui from a finite field Fq to send to each receiver. Each receiver
has also h associated receiver nodes, through which it receives
information from the network. In the original graph G, the h
source nodes in H can be thought of as h auxiliary edges,
entering the source node and each bringing one of the symbols
ui; the h receivers nodes in H correspond in G to h incoming
edges each receiver has.
Note that in the graph H , for each receiver, there exist h

vertex disjoint paths, where each path starts from one source
node and ends at one of the receiver nodes; these correspond
to the h edge-disjoint paths from the source to the receiver that
exist in G. We will come back to these paths in Section IV.
Also note that if G is directed and acyclic, so is H [4].
Definition 2.1 (h-minimal graph): A graph L is called h-

minimal with respect to a source S and a set of receivers if
the min-cut from S to each of the receivers is at least h and
no proper subgraph of L has this property.
For further notation and terminolofy about graphs, see [8].



c) Transfer and Network Polynomial: In linear network
coding over Fq , intermediate nodes in the network G linearly
combine their received information using coding coefficient
{xk} from the field Fq . These coefficients are the unknown
variables in the algebraic formulation of the network code
design problem. In the line graph notation, we have one
variable xi associated with each edge of the graph H ; thus
we have ν ! |EL| such variables.
Let X ∈ Fh

q be a vector that collects the source symbols
{u1, . . . , uh}, and Y ∈ Fh

q a vector that collects the symbols
receiver i observes, then Y = A(R)X whereA(R) is the h×h
transfer matrix from the source to the receiver R [2], [4]. The
transfer matrix can be efficiently calculated, and captures the
linear transformation that the network operations impose on
the sent source symbols.
Definition 2.2: The transfer polynomial pi for a receiver Ri

is defined as

pi(x1, . . . , xν) ! det(A(Ri))

Definition 2.3: The network polynomial p associated with a
multicast network coding instance is the product of the transfer
polynomials of all receivers, i.e.,

p(x1, x2, . . . , xν) ! p1(x1, . . . , xν) · . . . ·pN(x1, . . . , xν) (1)

d) Network Code Design: In the framework we discuss,
the network code design problem asks to find an assignment
of values to the unknown variables {xi} so that the network
polynomial evaluates to a nonzero value. Indeed, in this case,
the transfer polynomial to each receiver evaluates to a nonzero
value; the transfer matrix to each receiver is full rank; and
thus each receiver can invert the transfer matrix and decode
the source symbols. It is well known (see for example [2])
that such an assignment is always possible provided that the
field size is larger than the number of receivers.

III. TRANSFER POLYNOMIAL
We now focus on a single receiver Ri. For simplicity, we

will use A and p (instead of A(Ri) and pi) for the transfer
matrix and the transfer polynomial, respectively.
We will work with the line graph of the original network;

thus, as mentioned in Section II, we assume that we have a
set S = {s1, s2, . . . , sh} of h source nodes with in-degree 0
and a set R = {r1, r2, . . . , rh} of h receiver nodes. We also
assume that there are h vertex disjoint paths from the elements
of S to the elements of R.

A. Monomials and Paths
As we discussed earlier, with every edge e ∈ E of the line

graph we have an associated variable xe; thus with every path
P = ei1 , ei2 , . . . , eik we can associate the monomial

f(P ) ! xei1
.xei2

. . . . .xeik
.

Let P(i,j) denote the set of all (si, rj) paths, i.e., all paths
that connect source node si to receiver node rj . We then define

f(i,j) !
∑

P∈P(i,j)

f(P ).
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Fig. 1. An example of a network with h = 2. A DPQM is depicted with in
the figure using dashed edges. The term corresponding to this DPQM in the
transfer polynomial is x1x8x13x15x16x5x10.

It is well known (and straightforward) that the entry (i, j)
of the transfer matrix A is nothing but the polynomial f(i,j).

B. PQMs and DPQMs
We now define some new notation that will be useful

in stating our results. Consider a permutation π of the set
{1, 2, . . . , h} and denote π(i) the ith element in the particular
permutation (recall there are h! possible permutations).
Definition 3.1 (PQM): A Perfect Quasi-Matching (PQM) is

a set of h paths in which each path starts from a different node
si and ends at a different node rπ(i), for some permutation π,
so that no two paths have the same starting or ending node.
The (sgn) of a PQM is defined as the sign of π.
Definition 3.2 (DPQM): A PQM is called Disjoint PQM

(DPQM), if the h paths are vertex-disjoint.
A DPQM corresponds to a set of edge-disjoint paths in the
original graph.

C. Main Result
Our first result says that each monomial appearing in

the transfer polynomial corresponds to a DPQM. In partic-
ular, each monomial is of the form f(P1) . . . f(Ph) where
P1, . . . , Ph are paths corresponding to a DPQM (i.e., edge-
disjoint paths in the original graph). More formally:
Theorem 3.1:

p(x1, . . . , xν) =
∑

π

∑

Pi∈P(i,π(i))

Pi’s form a DPQM

(−1)sgn(π)
h∏

i=1

f(Pi)

in which the first summation is taken over all permutations π
and the second summation is taken over all DPQMs.
Thus, one alternative way of finding the transfer polynomial,

would be to find all DPQMs in the network, and sum the
corresponding terms. Reversely, if we were given the transfer
polynomial, simply by counting the monomials it has, we
can learn how many DPQM’s the network has towards this
receiver; and we can identify for example intersection of
DPQM’s by identifying their common variables. Next we give
an example, and then we prove Theorem 3.1.
Example 3.1: In the line network depicted in Fig. 1, the

mincut from the source to the receiver is two, the nodes v1,
v2 are the source nodes that bring the two source symbols,
and the nodes v10, v11 are the receiver nodes that the receiver
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observes. Let xi’s be the variables associated with the edges of
the network of Figure 1, as shown in that Figure. The transfer
polynomial is:

f = x3x9x16x5x10 + x3x9x16x4x8x12

+ x2x11x15x8,10x4x8x12 + x2x10x6x9x16

+ x2x10x4x8x13x15x16 + x2x10x4x7x14

+ x1x8x13x15x16x5x10 + x1x7x14x5x10

+ x1x8x12x6x9x16 + x1x8x12x5x11x15x16

and each monomial corresponds to a DPQM.
Example 3.2: Let G be the network in Figure 2. For every

receiver, there are exactly two different set of disjoint PQM’s.
The transfer polynomial of the first receiver (the lowest re-
ceiver in Figure 2) is equal to x1y3a1a3p1q1−x3y1a1a3p1q1 =
a1a3p1q1(x1y3 − x3y1).
D. Steps in proving Theorem 3.1
We start from the following lemma, which states that the

only terms that can possibly appear as monomials in the
transfer polynomial are of the form f(P1) . . . f(Ph) where
P1, . . . , Ph are paths corresponding to a PQM.
Lemma 3.1:

p(x1, . . . , xν) =
∑

π

∑

Pi∈P(i,π(i)), for all i

(−1)sgn(π)
h∏

i=1

f(Pi)

Proof: The proof is straightforward and follows from
expanding the determinant of the transfer matrix A(G).
Next, we need to prove that in fact only the terms corre-

sponding to disjoint paths (that form a DPQM) will appear in
the transfer polynomial; all other terms will cancel out. For
this proof, we need to introduce first some notation.
Partial Order
Let ≺V be a partial order on the set of vertices of H such

that v ≺V v′ if and only if there exists a directed path from
v to v′. This partial order can be extended to a total order on
the set V . For simplicity, we use the same notation ≺V for
the total order. Similarly, we can define the total order ≺E for
the set of edges of G.
We can also define a partial order ≺P on the set of source-

receiver simple paths as follows. P1 ≺P P2 if s1 ≺V s2 in
which si is the starting point of the path Pi for i = 1, 2.
Let P1, P2 be two source-receiver paths with different end

points. We say that P1, P2 are crossing paths if they share
a common vertex. If P1, P2 are crossing path and v is a
common vertex of P1, P2, we say (v, {P1, P2}) is a crossing
pattern. Suppose that (v, {P1, P2}) is a crossing pattern and
assume that Pi = QiQ′

i for i = 1, 2 in which Pi is an
(si, ri) path, Qi is an (si, v) path and Q′

i is an (v, ri) path.
By the dual of (v, {P1, P2}) pattern we refer to the crossing
pattern (v, {Q1Q′

2, Q2Q′
1}). It is easy to observe that Q1Q′

2

and Q2Q′
1 are source-receiver paths that intersect at v and

also it can be easily checked that the dual of the pattern
(v, {Q1Q′

2, Q2Q′
1}) is (v, {P1, P2}). Furthermore, it is easy

to see that the dual of each pattern can not be identical as the
pattern.

Conclusion of the Proof
From Lemma 3.1, it suffices to show that the terms

(−1)sgn(π)
∏h

i=1 f(Pi) cancel each other when the paths Pi

are not pairwise vertex disjoint. We will show that we can
pair up all the crossing PQM’s into pairs so that both PQM’s
in a pair use the same set of edges but have opposite sgn’s. As
a result, their corresponding terms in the expansion of P (G)
will cancel each other.
We define the dual of a crossing PQM P =

{P1, P2, . . . , Ph} as follows. Let C = {v1, v2, . . . , vk} ⊂ V
be the set of all the vertices of the network that belong to
more than one of the paths Pi, i = 1, . . . , h. Let v1 be the
minimum of the elements of C with respect to the order ≺V .
Let P1, P2, . . . , Pl, l ≥ 2 be all the elements of P which
pass trough v1. Also, assume that P1, P2 are the smallest
elements of P1, P2, . . . , Pl with respect to the order ≺P .
Clearly (v1, {P1, P2}) is a crossing pattern. Let v1, {Q1, A2}
be the dual of this pattern. Now, we define the dual of P to
be the following PQM:

P ′ = {Q1, Q2, P3, P4, . . . , Ph}.

In Figure 2, Let P1 = v1v4v10 and P2 = v2v4v9v8v11. Then
(v4, {P1, p2}) is a crossing pattern.
Notice that:
1- P ′ is also a crossing PQM.
2- P ′ uses the same edges as of P .
3- P ′ '= P .
4- sgn(P ′) = − sgn(P ′).
5- The dual of P ′ is P .
The only nontrivial parts of the above is the last two parts.

For the part (4), notice that the end points of the paths of P ′

are matched the same way as the endpoints of the paths in P
with one exception for the endpoints of the paths P1, P2 and
Q1, Q2 which are matched differently.
To see the last part, notice that if v1 is the smallest crossing

point of P , it is also the smallest crossing point of P ′. Also,
since P1, P2 are the two smallest elements of P and Q1, Q2

have the same set of the starting points as of P1, P2, by
definition of ≺P , Q1, Q2 are the two smallest elements of
P ′. This means that the dual of the dual of a crossing pattern
is the original pattern. Therefore dual of P ′ is P .

IV. NETWORK POLYNOMIAL
In the case of a single receiver the terms in the transfer

polynomial corresponded to h disjoint paths, i.e., a subgraph
of the network with some special properties. Similarly, in the
case of N receivers, each term of the network polynomial now
also corresponds to a subgraph with some special properties.

A. Terms in the network polynomial
For simplicity we describe for the case of two receivers,

R1 and R2. Consider an acyclic line network with one source
set S = {s1, s2, . . . , sh} ⊂ V and two receiver sets R1 =
{r1, r2, . . . , rh} and R2 = {r′1, r′2, . . . , r′h}. As discussed in
Section II, the network polynomial can be calculated as

p(x1, . . . , xν) = det(A(R1)A(R2)) = p1(x1, . . .)p2(x1, . . .).
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As we already showed, each monomial of p1 (and p2) cor-
responds to a DPQM with respect to the set S and the set
R1 (R2). Therefore, each monomial of p corresponds to a
subgraph which is a union of two DPQM’s, one with respect
to the sets S,R and the other one with respect to the set S,R′.
Notice that the converse of this statement is not necessarily
true. This is due to the fact that one subgraph of the network
can be decomposed as the union of two DPQM’s in two
different ways and therefore, in the network polynomial some
terms might appear several time and they can possibly cancel
each other. Thus it is important to classify those subgraphs
of the network that correspond to a monomial in the network
polynomial.
We next attempt to extract properties that these subgraphs

have; the following lemma summarizes some such easy prop-
erties.
Lemma 4.1 (Properties): Consider a subgraph L that cor-

responds to a term appearing in the network polynomial of a
network with two receivers.
1) The edges of L can be decomposed into two DPQM’s;
one for each receiver.

2) Each vertex of L has in-degree 0,1 or 2. If it has in-
degree 0, then it is a source node. If it has in-degree 1
and the its out-degree is 2, then its incoming edge must
appear in both DPQM’s.

3) Each vertex of L has out-degree 0,1 or 2. If it has out-
degree 0, then it is a receiver node. If it has out-degree
1 and the its in-degree is 2, then its outgoing edge must
appear in both DPQM’s.

4) The mincut of each receiver on L is at least h.
5) The power of each variable in a monomial indicates
whether the corresponding edge (in the original graph)
appears in one of the DPQM’s or both.
Proof: Before we prove these properties, notice that each

term of the network polynomial is product of two terms of
transfer polynomials of the receivers.
1) This property is a direct implication of the previous
sentence.

2) Each DPQM is a subgraph of the graph for which the in-
degree and out-degree of each vertex is 0 or one. For the
union of two DPQM’s, the in-degree and out-degree of
each vertex is 0,1 or 2. The second part of this property
is also clear.

3) Similar to the previous property.
4) This property is a direct consequence of the first prop-
erty.

5) Trivial.

Notice that these properties can be naturally extended for
arbitrary number of receivers.

B. The case of two receivers
Throughout this section we assume that the field Fq is of

characteristic 2. For the case of two receivers, we have a more
concise characterization of these subgraphs.

Theorem 4.1: In the expansion of the product of the transfer
polynomials of the two receivers, each monomial appears
either only once or even number of times. In particular, if the
field Fq has characteristic 2, then the subgraphs corresponding
to the monomials of the network polynomial can be uniquely
decomposable into two DPQM’s.
The proof of this theorem follows from Theorem 4.2.
Theorem 4.2: Suppose that H is an acyclic line-network

with the source set S and the receiver sets R1, R2 each of
which of min-cut h. Also, assume that the edges of H can
be decomposed into two DPQM’s, one for each receiver. The
following statements are equivalent:
i) There exist at least two different ways for decomposing
the edges of H into two DPQM’s.

ii) There are even number of ways that H can be decom-
posed into two DPQM’s.

iii) If the characteristic of the field is 2, then there is no term
in the network polynomial corresponding to the edges of
H .

The proof is provided in [7], along with the proof of the
following lemma.
Lemma 4.2: If H is an h-minimal subgraph of G then the

network polynomial has a unique monomial corresponding to
the edges of H .
Corollary 4.1: An h-minimal subgraph H of G is uniquely

decomposable into DPQM’s.
As a direct application of 4.2, we get an alternative proof for
the following known result.
Corollary 4.2: For every network with two receivers, there

is always a network code for the multicast network coding
problem over the binary field.

V. A CODE-DESIGN APPLICATION
We now give an example of why studying the structure

of network polynomials is useful. We look at a special case
of combination networks, and using a simple combinatorial
argument, we provide an alternative code construction as well
as an associated bound on the field size this construction uses,
that matches the best known such bound.

Network polynomial of combination network: The line
graph of a combination network with h = 2 is a 4-layered
network. The first layer has two source nodes s1, s2. The
second layer consists of m nodes v1, v2, . . . , vm. For each
i = 1, 2, j = 1, 2, . . . , n, si is connected to vj . Let xi(yi) be
the variable associated with the edge s1, vi(s2, vi). The third
layer has also n nodes w1, w2, . . . , wm. Each vi is connected
to wi. Let ai be the variable associated with that edge. The last
layer contains N pairs of receiver nodes. The i-the pair has 2
nodes ri, ti. Each pair has two in-neighbors from wj’s where
one is connected to ri and one is connected to ti. Suppose
that ri is connected to wf(i) and ti is connected to wg(i) in
which f, g are two functions from the set [N ] to the set [m],
in which [j] = {1, 2, . . . , j}. In Figure 2 and Example 3.2, we
used pi and qi instead of wf(i) and wg(i) for simplicity.
Suppose that the variable associated to the edge ri, wf(i) is

pi and the one associated to the edge ti, wg(i) is qi. As we
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saw in Example 3.2, the transfer polynomial of each receiver
can be computed. Therefore, the network polynomial of G is:

p =
N∏

i=1

af(i)ag(i)piqi(xf(i)yg(i) − yf(i)xg(i)) (2)

Figure 2 shows the line graph of a combination network with
h = 2,m = 4, N = 5.

Alphabet Size: We use the results of the previous sections
to prove the following theorem.
Theorem 5.1: For every combination network with N re-

ceivers and min-cut 2 to every receiver, there exists a network
code over any field of size larger than

√
2N .

Proof: Let G be a combination network. The network
polynomial ofG is expressed in 2. We must find an assignment
of the values to the variables so that I evaluates to a non-
zero value. Set ai = pi = q1 = xg(i) = xf(i) = 1 for all
i = 1, 2, . . . ,m.
The network polynomial then becomes:

I =
N∏

i=1

(yf(i) − yg(i))

Thus, we only need to show that if the field size is larger
than

√
2N , we can always assign values to yi’s such that

yf(i) '=g(i), for i ∈ [m]. Let F be a finite field of size larger
than

√
2N . Each variable yi appears in certain number of

parenthesis. Without loss of generality suppose that y1 is a
variable that appears in the minimum number of parenthesis.
Let’s assume that y1 appears in l1 parenthesis.
We remove all the parenthesis containing y1 from the

product and again without loss of generality, we assume
that y2 is the least appeared variable among the remaining
terms. Let’s assume that y2 appears in l2 of the remaining
parenthesis. We exclude all the terms with y1, y2 from the
product and we repeat the procedure. What we end up is
an ordering of the variables and N numbers l1, . . . , lN . Let
lk = max {l1, . . . , lN}. We show that we can always find an
assignment to the variables yi from any field of size larger
than lk such that I is not zero. We assign values in to the
variables based on the ordering we defined above, in the
opposite direction. Namely, we first assign arbitrary value to
yN , then we chose an appropriate value for yN−1 and at the
end we find a right value for y1. At each step i we must make
sure that we select a value for the variable i such that it is
different from the value of every other variable that appears
with yi in some parenthesis. Clearly, if the field size is larger
than li, we have enough element in the field to select an
appropriate value for yi. Since lk is the largest li, we can find
an appropriate value for all the variables. Thus, it is enough
to show that lk ≤

√
2N . We prove this inequality using two

inequalities.
i lk ≤ m− k
ii lk ≤ 2N/(m− k)

The first inequality holds because when we select the k-th
variable, there arem−k other variables left. Even if yk appears
with all the left variables, it will be appearedm−k times. The
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Fig. 2. An example of the line graph of a combination network.

second inequality holds because in the k-th step, each of the
m−k+1 variables appear at least lk times in the parenthesis.
There are at most N parenthesis and each parenthesis has
exactly two elements. Therefore, lk(m − k + 1) ≤ 2N and
therefrom, we deduce the desired inequality. If we multiply
both sides of the two inequalities, we can deduce that lk ≤√
2N .

VI. CONCLUSIONS
In this paper, we etsablished relationships between the

monomials that appear in the transfer and network poly-
nomials to graph theoretical properties of the underlying
network configuration. Several questions remain open, with
most prominent a more exact characterization of the terms of
the network polynomial for an arbitrary number of receivers.
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