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Abstract

Energy efficiency is a key requirement in the design of wsglsensor networks. While most
theoretical studies only account for the energy requirgmen communication, the sensing process,
which includes measurements and compression, can alsaroensomparable energy. In this paper, the
problem of sensing and communicating parallel sourcesudieti by accounting for the cost of both
communication and sensing. In the first formulation of thelyem, the sensor has a separate energy
budget for sensing and a rate budget for communication,eywhil the second, it has a single energy
budget for both tasks. Furthermore, in the second probleeh source has its own associated channel.
Assuming that sources with larger variances have lowerisgr®sts, the optimal allocation of sensing
energy and rate that minimizes the overall distortion isveeifor the first problem. Moreover, structural
results on the solution of the second problem are derivecuticte assumption that the sources with
larger variances are transmitted on channels with lowesendClosed-form solutions are also obtained
for the case where the energy budget is sufficiently large.afoarbitrary order on the variances and
costs, the optimal solution to the first problem is also atgdinumerically and compared with several

suboptimal strategies.
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. INTRODUCTION

Sensor networks consisting of battery-limited nodes nedzktoperated in an energy-efficient
manner in order to attain a satisfactory lifetime. The epergnsumption of a sensor device is
due mostly to the tasks of sensing and communication. Th&rggoomponent consumes energy
in the process of digitizing the information sources of iag through a cascade of acquisition,
sampling, quantization and compression, while the comoatitin component spends power to
operate the transmit circuitry and the power amplifier. lkm®wn that the overall energy spent
for compression is generally comparable to that used fomsonication and that a joint design
of compression and transmission is critical to improve thergy efficiency([1][2]. We refer to

the energy cost associated with measurements and congpregssources as “sensing cost”.

A. Contributions

In this paper, we consider an integrated sensor device stongsiof multiple sensor interfaces
[3] that can simultaneously measure multiple informationrses, as illustrated in Figl 1. Being
part of the same device, the sensor interfaces share themaradl resource budget. Moreover,
since the sensor interfaces have distinct hardwares arsitiggties, we assume that the sensing
costs of different sources are generally different. Findbr tractability, we model the sensing
cost of a given source as being constant per source sample.

With sensing costs present, we aim at optimizing the reso(gnergy or rate) allocation for
the integrated sensor of Fig. 1 so as to minimize the overaimsquared error distortion of the
reconstruction of all the sources at the destination. Weiden two types of resource constraints.
In the first, the sensor has a given energy budget used fongemsd a separate rate constraint for
communicationgeparate sensing/communication). In the second, the sensor has an overall energy
budget which is to be spent for both sensing and communitgtint sensing/communication).
Moreover, in the joint sensing/communication scenarie, sensed sources are assumed to be

transmitted over orthogonal additive white Gaussian chEwith different noise variances. This
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set-up can model a scenario in which different sensor isted of the integrated device are used
at different times and, to avoid delay and buffer overflow, theasurements are transmitted over
a time-varying channel to the destination as they are medsur

For the separate sensing/communication problem, we oatewsed-form solution for the case
where the sources with larger variances have lower sensitg.cThis corresponds to a situation
when sources with lower variances might require more eneogyguming sensor interfaces with
higher sensitivity for sensing. When the source variancebs the sensing costs are arbitrarily
ordered, the optimal solution is obtained using numericalhods and is compared with several
suboptimal strategies. For the joint sensing/commurdogtroblem, assuming that sources with
larger variances not only have lower sensing costs, butasdransmitted over channels with
lower noise variances, we obtain structural results on fitenal solution. Moreover, a closed-

form solution is obtained for sufficiently large energy batig

B. Related Work

The joint design of compression and transmission paraséerenergy efficiency has been
investigated through the proposal of various algorithmsstatic scenarios in_[4] [5] and for
dynamic scenarios i _[6] [7]. In particular, references &d [7] proposed on-line algorithms
that are able to choose among a finite number of compressitonspwith different energy
costs. Using Lyapunov optimization techniques, such #lgms can perform arbitrarily close
to the minimal power expenditure for a given average digtortvith an explicit trade-off in
average delay. In_[8], for wireless video sensors, an aicalytnodel that characterizes the
relationship between power consumption of a video encodeétrtlae rate-distortion performance
was developed. More recently, the problem of energy aliocaiver sensing and communication
has been investigated for energy-harvesting sensors .ifrii®lly, the model for the per-sample
sensing cost in this paper is analogous to the per channgbrasessing cost used in [10] to

account for the transmitter processing power consumed byreless device. We remark that,
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in [10], when the processing energy cost is not negligililes ino longer optimal to transmit
continuously, but, instead, bursty transmission becondgardageous in terms of the achievable
rate.

The rest of the paper is organized as follows. In Section B, fermulate the problems
of interest. Then, Section Il first derives the analyticatimal solution to the separate sens-
ing/communication problem when the source variance angdehsing cost are ordered, and then
addresses the same problem in the case of arbitrary pamsmigteSection IV, the structure of
the optimal solution to the joint sensing/communicatiooljpem is analyzed for the ordered

case. Finally, we make some concluding remarks in Section V.

[I. PROBLEM FORMULATION

We consider a system in which a sensor meas@resdependent parallel Gaussian sources
and communicates them to a single destination as shown iflFigheith source consists of
n independent and identically distributed (i.i.d.) sampléth varianceos?, i = 1,...,Q. We
assume that measuring each sample ofithesource entails a given sensing cest joules per
source sample, which takes into account the energy speattprisition, sampling, quantization
and compression. Note that, more generally, the energy @sstociated with quantization and
compression may depend on the compression rate and thé tesgmtion level, as discussed
in [9]. We do not pursue this more general model here for suiipl We are interested in
minimizing the overall average distortidn of the reproduction of the sources at the destination.
We consider two related problems. In the first (separateisgic®@mmunication), we assume
that the sensor has two resource budgets, an energy budgstrfsing and a rate budget for
communication. In the second (joint sensing/communicdfimstead, we consider the problem
of allocating energy between the tasks of sensing and conaations. Note that the second
problem is in fact dual to the problem of minimizing the totalergy consumed by the sensor

subject to a given constraint on the allowed distortion lleve
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A. Separate Sensing/Communication of Parallel Sources

For the separate sensing/communication problem, we astersensor has an energy budget
E to be used exclusively for sensing of thesources, and a total rate that can be allocated
for communication. BothZ and R are normalized by» so thatFE is the energy budget per
source sample and similarly faR. When £ and R are limited, it might not be optimal, or
possible, to sense all the samples from all the sources. \Wemes instead that the sensor
measures a fractiofis;, with 0 < fg; < 1, of samples from theth source, and then sends
a compressed version of them with rake (R; > 0). Given the above, the mean square error
(MSE) of the reconstruction for théh source can be obtained &% = o?f(0s;, R;), Where
f(0si, R) = (1 —0g,;) + 05,272Fi/%i if g, >0, and f(0s,, R;) = 1 if 05, = 0 [11].

We define the sampling fraction vector and rate allocaticttoreas@s = [fs; ... 957Q]T and

R = [R; ... Rg|”, respectively. The problem of minimizing the total MSE izegi by

Q
. _ 2
grsl}lg D(0s,R) = E_l o; f(0s., Ri), 1)

subject to the sensing energy constr@?:1 0s.es; < E and the rate constrairitj?:1 R, <R.

B. Joint Sensing/Communication of Parallel Sources

For the joint sensing/communication problem, the commatioo link is modeled as a col-
lection of @ orthogonal channels. We assume that the compressed vefsioa sensed samples
from theith source [ < i < Q) are transmitted over th&h channel, which is an independent
complex Gaussian noise channel with noise variaNgeEach channel consists afr channel
uses, wherer is the channel-source bandwidth ratio for each sourcerwiapair. It is also
assumed that the sensor has a joint energy constfaioh the sensing and communication
components. Similar t&Z and R in Section II-A, the energyB is normalized byn as well.
The sensor measures a fractiéy); of the samples of théth source, and transmits the corre-

sponding compressed samples with powkover theith channel. Since the compression rate
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for each sensed sample of tith source is given by7/0s;)log,(1 + P;/N;), the MSE of the
reproduction of theith source at the destination can be obtainedas= o?h (s, P;), where
h(0s, P;) = (1 — 0s;) + 0s4(1 + P;/N;) "% /% if §5; > 0, andh(0s,, P;) = 1 if fs; = 0.

We define the power allocation vector Bs= [P, ... Pg]”. The problem of minimizing the

overall MSE is then given by

Q
min D(05,P) = orh(fs;, P) 2)

fs,P i=1
subject to the overall energy budget constr@f:1 Os€e5; + 7P, < B.

Remark 1: For the joint sensing/communication problem, if we haveasat® energy con-
straints on sensing of th@ sources and on communication over tQechannels, and if we
allow the compressed version of the sensed samples frono@ites to be transmitted across
all parallel channels, then the problem reduces to the agpaensing/communication problem
with rate R given by the capacity of the channel made of thearallel AWGN links subject
to the transmit power constraint. Note that this capacitghbtained by water-filling[[11].

Remark 2: The above formulations can be extended to a more generalicas@ich the
destination wishes to minimize the weighted MSE distortioa., the objective function is
S wio?f(Bsi, Ry) in @) or 3%, wio?h(fs,, P) in @), wherew; > 0 is the weight for
sourcei, with ¢+ = 1, 2. The weight can in general account for the source prionitythis case, it
is easy to see that it is enough to modify the variance of sauasw;c? in order to convert the
weighted MSE criterion to the standard MSE criterion coesed throughout the paper. Hence,

all solutions developed henceforth apply to weighted MS&adlion as well.

[1l. SEPARATE SENSING AND COMMUNICATION

This section considers the separate sensing/commumcatablem described in Section II-
A. To facilitate the analysis, we divide th@ Gaussian sources intd classes with clasé
(1 < k < K) containingg, sources with the same varianeg¢. Without loss of generality,

the variances are in descending order, o8.> o2 > ... > o%. Since each class can contain
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an arbitrary number; of sources, we have strict inequalities among the variantes also
assumed that sources in cldsbave the same sensing cesi.. In the following, we first analyze
the optimal solution for the case when the sensing cosis afasses are also ordered and then

discuss the more general case.

A. The ordered variance/cost case

In this subsection, we assume that sources with larger n@ghave lower sensing costs,
i.e., esq1 < ... < eg k. Such an order would be valid if more energy-consuming seinserfaces
with higher sensitivities are required to measure sourads lawer variances. Note that, while
for the general case, the problem [d (1) can be shown to beegonkiere is no closed-form
solution, as will be discussed later. Focusing on the orleese as described above allows us
to obtain an analytical expression for the optimal solutmd gain insights into the problem.
By the convexity of functionD (65, R), it is easy to see that we can assume the same fraction
s and rateR; are assigned to each source in fiib class.

For convenience, we divide the range of the enefgynto a sequence of interval§, =
(eo, e1], &2 = (e1, €] Exk = (ex—1,€x), Whereey = 0, ex = +oo ande,, = Y., gies; for
1 <m < K — 1, and divide the range of rat® into a sequence of intervalR; = (ro, 7],

Ro = (r1,79),..s R = (rx-1,7K), Whererg =0, rx = 400 and

l 2
1 o5
]:

I+1

Proposition 1: For K > 2, assumingo? > ... > 0% andeg; < ... < €5k, the optimal
solution for the separate sensing and communication prolae Section II-A is obtained as

follows. GivenFE € &,, for somel < m < K,

YIn fact, fixing all other parameters, functidn(6s, P) is Schur-convex with respect to the fractions of samplesthadates
assigned to the sources in a class. Therefore, an equabfraatd rate allocation is optimal (see, e.9..[12]).
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1) If R € R, for some integef with 1 <[ < m — 1, then it is optimal to fully sample the

first [ classes of sources, i.dg, =1 for 1 <k </, and to allocate rates as

1 1 < o2
R, = = <R+— > gjlog, (—’f)) 4)
2 =19 2 1A 7i

wherel < k < [. Moreover, there is no need to sense the remairling [ classes of

sources, i.efs;, =0andR; =0, forl +1 <k < K.
2) If instead R > 7,1 (or R € U5, Ri), then it is optimal to sample the first — 1
classes of sources fully, i.elg, =1 for 1 <k <m — 1, and themth class for a fraction

0sm = min((E — en-1)/(gmesm), 1), and to allocate rates as

Ri = etk <R+1 S, logs (%)> , ©)
Zj=1 q]'es,j 2 =1k 9;
wherel < k£ < m. Moreover, there is no need to sense the remairing m classes of
sources, i.e.fs, =0 andR; =0form +1 <k < K.
Proof: The proof is based on solving the KKT conditions but specakanust be taken

since the objective function i (1) is not continuously diffntiable in the entire feasible set.

Details of the proof are provided in Appendix A. [ |

In the zero sensing cost case, i.e., With = ... = g x = 0, we haveFE € & = (0, +00),

i.e., m = K in Proposition 1. Hence, we have the following corollary.

Corollary 1: If es; = ... = es x = 0, the optimal solution is as follows: IR € R, for some
integer! with 1 < [ < K, then it is optimal to fully sample the firgtclasses of sources, i.e.,
05, =1for1 <k < andtosety, =0forl+1<k < K, with ratesR; as in (4) for

1<k<landR;=0forl+1<k<K.

Remark 3: If energy £ and rateR are such that conditions in Case 1 of Proposifibn 1 are
satisfied, the optimal solution is not unique. This is beeaas amountt — ¢; of energy is left

after fully sampling of the first classes that can be used to sense the remaiking classes. In
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fact, the solution will remain to be optimal, if, instead ettngds ;. ,, ..., 05  all to be zero, we
set them to any values such thaK 05, <1,/ +1 <k < K and ZkK:m @0 pesk < E — ey

The same discussion applies to Corollaly 1.

Before we discuss the solution given in Proposition 1, wesiethe classical reverse water-
filling approach, which solves the separate sensing and conmakion problem in[{1) in the
case of zero sensing costs as in Corollary 1. The interpoatditelow will also be useful in
understanding the solution to the joint sensing and comaatioin problem in Section V. With
zero sensing costs, as stated in Corolldry 1, the solutibhaepends on the rate constraifit

Moreover, the solution td {1) is obtained by solving the dorblem [13] [14]

- 26—2R),
121212% (akQ + osz) , (6)

for each class where« is the Lagrangian multiplier (or “rate price”) to be selat®uch that

the total rate constrainEf:1 xR, = R is satisfied. Note that we can write
Ry,
o2 M = / (—2In2)072"*dr + o, (7)
0

so that the problem i {6) can be recast as

R 20 R 20

Rk Rk
min / (a — (2In2)027*)dr = min / wg(r)dr, (8)
0 0

where we have defined,.(r) aswy(r) = a — (2In2)07272" and neglected the constant testh
The productwy(r)dr can thus be interpreted as the marginal cost (rate price smeduction

in distortion) of adding an additional rate- when the currently assigned raterisFor a given
rate priceq, the solution of problem’{8) (and hendd (6)) for any classith w;(0) < 0 is to

increase the rate progressively untij(r) becomes zero. The corresponding optimal rate is

.
R = (% log, (%)) | ©)

where(-)™ denotesnax(-, 0). Note that if the source variance is sufficiently small sd thg0) >

0, then no rate is assigned to the source at all. To obtain themapLagrange multipliery in
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(@), we invoke the rate constrait;_, ¢ R, = R. It can be easily seen that, the optimal rate
Ry in (9) is positive only for the classes of sources with the largest variances, wheyeuch

that R € R, and, moreoverR; can also be expressed as|ih (4) (see Appendix A).

Propositior_L states that, when the sensing costs are tat@adcount, the optimal solution in
the ordered case entails sensing sources with the highesheas and then optimally allocating
rates among the sensed sources using either the reversefiiate procedure or a variation of
it. Specifically, in case 1 of Proposition 1, that is,Afe &, with 1 < m < K andR € R,
with 1 <[ < m — 1, the first/ classes of sources are fully sensed and compression rates ar
assigned according to the classic reverse water-fillingtsol. Note that in this case, even though
there is enough energy to sample more thaources, given the rate constraint, the optimal rate
allocation only assigns positive rate to the firelasses. Instead, in case 2 of Proposition 1, i.e.,
if #Fe€é&,andR > r,_q, itis optimal to fully sample the firstn — 1 classes of sources, while
the sources in thexth class are sampled only partially using the remaininggnédfor themth
class, the optimal sampling fraction is equalttp,, = min((E — €,,-1)/(gmesm), 1), and the

optimal rate is obtained, for a fixed rate priae by solving the dual problem

_2Rm
min (9§7ma,2n2 Pm 4 aRm) . (10)

R’ULZO
__2r
Therefore, the marginal cost becomes, (r)dr with w,,(r) = o — (2In2)¢22 s~ and the

optimal rate allocation?}, is given by

9* 2 +
R, = (ﬂlog2 (L ln2)“m)) . (11)
2 Q

Comparing with [(D), it is seen that rate assigned to eachceour classm is scaled by the

fraction 05 ,,. Moreover, from([(lL), the distortion attained for each seurcclassm is given by
5D+ (1= 0% ,,)02, whereDy, = 02,272 n/%.n is the normalized distortion for the sampled

fraction of the source, while?, (165, corresponds to the total distortion of the non-sampled

fraction. By imposing the rate constraiﬁtjf:1 qr R, = R, as done above for the conventional
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reverse water-filling solution, we obtainl (5) (see Appendl)x

We pictorially illustrate the solution for case 2 of Progmsi 1 in Fig.[2, where we assume
K =5andgq, =1, £k = 1,...,5. In this example, the energ§ and the rateR are assumed
to satisfye; < F < e3 and R > r4. Thus, it is optimal to have source 1 and source 2 both
fully sampled and have source 3 only partially sampled foragtion 05 ; = (E — e3)/eg3.
The first two sources and the sampled fraction of source 3 lhréeacribed with the same
distortion, i.e.,Df = D} = D% = a/(21n2), where we recall thaD; is the average distortion
only for the sampled fraction of source 3. The rate prces set such that the sum constraint
R} + RS + R; = R is satisfied. Since source 4 and source 5 are not sampled, éheyl are
assigned zero rates and thus the corresponding distori@gqual to their variances. Recall
that in the zero sensing cost case, all the five sources dyestmnpled and sincé& > r,, all
of them are described with the same per-source distortien/}; = D; = ... = D. Moreover,
such per-source distortion (and thus the optimal rate prjo&ould be larger than in the case of

nonzero sensing costs shown in Hig. 2, although the oveistbrtion in (1) would be smaller.

B. The General Case

This subsection discusses the solution to the separatengfmnmunication problem when
the sensing costs; ;. are arbitrary. In this case, while the problem[ih (1) is stihvex, it appears
prohibitive to obtain an analytical solution. Thereforee vesort to numerical methods. For non-
differentiable objective functions, such &s (1), commonvex optimization methods [14], like
gradient descent and Newton’s strategies, either do ndy apfail to converge. To avoid the
non-differentiability ofD(8s, R) at points withds , = 0, we assume that a fraction at least 0
for each source is sampled, wherés a small positive real number. The optimization problem
remains the same as inl (1) except that constr@irt 05, < 1 is replaced withd < fg, <1
for 1 < k < K. With such a modification, functio®(6s, R) becomes not only convex but
also continuously differentiable over the new constra@it $he optimal solution to the modified

problem, which can approximate that of the original probienil) well wheno is made small,
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can be obtained numerically using common convex optinonatnethods.

Fig. [3 plots the minimum distortion as a function of the egebydget £ when there are
two classes of Gaussian sources with one source in each clas$( = 2 andq, = ¢ = 1.
The parameters are chosenfds= 1, o7 = 2, 03 = 1, €51 = 3 andeg, = 1. For the given
parameters, unlike the assumptions of Proposition 1, solirbas both larger variance and a
higher sensing cost than source 2. For comparison, we amgid following two suboptimal
schemes: 1)ower Cost First (LCF): sources are sampled starting from the one with lovest,c
i.e., source 2, so that source 1 is sampled only when thergédisi@nal energy left after source
2 is fully sampled. The available rafe is then split among the sensed sources using the variant
of the reverse water-filling solution discussed in the prasisubsection that accounts for the
fact that sources may be partially sampled (redall (11))E@)al Sampling Fraction (ESF):
the energy constraint is ignored at first and the total rates allocated to the sources using
the classic reverse water-filling solution. The availablergy is then used to sample an equal
fraction from the sources that have received positive rgtéhb reverse water-filling procedure.
Finally, with the sampling fraction of each source knowre thteR is re-distributed among the
sensed sources using the variant of reverse water-filliagudsed in the previous subsection.

Fig.[3 shows that, whe' grows beyondy es; + ¢2€52 = 4, the distortion cannot be further
reduced since both sources are fully sampled. Moreover,is@ptimal for small energy budgets
E but becomes strictly suboptimal when grows larger thari.1. In this regime, ESF tends
to perform better. To gain more insight into this result, tpgimal 0% is plotted in Fig[ 4. As
shown in Fig[ 4, wherE is smaller than 0.9, all the energy is dedicated to sensimgs@. This
implies that for small energy budgets sensing cost is the dominant factor in determining how
energy is allocated for sensing. Instead, fodarger than 1.6, a larger fraction from class 1 is
sampled than from class 2, which suggests thaty ascreases, the variance gradually becomes
a more influential factor in determining the optimal samglfractions. This explains why ESF

can outperform LCF for sufficiently largé.

DRAFT June 19, 2018



13

V. JOINT SENSING AND COMMUNICATION: THE ORDERED VARIANCE/COST/NOISE CASE

In Section IlI-A, we investigated the optimal solution teeteeparate sensing and communi-
cation problem in[(f1) when source variances and sensing emstordered. In this section, we
analyze the joint sensing/communication problentin (2) mvtiee source variances, the sensing
costs and the channel noise variances are ordered. Simil&edtion 1lI-A, we divide the®
parallel source-channel pairs inf¢ classes, with clasé having g, pairs, wherel < k < K.

It is assumed that, in clags the sources have the same variangeand the channels have
the same noise variandg,. Following Section IlI-A, we assume the source variances the
sensing costs satisfy? > ... > 0% andeg; < ... < €5, respectively. It is also assumed that
the channel noise variances satigfy < ... < Ng. While for the general case, the problem in
(2) can be shown to be convex, similar to the probleniin (1)issudsed in Section IlI-B, there
is no closed form solution. However, for the ordered caserd®s=d above, finding an analytical
solution in closed form is possible under certain condgid®imilar to Section IlI-A, it can be
readily shown that it is optimal to allocate the same sanggfiiactionfs ; and the same transmit

power P, to all source-channel pairs in clags

For convenience, we divide the range Bfto a sequence of interval&;, = (by, b1], By =

(b1, ba],..., Bx = (bx_1,bk), whereby = 0, by = +o0, and

UNzl ﬁ .
b—TZq] (( ZH;\;) —1), 1<i<K-1 12)

We now first summarize the solution éf (2) in the special cadseem sensing costs, i.e., when
esy =0forall 1 <k < K. In this case, we can sample all the sources fully, i.e, wéset= 1
for all 1 < k < K, without loss of optimality.

Lemma 1: For K > 2, assumings? > ... > 0%, N; < ... < Ng andeg; = ... = €5 ¢ = 0, if
B € B, for somel < m < K, then it is optimal to assign positive transmit powers owl\tie

first m classes of source-channel pairs as
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1
m 02Ny \ 27+1
B+ szzl,j;ék 4 N; (1 - (a%Nj) )
1<k<

1
2 n2T 51T
o“ < 2 1
i N] > T+

m
T Zj:l d; <—U£NET

and to assign zero power to the remaining classes,ije= 0, form+1 <k < K.

Proof: With 65, = ... = 65 x = 1, the optimization of power® in (2) is convex and can

be easily performed using the standard Lagrangian appr@@ehalso discussion below). ®

To interpret the solution in Lemma 1, we observe, similar ézt®n 1, the optimal power

allocation can be obtained by solving the dual problem

P —27
. 2 _k
min <Uk (1 + Nk> + 67&) , (14)

for each class:, where is the Lagrangian multiplier (or “power price”) to be seksttsuch

that Z,f:l qrTP, = B is satisfied. It can be seen that the solution to this probkgiven by
1 1 +
P = (BT 0N TT - W) (15)

and that the corresponding achieved distortion for eacthefit classes that are assigned with

a positive transmit power is given by

27
P* —27 T
D = o2 (1 + N’;) — (g) (02NZ )71, 1<k <m, (16)

wherem is such thatB € B,,. It is interesting to note that, in general, unlike the reeer
water-filling solution, all the source-channel pairs thia allocated positive powers (or positive
rates for reverse water-filling) are not assigned the samrtion level in the joint sensing
and communication problem considered here. Instead, thtrtion level is proportional to
(02N27)7-r1. This shows that only in the special case «JfN2" equal to a constant for all
1 < k < m, all the source-channel pairs with positive powers havestirae distortion. Fid.|5

illustrates an example fok =5 andq, = 1, 1 < k < 5 with B € Bs.

In the case of nonzero sensing costs, it is difficult to ob&ranalytical characterization even

in the ordered case. Below, we first summarize some strugitwperties of the optimal solution
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and then characterize the solution when the energy bubgstsufficiently large.
Proposition 2: For K > 2, assumingri > ... > 0%,0 < €g1 < ... < €5 andN; < ... < N,
it is optimal to sense and transmit only the firstsource classes, for somewith 1 <m < K
depending on the energy budget Moreover, for the sensed classes, the sampling fractions
satisfy0 < 05, < ... <05, <1, with 05, = 05, (1 <i < j < m) only when both are 1.
Proof: The structural results on the optimal solution are obtaumgdg the KKT conditions.
As in the proof of Proposition 1, special care must be takanesthe objective function ini2)

is not continuously differentiable in the entire feasibét. See Appendix B for details. ®

Proposition 2 suggests that the sources with larger vagmrare sampled for a fraction
greater than or equal to that of the sources with smalleamags. However, unlike the separate
sensing/communication scenario, the sources with largeiarvces do not need to be fully

sampled before the sources with smaller variances are sdmpl

We next characterize the optimal solution for the speciakoahenB is sufficiently large so
that all sources can be fully sensed. We also compute themamienergy budget that guarantees

this. To this end, let us define the d8tasB = [b, +o0c), whereb is the solution to the equation

2 P\ 2 2 FYE 02Ny \ T
9K 1—(1+&) [1+27‘ln(1+&)] = | - Z]:;(%( N 7
€S.K Ny Ng b— 23:1 qj(es; — TN;)

(17)

with

_ B — bK—l — Zszl qus’j
Py =

S (18)
o ()

Note that withb > by _1 + Zle g;€s.;, the solution to[(1]7) is unique, since over this range, the
left side of [IT) is a strictly increasing function bf while the right side is a strictly decreasing
function of .

Proposition 3: For K > 2, assumingr? > ... > 0%,0 < €51 < ... < g andN; < ... < N,

if B € B, it is optimal to fully sample all thek' classes of sources, i.e., to get, = 1 for all
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1 <k < K and to select transmit powels" as

1

K K 02Ny \ 27+1
B - Zj:l qjes,j _'_ TZj:l,j;ﬁk qJNJ (1 - (U%Nj) )
pr— 1 C1<k<K (19
K oijfT 27+1
TZj:l q.? o'zNET

Proof: The proof is based on that of Proposition 2 and is provided ppeXxdix C. [ |

Propositior B states that, if the energy budget is largen tha threshold, then it is optimal
to fully sample all the sources and to allocate power as fercse with no sensing costs (see
(@3)) but with energy budget discounted by the energy neéatesensing (i.e., with energip —
Zle gj€s,;). Itis interesting to note that the threshali strictly larger thaan_lJer:1 ;€S-
We recall thatb;_; is the energy threshold above which it is optimal to assigsitpe powers
to all K classes of source-channel pairs in the zero sensing cost wase Z]K:l g;es,; is the
total sensing energy needed to sense all the sources.

Fig.[8 shows the optimal sampling fractions for the jointsseg/communication problem as
a function of energy budge® when parameters are chosengas= ¢, = 1, 07 = 1.25, 03 = 1,
€esq = €s2 = 1 and Ny = N, = 4. The results are obtained via numerical methods [13]. It
can be seen from Fil 6, for any, 6; is greater than or equal #;, which is consistent with
the optimal structure derived in Propositibh 2. Moreovehew2 < B < 3, both sources are
partially sampled, which is not encountered in the optinmdlitton of the separate sensing and
communication problem of Section Ill. AB grows beyonds, both classes are fully sampled.
This threshold corresponds to thresheélih (I7) with K = 2 and is strictly larger tham, +
Q€51 + 2€s2 = 2.3. It can be observed from Figl 6 that,4f3 < B < 6, the optimal solution
entails partial sampling of at least source 2 which has tieetovariance. In this case, fully
sampling both sources is strictly suboptimal.

V. CONCLUSIONS
In this paper, we studied an energy-constrained integrse@dor system that has a constant

sensing energy cost per source sample and we investigageingract of the sensing energy
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cost on the end-to-end distortion of parallel Gaussian cesurWe formulated a distortion
minimization problem with either separate constraints loe gensing energy budget and on the
communication rates, or a joint constraint on the energybtfbr both sensing and transmission.
For both problems, we studied the special case in which sswith larger variances have lower
sensing costs. We showed that, for the separate sensingizoication problem, the optimal
strategy is to sense the sources starting from the one wathatbest variance and to allocate the
communication rate using reverse water-filling, or a vdradit, on the sensed sources. Moreover,
for the joint sensing/communication problem, it is gengraptimal to sense, possibly partially,
only a subset of the sources with the largest variances aalioiate the transmit powers among
their respective channels. When the source variances argktising costs are arbitrarily ordered,
the optimal solution is obtained numerically for the firsbiplem and compared with several
suboptimal strategies. Future work includes extensiorefanalysis presented here to the case
of an energy neutral sensor system with energy-harvestipghilities [15]. It is also of practical
interest to consider more accurate models for the sensiagygrcost that, for instance, account

for energy costs that depend on the compression rate anairpet distortion level (see, e.g.,

[9D).

APPENDIX A
PROOF OFPROPOSITION1

A. Overview of the Proof
We first note that the objective functial(6s, R) is convex in the sefls;, > 0 and R, > 0

since it is the weighted sum of convex functiof@s x, Rx). Functionf(6s, Rx) can be easily
seen to be convex since it is the linear combination of aneafiimction and of the perspective

function of 2728 [14]4. However, functionD (85, R) is not continuously differentiable at points

2Note that, in order to extend the convexity to the &gt > 0 and R, > 0, from the setds, > 0 and R, > 0 on which
convexity is guaranteed by the properties of the perspedtinction [14], we have used the continuity of functif(@s,x, Rx)
over the setls;, > 0 and R, > 0 as per definition given in Section II-A.

June 19, 2018 DRAFT



18

with s = 0 for any k:Q

It is easily seen that the constraint set of functidof@s, R) is a polytope. Since the function
is continuous over the polytope, by Weierstrass’s TheofE3h b global minimum exists. Due to
convexity, locally optimal points of functio® (8¢, R) are also globally optimal. Moreover, the
constraints are affine, and thus by Slater’s condition hgtrduality holds and optimal Lagrange
multipliers exist for the dual problem. Note that, this igdrirrespective of the lack of differen-
tiability. To find locally optimal points, we can involve tH&KT conditions as being necessary
and sufficient wherever the function is continuously defetiable. In particular, any point in the
constraint set witl@s > 0 (i.e., s, > 0 for all k) that satisfies the KKT conditions is optimal.
In Appendix A-B, we show that, ifE, R) € A;, whereA, = {(E,R)|E > ex_1, R > rx_1},
then such a locally minimum point exists and is givendly, = 1 for 1 < k < K — 1,
05 x = min((F —ex_1)/(qxes ), 1) and Ry as in [B) withm replaced byK for 1 <k < K. It
is also shown that, foE’' and R such that® > ¢; andR € (r;_y,r;] for somel <[ < K—1, there
exists points withfs > 0 that satisfies the KKT conditions. However, in this case,dpgmal
R* is given byR; asin[4) forl <k <[, andR; =0 for I +1 < k < K, therefore, as long
asfy, =1foral1 <k <1 andszzHl a0 < B — e, the choice oby, for i +1 <k < K
is arbitrary. For all other choices @, R), no point with@s > 0 satisfies the KKT conditions
and thus the optimal solution must have some sampling flagtiy, equal to zero. It is not
hard to see that, due to the order imposed on the variancesearsing costs, in such a case,
0% x must be set to zero. Hence, we can conclude thekifR?) ¢ A;, then it is optimal to set
05 = 0 and R = 0. The problem then reduces to the one studied above but withtbe
first K — 1 classes of sources. Therefore, an optimal solution of tlablpm can be obtained by

again solving the KKT conditions. By using the same reaspiis above, an optimal solution

3t can be seen that, even when redefining the first-order aterév of f(0sx,Rk) at 6s = 0 as being equal
to the limit limg_ , o+ 0f(0s,k, Ri)/00s,k, the derivative would still be discontinuous #&, = 0. In fact, we have
limgs’k%0+ 8f((95_,k, Rk)/aesk = ( for R =0 andlimes’kﬁm 8f(95,k,Rk)/895_,k = —1 for Ri > 0.
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is found only if (£, R) belongs toA; = {(E,R)|(E,R) ¢ A, E > ex_ o, and R > rx_o} Or

E >e¢ andR € (r;_1,r] for somel <[ < K — 2. If such conditions are not met, then the
optimal solution must havés ,, = 03, |, = 0 and R}, = R}, = 0. The procedure is repeated
until a solution is found by solving the KKT conditions. Ndigat, as mentioned, the optimal
solution must exist by Weierstrass’s theorem.

B. Solving the KKT Conditions
To find whether an optimal point exists with; > 0, we define the Lagrangian function

K K
Li(0s, R pv, 0, 8) = > okaqif (Os, Bi) + > pu(Bs — 1) (20)
k=1 k=1

K K K
+ Z vi(—Ry) + « (Z QR — R) + 3 (Z 05 kqresk — E) , (21)
=1

k=1 k=1
and invoke the KKT conditions which are both necessary arfficent [13]. It follows that
(05, R*) is an optimal point with9¢ > 0, if and only if there exists Lagrange multiplier vectors

p* >0, v* > 0 and multipliersa* > 0, 5* > 0 such that

oL -~ 2%k 21n2) R
L= ik (—1 +2 sk (1 + g)) + oy + Bares, =0, k=1,2,.. K, (22a)

005 1 0%k
aLl 2 _j*iz * *
e —(2In2)ojq2 S —vp +a*q =0, k=12 . K, (22b)
k
:ul:(ez’,k - 1) = 07 VI:(_RZ:) = 07 k= 1, "'7K7 (23a)
K
a* (Z QR — R) =0, (23b)
k=1
K
and [* ( 93qu657/§ - E) =0 (23c)
k=1

are satisfied. It can be seen that we can find a solution onlgerfdllowing cases.
. Case 1:R* satisfiesR; > 0 for 1 < k < K while 67 satisfiestl, = 1 for 1 < k <
K —1and0 < 05, < 1. It is easily seen that for these to hold, we ndéd> e ;.

By (233),0 < 05, < 1 implies uj = 0 and thus it follows from[(22a) that* > 0.
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Then, by [23c),>",, 0% .aresx = E holds. Therefore, forE < 1| gies;, we have
Osx = (F —ex-1)/(qxes k). From [23a),v; = 0 holds for anyk. Also, it follows from
(22B) thatoe* > 0 and Ry, = (0% ;/2) logy((2In2)o}/a*) for 1< k < K. By (23h0),a* > 0
implies S5 ¢, R; = R. Thus, we obtaim* = (21n 2)2 273 Zi=1 965, los2 7)) Xjm1 4395,
andR* as in [) withm replaced byK. It is easily seen that in order to hav&, > 0 we
needR > ri_;. Hence, there exists a valid solution in this case if and dndy;_; < £ <
Zfil gi€s; and R > rx_4.
« Case 2: For somé < [ < K, R* satisfiesR;, > 0for1 < k <[l andR; = 0 for
[+1 <k < K, while 0 satisfied)g, = 1for1 <k <land0 <05, <1fori+1 <k < K.
For these conditions to hold; needs to satisfyy > ¢, if 1 <I< K—10rFE > Efil gi€s.i
if { = K. Similar to Case 1, we obtain* = (21n2)22(f~2 Zi=1 71082 0))/(Z51 %) and Ry
asin(4)fori<k<ILII<K-1, v, > 0impliesR < r. If [ > 2, Rf > 0 implies
R > r_1. Hence, there exists a valid solution if and onlyff> ¢; and R € (r;_y,r;] for
1<I<K—-10rE>Y" ges; andR > rg_y.
We observe from the above analysis that only whién R) belongs toA; = {(E,R)|E >
ex—1, R > rx_1}, there exists a unique optimal solution to the KKT condisiomith 65 > 0,
which is given by, = 1for 1 <k < K — 1, 05, = min((E — ex_1)/(greés k), 1) andR*
as in [®) withm replaced byK. For E and R such thatF > ¢, and R € (r,_q, 7] for some
1 <1 < K —1, there also exists points withs > 0 that satisfy the KKT conditions and at
these points the optimal rate allocati®¥ is given by R} as in [4) forl <k <[, andR; =0

for [+ 1 < k < K. Following the discussion in Appendix A-A, this concludée tproof.

APPENDIX B

PROOF OFPROPOSITIONIZ
A. Overview of the Proof

Similar to function D(6s,R) in Appendix A, it can be shown that functioP(0gs,P) is

convex but not differentiable at points with;;, = 0 for any k. Moreover, to obtain optimal
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points, we can invoke the KKT conditions as being necessadysafficient wherever function
D(6s,P) is continuously differentiable. Therefore, as in Appendlixany point in the constraint
set with@ > 0 that satisfies the KKT conditions is optimal. It is shown inp&ndix B-B that,

if @ minimum point with@s > 0 exists, it has the structure that< 05, < .. < 05, <1
and Py > 0 for 1 < k£ < K, with 05, = 05, (1 <i <j < K) only when both are equal
to 1. Instead, if no point witlBs > 0 satisfies the KKT conditions, similar to Appendix A,
we must haves - = 0 and accordinglyP; = 0. The problem is then effectively reduced to
the one studied above but with only the fifst— 1 classes of source-channel pairs . Using the
same reasoning as above, if a minimum point with, > 0 for all 1 < k < K — 1 exists, it
must satisfy0 < 05, < .. <0, <landP; >0 for1 <k < K — 1; otherwise, we have
051 =05 =0andPg_, = Pi = 0. By repeating this procedure, we can find the structure

of any possible optimal solution as stated in Proposition 2.

B. Solving the KKT Conditions
Similar to Appendix A-B, we can define a Lagrangian functibs(fs, P, i, v, 5), with

being the Lagrangian multiplier corresponding to the taaérgy constraint. From the KKT
conditions, it follows that @, P*) is an optimal point withgs > 0 if and only if there exists

Lagrange multiplier vectorg* > 0, v* > 0 and multiplier3* > 0 such that

27

oL, P\ T or P
= 1+ (1 1 In (1
sy ( " ( N i O N

) + uy, + B aresy = 0, (24a)

27
oLy, 27 P\ e,
=2 _ 2 (1+2E — v * = k=1,2,...K 24
apk Uka’( Nk < + Nk Vk_‘_ﬁ T4k 07 g Ly eeey LN ( b)
:ult(eg,k_l)zov V;(_P;):Ov k=1,..,K, (25a)
K
and ﬁ* (Z qk(ﬁgkes,k —+ P]:) — B) =0 (25b)
k=1

are satisfied. Given the joint energy constraint, if any rapti point with8s > 0 exists, it is

easily seen that it must satisfy, > 0 for 1 <k < K.
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We now show that any@gs,P), with 0 < 6g; < g, < 1 for somei, j satisfyingl <
i < j < K, can be ruled out as an optimal solution. In this cdbe; 0s; < 05, < 1 yields
p; = pi; = 0. Moreover, from[(24a) and?/es; > o2 /eg;, it follows that (1 + P;/N;)*/%si <
(1 + P;/N;)?"/%s3, or In(1 + P;/N;)/In(1 + P;/N;) < 0s,/0s,;. Also, by [25&),P, > 0 and
P; > 0imply v; = v; = 0. From [24b) ana?/N; > o%/N;, it follows that(1+ P, /N;)?™/0si+1 >
(1+ P;/N;)¥/%s5%1 orin(1+ P;/N;)/ In(1+ P; /N;) > (14+27/0s;)/ (1427 /0s,). If 05 < 05,
then(1+27/6s;)/(1+27/6s,:) > 6s.:/6s,. Hence, we have a contradiction. Similarly, the case
of (65, P) with 0 < s, < 1, 85 ; = 1 for some;, j satisfyingl < i < j < K, can also be ruled
out. Hence, any optimal point withs > 0 has the following structure®* satisfiesP; > 0 for
all 1 <k < K, while 05 satisfies) < 05 - < ...05, < 05, <1 with 05, = 05 ; for somei # j

only when both are 1. Following the discussion in AppendipABthis concludes the proof.

APPENDIX C

PROOF OFPROPOSITION3

Using the KKT conditions in[(24)-(25), we can derive a clo$edn solution for the special
case when the optimal solution satisfigs, = 1 for all 1 < k£ < K. By Propositiori 2, it follows
that in any such solution? > 0 for 1 < k£ < K. By (25a),v; = 0 holds for anyk. It follows
from (24B) thats* > 0 and P} = B‘ﬁl@o—,ﬁ]\f?)ﬁ — N for 1 < k < K. Also, (25b) yields
S K e(esy + TP;) = B. Therefore, we get

; 2T+1
6* _ T Z][g{:l Qk(2o’lzNI?T) et (26)
B =3,y arlesy — TN)) ’

and P; as in [19) forl < k£ < K. Note thatu; > 0 needs to hold for any. With parameters
ordered, it can be seen that for these conditions to hold, sufficient to have.; > 0, i.e.,

2 P* —27 P*
5*§€Us_f;< _<1+Ni) {1+2¢1n<1+N~’;)D. (27)

Hence, this solution is valid if and only B > b whereb is as defined in Section IV and is the

value of B when [27T) is met with equality. This concludes the proof.
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Integrated Sensor
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Fig. 1. lllustration of an integrated sensor device with tiplé sensor interfaces sharing the same resource budget.

Source
Variance a

Fig. 2. lllustration of the optimal solution for case 2 of Position 1, whereK = 5, g, = 1 for k = 1,

are chosen to satisfy, < £ < ez andR > r4.
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Fig. 3. Distortion v.s. Energy, whetB =1, 1 =q2 =1, €51 =3, es2 =1, 0} =2 ando? = 1.
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Fig. 4. Optimal sampling fraction8% for R=1, 1 =q2 =1, €51 =3, esa =1, 0 =2
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Source e
Variance 4 1

1 2 3 4 5 Index of Source

Fig. 5. lllustration of the optimal solution in Lemma 1 whéh =5, ¢, = 1, k = 1,...,5, and B € Bs. For the first three

. . . . . 1 .
sources, the optimal distortion levél; is proportional to(oz NZ7)z7+T, for 1 < k < 3. The last two sources are assigned a
zero rate and thus their distortion levels are equal to tlecgovariances.
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Fig. 6. Optimal sampling fraction8s for ¢; = g2 = 1, 07 = 1.25, 03 = 1, €51 = es2 = 1 and Ny = N = 4.
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