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Abstract—In energy harvesting communication systems, the
energy required for message transmission is maintained by an
exogenous energy arrival process independent of the message.
This links the problem of communication with an energy har-
vesting transmitter to the problem of communication over state-
dependent channels. In particular, if the transmitter has no
battery, the available energy can be viewed as a state and
the resulting channel is a state-dependent channel with causal
state information at the transmitter only. In general, information
transmission blurs the state information that the receiver can get
from the received signal. In this paper, we explore the trade-off
between the information rate R and the entropy reduction of
the energy arrival process ∆ at the receiver side over an AWGN
channel with an energy harvesting transmitter. If the transmitter
has no battery, the trade-off points are achieved by Shannon
strategies and we show that the optimal input distributions are
discrete. Next, we consider the state amplification problem for
an energy harvesting transmitter with an unlimited battery. We
show that the optimal trade-off region in this extreme case is
expressed explicitly in a simple form and its boundary is achieved
by a combination of best-effort-transmit and random binning
schemes with an i.i.d. Gaussian codebook of average power equal
to the average recharge rate. Finally, we propose an uncoded
state amplification scheme that splits the energy between message
transmission and entropy reduction and study its performance
in a numerical example.

I. INTRODUCTION

Energy harvesting is a promising technology for many

wireless networking applications as it brings self-sustainability

and practically unlimited lifetime. In applications where trans-

mitter has an energy harvesting capability, energy needed to

send messages is replenished stochastically throughout the

communication session. From an information-theoretic point

of view, the stochasticity of the energy at the transmitter

side connects this setting to state-dependent channels [1], [2]:

energy can be viewed as a state of the channel that is perfectly

known to the transmitter but unknown to the receiver. In many

applications, e.g., energy harvesting sensors, the receiver may

aim at extracting energy state information from the received

signal as well as decoding the message. In this paper, we

explore the interaction of these two objectives.

As shown in Fig. 1, we consider an energy harvesting

transmitter with an unlimited battery or no battery sending

messages over an additive white Gaussian noise (AWGN)

channel. An exogenous energy source supplies Ei amount
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Fig. 1. The AWGN channel with an energy harvesting transmitter that has
an unlimited battery (on the top) and no battery (on the bottom).

of energy at the beginning of the ith channel use and upon

observing the arrived energy, the transmitter sends a code

symbol whose energy is constrained to the currently available

energy. The channel input and output are related as

Yi = Xi + Ni, i = 1, . . . , n (1)

where Xi is the channel input, Yi is the channel output, and

Ni is the i.i.d. zero-mean unit-variance Gaussian noise, in

the ith channel use. E1, . . . , En is the i.i.d. energy arrival

sequence which is independent of the message. The code

symbol energy at the ith channel use is constrained according

to the exogenous energy arrival and the availability of a

battery (energy buffer) at the transmitter. In particular, if there

is no battery at the transmitter, the transmitter observes Ei

and generates a channel input Xi that satisfies X2
i ≤ Ei,

i.e., the code symbol is amplitude constrained to (the square

root of) the observed energy. In [1], [2], we addressed this

system and found the capacity achieving scheme by solving

for the maximum mutual information between the input and

the output of an extended input channel. More specifically,

we proved in [1], [2] that the code symbols need to be chosen

from a finite set in the capacity achieving scheme analogous

to [3]. In the other extreme, if the transmitter has an unlimited

battery, some portion of the arriving energy can be stored in

the battery and the code symbol energy at the ith channel use

is constrained to the energy in the battery at the beginning of

the ith channel use. We studied this problem in [4], [5] and

found that the capacity of this system is equal to the capacity



with average power constrained to the average recharge rate

and it is achieved by save-and-transmit or best-effort-transmit

schemes using a Gaussian codebook.

In [1], [2], [4], [5], the sole purpose of the transmitter is

to convey the message which is independent of the energy

arrival process. However, the transmitter may help the receiver

get some information about the energy arrival process at the

transmitter. In this paper, we analyze the interaction between

the message transmission rate and the receiver’s information

about the energy arrival process at the transmitter. In particular,

there is a trade-off between these two objectives in view of

the connection of this setting with state-dependent channels

with causal state information at the transmitter. This trade-

off has been well studied for state-dependent channels with

causal or noncausal state information at the transmitter [6]–

[10] where the information the receiver can learn about the

state is measured by different metrics.

In this paper, we use entropy reduction metric used in [7]

and characterize the fundamental trade-off between the entropy

reduction ∆ of transmitter’s energy arrivals at the receiver

and the message transmission rate R in an energy harvesting

communication system with causal energy state information

at the transmitter only. When the transmitter has no battery,

we find the optimal (R,∆) trade-off points using Shannon

strategies and prove that the optimal input distributions are

discrete. When the transmitter has an unlimited battery, we

show that the optimal trade-off region has a simple form.

Specifically, no information about the energy arrival process at

the transmitter can be obtained at the receiver when the system

is operated at the highest message rate. Finally, we propose

an uncoded state amplification scheme that splits the energy

between message transmission and entropy reduction.

II. STATE AMPLIFICATION WITH A BATTERYLESS ENERGY

HARVESTING TRANSMITTER

In this section, we consider a batteryless energy harvesting

transmitter as shown in the bottom figure of Fig. 1. For brevity,

we consider a binary energy arrival process with alphabet E =
{e1, e2} and probabilities P (Ei = e1) = pe1

and P (Ei =
e2) = pe2

for all i.

As the energy at each channel use varies as an i.i.d. process

and is independent of the message w ∈ W , the resulting

channel is a state-dependent channel with causal state informa-

tion at the transmitter [1], [2], [11]. The transmitter helps the

receiver estimate the energy arrived at the transmitter’s side

while sending a message w ∈ W at the same time where

|W| = 2nR. The receiver forms a list Ln(Y n) ⊂ En of

possible energy arrival sequences upon receiving the sequence

Y n. Before receiving Y n, the size of the list is 2nH(E), the size

of the typical set of energy arrival sequences. Upon receiving

Y n, the list size is dropped to |Ln(Y n)|. Hence, the energy

arrival sequence uncertainty reduction rate is

∆ =
1

n
(H(En) − log2 |Ln(Y n)|) (2)

A (2nR, 2n∆, n) code is composed of an encoder map Xn :

W × En → Rn where Xi = W × E i → R, i = 1, . . . , n
since only causal information of energy arrivals is available.

In particular, |Xi(w,Ei)| ≤
√

Ei for all w ∈ W and Ei ∈ E .

The receiver performs two decoding operations after receiving

the sequence Y n: decoding the message w ∈ W and list

decoding the energy arrival sequence {Ei}n
i=1. A rate-entropy

reduction pair (R,∆) is achievable if there exists a sequence

of (2nR, 2n∆, n) codes with probabilities of message and list

decoding errors converging to zero as the block length is

increased. The optimal trade-off region R is the closure of

all achievable (R,∆) pairs.

We first note that R is a convex region [7]. In view of

[7, Theorem 2] and replacing the auxiliary variable U with

Shannon strategy (T1, T2) [11] where Ti is the channel input

when energy Ei is observed, the region R is characterized as

R ≤ I(T1, T2;Y ) (3)

∆ ≤ H(E) (4)

R + ∆ ≤ I(X,E;Y ) (5)

for some (T1, T2) with amplitude constraints |T1| ≤ √
E1,

|T2| ≤
√

E2 and

p(y|t1, t2) = pe1
φ(y − t1) + pe2

φ(y − t2) (6)

where φ(y) = 1√
2π

e−
y2

2 . We denote the interval [−√
ei,

√
ei]

as Ti, i = 1, 2. The received signal has pdf p(y)

p(y) =

∫

T1

∫

T2

(pe1
φ(y − t1) + pe2

φ(y − t2)) dFT1,T2
(t1, t2)

If the goal of the encoder is only to transmit messages and not

to assist the receiver to list decode the energy arrival sequence,

the maximum achievable rate C0 is found as [1], [2]

C0 = max
FT1,T2

∈Ω
I(T1, T2;Y ) (7)

where the set of feasible distributions is

Ω =

{

F :

∫

T1

∫

T2

dF (t1, t2) = 1

}

(8)

On the other extreme, if the goal of the encoder is only to

amplify the arrived energy, optimal reduction in the entropy is

∆∗ = min{H(E), max
FT1,T2

∈Ω
I(X,E;Y )} (9)

Note that I(X,E;Y ) = h(Y ) − 1
2 log2 (2πe), that is,

h(Y |X,E) is equal to the entropy of the Gaussian noise.

III. DISCRETENESS OF THE OPTIMAL INPUT

DISTRIBUTIONS

As R is a convex region and due to its characterization

in (3)-(5), one can show after algebraic rearrangements that

the boundary of R is obtained by solving the following

optimization problems for all µ ≥ 0:

max
FT1,T2

∈Ω
µI(T1, T2;Y ) + h(Y ) (10)

A main conclusion we draw in this paper is that the optimal

input distributions for all µ ≥ 0 are discrete:



Theorem 1 For all µ ≥ 0, the optimal input distribution, i.e.,

the solution of (10), has a finite support set.

The proof of Theorem 1 follows from steps that have been

followed in [3], [12], [13] and the finiteness claim is proved

using a contradiction argument. The problem in (10) is a

functional convex optimization problem. As a first step, we

show that the space of feasible distributions Ω is a convex and

compact set and the objective function in (10) is concave in

the input distribution in the weak topology. Next, we obtain

an optimality condition in terms of the mutual information

density, the entropy density and the support set of the optimal

input distribution. Then, we prove that the mutual information

density and the entropy density have analytic extensions over

C
2. Finally, by invoking the identity theorem for analytic

functions, we show that the optimality condition causes a

contradiction when the support set is assumed infinite. In

particular, the mutual information density and entropy density

are given, respectively, as

i(t1, t2;F ) =

∫ ∞

−∞
log2

(

f(y|t1, t2)
f(y;F )

)

f(y|t1, t2)dy (11)

h(t1, t2;F ) = −
∫ ∞

−∞
log2 (f(y;F )) f(y|t1, t2)dy (12)

where i(t1, t2;F ) and h(t1, t2;F ) are continuous functions in

R
2 and they both have analytic extensions over C

2. Moreover,

Ω is convex and compact; I(T1, T2;Y ) and h(Y ) are both

concave and weakly differentiable functionals of F . Therefore,

we have the following theorem:

Theorem 2 For the optimal input distribution F ∗
T1,T2

, we have

µi(t1, t2;F
∗) + h(t1, t2;F

∗) ≤µI(F ∗) + h(F ∗),

∀(t1, t2) ∈ T1 × T2 (13)

µi(t1, t2;F
∗) + h(t1, t2;F

∗) =µI(F ∗) + h(F ∗),

∀(t1, t2) ∈ SF∗ (14)

where SF∗ is the support set of F ∗.

The proof of the finiteness of SF∗ is by the following contra-

diction argument. Assume that SF∗ is infinite. By compactness

of T1×T2, SF∗ has an accumulation point and by the identity

theorem for multi-dimensional complex numbers, we have

µi(z1, z2) + h(z1, z2) = µI(F ∗) + h(F ∗), ∀(z1, z2) ∈ C
2

In particular, µi(t1, t2) + h(t1, t2) = µI(F ∗) + h(F ∗) for all

(t1, t2) ∈ R
2. For t1 = t2 = t, we obtain for all t ∈ R

∫ ∞

−∞
φ(y − t) log2(p(y;F ))dy

= − 1

µ + 1

(

µI(F ∗) − µ

2
log2(2πe) − h(F ∗)

)

(15)

For all µ ≥ 0, the right hand side of (15) is a constant and

in view of [13, Corollary 9], log2(p(y;F )) is constant for all

y ∈ R, which is impossible as p(y;F ) is a probability density

function, yielding a contradiction, and consequently, proving

the finiteness claim in Theorem 1.

IV. STATE AMPLIFICATION WITH AN ENERGY

HARVESTING TRANSMITTER OF UNLIMITED BATTERY

In this section, we consider the state amplification problem

with an energy harvesting transmitter that has an unlimited

battery [4], [5] as shown in the top figure of Fig. 1. At each

channel use, the energy arrival replenishes, while the code

symbol energy reduces, the battery energy. Hence, the code

symbol at the beginning of a channel use is constrained by

the current energy level in the battery:

k
∑

i=1

X2
i ≤

k
∑

i=1

Ei, k = 1, . . . , n (16)

We assume that the transmitter has only causal information;

however, it will be clear that the trade-off region is invariant

under causal or noncausal information. At the ith channel use,

the transmitter has the observations E1, . . . , Ei and determines

the code symbol accordingly. The state amplification problem

in this setting is to characterize the achievable information rate

R and entropy reduction ∆ of the energy arrival sequence at

the receiver side under the code symbol constraints in (16).

We found in [4], [5] that the maximum rate of information

achievable under the input constraints in (16) and causal or

noncausal information of the energy arrival information is

C∞ =
1

2
log2 (1 + E[Ei]) (17)

In addition, the entropy reduction is bounded by the entropy

of the energy arrival process as ∆ ≤ H(E). It remains to

determine the bound on R + ∆. We can bound R + ∆ as

n(R + ∆) ≤ I(W ;Y n) + I(En;Y n) + nǫn (18)

≤ I(W ;Y n|En) + I(En;Y n) + nǫn (19)

≤ I(W,En;Y n) + nǫn (20)

≤ I(Xn, En;Y n) + nǫn (21)

≤
n

∑

i=1

I(Xi, Ei;Yi) + ǫn (22)

where (19) is due to the independence of the message W

and the energy arrival E and conditioning reduces entropy,

(21) is due to the data processing inequality and the fact that

Xi is a function of W and E1, . . . , Ei, and (22) is due to

the memoryless property of the AWGN channel. We note that

I(Xi, Ei;Yi) = h(Yi) − 1
2 log2 (2πe). Hence, we get:

R + ∆ ≤ 1

n

n
∑

i=1

h(Yi) −
1

2
log2 (2πe) (23)

≤ 1

n

n
∑

i=1

1

2
log2

(

2πeE[Y 2
i ]

)

− 1

2
log2 (2πe) (24)

≤ 1

2
log2 (1 + E[Ei]) (25)

where (24) is due to the fact that Gaussian distribution maxi-

mizes entropy, and (25) is due to the concavity of log2(1+x)
and since

∑n

i=1 E[Y 2
i ] ≤ nE[Ei] +n, which follows from the

constraints in (16).



On the other hand, the bound in (25) is achievable by a

combination1 of the best-effort-transmit scheme in [4], [5] with

the random binning in [7]. In particular, we consider a block-

by-block encoding scheme of B blocks; each block is of n

channel uses. We consider a single i.i.d. Gaussian codebook

with average power E[Ei]−ǫ composed of 2n 1

2
log

2
(1+E[Ei]−ǫ)

codewords with block length n. In each block, we allocate

0 ≤ R ≤ 1
2 log2 (1 + E[Ei] − ǫ) bits for the message trans-

mission and remaining Γ = 1
2 log2 (1 + E[Ei] − ǫ)−R bits for

state amplification. Hence, we have 2nR bins each composed

of 2nΓ sequences, i.e., we divide the index interval [1 :
2n 1

2
log

2
(1+E[Ei]−ǫ)] into 2nR intervals [w2nΓ : (w + 1)2nΓ],

w = 1, . . . , 2nR − 1 where w is a message index. In the

first block, an arbitrary codeword independent of the energy

arrival sequence is sent. The transmitter observes the energy

arrival sequence E1, . . . , En, maps it to one of 2nΓ indices

independent of the message w. Then, according to the chosen

message index w, the codeword to be sent is determined. The

transmitter uses the best-effort-transmit scheme: if the energy

of the code symbol Xi in the ith channel use is higher than

the energy in the battery Ebi
(i.e., X2

i > Ebi
), then a zero

symbol is put; otherwise, the code symbol Xi is sent as it

is. The codeword X1, . . . ,Xn is sent with only finitely many

mismatches as X2
i > Ebi

occurs only in finitely many channel

uses and this causes no error in the decoding of the sent

codeword [4], [5]. As X1, . . . ,Xn is decoded at the receiver

side with vanishing probability of error, the receiver recovers

the message index w and the bin index for the observed energy

arrival sequence as the block length n gets larger. If we allow

B increase and ǫ → 0, we have R + ∆ ≤ 1
2 log2 (1 + E[Ei]).

Theorem 3 In an energy harvesting transmitter with an un-

limited battery, the optimal (R,∆) region is:

∆ ≤ H(E) (26)

R + ∆ ≤ 1

2
log2 (1 + E[E]) (27)

We observe from Theorem 3 that the optimal trade-off

region in the unlimited battery case is expressed explicitly in

a simple form and the maximum entropy reduction ∆∗ is

∆∗ = min

{

H(E),
1

2
log2 (1 + E[E])

}

(28)

We also observe that in the unlimited battery case the entropy

reduction is zero when the transmitter operates at the infor-

mation transmission capacity 1
2 log2 (1 + E[E]). In this case,

the received sequence Y n is almost independent of the energy

arrival profile En even though the message transmission is

enabled by the energy En. Therefore, the unlimited sized

energy queue acts as an information hider [14] and the receiver

can get no information about the energy arrival sequence if the

message transmission is performed at the capacity. Finally,

the (R,∆) region in Theorem 3 remains unchanged if the

transmitter had noncausal information of the energy arrivals.

1We might also achieve it using the save-and-transmit scheme instead of
the best-effort-transmit scheme in [4], [5].

V. A SIMPLE UNCODED STATE AMPLIFICATION SCHEME

In this section, we propose a suboptimal uncoded state

amplification scheme based on the power splitting scheme in

[6]. Pure state amplification in the energy harvesting communi-

cation context is just putting a code symbol of energy equal to

the observed energy. The transmitter puts the channel symbol√
e1 when e1 is observed and −√

e2 when e2 is observed. This

scheme corresponds to the deterministic auxiliary selection at

(T1, T2) = (
√

e1,−
√

e2). We denote the entropy reduction in

the uncoded transmission as ∆uc.

∆uc = h(Y ) − 1

2
log2 (2πe) (29)

where p(y) = pe1
φ(y −√

e1) + pe2
φ(y +

√
e2). Note that the

message transmission rate in this uncoded state amplification

scheme is zero. In addition, all energy is utilized immediately

after it is observed and hence the existence of a battery does

not affect the performance.

Next, we propose an energy splitting scheme for simulta-

neous information transmission and entropy reduction. Upon

observing energy ei, αei is allocated for state amplification

and (1 − α)ei is allocated for message transmission where

0 ≤ α ≤ 1. The transmitter puts αe1 when e1 is observed and

−αe2 when e2 is observed with the goal of entropy reduction.

The remaining energy is allocated for message transmission.

When the transmitter has no battery, the channel is

Yi = Xi + αEi + Ni (30)

where |Xi| ≤
√

(1 − α)e1 if e1 is observed and |Xi| ≤
√

(1 − α)e2 if e2 is observed. Hence, we find the optimal

input distribution of the following extended input channel:

p(y|t̄1, t̄2) = pe1
φ(y − t̄1 −

√
αe1) + pe2

φ(y − t̄2 +
√

αe2)
(31)

where |t̄i| ≤
√

(1 − α)ei. We note that the capacity achiev-

ing scheme for this extended input alphabet channel is also

discrete which can be proved using similar steps and the

contradiction argument. For given α, the message transmis-

sion rate R is the capacity of the channel in (31) and the

resulting ∆ is the maximum entropy reduction subject to

the message transmission rate R. These values are found by

evaluating the region for the original channel in (3)-(5) at

(t1i, t2i) = (t̄∗1i, t̄
∗
2i) + (α

√
e1,−α

√
e2) with probabilities p̄∗i

where (t̄∗1i, t̄
∗
2i) are the mass points in which the capacity

achieving distribution for (31) is located with probabilities p̄∗i .

When the transmitter has unlimited battery, the energy that

is allocated for message transmission can be saved in the

battery and using the best-effort-transmit scheme in [4], [5],

the following maximum rate is achievable:

max I(T1, T2;Y )

s.t. E[pe1
T 2

1 + pe2
T 2

2 ] ≤ (1 − α)E[E] (32)

where T1, T2 and Y are related by the extended input channel

relation in (31). The capacity achieving distribution for the

problem in (32) is not easily obtained. Therefore, we resort



to T1 = T2 with a Gaussian distribution of zero mean and

variance (1 − α)E[E]. The resulting (R,∆) pair is

(R,∆) = (I(X;X + αE + N), I(αE;X + αE + N))

where X ∼ N (0, (1 − α)E[E]).

VI. A NUMERICAL EXAMPLE

In this section, we provide a numerical example of the

optimal trade-off region R as well as the proposed suboptimal

uncoded state amplification scheme under a binary energy

arrival process with no battery and unlimited battery. In

particular, e1 = 1, e2 = 2.25 with pe1
= 0.8, so that the energy

arrival has entropy H(E) = 0.7219 bits. The channel capacity

with no battery and with unlimited battery are calculated as

C0 = 0.5369 bits and C∞ = 1
2 log2 (1 + E[E]) = 0.5850 bits,

respectively. We observe that in the no battery case, the sym-

metric binary distribution of (T1, T2) located at (
√

E1,
√

E2)
and (−√

E1,−
√

E2) maximizes I(T1, T2;Y ) and h(Y ) si-

multaneously. Therefore, the trade-off region generated by this

symmetric binary distribution is the optimal trade-off region.

We calculate the maximum entropy reduction in this case as

∆∗ = 0.5652 bits. In the unlimited battery case, the boundary

of the optimal (R,∆) region is the line R + ∆ = 0.5850
and in particular, ∆∗ = 0.5850 bits as H(E) > 0.5850. Note

that ∆∗ is higher in the unlimited battery case though battery

blurs the energy arrival information. This is due to the fact

that higher rates can be achieved with an unlimited battery.

Moreover, note that lossless recovery of the state sequence at

the receiver is not possible for no battery and unlimited battery

cases since ∆∗ is less than H(E) in both cases. We plot the

resulting trade-off regions and the points achievable by the

proposed uncoded state amplification scheme in Fig. 2. Note

that in the case of no battery if I(T1, T2;Y ) and h(Y ) are

maximized at different discrete distributions of (T1, T2), then

the optimal (R,∆) region is a union of many regions.

We calculate the entropy reduction in the uncoded trans-

mission case as ∆uc = 0.4466 bits. As the energy splitting

variable α is varied, we observe that the achieved (R,∆)
points travel from one edge to the other strictly interior to

the optimal regions under no battery and unlimited battery

cases. Therefore, in this case, digitizing the state sequence

by means of channel codewords is optimal and analog state

amplification performs suboptimally. Moreover, we observe

that when there is no battery at the transmitter, even if the

message transmission is performed at the capacity, there is a

non-zero energy arrival information leakage to the receiver. In

contrast, the receiver gets no information about the energy

arrival process if transmitter has an unlimited battery and

message transmission is performed at the capacity.

VII. CONCLUSION

In this paper, we characterized the trade-off region between

entropy reduction ∆ of the energy arrivals and the message

transmission rate R in a communication system with an energy

harvesting transmitter with no or unlimited battery. Shannon

strategies achieve the boundary of the region in the no battery
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Fig. 2. (R, ∆) regions with optimal and suboptimal schemes.

case and we proved that the optimal input distributions are

discrete. In the unlimited battery case, we showed that the

optimal trade-off region can be expressed explicitly in a simple

form and its boundary is achieved by a combination of best-

effort-transmit and random binning schemes. We proposed

an uncoded state amplification scheme and showed via a

numerical example that digitizing the energy state performs

significantly better than the uncoded scheme.
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