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Abstract—We determine the loss in capacity incurred by Recently, Wu and Verdl have studied the information rates
using signal constellations with a bounded support over geral  that are achievable over the Gaussian channel when the input
complex-valued additive-noise channels for suitably higtsignal- {5165 value in a finite constellation witk signal points|[[9].
to-noise ratio. Our expression for the capacity loss recove the For every fixed SNR. thev show that the difference bétween
power loss of 1.53dB for square signal constellations] y_ v y .

the capacity and the achievable rate tends to zero expailgnti
I. INTRODUCTION in N. For the optimal constellation, the peak-to-average-powe

As it is well known, the channel capacity of the complextatio grows linearly withN, inducing no capacity loss. This
valued Gaussian channel with input power at nfband noise IS in contrast to the constellations considered by Ungearkoe

variances? is given by [1] [2] and Ozarow and Wynet [3], which have a finite peak-to-
average-power ratio.
Cs(P,0) = log (1 + %) ) 1) In this work, We_adopt an informatio_n-theoretic per_sp_e}:tiv
g to study the capacity loss incurred by signal constellatiith

Although inputs distributed according to the Gaussianridista bounded support over the Gaussian channel for sufficiently
bution attain the capacity, they suffer from several draskdsa Small noise variance. In particular, we use the dualityedas
which prevent them from being used in practical systemgpper bound to the mutual information in [10] to provide a
Among them, especially relevant are the unbounded suppleter bound on the capacity loss. The results are valid fén bo
and the infinite number of bits needed to represent sigrikgak- and average-power constraints and generalize Iglirect
points. to other additive-noise channel models. For sufficientighhi

In practice, discrete distributions with a bounded suppo®NR, our results recover the power lossldi3dB for square
are typically preferred—in this case, the number of poingignal constellations without invoking geometrical argunts.
is allowed to grow with the signal—to-noise_ratio (SNR). Il. CHANNEL MODEL AND CAPACITY
Ungerboeck computed the rates that are achievable over th?/\/e consider a discrete-time, complex-valued additiveaois
Gaussian channel when the channel input takes value in a ' piex
finite constellation[[2]. He observed that, when transmitti channel, where the chz_;mnel outpt at t|mek_ €L (wher_e
at a rate ofR bits per channel use, there is not much t@ denotgs the §et .Of integers) corresponding to the fime-
be gained from using constellations with sikelarger than channel inputzy. is given by
2f+1 Ozarow and Wyner provided an analytic confirmation Ye =xp + oWy, keZ. (2)

of Ungerboeck’s observation by deriving a lower bound on tfwe assume thaf IV, k € Z} is a sequence of independent
ks

rates achlevgble with finite constellaﬂons;_ [3]. In b.Oth ke and identically distributed, centered, unit-variancemptex
the channel inputs are assumed to be uniformly distributed o0 . . : )
ndom variables of finite differential entropy. We further

. s ) T
a lattice within some enclosing boundary, where the size Gt o .
the boundary is scaled in order to ensure unit input-power.asiuyfoih(?; :Eg Sde'Sth#ggr:)fdgfagﬁgfi:eégerkd:r;}nd on

A related line of work considered signal constellation$ . q . YIS, | ’
The channel inputs take value in the Setwhich is assumed

with favorable geometric properties, e.g., minimum Eusdid t? be a bounded Borel subset of the complex numierd/e

distance or minimum average error prqbab|_llty. For 19N rther assume thag has positive Lebesgue measure and that
constellations with a large number of points, igense con- 0eS

stellations, Forneyet al. [4] estimated the loss in SNR with The setS can be viewed as the region that limits the signal

respect_to the Gaussian input t_o b@lo.glo ‘s ~ 1.53dB by_ points. For example, for aguare signal constellation, it is a
comparing the volume of an-dimensional hypercube with .

: . . . square:
that of ann-dimensional hypersphere of identical average
power. Later, Ungerboeck’s work led to the study of multi-Sa = {z € C: — A <Re(z) <A,—-A <Im(x) <A} (3)

. . . de Bl
dimensional constellations based on lattices [S]-[8]. for someA > 0. Here Rex) and Im(z) denote the real
The research leading to these results has received fundiomg the a_nd Imaginary part of, reSpeCt'Vely- Slmllarly, for @ircular
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We study the capacity of the above channel under arhich together with[(9) yieldd(10).
average-power constraift on the inputs. Since the channel Let P;; denote the average power of a random variable that
is memoryless, it follows that the capacifys(P,o) (in nats is uniformly distributed over, i.e.,
per channel use) is given by 2
py 2 Js Il (14)
Cs(P,o)=  sup  I(X;Y) (5) “o X
X€eS,H|X[?<P o st
where the supremum is over all input distributions withys Small modification of the proof in.[12, Th. 12.1.1] shows

essential support it§ that satisfyE [|X|2] < P. that th_e_ density that m2aximize5(X) for X € S with
We focus onC;s(P, o) in the limit as the noise variance probability one ancE [|X|?] < P has the form
tends to zero. In particular, we study tbapacity loss, which o=zl
we define as fil) = ————1{z €S}, z€C (15)
fS e—Alz'| ).(/
L= E%{OC(R o) — Cs(P, U)}- (6) wherex =0 for P > Py, and where\ satisfies
(Theorem[L ahead asserts the existence of the limit.) Here Is e_>‘|w|2|x|2)_(
Cc(P, o) denotes the capacity of the above channel when the [ e NPy - (16)

support-constrainf is relaxed, i.e., o )
for P < Py. Herel {statement denotes the indicator function:

Ce(P,o) = E“;1‘12111><PI(X§Y)- (") it is equal to one if the statement in the brackets is true and
, - it is otherwise equal to zero.
For smallo, we have|[1] Applying (I8) to [I0) yields

P
Cc(P.o) =log 5 +log(re) —h(W)+o(1) B | < 1ogp 1 log(re) - log </ e“’2>,<’> —AP. (17)
where theo(1)-term vanishes as tends to zero. (Herbg(-) S

denotes the natural logarithm arid-) denotes differential For P = Py, (and hence\ = 0), this becomes
entropy.) The capacity losgl(6) can thus be written as
L < log(mwe) + log (/ |:v|2X) —2log (/ X> (18)
L = logP + log(we) — h(W) s s
_ lim{ _— I(X;Y) - log%}. ) Specializipg [(IB) to a square signal constellatibh (3)dsgel
a0 ( xes g Xx|2]<P o (irrespective ofA) .

By choosing an input distribution that does not depend on La <log 5 (19)

o, we can achielk which corresponds to a power loss of roughly3dB. Hence,

L <logP + log(me) — sup hX). (10) we recover the rule of thumb that “square signal consteltati
XesHIX|7<P have al.53dB power loss at high signal-to-noise ratio.”
Indeed, we have For a circular signal constellationl(4), the upper bound (18

[(X:Y) = h(X + oW) — h(W) + log % (11) becomes (irrespective &) )

which follows from the behavior of differential entropy wrd Lo < log ) (20)
deterministic translation and under scaling by a complgXcovering the power loss df33dB [4].

number. Extending [10, Lemma 6.9] (see aisd [11]) to complexThe inequality in [Z7) holds with equality if the capacity-
random variables yields then that, for evé&}X|*] < coand achieving input-distribution does not depend encf. (13).
E[|W[?] < o, the first differential entropy on the right-handyowever, this is in general not the case. For example, for

side (RHS) of [(ILL) satisfies circularly-symmetric Gaussian noise and a circular signal
limh(X 4+ oW) = h(X). (12) constellation[(#), it was shown by Shamai and Bar-Dalvid [13]
ol0 that, for everyos > 0, the capacity-achieving input-distribution
Consequently, we obtain is discrete in magnitude, with the number of mass points
1 growing with vanishingr. Nevertheless, the following theorem
lim{ sup I(X;Y) —log —2} demonstrates that the RHS £f[17) is indeed the capacity loss
L0 | xes EIX|<P g Theorem 1 (Main Result): For the above channel model,
1 we have
> sup hm{I(X;Y) —1og—2}
XS X2 <P 740 g L = log P + log(me) — log (/ e“’lzx’) — AP (21)
= sup h(X) — h(IW) (13) s
XeSHIXPPI<P where A = 0 for P > Py, and where\ satisfies [(I6) for
lWe define h(X) = —oo if the distribution of X is not absolutely P <Py.

continuous with respect to the Lebesgue measure. Proof: See Section 1ll. |



Note 1: It is not difficult to adapt the proof of Theorem 1whereS¢ denotes the complement 6f; and where) is zero
to other regionsS and moment constraints. For example, thier P > P, and satisfies[{16) foP < P,. Some useful
same proof technique can be used to derive the capacity lpssperties ofK, , are summarized in the following lemma.
whensS is a Borel subset of the real numbers and the channelLemma 2: The normalizing constark. , satisfies
input’s first-moment is limited, i.e E[|X|] < A.

Equations[{I11)£(d3) demonstrate that the capacity [03s (21 Inf Keo >0 (28a)
can be achieved with a continuous-valued channel input hav- >0
ing density f,(-). Using the lower-semicontinuity of relative limlmK, , = / e—>\|y|2y. (28b)
entropy [14], it can be further shown thai{21) can also be el0olo S :

achieved by any sequence of discrete channel inpits }
for which the number of mass pointé grows with vanishing
o, provided that

Proof: Omitted. [ |
We return to the analysis di{ X; Y') and apply[(24) together
with the density[(25) to express the upper bound as

| | | e[ DOVER) | RO)QE)
where X, is a continuous random variable having density
(). (Here = denotes convergence in distribution.) Such — _n(YIX _// ] 29
a sequence can, for example, be obtained by approximat- (¥1X) p(yle) Ogr(y)YQ(I) (29)
ing the distribution function corresponding ¥ () by two-
dimensional step functions.

XN 3 X, asN — (22)

wherep(y|z) denotes the conditional probability density func-
tion of Y, conditioned onX = .

[1l. PROOF OFTHEOREM[] Evaluation of the conditional differential entropy gives
In view of (9), in order to prove Theoref 1 it suffices to 1
show that h(Y|X) = h(W) —log — (30)
lim{ sup I(X:Y) —log%} and some alggbrg applied to the second summand_ih (29)
ol0 { xes,g|X|2<P o allows us to write it as
<tog( [ ) 4 AP a0 @ - [ [ pole)ogrwyQ)
S AN
The claim follows then by combining (23) with (17). To this =logKeo + AE[|[YPI{Y € S}]
end, we use the upper bound on the mutual informatioh [10, + 10g(7720'2)P|’(Y €Sy
Th. 5.1] Y|
+E {log(—) I{Y € SEC}}
g

106Y) < [ DVCle) | ROIQE)  @4) o
: o —l—E[log(l—l—'—)I{YGSﬁ}] (31)

whereQ(-) denotes the input distributiody (-|«) denotes the o?
conditional distribution of the channel output, conditoihon - . .
X = z; and R(-) denotes some arbitrary distribution on theComblnlng (3D) andl(31) witi(29) anf{24) yields
output alphabet. Every choice @i(-) yields an upper bound 7(x:Y)
on I(X;Y), and the inequality in[{24) holds with equality 1 )
if R(-) is the actual distribution ot” induced byQ(-) and < —h(W) +log — +logKeo + AE[YPI{Y € S}

W(-|). Y]
To derive an upper bound oR(X;Y), we apply [24) with +log(n?0®)Pr(Y € 8) + E {bg(?) {Y € 35}]
R(-) having density v |2
2 +E|log( 1+ —- |I{Y € 8} . (32)
e )“y‘ 0_2 €
; Y € Se
r(y) = Keo (25) We next show that, foe > 0,
1 1 1
K2 5 YESe lim  sup  E[[YPI{Y €S <P (33a
Keo molyl 1+ yl/o 10 xS B|X|2)]<P “ P H <P (333)
h
where lim sup ‘10g(7r202) Pr(Y € &7) =0 (33b)
Keo2 [y [ iy @) TS
S. © Jse oyl 1+ [y[?/o?> y e (D 1oy e o0 0 (a3
. . — = c
is a normalizing constant; whereS. denotes thee- ;%XESEHEPKP {Og( o ) ve 6}} (33¢)
neighborhood ofS Y2
li E|l 1+ — | I{Y € 8}| =0. (33d
S. £ {y eC: |y— 2| <e for somez’ € S}; (27) ;%Xeséﬁgp]gp [Og< o2 ) { E}] (33d)



The first claim [[33a) follows by upper-bounding from which [39)—and hencd_(3Bc)—follows by noting that
2 the RHS of [4R) vanishes astends to zero.
XGS,EH)I?P]SPE“Yl I{Y € 8}] To prove [33H), we use Jensen’s inequality ahd (34) to

< sup E Hym obtain

T XeSEIXPI<P Y 2) ¢ ]
Ellog(1+ 20 )1{y e s
= sup E[|X]?] + o*E[|W]?] [ g( o? { J

XEeSE|X|2]<P 2 c
E[VPI{Y € 5]
2 <Pr(Y € 8%log| 1 :
<P+o (34) <Pr(Y € &) og( TPy oY)
where the second step follows becauseand W are inde- P
pendent, and the third step follows beca@&s¢X || < P and <Pr(Y € 8) 1og<1 +—5+ Pr(Y € S§)>
E[[W[?] = 1.
To prove [33b), we first note that —Pr(Y € &) logPr(Y € &). (43)

Pr(Y c Sé:) < Pr(o—|W| > E). (35) Usi_ng @) toget_her with th(ilfact th&tH_ —&logéis Tlono—
tonically increasing fog < e~!, we obtain foro < ee~1/2
Indeed, ifjocw| < ¢, then we havgy —2'| = [z +ow—2a'| <€ Ve
for 2’ =2z € S, soy € S.. By Chebyshev’s inequality [15, 0<E [log<1 + —2> I{Y € Sf}}
Sec. 5.4], this can be further upper-bounded by 7

o2 P o2 o2 o2

from which [33dl) follows by noting that the RHS df {44)
vanishes a# tends to zero.

2
Pr(Y € 8°) < :_2 (36)

It then follows that, foro < 1,

2 Combinin d) with(32) yields
0 < —log(r?c?)Pr(Y € 8°%) < — 10g(7r202)0—2 (37) 9 [33R)HE3d) wit(32) y
€ . 1
where the right-most term vanishes @agends to zero. This g%{x 5 ;HEP]@I(X; Y) —log ;}
proves [33b). € = .
We next turn to[(33c). We first note that eveyy S¢ must < —h(W)+ Llfg logKeo + AP
satisfy |y| > ¢, since otherwisgy — 2’| < e for 2/ = 0, which
by assumption is ir5. Therefore, = — h(W) + log (11?8 Kw> + AP (45)
E [1Og<M) I{y e 360}} > 1og<5> pr(y c 360) where the last equation follows from the continuity of—
o g log(z) for = > 0. Letting ¢ tend to zero, and usin@g (28b) in
>0, foro<e (38) Lemmal2, we prove(23) and therefore the desired

To prove [(33L), it thus remains to show that

lim sup E {log(|y|> I{y e SEC}} <0. (39)

g

L =logP + log(we) — log (/ e_’\y2y> — AP. (46)
s 4

IV. NONASYMPTOTIC CAPACITY LOSS

o0 X eS8 E|X|?]
By Jensen’s inequality, we have A natural approach to prove Theore 1 would be to
% generalize[(12) to
E [10% (7) {Y e 5?}} lim  sup  A(X+oW)=  sup  h(X). (47)
ol0 xS, B X |2]<P X eS8,E|X[?]<P
< pr(Y 685) log E[VII{Y € &} While this approach may seem simpler, our approach has
UPF(Y € SS) the advantage that it also allows for a lower bound on the
1 P4 o2 nonasymptotic capacity loss
C
< 5Py €S log<7ozpr(y c S§)> (40) L(o) £ Cc(P,0) — Cs(P,0), o> 0. (48)
where the last step follows from the Cauchy-Schwarz inequéideed, combining (43)[(40), and (34) wifh [32) yields
ity I(X;Y) < —h(W)+10gi2 +1logKe, s + A(P + 0?)
g

EV|T{Y € 8%)] < \[E[YPIPr(Y e52).  (41)
Using [36) together with the fact that— —&log & is mono- 1 P
tonically increasing fog < e~!, we obtain foro < ee~1/2 + iPr(Y € &%) log (1 + ;)
Y| c P
E[log<7 Y € 8} +Pr(Y € 89 log<1+§+Pr(Y€S§)>

102 P o2 o2 3
S52 10g(1 + ;) ~ 32 log = (42) — §Pr(Y € &) logPr(Y € &7) (49)

+log® (7°0®)Pr(Y € SY)



m = 10,16, and 22, which were numerically obtained using
6 . Gauss-Hermite quadratures [16], as described for example
210aryoam, | 210ay oam | 27EaY A, in [17, Sec. Ill]. Since for a fixedn the information rate
corresponding t2™-ary QAM is bounded bym bits, the
0al rate loss of2™-ary QAM tends to infinity asoc tends to
asymptotic Tapacity losk zero. We observe that the lower bound Iof@) converges to
L = log(me/6) ~ 0.353 aso tends to zero, but is rather loose
for finite . However, in the proof of Theoreh 1 we chose the
density [2b) to decay sufficiently slowly, so as to ensuré tha
the lower bound orl holds for every unit-variance noise of
finite differential entropy. For Gaussian noise, a density oe
chosen that decays much faster, giving rise to a tighter dhoun
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