
ar
X

iv
:1

20
5.

55
22

v1
  [

cs
.IT

]  
24

 M
ay

 2
01

2

The Capacity Loss of Dense Constellations
Tobias Koch

University of Cambridge
tobi.koch@eng.cam.ac.uk

Alfonso Martinez
Universitat Pompeu Fabra

alfonso.martinez@ieee.org

Albert Guillén i Fàbregas
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Abstract—We determine the loss in capacity incurred by
using signal constellations with a bounded support over general
complex-valued additive-noise channels for suitably highsignal-
to-noise ratio. Our expression for the capacity loss recovers the
power loss of 1.53dB for square signal constellations.

I. I NTRODUCTION

As it is well known, the channel capacity of the complex-
valued Gaussian channel with input power at mostP and noise
varianceσ2 is given by [1]

CG(P, σ) = log

(

1 +
P

σ2

)

. (1)

Although inputs distributed according to the Gaussian distri-
bution attain the capacity, they suffer from several drawbacks
which prevent them from being used in practical systems.
Among them, especially relevant are the unbounded support
and the infinite number of bits needed to represent signal
points.

In practice, discrete distributions with a bounded support
are typically preferred—in this case, the number of points
is allowed to grow with the signal-to-noise ratio (SNR).
Ungerboeck computed the rates that are achievable over the
Gaussian channel when the channel input takes value in a
finite constellation [2]. He observed that, when transmitting
at a rate ofR bits per channel use, there is not much to
be gained from using constellations with sizeN larger than
2R+1. Ozarow and Wyner provided an analytic confirmation
of Ungerboeck’s observation by deriving a lower bound on the
rates achievable with finite constellations [3]. In both works,
the channel inputs are assumed to be uniformly distributed on
a lattice within some enclosing boundary, where the size of
the boundary is scaled in order to ensure unit input-power.

A related line of work considered signal constellations
with favorable geometric properties, e.g., minimum Euclidean
distance or minimum average error probability. For signal
constellations with a large number of points, i.e.,dense con-
stellations, Forneyet al. [4] estimated the loss in SNR with
respect to the Gaussian input to be10 log10

πe
6 ≈ 1.53dB by

comparing the volume of ann-dimensional hypercube with
that of an n-dimensional hypersphere of identical average
power. Later, Ungerboeck’s work led to the study of multi-
dimensional constellations based on lattices [5]–[8].

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. 252663 and from the European Research Council
under ERC grant agreement 259663.

Recently, Wu and Verdú have studied the information rates
that are achievable over the Gaussian channel when the input
takes value in a finite constellation withN signal points [9].
For every fixed SNR, they show that the difference between
the capacity and the achievable rate tends to zero exponentially
in N. For the optimal constellation, the peak-to-average-power
ratio grows linearly withN, inducing no capacity loss. This
is in contrast to the constellations considered by Ungerboeck
[2] and Ozarow and Wyner [3], which have a finite peak-to-
average-power ratio.

In this work, we adopt an information-theoretic perspective
to study the capacity loss incurred by signal constellations with
a bounded support over the Gaussian channel for sufficiently
small noise variance. In particular, we use the duality-based
upper bound to the mutual information in [10] to provide a
lower bound on the capacity loss. The results are valid for both
peak- and average-power constraints and generalize directly
to other additive-noise channel models. For sufficiently high
SNR, our results recover the power loss of1.53dB for square
signal constellations without invoking geometrical arguments.

II. CHANNEL MODEL AND CAPACITY

We consider a discrete-time, complex-valued additive noise
channel, where the channel outputYk at time k ∈ Z (where
Z denotes the set of integers) corresponding to the time-k
channel inputxk is given by

Yk = xk + σWk, k ∈ Z. (2)

We assume that{Wk, k ∈ Z} is a sequence of independent
and identically distributed, centered, unit-variance, complex
random variables of finite differential entropy. We further
assume that the distribution ofWk does neither depend on
σ > 0 nor on the sequence of channel inputs{xk, k ∈ Z}.

The channel inputs take value in the setS, which is assumed
to be a bounded Borel subset of the complex numbersC. We
further assume thatS has positive Lebesgue measure and that
0 ∈ S.

The setS can be viewed as the region that limits the signal
points. For example, for asquare signal constellation, it is a
square:

S� , {x ∈ C : −A ≤ Re(x) ≤ A,−A ≤ Im (x) ≤ A} (3)

for someA > 0. Here Re(x) and Im(x) denote the real
and imaginary part ofx, respectively. Similarly, for acircular
signal constellation,

S• , {x ∈ C : |x| ≤ R}, for someR > 0. (4)
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We study the capacity of the above channel under an
average-power constraintP on the inputs. Since the channel
is memoryless, it follows that the capacityCS(P, σ) (in nats
per channel use) is given by

CS(P, σ) = sup
X∈S,E[|X|2]≤P

I(X ;Y ) (5)

where the supremum is over all input distributions with
essential support inS that satisfyE

[

|X |2
]

≤ P.
We focus onCS(P, σ) in the limit as the noise varianceσ

tends to zero. In particular, we study thecapacity loss, which
we define as

L , lim
σ↓0

{

CC(P, σ)− CS(P, σ)

}

. (6)

(Theorem 1 ahead asserts the existence of the limit.) Here
CC(P, σ) denotes the capacity of the above channel when the
support-constraintS is relaxed, i.e.,

CC(P, σ) = sup
E[|X|2]≤P

I(X ;Y ). (7)

For smallσ, we have [1]

CC(P, σ) = log
P

σ2
+ log(πe)− h(W ) + o(1) (8)

where theo(1)-term vanishes asσ tends to zero. (Herelog(·)
denotes the natural logarithm andh(·) denotes differential
entropy.) The capacity loss (6) can thus be written as

L = log P+ log(πe)− h(W )

− lim
σ↓0

{

sup
X∈S,E[|X|2]≤P

I(X ;Y )− log
1

σ2

}

. (9)

By choosing an input distribution that does not depend on
σ, we can achieve1

L ≤ log P+ log(πe)− sup
X∈S,E[|X|2]≤P

h(X). (10)

Indeed, we have

I(X ;Y ) = h(X + σW )− h(W ) + log
1

σ2
(11)

which follows from the behavior of differential entropy under
deterministic translation and under scaling by a complex
number. Extending [10, Lemma 6.9] (see also [11]) to complex
random variables yields then that, for everyE

[

|X |2
]

< ∞ and
E
[

|W |2
]

< ∞, the first differential entropy on the right-hand
side (RHS) of (11) satisfies

lim
σ↓0

h(X + σW ) = h(X). (12)

Consequently, we obtain

lim
σ↓0

{

sup
X∈S,E[|X|2]≤P

I(X ;Y )− log
1

σ2

}

≥ sup
X∈S,E[|X|2]≤P

lim
σ↓0

{

I(X ;Y )− log
1

σ2

}

= sup
X∈S,E[|X|2]≤P

h(X)− h(W ) (13)

1We defineh(X) = −∞ if the distribution of X is not absolutely
continuous with respect to the Lebesgue measure.

which together with (9) yields (10).
Let PU denote the average power of a random variable that

is uniformly distributed overS, i.e.,

PU ,

∫

S |x|2x.
∫

S
x. ′

. (14)

A small modification of the proof in [12, Th. 12.1.1] shows
that the density that maximizesh(X) for X ∈ S with
probability one andE

[

|X |2
]

≤ P has the form

f⋆(x) =
e−λ|x|2

∫

S e−λ|x′|2x. ′
I {x ∈ S} , x ∈ C (15)

whereλ = 0 for P ≥ PU , and whereλ satisfies
∫

S e−λ|x|2|x|2x.
∫

S
e−λ|x′|2x. ′

= P (16)

for P < PU . HereI {statement} denotes the indicator function:
it is equal to one if the statement in the brackets is true and
it is otherwise equal to zero.

Applying (15) to (10) yields

L ≤ log P+ log(πe)− log

(
∫

S

e−λ|x′|2x.
′

)

− λP. (17)

For P = PU (and henceλ = 0), this becomes

L ≤ log(πe) + log

(
∫

S

|x|2x.

)

− 2 log

(
∫

S

x.

)

. (18)

Specializing (18) to a square signal constellation (3) yields
(irrespective ofA)

L� ≤ log
πe

6
(19)

which corresponds to a power loss of roughly1.53dB. Hence,
we recover the rule of thumb that “square signal constellations
have a1.53dB power loss at high signal-to-noise ratio.”

For a circular signal constellation (4), the upper bound (18)
becomes (irrespective ofR)

L• ≤ log
e

2
(20)

recovering the power loss of1.33dB [4].
The inequality in (17) holds with equality if the capacity-

achieving input-distribution does not depend onσ, cf. (13).
However, this is in general not the case. For example, for
circularly-symmetric Gaussian noise and a circular signal
constellation (4), it was shown by Shamai and Bar-David [13]
that, for everyσ > 0, the capacity-achieving input-distribution
is discrete in magnitude, with the number of mass points
growing with vanishingσ. Nevertheless, the following theorem
demonstrates that the RHS of (17) is indeed the capacity loss.

Theorem 1 (Main Result): For the above channel model,
we have

L = log P+ log(πe)− log

(
∫

S

e−λ|x′|2x.
′

)

− λP (21)

where λ = 0 for P ≥ PU , and whereλ satisfies (16) for
P < PU .

Proof: See Section III.



Note 1: It is not difficult to adapt the proof of Theorem 1
to other regionsS and moment constraints. For example, the
same proof technique can be used to derive the capacity loss
whenS is a Borel subset of the real numbers and the channel
input’s first-moment is limited, i.e.,E[|X |] ≤ A.

Equations (11)–(13) demonstrate that the capacity loss (21)
can be achieved with a continuous-valued channel input hav-
ing densityf⋆(·). Using the lower-semicontinuity of relative
entropy [14], it can be further shown that (21) can also be
achieved by any sequence of discrete channel inputs{XN}
for which the number of mass pointsN grows with vanishing
σ, provided that

XN

L

→ X⋆ asN → ∞ (22)

where X⋆ is a continuous random variable having density
f⋆(·). (Here

L

→ denotes convergence in distribution.) Such
a sequence can, for example, be obtained by approximat-
ing the distribution function corresponding tof⋆(·) by two-
dimensional step functions.

III. PROOF OFTHEOREM 1

In view of (9), in order to prove Theorem 1 it suffices to
show that

lim
σ↓0

{

sup
X∈S,E[|X|2]≤P

I(X ;Y )− log
1

σ2

}

≤ log

(
∫

S

e−λ|x′|2x.
′

)

+ λP− h(W ). (23)

The claim follows then by combining (23) with (17). To this
end, we use the upper bound on the mutual information [10,
Th. 5.1]

I(X ;Y ) ≤

∫

D
(

W (·|x)
∥

∥ R(·)
)

Q. (x) (24)

whereQ(·) denotes the input distribution;W (·|x) denotes the
conditional distribution of the channel output, conditioned on
X = x; andR(·) denotes some arbitrary distribution on the
output alphabet. Every choice ofR(·) yields an upper bound
on I(X ;Y ), and the inequality in (24) holds with equality
if R(·) is the actual distribution ofY induced byQ(·) and
W (·|·).

To derive an upper bound onI(X ;Y ), we apply (24) with
R(·) having density

r(y) =



















e−λ|y|2

Kǫ,σ
, y ∈ Sǫ

1

Kǫ,σ

1

π2σ|y|

1

1 + |y|/σ2
, y /∈ Sǫ

(25)

where

Kǫ,σ ,

∫

Sǫ

e−λ|y|2y. +
∫

Sc
ǫ

1

π2σ|y|

1

1 + |y|2/σ2
y. (26)

is a normalizing constant; whereSǫ denotes the ǫ-
neighborhood ofS

Sǫ ,
{

y ∈ C : |y − x′| ≤ ǫ, for somex′ ∈ S
}

; (27)

whereSc
ǫ denotes the complement ofSǫ; and whereλ is zero

for P ≥ PU and satisfies (16) forP < PU . Some useful
properties ofKǫ,σ are summarized in the following lemma.

Lemma 2: The normalizing constantKǫ,σ satisfies

inf
ǫ>0,
σ>0

Kǫ,σ > 0 (28a)

lim
ǫ↓0

lim
σ↓0

Kǫ,σ =

∫

S

e−λ|y|2y. . (28b)

Proof: Omitted.
We return to the analysis ofI(X ;Y ) and apply (24) together

with the density (25) to express the upper bound as
∫

D
(

W (·|x)
∥

∥ R(·)
)

Q. (x)

= −h(Y |X)−

∫∫

p(y|x) log r(y)y.Q. (x) (29)

wherep(y|x) denotes the conditional probability density func-
tion of Y , conditioned onX = x.

Evaluation of the conditional differential entropy gives

h(Y |X) = h(W )− log
1

σ2
(30)

and some algebra applied to the second summand in (29)
allows us to write it as

−

∫∫

p(y|x) log r(y)y.Q. (x)

= logKǫ,σ + λE
[

|Y |2 I {Y ∈ Sǫ}
]

+ log
(

π2σ2
)

Pr
(

Y ∈ Sc
ǫ

)

+ E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

+ E
[

log

(

1 +
|Y |2

σ2

)

I {Y ∈ Sc
ǫ}

]

. (31)

Combining (30) and (31) with (29) and (24) yields

I(X ;Y )

≤ −h(W ) + log
1

σ2
+ logKǫ,σ + λE

[

|Y |2 I {Y ∈ Sǫ}
]

+ log
(

π2σ2
)

Pr
(

Y ∈ Sc
ǫ

)

+ E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

+ E
[

log

(

1 +
|Y |2

σ2

)

I {Y ∈ Sc
ǫ}

]

. (32)

We next show that, forǫ > 0,

lim
σ↓0

sup
X∈S,E[|X|2]≤P

E
[

|Y |2 I {Y ∈ Sǫ}
]

≤ P (33a)

lim
σ↓0

sup
X∈S,E[|X|2]≤P

∣

∣

∣
log
(

π2σ2
)

Pr
(

Y ∈ Sc
ǫ

)

∣

∣

∣
= 0 (33b)

lim
σ↓0

sup
X∈S,E[|X|2]≤P

∣

∣

∣

∣

∣

E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

∣

∣

∣

∣

∣

= 0 (33c)

lim
σ↓0

sup
X∈S,E[|X|2]≤P

E
[

log

(

1 +
|Y |2

σ2

)

I {Y ∈ Sc
ǫ}

]

= 0. (33d)



The first claim (33a) follows by upper-bounding

sup
X∈S,E[|X|2]≤P

E
[

|Y |2 I {Y ∈ Sǫ}
]

≤ sup
X∈S,E[|X|2]≤P

E
[

|Y |2
]

= sup
X∈S,E[|X|2]≤P

E
[

|X |2
]

+ σ2E
[

|W |2
]

≤ P+ σ2 (34)

where the second step follows becauseX and W are inde-
pendent, and the third step follows becauseE

[

|X |2
]

≤ P and
E
[

|W |2
]

= 1.
To prove (33b), we first note that

Pr
(

Y ∈ Sc
ǫ

)

≤ Pr
(

σ|W | > ǫ
)

. (35)

Indeed, if|σw| ≤ ǫ, then we have|y−x′| = |x+σw−x′| ≤ ǫ
for x′ = x ∈ S, so y ∈ Sǫ. By Chebyshev’s inequality [15,
Sec. 5.4], this can be further upper-bounded by

Pr
(

Y ∈ Sc
ǫ

)

≤
σ2

ǫ2
. (36)

It then follows that, forσ ≤ 1
π ,

0 ≤ − log
(

π2σ2
)

Pr
(

Y ∈ Sc
ǫ

)

≤ − log
(

π2σ2
)σ2

ǫ2
(37)

where the right-most term vanishes asσ tends to zero. This
proves (33b).

We next turn to (33c). We first note that everyy ∈ Sc
ǫ must

satisfy |y| > ǫ, since otherwise|y− x′| ≤ ǫ for x′ = 0, which
by assumption is inS. Therefore,

E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

≥ log

(

ǫ

σ

)

Pr
(

Y ∈ Sc
ǫ

)

≥ 0, for σ ≤ ǫ. (38)

To prove (33c), it thus remains to show that

lim
σ↓0

sup
X∈S,E[|X|2]

E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

≤ 0. (39)

By Jensen’s inequality, we have

E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

≤ Pr
(

Y ∈ Sc
ǫ

)

log

(

E[|Y | I {Y ∈ Sc
ǫ}]

σPr
(

Y ∈ Sc
ǫ

)

)

≤
1

2
Pr
(

Y ∈ Sc
ǫ

)

log

(

P+ σ2

σ2Pr
(

Y ∈ Sc
ǫ

)

)

(40)

where the last step follows from the Cauchy-Schwarz inequal-
ity

E[|Y | I {Y ∈ Sc
ǫ}] ≤

√

E[|Y |2]Pr
(

Y ∈ Sc
ǫ

)

. (41)

Using (36) together with the fact thatξ 7→ −ξ log ξ is mono-
tonically increasing forξ ≤ e−1, we obtain forσ ≤ ǫ e−1/2

E
[

log

(

|Y |

σ

)

I {Y ∈ Sc
ǫ}

]

≤
1

2

σ2

ǫ2
log

(

1 +
P

σ2

)

−
σ2

2ǫ2
log

σ2

ǫ2
(42)

from which (39)—and hence (33c)—follows by noting that
the RHS of (42) vanishes asσ tends to zero.

To prove (33d), we use Jensen’s inequality and (34) to
obtain

E
[

log

(

1 +
|Y |2

σ2

)

I {Y ∈ Sc
ǫ}

]

≤ Pr
(

Y ∈ Sc
ǫ

)

log

(

1 +
E
[

|Y |2 I {Y ∈ Sc
ǫ}
]

σ2Pr
(

Y ∈ Sc
ǫ

)

)

≤ Pr
(

Y ∈ Sc
ǫ

)

log

(

1 +
P

σ2
+ Pr

(

Y ∈ Sc
ǫ

)

)

− Pr
(

Y ∈ Sc
ǫ

)

logPr
(

Y ∈ Sc
ǫ

)

. (43)

Using (36) together with the fact thatξ 7→ −ξ log ξ is mono-
tonically increasing forξ ≤ e−1, we obtain forσ ≤ ǫ e−1/2

0 ≤ E
[

log

(

1 +
|Y |2

σ2

)

I {Y ∈ Sc
ǫ}

]

≤
σ2

ǫ2
log

(

1 +
P

σ2
+

σ2

ǫ2

)

−
σ2

ǫ2
log

σ2

ǫ2
(44)

from which (33d) follows by noting that the RHS of (44)
vanishes asσ tends to zero.

Combining (33a)–(33d) with (32) yields

lim
σ↓0

{

sup
X∈S,E[|X|2]≤P

I(X ;Y )− log
1

σ2

}

≤ − h(W ) + lim
σ↓0

logKǫ,σ + λP

= − h(W ) + log

(

lim
σ↓0

Kǫ,σ

)

+ λP (45)

where the last equation follows from the continuity ofx 7→
log(x) for x > 0. Letting ǫ tend to zero, and using (28b) in
Lemma 2, we prove (23) and therefore the desired

L = log P+ log(πe)− log

(
∫

S

e−λ|y|2y.

)

− λP. (46)

IV. N ONASYMPTOTIC CAPACITY LOSS

A natural approach to prove Theorem 1 would be to
generalize (12) to

lim
σ↓0

sup
X∈S,E[|X|2]≤P

h(X + σW ) = sup
X∈S,E[|X|2]≤P

h(X). (47)

While this approach may seem simpler, our approach has
the advantage that it also allows for a lower bound on the
nonasymptotic capacity loss

L(σ) , CC(P, σ)− CS(P, σ), σ > 0. (48)

Indeed, combining (43), (40), and (34) with (32) yields

I(X ;Y ) ≤ −h(W ) + log
1

σ2
+ logKǫ,σ + λ

(

P+ σ2
)

+ log+
(

π2σ2
)

Pr
(

Y ∈ Sc
ǫ

)

+
1

2
Pr
(

Y ∈ Sc
ǫ

)

log

(

1 +
P

σ2

)

+ Pr
(

Y ∈ Sc
ǫ

)

log

(

1 +
P

σ2
+ Pr

(

Y ∈ Sc
ǫ

)

)

−
3

2
Pr
(

Y ∈ Sc
ǫ

)

logPr
(

Y ∈ Sc
ǫ

)

(49)
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Fig. 1. The capacity lossL(σ) for circularly-symmetric Gaussian noise and
square constellations withP = PU .

wherelog+(ξ) , max{0, log ξ}, ξ > 0. By upper-bounding

Kǫ,σ ≤

∫

Sǫ

e−λ|y|2y. + 1−
2

π
tan−1

(

ǫ

σ

)

(50)

(wheretan−1(·) denotes the arctangent function), and by using
(35) together with the fact thatξ 7→ −ξ log ξ is monotonically
increasing forξ ≤ e−1 and that−ξ log ξ ≤ 1/e for 0 < ξ < 1,
we obtain, upon minimizing overǫ > 0,

CS(P, σ)

≤ inf
ǫ>0

{

−h(W ) + log
1

σ2
+ λ
(

P+ σ2
)

+ log

(

∫

Sǫ

e−λ|y|2y. + 1−
2

π
tan−1

(

ǫ

σ

)

)

+ log+
(

π2σ2
)

Pr
(

σ|W | > ǫ
)

+
1

2
Pr
(

σ|W | > ǫ
)

log

(

1 +
P

σ2

)

+ Pr
(

σ|W | > ǫ
)

log

(

1 +
P

σ2
+ Pr

(

σ|W | > ǫ
)

)

−
3

2
Pr
(

σ|W | > ǫ
)

log
(

Pr
(

σ|W | > ǫ
)

)

× I
{

Pr
(

σ|W | > ǫ
)

≤ 1/e
}

+
3

2e
I
{

Pr
(

σ|W | > ǫ
)

> 1/e
}

}

. (51)

This together with (48) yields a lower bound onL(σ).
Figure 1 shows the lower bound onL(σ) for circularly-

symmetric Gaussian noise and a square signal constellation
(3) with P = PU . It further shows the information-rate
losses of2m-ary quadrature amplitude modulation (QAM) for

m = 10, 16, and22, which were numerically obtained using
Gauss-Hermite quadratures [16], as described for example
in [17, Sec. III]. Since for a fixedm the information rate
corresponding to2m-ary QAM is bounded bym bits, the
rate loss of2m-ary QAM tends to infinity asσ tends to
zero. We observe that the lower bound onL(σ) converges to
L = log(πe/6) ≈ 0.353 asσ tends to zero, but is rather loose
for finite σ. However, in the proof of Theorem 1 we chose the
density (25) to decay sufficiently slowly, so as to ensure that
the lower bound onL holds for every unit-variance noise of
finite differential entropy. For Gaussian noise, a density can be
chosen that decays much faster, giving rise to a tighter bound.
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